cmpci.c revision 1.7 1 /* $NetBSD: cmpci.c,v 1.7 2001/02/12 18:47:12 tshiozak Exp $ */
2
3 /*
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) netbsd.org> .
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * C-Media CMI8x38 Audio Chip Support.
35 *
36 * TODO:
37 * - Legacy MPU, OPL and Joystick support.
38 *
39 */
40
41 #if defined(AUDIO_DEBUG) || defined(DEBUG)
42 #define DPRINTF(x) if (cmpcidebug) printf x
43 int cmpcidebug = 0;
44 #else
45 #define DPRINTF(x)
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54
55 #include <dev/pci/pcidevs.h>
56 #include <dev/pci/pcivar.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60 #include <dev/midi_if.h>
61
62 #include <dev/mulaw.h>
63 #include <dev/auconv.h>
64 #include <dev/pci/cmpcireg.h>
65 #include <dev/pci/cmpcivar.h>
66
67 #include <dev/ic/mpuvar.h>
68 #include <machine/bus.h>
69 #include <machine/intr.h>
70
71 /*
72 * Low-level HW interface
73 */
74 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
75 uint8_t));
76 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
77 uint8_t, uint8_t));
78 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
79 int, int,
80 uint32_t, uint32_t));
81 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
82 int, uint8_t));
83 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
84 int, uint8_t));
85 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
86 int, uint32_t));
87 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
88 int, uint32_t));
89 static int cmpci_rate_to_index __P((int));
90 static __inline int cmpci_index_to_rate __P((int));
91 static __inline int cmpci_index_to_divider __P((int));
92
93 static int cmpci_adjust __P((int, int));
94 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
95 static void cmpci_set_out_ports __P((struct cmpci_softc *));
96 static int cmpci_set_in_ports __P((struct cmpci_softc *, int));
97
98
99 /*
100 * autoconf interface
101 */
102 static int cmpci_match __P((struct device *, struct cfdata *, void *));
103 static void cmpci_attach __P((struct device *, struct device *, void *));
104
105 struct cfattach cmpci_ca = {
106 sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
107 };
108
109 /* interrupt */
110 static int cmpci_intr __P((void *));
111
112
113 /*
114 * DMA stuffs
115 */
116 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
117 size_t, int, int, caddr_t *));
118 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
119 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
120 caddr_t));
121
122
123 /*
124 * interface to machine independent layer
125 */
126 static int cmpci_open __P((void *, int));
127 static void cmpci_close __P((void *));
128 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
129 static int cmpci_set_params __P((void *, int, int,
130 struct audio_params *,
131 struct audio_params *));
132 static int cmpci_round_blocksize __P((void *, int));
133 static int cmpci_halt_output __P((void *));
134 static int cmpci_halt_input __P((void *));
135 static int cmpci_getdev __P((void *, struct audio_device *));
136 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
137 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
138 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
139 static void *cmpci_allocm __P((void *, int, size_t, int, int));
140 static void cmpci_freem __P((void *, void *, int));
141 static size_t cmpci_round_buffersize __P((void *, int, size_t));
142 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
143 static int cmpci_get_props __P((void *));
144 static int cmpci_trigger_output __P((void *, void *, void *, int,
145 void (*)(void *), void *,
146 struct audio_params *));
147 static int cmpci_trigger_input __P((void *, void *, void *, int,
148 void (*)(void *), void *,
149 struct audio_params *));
150
151 static struct audio_hw_if cmpci_hw_if = {
152 cmpci_open, /* open */
153 cmpci_close, /* close */
154 NULL, /* drain */
155 cmpci_query_encoding, /* query_encoding */
156 cmpci_set_params, /* set_params */
157 cmpci_round_blocksize, /* round_blocksize */
158 NULL, /* commit_settings */
159 NULL, /* init_output */
160 NULL, /* init_input */
161 NULL, /* start_output */
162 NULL, /* start_input */
163 cmpci_halt_output, /* halt_output */
164 cmpci_halt_input, /* halt_input */
165 NULL, /* speaker_ctl */
166 cmpci_getdev, /* getdev */
167 NULL, /* setfd */
168 cmpci_set_port, /* set_port */
169 cmpci_get_port, /* get_port */
170 cmpci_query_devinfo, /* query_devinfo */
171 cmpci_allocm, /* allocm */
172 cmpci_freem, /* freem */
173 cmpci_round_buffersize,/* round_buffersize */
174 cmpci_mappage, /* mappage */
175 cmpci_get_props, /* get_props */
176 cmpci_trigger_output, /* trigger_output */
177 cmpci_trigger_input /* trigger_input */
178 };
179
180
181 /*
182 * Low-level HW interface
183 */
184
185 /* mixer register read/write */
186 static __inline uint8_t
187 cmpci_mixerreg_read(sc, no)
188 struct cmpci_softc *sc;
189 uint8_t no;
190 {
191 uint8_t ret;
192
193 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
194 delay(10);
195 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
196 delay(10);
197 return ret;
198 }
199
200 static __inline void
201 cmpci_mixerreg_write(sc, no, val)
202 struct cmpci_softc *sc;
203 uint8_t no, val;
204 {
205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
206 delay(10);
207 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
208 delay(10);
209 }
210
211
212 /* register partial write */
213 static __inline void
214 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
215 struct cmpci_softc *sc;
216 int no, shift;
217 uint32_t mask, val;
218 {
219 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
220 (val<<shift) |
221 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
222 delay(10);
223 }
224
225 /* register set/clear bit */
226 static __inline void
227 cmpci_reg_set_1(sc, no, mask)
228 struct cmpci_softc *sc;
229 int no;
230 uint8_t mask;
231 {
232 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
233 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
234 delay(10);
235 }
236
237 static __inline void
238 cmpci_reg_clear_1(sc, no, mask)
239 struct cmpci_softc *sc;
240 int no;
241 uint8_t mask;
242 {
243 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
244 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
245 delay(10);
246 }
247
248
249 static __inline void
250 cmpci_reg_set_4(sc, no, mask)
251 struct cmpci_softc *sc;
252 int no;
253 uint32_t mask;
254 {
255 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
256 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
257 delay(10);
258 }
259
260 static __inline void
261 cmpci_reg_clear_4(sc, no, mask)
262 struct cmpci_softc *sc;
263 int no;
264 uint32_t mask;
265 {
266 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
267 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
268 delay(10);
269 }
270
271
272 /* rate */
273 static const struct {
274 int rate;
275 int divider;
276 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
277 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
278 _RATE(5512),
279 _RATE(8000),
280 _RATE(11025),
281 _RATE(16000),
282 _RATE(22050),
283 _RATE(32000),
284 _RATE(44100),
285 _RATE(48000)
286 #undef _RATE
287 };
288
289 static int
290 cmpci_rate_to_index(rate)
291 int rate;
292 {
293 int i;
294
295 for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
296 if (rate <=
297 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
298 return i;
299 return i; /* 48000 */
300 }
301
302 static __inline int
303 cmpci_index_to_rate(index)
304 int index;
305 {
306 return cmpci_rate_table[index].rate;
307 }
308
309 static __inline int
310 cmpci_index_to_divider(index)
311 int index;
312 {
313 return cmpci_rate_table[index].divider;
314 }
315
316
317 /*
318 * interface to configure the device.
319 */
320
321 static int
322 cmpci_match(parent, match, aux)
323 struct device *parent;
324 struct cfdata *match;
325 void *aux;
326 {
327 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
328
329 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
330 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
331 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
332 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
333 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
334 return 1;
335
336 return 0;
337 }
338
339 static void
340 cmpci_attach(parent, self, aux)
341 struct device *parent, *self;
342 void *aux;
343 {
344 struct cmpci_softc *sc = (struct cmpci_softc *)self;
345 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
346 pci_intr_handle_t ih;
347 char const *strintr;
348 char devinfo[256];
349 int i, v;
350
351 sc->sc_id = pa->pa_id;
352 sc->sc_class = pa->pa_class;
353 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
354 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(sc->sc_class));
355 switch (PCI_PRODUCT(sc->sc_id)) {
356 case PCI_PRODUCT_CMEDIA_CMI8338A:
357 /*FALLTHROUGH*/
358 case PCI_PRODUCT_CMEDIA_CMI8338B:
359 sc->sc_capable = CMPCI_CAP_CMI8338;
360 break;
361 case PCI_PRODUCT_CMEDIA_CMI8738:
362 /*FALLTHROUGH*/
363 case PCI_PRODUCT_CMEDIA_CMI8738B:
364 sc->sc_capable = CMPCI_CAP_CMI8738;
365 break;
366 }
367
368 /* map I/O space */
369 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
370 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
371 printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
372 return;
373 }
374
375 /* interrupt */
376 if (pci_intr_map(pa, &ih)) {
377 printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
378 return;
379 }
380 strintr = pci_intr_string(pa->pa_pc, ih);
381 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
382 if (sc->sc_ih == NULL) {
383 printf("%s: failed to establish interrupt",
384 sc->sc_dev.dv_xname);
385 if (strintr != NULL)
386 printf(" at %s", strintr);
387 printf("\n");
388 return;
389 }
390 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
391
392 sc->sc_dmat = pa->pa_dmat;
393
394 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
395
396 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
397 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
398 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
399 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
400 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
401 for (i = 0; i < CMPCI_NDEVS; i++) {
402 switch(i) {
403 case CMPCI_MIC_VOL:
404 case CMPCI_LINE_IN_VOL:
405 v = 0;
406 break;
407 case CMPCI_BASS:
408 case CMPCI_TREBLE:
409 v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
410 break;
411 case CMPCI_CD_IN_MUTE:
412 case CMPCI_MIC_IN_MUTE:
413 case CMPCI_LINE_IN_MUTE:
414 case CMPCI_FM_IN_MUTE:
415 case CMPCI_CD_SWAP:
416 case CMPCI_MIC_SWAP:
417 case CMPCI_LINE_SWAP:
418 case CMPCI_FM_SWAP:
419 case CMPCI_SPDIF_LOOP:
420 case CMPCI_SPDIF_OUT_VOLTAGE:
421 case CMPCI_SPDIF_IN_PHASE:
422 case CMPCI_REAR:
423 case CMPCI_INDIVIDUAL:
424 case CMPCI_REVERSE:
425 case CMPCI_SURROUND:
426 v = 0;
427 break;
428 case CMPCI_CD_OUT_MUTE:
429 case CMPCI_MIC_OUT_MUTE:
430 case CMPCI_LINE_OUT_MUTE:
431 case CMPCI_SPDIF_IN_MUTE:
432 v = 1;
433 break;
434 default:
435 v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
436 }
437 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
438 cmpci_set_mixer_gain(sc, i);
439 }
440 }
441
442
443 static int
444 cmpci_intr(handle)
445 void *handle;
446 {
447 struct cmpci_softc *sc = handle;
448 uint32_t intrstat;
449
450 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
451 CMPCI_REG_INTR_STATUS);
452 delay(10);
453
454 if (!(intrstat & CMPCI_REG_ANY_INTR))
455 return 0;
456
457 /* disable and reset intr */
458 if (intrstat & CMPCI_REG_CH0_INTR)
459 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
460 CMPCI_REG_CH0_INTR_ENABLE);
461 if (intrstat & CMPCI_REG_CH1_INTR)
462 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
463 CMPCI_REG_CH1_INTR_ENABLE);
464
465 if (intrstat & CMPCI_REG_CH0_INTR) {
466 if (sc->sc_play.intr != NULL)
467 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
468 }
469 if (intrstat & CMPCI_REG_CH1_INTR) {
470 if (sc->sc_rec.intr != NULL)
471 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
472 }
473
474 /* enable intr */
475 if (intrstat & CMPCI_REG_CH0_INTR)
476 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
477 CMPCI_REG_CH0_INTR_ENABLE);
478 if (intrstat & CMPCI_REG_CH1_INTR)
479 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
480 CMPCI_REG_CH1_INTR_ENABLE);
481
482 return 0;
483 }
484
485
486 /* open/close */
487 static int
488 cmpci_open(handle, flags)
489 void *handle;
490 int flags;
491 {
492 return 0;
493 }
494
495 static void
496 cmpci_close(handle)
497 void *handle;
498 {
499 }
500
501 static int
502 cmpci_query_encoding(handle, fp)
503 void *handle;
504 struct audio_encoding *fp;
505 {
506 switch (fp->index) {
507 case 0:
508 strcpy(fp->name, AudioEulinear);
509 fp->encoding = AUDIO_ENCODING_ULINEAR;
510 fp->precision = 8;
511 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
512 break;
513 case 1:
514 strcpy(fp->name, AudioEmulaw);
515 fp->encoding = AUDIO_ENCODING_ULAW;
516 fp->precision = 8;
517 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
518 break;
519 case 2:
520 strcpy(fp->name, AudioEalaw);
521 fp->encoding = AUDIO_ENCODING_ALAW;
522 fp->precision = 8;
523 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
524 break;
525 case 3:
526 strcpy(fp->name, AudioEslinear);
527 fp->encoding = AUDIO_ENCODING_SLINEAR;
528 fp->precision = 8;
529 fp->flags = 0;
530 break;
531 case 4:
532 strcpy(fp->name, AudioEslinear_le);
533 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
534 fp->precision = 16;
535 fp->flags = 0;
536 break;
537 case 5:
538 strcpy(fp->name, AudioEulinear_le);
539 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
540 fp->precision = 16;
541 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
542 break;
543 case 6:
544 strcpy(fp->name, AudioEslinear_be);
545 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
546 fp->precision = 16;
547 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
548 break;
549 case 7:
550 strcpy(fp->name, AudioEulinear_be);
551 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
552 fp->precision = 16;
553 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
554 break;
555 default:
556 return EINVAL;
557 }
558 return 0;
559 }
560
561
562 static int
563 cmpci_set_params(handle, setmode, usemode, play, rec)
564 void *handle;
565 int setmode, usemode;
566 struct audio_params *play, *rec;
567 {
568 int i;
569 struct cmpci_softc *sc = handle;
570
571 for (i = 0; i < 2; i++) {
572 int md_format;
573 int md_divide;
574 int md_index;
575 int mode;
576 struct audio_params *p;
577
578 switch (i) {
579 case 0:
580 mode = AUMODE_PLAY;
581 p = play;
582 break;
583 case 1:
584 mode = AUMODE_RECORD;
585 p = rec;
586 break;
587 }
588
589 if (!(setmode & mode))
590 continue;
591
592
593 /* format */
594 p->sw_code = NULL;
595 switch ( p->channels ) {
596 case 1:
597 md_format = CMPCI_REG_FORMAT_MONO;
598 break;
599 case 2:
600 md_format = CMPCI_REG_FORMAT_STEREO;
601 break;
602 default:
603 return (EINVAL);
604 }
605 switch (p->encoding) {
606 case AUDIO_ENCODING_ULAW:
607 if (p->precision != 8)
608 return (EINVAL);
609 if (mode & AUMODE_PLAY) {
610 p->factor = 2;
611 p->sw_code = mulaw_to_slinear16_le;
612 md_format |= CMPCI_REG_FORMAT_16BIT;
613 } else {
614 p->sw_code = ulinear8_to_mulaw;
615 md_format |= CMPCI_REG_FORMAT_8BIT;
616 }
617 break;
618 case AUDIO_ENCODING_ALAW:
619 if (p->precision != 8)
620 return (EINVAL);
621 if (mode & AUMODE_PLAY) {
622 p->factor = 2;
623 p->sw_code = alaw_to_slinear16_le;
624 md_format |= CMPCI_REG_FORMAT_16BIT;
625 } else {
626 p->sw_code = ulinear8_to_alaw;
627 md_format |= CMPCI_REG_FORMAT_8BIT;
628 }
629 break;
630 case AUDIO_ENCODING_SLINEAR_LE:
631 switch (p->precision) {
632 case 8:
633 p->sw_code = change_sign8;
634 md_format |= CMPCI_REG_FORMAT_8BIT;
635 break;
636 case 16:
637 md_format |= CMPCI_REG_FORMAT_16BIT;
638 break;
639 default:
640 return (EINVAL);
641 }
642 break;
643 case AUDIO_ENCODING_SLINEAR_BE:
644 switch (p->precision) {
645 case 8:
646 md_format |= CMPCI_REG_FORMAT_8BIT;
647 p->sw_code = change_sign8;
648 break;
649 case 16:
650 md_format |= CMPCI_REG_FORMAT_16BIT;
651 p->sw_code = swap_bytes;
652 break;
653 default:
654 return (EINVAL);
655 }
656 break;
657 case AUDIO_ENCODING_ULINEAR_LE:
658 switch (p->precision) {
659 case 8:
660 md_format |= CMPCI_REG_FORMAT_8BIT;
661 break;
662 case 16:
663 md_format |= CMPCI_REG_FORMAT_16BIT;
664 p->sw_code = change_sign16_le;
665 break;
666 default:
667 return (EINVAL);
668 }
669 break;
670 case AUDIO_ENCODING_ULINEAR_BE:
671 switch (p->precision) {
672 case 8:
673 md_format |= CMPCI_REG_FORMAT_8BIT;
674 break;
675 case 16:
676 md_format |= CMPCI_REG_FORMAT_16BIT;
677 if (mode & AUMODE_PLAY)
678 p->sw_code =
679 swap_bytes_change_sign16_le;
680 else
681 p->sw_code =
682 change_sign16_swap_bytes_le;
683 break;
684 default:
685 return (EINVAL);
686 }
687 break;
688 default:
689 return (EINVAL);
690 }
691 if (mode & AUMODE_PLAY)
692 cmpci_reg_partial_write_4(sc,
693 CMPCI_REG_CHANNEL_FORMAT,
694 CMPCI_REG_CH0_FORMAT_SHIFT,
695 CMPCI_REG_CH0_FORMAT_MASK, md_format);
696 else
697 cmpci_reg_partial_write_4(sc,
698 CMPCI_REG_CHANNEL_FORMAT,
699 CMPCI_REG_CH1_FORMAT_SHIFT,
700 CMPCI_REG_CH1_FORMAT_MASK, md_format);
701 /* sample rate */
702 md_index = cmpci_rate_to_index(p->sample_rate);
703 md_divide = cmpci_index_to_divider(md_index);
704 p->sample_rate = cmpci_index_to_rate(md_index);
705 DPRINTF(("%s: sample:%d, divider=%d\n",
706 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
707 if (mode & AUMODE_PLAY) {
708 cmpci_reg_partial_write_4(sc,
709 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
710 CMPCI_REG_DAC_FS_MASK, md_divide);
711 sc->sc_play.md_divide = md_divide;
712 } else {
713 cmpci_reg_partial_write_4(sc,
714 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
715 CMPCI_REG_ADC_FS_MASK, md_divide);
716 sc->sc_rec.md_divide = md_divide;
717 }
718 cmpci_set_mixer_gain(sc, CMPCI_SPDIF_LOOP);
719 }
720 return 0;
721 }
722
723 /* ARGSUSED */
724 static int
725 cmpci_round_blocksize(handle, block)
726 void *handle;
727 int block;
728 {
729 return (block & -4);
730 }
731
732 static int
733 cmpci_halt_output(handle)
734 void *handle;
735 {
736 struct cmpci_softc *sc = handle;
737 int s;
738
739 s = splaudio();
740 sc->sc_play.intr = NULL;
741 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
742 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
743 /* wait for reset DMA */
744 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
745 delay(10);
746 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
747 splx(s);
748
749 return 0;
750 }
751
752 static int
753 cmpci_halt_input(handle)
754 void *handle;
755 {
756 struct cmpci_softc *sc = handle;
757 int s;
758
759 s = splaudio();
760 sc->sc_rec.intr = NULL;
761 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
762 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
763 /* wait for reset DMA */
764 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
765 delay(10);
766 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
767 splx(s);
768
769 return 0;
770 }
771
772
773 /* get audio device information */
774 static int
775 cmpci_getdev(handle, ad)
776 void *handle;
777 struct audio_device *ad;
778 {
779 struct cmpci_softc *sc = handle;
780
781 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
782 snprintf(ad->version, sizeof(ad->version), "0x%02x",
783 PCI_REVISION(sc->sc_class));
784 switch (PCI_PRODUCT(sc->sc_id)) {
785 case PCI_PRODUCT_CMEDIA_CMI8338A:
786 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
787 break;
788 case PCI_PRODUCT_CMEDIA_CMI8338B:
789 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
790 break;
791 case PCI_PRODUCT_CMEDIA_CMI8738:
792 strncpy(ad->config, "CMI8738", sizeof(ad->config));
793 break;
794 case PCI_PRODUCT_CMEDIA_CMI8738B:
795 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
796 break;
797 default:
798 strncpy(ad->config, "unknown", sizeof(ad->config));
799 }
800
801 return 0;
802 }
803
804
805 /* mixer device information */
806 int
807 cmpci_query_devinfo(handle, dip)
808 void *handle;
809 mixer_devinfo_t *dip;
810 {
811 switch (dip->index) {
812 case CMPCI_MASTER_VOL:
813 dip->type = AUDIO_MIXER_VALUE;
814 dip->mixer_class = CMPCI_OUTPUT_CLASS;
815 dip->prev = dip->next = AUDIO_MIXER_LAST;
816 strcpy(dip->label.name, AudioNmaster);
817 dip->un.v.num_channels = 2;
818 strcpy(dip->un.v.units.name, AudioNvolume);
819 return 0;
820 case CMPCI_FM_VOL:
821 dip->type = AUDIO_MIXER_VALUE;
822 dip->mixer_class = CMPCI_INPUT_CLASS;
823 dip->prev = AUDIO_MIXER_LAST;
824 dip->next = CMPCI_FM_IN_MUTE;
825 strcpy(dip->label.name, AudioNfmsynth);
826 dip->un.v.num_channels = 2;
827 strcpy(dip->un.v.units.name, AudioNvolume);
828 return 0;
829 case CMPCI_CD_VOL:
830 dip->type = AUDIO_MIXER_VALUE;
831 dip->mixer_class = CMPCI_INPUT_CLASS;
832 dip->prev = AUDIO_MIXER_LAST;
833 dip->next = CMPCI_CD_IN_MUTE;
834 strcpy(dip->label.name, AudioNcd);
835 dip->un.v.num_channels = 2;
836 strcpy(dip->un.v.units.name, AudioNvolume);
837 return 0;
838 case CMPCI_VOICE_VOL:
839 dip->type = AUDIO_MIXER_VALUE;
840 dip->mixer_class = CMPCI_OUTPUT_CLASS;
841 dip->prev = AUDIO_MIXER_LAST;
842 dip->next = AUDIO_MIXER_LAST;
843 strcpy(dip->label.name, AudioNdac);
844 dip->un.v.num_channels = 2;
845 strcpy(dip->un.v.units.name, AudioNvolume);
846 return 0;
847 case CMPCI_OUTPUT_CLASS:
848 dip->type = AUDIO_MIXER_CLASS;
849 dip->mixer_class = CMPCI_INPUT_CLASS;
850 dip->next = dip->prev = AUDIO_MIXER_LAST;
851 strcpy(dip->label.name, AudioCoutputs);
852 return 0;
853 case CMPCI_MIC_VOL:
854 dip->type = AUDIO_MIXER_VALUE;
855 dip->mixer_class = CMPCI_INPUT_CLASS;
856 dip->prev = AUDIO_MIXER_LAST;
857 dip->next = CMPCI_MIC_IN_MUTE;
858 strcpy(dip->label.name, AudioNmicrophone);
859 dip->un.v.num_channels = 1;
860 strcpy(dip->un.v.units.name, AudioNvolume);
861 return 0;
862 case CMPCI_LINE_IN_VOL:
863 dip->type = AUDIO_MIXER_VALUE;
864 dip->mixer_class = CMPCI_INPUT_CLASS;
865 dip->prev = AUDIO_MIXER_LAST;
866 dip->next = CMPCI_LINE_IN_MUTE;
867 strcpy(dip->label.name, AudioNline);
868 dip->un.v.num_channels = 2;
869 strcpy(dip->un.v.units.name, AudioNvolume);
870 return 0;
871 case CMPCI_RECORD_SOURCE:
872 dip->mixer_class = CMPCI_RECORD_CLASS;
873 dip->prev = dip->next = AUDIO_MIXER_LAST;
874 strcpy(dip->label.name, AudioNsource);
875 dip->type = AUDIO_MIXER_SET;
876 dip->un.s.num_mem = 5;
877 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
878 dip->un.s.member[0].mask = 1 << CMPCI_MIC_VOL;
879 strcpy(dip->un.s.member[1].label.name, AudioNcd);
880 dip->un.s.member[1].mask = 1 << CMPCI_CD_VOL;
881 strcpy(dip->un.s.member[2].label.name, AudioNline);
882 dip->un.s.member[2].mask = 1 << CMPCI_LINE_IN_VOL;
883 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
884 dip->un.s.member[3].mask = 1 << CMPCI_FM_VOL;
885 strcpy(dip->un.s.member[4].label.name, CmpciNspdif);
886 dip->un.s.member[4].mask = 1 << CMPCI_SPDIF_CLASS;
887 return 0;
888 case CMPCI_BASS:
889 dip->prev = dip->next = AUDIO_MIXER_LAST;
890 strcpy(dip->label.name, AudioNbass);
891 dip->type = AUDIO_MIXER_VALUE;
892 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
893 dip->un.v.num_channels = 2;
894 strcpy(dip->un.v.units.name, AudioNbass);
895 return 0;
896 case CMPCI_TREBLE:
897 dip->prev = dip->next = AUDIO_MIXER_LAST;
898 strcpy(dip->label.name, AudioNtreble);
899 dip->type = AUDIO_MIXER_VALUE;
900 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
901 dip->un.v.num_channels = 2;
902 strcpy(dip->un.v.units.name, AudioNtreble);
903 return 0;
904 case CMPCI_RECORD_CLASS:
905 dip->type = AUDIO_MIXER_CLASS;
906 dip->mixer_class = CMPCI_RECORD_CLASS;
907 dip->next = dip->prev = AUDIO_MIXER_LAST;
908 strcpy(dip->label.name, AudioCrecord);
909 return 0;
910 case CMPCI_INPUT_CLASS:
911 dip->type = AUDIO_MIXER_CLASS;
912 dip->mixer_class = CMPCI_INPUT_CLASS;
913 dip->next = dip->prev = AUDIO_MIXER_LAST;
914 strcpy(dip->label.name, AudioCinputs);
915 return 0;
916 case CMPCI_PCSPEAKER:
917 dip->type = AUDIO_MIXER_VALUE;
918 dip->mixer_class = CMPCI_INPUT_CLASS;
919 dip->prev = dip->next = AUDIO_MIXER_LAST;
920 strcpy(dip->label.name, "pc_speaker");
921 dip->un.v.num_channels = 1;
922 strcpy(dip->un.v.units.name, AudioNvolume);
923 return 0;
924 case CMPCI_INPUT_GAIN:
925 dip->type = AUDIO_MIXER_VALUE;
926 dip->mixer_class = CMPCI_INPUT_CLASS;
927 dip->prev = dip->next = AUDIO_MIXER_LAST;
928 strcpy(dip->label.name, AudioNinput);
929 dip->un.v.num_channels = 2;
930 strcpy(dip->un.v.units.name, AudioNvolume);
931 return 0;
932 case CMPCI_OUTPUT_GAIN:
933 dip->type = AUDIO_MIXER_VALUE;
934 dip->mixer_class = CMPCI_OUTPUT_CLASS;
935 dip->prev = dip->next = AUDIO_MIXER_LAST;
936 strcpy(dip->label.name, AudioNoutput);
937 dip->un.v.num_channels = 2;
938 strcpy(dip->un.v.units.name, AudioNvolume);
939 return 0;
940 case CMPCI_AGC:
941 dip->type = AUDIO_MIXER_ENUM;
942 dip->mixer_class = CMPCI_INPUT_CLASS;
943 dip->prev = dip->next = AUDIO_MIXER_LAST;
944 strcpy(dip->label.name, "agc");
945 goto on_off;
946 case CMPCI_EQUALIZATION_CLASS:
947 dip->type = AUDIO_MIXER_CLASS;
948 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
949 dip->next = dip->prev = AUDIO_MIXER_LAST;
950 strcpy(dip->label.name, AudioCequalization);
951 return 0;
952 case CMPCI_SPDIF_IN_MUTE:
953 dip->type = AUDIO_MIXER_CLASS;
954 dip->mixer_class = CMPCI_INPUT_CLASS;
955 dip->next = dip->prev = AUDIO_MIXER_LAST;
956 strcpy(dip->label.name, CmpciNspdif);
957 return 0;
958 case CMPCI_SPDIF_CLASS:
959 dip->type = AUDIO_MIXER_CLASS;
960 dip->mixer_class = CMPCI_SPDIF_CLASS;
961 dip->next = dip->prev = AUDIO_MIXER_LAST;
962 strcpy(dip->label.name, CmpciCspdif);
963 return 0;
964 case CMPCI_SPDIF_LOOP:
965 dip->mixer_class = CMPCI_SPDIF_CLASS;
966 dip->prev = dip->next = AUDIO_MIXER_LAST;
967 strcpy(dip->label.name, CmpciNloop);
968 goto on_off;
969 case CMPCI_SPDIF_LEGACY:
970 dip->mixer_class = CMPCI_SPDIF_CLASS;
971 dip->prev = dip->next = AUDIO_MIXER_LAST;
972 strcpy(dip->label.name, CmpciNlegacy);
973 goto on_off;
974 case CMPCI_SPDIF_OUT_VOLTAGE:
975 dip->mixer_class = CMPCI_SPDIF_CLASS;
976 dip->prev = dip->next = AUDIO_MIXER_LAST;
977 strcpy(dip->label.name, CmpciNout_voltage);
978 dip->type = AUDIO_MIXER_ENUM;
979 dip->un.e.num_mem = 2;
980 strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
981 dip->un.e.member[0].ord = 0;
982 strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
983 dip->un.e.member[1].ord = 1;
984 return 0;
985 case CMPCI_SPDIF_IN_PHASE:
986 dip->mixer_class = CMPCI_SPDIF_CLASS;
987 dip->prev = dip->next = AUDIO_MIXER_LAST;
988 strcpy(dip->label.name, CmpciNin_phase);
989 goto on_off;
990 case CMPCI_REAR:
991 dip->mixer_class = CMPCI_OUTPUT_CLASS;
992 dip->prev = AUDIO_MIXER_LAST;
993 dip->next = CMPCI_INDIVIDUAL;
994 strcpy(dip->label.name, CmpciNrear);
995 goto on_off;
996 case CMPCI_INDIVIDUAL:
997 dip->mixer_class = CMPCI_OUTPUT_CLASS;
998 dip->prev = CMPCI_REAR;
999 dip->next = CMPCI_REVERSE;
1000 strcpy(dip->label.name, CmpciNindividual);
1001 goto on_off;
1002 case CMPCI_REVERSE:
1003 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1004 dip->prev = CMPCI_INDIVIDUAL;
1005 dip->next = AUDIO_MIXER_LAST;
1006 strcpy(dip->label.name, CmpciNreverse);
1007 dip->type = AUDIO_MIXER_ENUM;
1008 dip->un.e.num_mem = 2;
1009 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1010 dip->un.e.member[0].ord = 0;
1011 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1012 dip->un.e.member[1].ord = 1;
1013 return 0;
1014 case CMPCI_SURROUND:
1015 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1016 dip->prev = dip->next = AUDIO_MIXER_LAST;
1017 strcpy(dip->label.name, CmpciNsurround);
1018 goto on_off;
1019
1020 case CMPCI_CD_IN_MUTE:
1021 dip->prev = CMPCI_CD_VOL;
1022 dip->next = CMPCI_CD_SWAP;
1023 dip->mixer_class = CMPCI_INPUT_CLASS;
1024 goto mute;
1025 case CMPCI_MIC_IN_MUTE:
1026 dip->prev = CMPCI_MIC_VOL;
1027 dip->next = CMPCI_MIC_SWAP;
1028 dip->mixer_class = CMPCI_INPUT_CLASS;
1029 goto mute;
1030 case CMPCI_LINE_IN_MUTE:
1031 dip->prev = CMPCI_LINE_IN_VOL;
1032 dip->next = CMPCI_LINE_SWAP;
1033 dip->mixer_class = CMPCI_INPUT_CLASS;
1034 goto mute;
1035 case CMPCI_FM_IN_MUTE:
1036 dip->prev = CMPCI_FM_VOL;
1037 dip->next = CMPCI_FM_SWAP;
1038 dip->mixer_class = CMPCI_INPUT_CLASS;
1039 goto mute;
1040 case CMPCI_CD_SWAP:
1041 dip->prev = CMPCI_CD_IN_MUTE;
1042 dip->next = CMPCI_CD_OUT_MUTE;
1043 goto swap;
1044 case CMPCI_MIC_SWAP:
1045 dip->prev = CMPCI_MIC_IN_MUTE;
1046 dip->next = CMPCI_MIC_OUT_MUTE;
1047 goto swap;
1048 case CMPCI_LINE_SWAP:
1049 dip->prev = CMPCI_LINE_IN_MUTE;
1050 dip->next = CMPCI_LINE_OUT_MUTE;
1051 goto swap;
1052 case CMPCI_FM_SWAP:
1053 dip->prev = CMPCI_FM_IN_MUTE;
1054 dip->next = AUDIO_MIXER_LAST;
1055 swap:
1056 dip->mixer_class = CMPCI_INPUT_CLASS;
1057 strcpy(dip->label.name, AudioNswap);
1058 goto on_off;
1059
1060 case CMPCI_CD_OUT_MUTE:
1061 dip->prev = CMPCI_CD_SWAP;
1062 dip->next = AUDIO_MIXER_LAST;
1063 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1064 goto mute;
1065 case CMPCI_MIC_OUT_MUTE:
1066 dip->prev = CMPCI_MIC_SWAP;
1067 dip->next = AUDIO_MIXER_LAST;
1068 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1069 goto mute;
1070 case CMPCI_LINE_OUT_MUTE:
1071 dip->prev = CMPCI_LINE_SWAP;
1072 dip->next = AUDIO_MIXER_LAST;
1073 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1074 mute:
1075 strcpy(dip->label.name, AudioNmute);
1076 on_off:
1077 dip->type = AUDIO_MIXER_ENUM;
1078 dip->un.e.num_mem = 2;
1079 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1080 dip->un.e.member[0].ord = 0;
1081 strcpy(dip->un.e.member[1].label.name, AudioNon);
1082 dip->un.e.member[1].ord = 1;
1083 return 0;
1084 }
1085
1086 return ENXIO;
1087 }
1088
1089 static int
1090 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1091 struct cmpci_softc *sc;
1092 size_t size;
1093 int type, flags;
1094 caddr_t *r_addr;
1095 {
1096 int error = 0;
1097 struct cmpci_dmanode *n;
1098 int w;
1099
1100 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1101 if (n == NULL) {
1102 error = ENOMEM;
1103 goto quit;
1104 }
1105
1106 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1107 #define CMPCI_DMABUF_ALIGN 0x4
1108 #define CMPCI_DMABUF_BOUNDARY 0x0
1109 n->cd_tag = sc->sc_dmat;
1110 n->cd_size = size;
1111 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1112 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1113 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1114 if (error)
1115 goto mfree;
1116 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1117 &n->cd_addr, w | BUS_DMA_COHERENT);
1118 if (error)
1119 goto dmafree;
1120 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1121 w, &n->cd_map);
1122 if (error)
1123 goto unmap;
1124 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1125 NULL, w);
1126 if (error)
1127 goto destroy;
1128
1129 n->cd_next = sc->sc_dmap;
1130 sc->sc_dmap = n;
1131 *r_addr = KVADDR(n);
1132 return 0;
1133
1134 destroy:
1135 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1136 unmap:
1137 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1138 dmafree:
1139 bus_dmamem_free(n->cd_tag,
1140 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1141 mfree:
1142 free(n, type);
1143 quit:
1144 return error;
1145 }
1146
1147 static int
1148 cmpci_free_dmamem(sc, addr, type)
1149 struct cmpci_softc *sc;
1150 caddr_t addr;
1151 int type;
1152 {
1153 struct cmpci_dmanode **nnp;
1154
1155 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1156 if ((*nnp)->cd_addr == addr) {
1157 struct cmpci_dmanode *n = *nnp;
1158 bus_dmamap_unload(n->cd_tag, n->cd_map);
1159 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1160 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1161 bus_dmamem_free(n->cd_tag, n->cd_segs,
1162 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1163 free(n, type);
1164 return 0;
1165 }
1166 }
1167 return -1;
1168 }
1169
1170 static struct cmpci_dmanode *
1171 cmpci_find_dmamem(sc, addr)
1172 struct cmpci_softc *sc;
1173 caddr_t addr;
1174 {
1175 struct cmpci_dmanode *p;
1176 for (p=sc->sc_dmap; p; p=p->cd_next)
1177 if ( KVADDR(p) == (void *)addr )
1178 break;
1179 return p;
1180 }
1181
1182
1183 #if 0
1184 static void
1185 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1186 static void
1187 cmpci_print_dmamem(p)
1188 struct cmpci_dmanode *p;
1189 {
1190 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1191 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1192 (void *)DMAADDR(p), (void *)p->cd_size));
1193 }
1194 #endif /* DEBUG */
1195
1196
1197 static void *
1198 cmpci_allocm(handle, direction, size, type, flags)
1199 void *handle;
1200 int direction;
1201 size_t size;
1202 int type, flags;
1203 {
1204 struct cmpci_softc *sc = handle;
1205 caddr_t addr;
1206
1207 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1208 return NULL;
1209 return addr;
1210 }
1211
1212 static void
1213 cmpci_freem(handle, addr, type)
1214 void *handle;
1215 void *addr;
1216 int type;
1217 {
1218 struct cmpci_softc *sc = handle;
1219
1220 cmpci_free_dmamem(sc, addr, type);
1221 }
1222
1223
1224 #define MAXVAL 256
1225 static int
1226 cmpci_adjust(val, mask)
1227 int val, mask;
1228 {
1229 val += (MAXVAL - mask) >> 1;
1230 if (val >= MAXVAL)
1231 val = MAXVAL-1;
1232 return val & mask;
1233 }
1234
1235 static void
1236 cmpci_set_mixer_gain(sc, port)
1237 struct cmpci_softc *sc;
1238 int port;
1239 {
1240 int src;
1241
1242 switch (port) {
1243 case CMPCI_MIC_VOL:
1244 src = CMPCI_SB16_MIXER_MIC;
1245 break;
1246 case CMPCI_MASTER_VOL:
1247 src = CMPCI_SB16_MIXER_MASTER_L;
1248 break;
1249 case CMPCI_LINE_IN_VOL:
1250 src = CMPCI_SB16_MIXER_LINE_L;
1251 break;
1252 case CMPCI_VOICE_VOL:
1253 src = CMPCI_SB16_MIXER_VOICE_L;
1254 break;
1255 case CMPCI_FM_VOL:
1256 src = CMPCI_SB16_MIXER_FM_L;
1257 break;
1258 case CMPCI_CD_VOL:
1259 src = CMPCI_SB16_MIXER_CDDA_L;
1260 break;
1261 case CMPCI_INPUT_GAIN:
1262 src = CMPCI_SB16_MIXER_INGAIN_L;
1263 break;
1264 case CMPCI_OUTPUT_GAIN:
1265 src = CMPCI_SB16_MIXER_OUTGAIN_L;
1266 break;
1267 case CMPCI_TREBLE:
1268 src = CMPCI_SB16_MIXER_TREBLE_L;
1269 break;
1270 case CMPCI_BASS:
1271 src = CMPCI_SB16_MIXER_BASS_L;
1272 break;
1273 case CMPCI_PCSPEAKER:
1274 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1275 sc->sc_gain[port][CMPCI_LEFT]);
1276 return;
1277 case CMPCI_SPDIF_IN_MUTE:
1278 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1279 if (sc->sc_gain[CMPCI_SPDIF_IN_MUTE][CMPCI_LR])
1280 cmpci_reg_set_4(sc, CMPCI_REG_MIXER24,
1281 CMPCI_REG_SPDIN_MONITOR);
1282 else
1283 cmpci_reg_set_4(sc, CMPCI_REG_MIXER24,
1284 CMPCI_REG_SPDIN_MONITOR);
1285 }
1286
1287 case CMPCI_SPDIF_LOOP:
1288 /*FALLTHROUGH*/
1289 case CMPCI_SPDIF_LEGACY:
1290 cmpci_set_out_ports(sc);
1291 return;
1292 case CMPCI_SPDIF_OUT_VOLTAGE:
1293 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1294 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR])
1295 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1296 CMPCI_REG_5V);
1297 else
1298 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1299 CMPCI_REG_5V);
1300 }
1301 return;
1302 case CMPCI_SURROUND:
1303 if (CMPCI_ISCAP(sc, SURROUND)) {
1304 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1305 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1306 CMPCI_REG_SURROUND);
1307 else
1308 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1309 CMPCI_REG_SURROUND);
1310 }
1311 return;
1312 case CMPCI_REAR:
1313 if (CMPCI_ISCAP(sc, REAR)) {
1314 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1315 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1316 CMPCI_REG_N4SPK3D);
1317 else
1318 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1319 CMPCI_REG_N4SPK3D);
1320 }
1321 return;
1322 case CMPCI_INDIVIDUAL:
1323 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1324 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1325 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1326 CMPCI_REG_INDIVIDUAL);
1327 else
1328 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1329 CMPCI_REG_INDIVIDUAL);
1330 }
1331 return;
1332 case CMPCI_REVERSE:
1333 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1334 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1335 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1336 CMPCI_REG_REVERSE_FR);
1337 else
1338 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1339 CMPCI_REG_REVERSE_FR);
1340 }
1341 return;
1342 case CMPCI_SPDIF_IN_PHASE:
1343 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1344 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR])
1345 cmpci_reg_set_1(sc, CMPCI_REG_MIXER27,
1346 CMPCI_REG_PHASE);
1347 else
1348 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER27,
1349 CMPCI_REG_PHASE);
1350 }
1351 return;
1352 default:
1353 return;
1354 }
1355 cmpci_mixerreg_write(sc, src, sc->sc_gain[port][CMPCI_LEFT]);
1356 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1357 sc->sc_gain[port][CMPCI_RIGHT]);
1358 }
1359
1360 static void
1361 cmpci_set_out_ports(sc)
1362 struct cmpci_softc *sc;
1363 {
1364 if (!CMPCI_ISCAP(sc, SPDLOOP))
1365 return;
1366 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1367 /* loop on */
1368 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1369 CMPCI_REG_SPDIF0_ENABLE |
1370 CMPCI_REG_SPDIF1_ENABLE);
1371 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1372 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1373 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1374 CMPCI_REG_SPDIF_LOOP);
1375 } else {
1376 /* loop off */
1377 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1378 CMPCI_REG_SPDIF_LOOP);
1379 cmpci_set_in_ports(sc, sc->sc_in_mask);
1380 if (CMPCI_ISCAP(sc, SPDOUT) &&
1381 (sc->sc_play.md_divide==CMPCI_REG_RATE_44100 ||
1382 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1383 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1384 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1385 CMPCI_REG_SPDIF0_ENABLE);
1386 if (CMPCI_ISCAP(sc, XSPDOUT))
1387 cmpci_reg_set_4(sc,
1388 CMPCI_REG_LEGACY_CTRL,
1389 CMPCI_REG_XSPDIF_ENABLE);
1390 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1391 cmpci_reg_set_4(sc,
1392 CMPCI_REG_MISC,
1393 CMPCI_REG_SPDIF_48K);
1394 else
1395 cmpci_reg_clear_4(sc,
1396 CMPCI_REG_MISC,
1397 CMPCI_REG_SPDIF_48K);
1398 } else {
1399 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1400 CMPCI_REG_SPDIF0_ENABLE);
1401 if (CMPCI_ISCAP(sc, XSPDOUT))
1402 cmpci_reg_clear_4(sc,
1403 CMPCI_REG_LEGACY_CTRL,
1404 CMPCI_REG_XSPDIF_ENABLE);
1405 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1406 cmpci_reg_clear_4(sc,
1407 CMPCI_REG_MISC,
1408 CMPCI_REG_SPDIF_48K);
1409 }
1410 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1411 if (sc->sc_gain[CMPCI_SPDIF_LEGACY][CMPCI_LR])
1412 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1413 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1414 else
1415 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1416 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1417 }
1418 }
1419 }
1420
1421 static int
1422 cmpci_set_in_ports(sc, mask)
1423 struct cmpci_softc *sc;
1424 int mask;
1425 {
1426 int bitsl, bitsr;
1427
1428 if (mask & ~((1<<CMPCI_FM_VOL) | (1<<CMPCI_LINE_IN_VOL) |
1429 (1<<CMPCI_CD_VOL) | (1<<CMPCI_MIC_VOL) |
1430 (1<<CMPCI_SPDIF_CLASS)))
1431 return EINVAL;
1432 bitsr = 0;
1433 if (mask & (1<<CMPCI_FM_VOL)) bitsr |= CMPCI_SB16_MIXER_FM_SRC_R;
1434 if (mask & (1<<CMPCI_LINE_IN_VOL)) bitsr |= CMPCI_SB16_MIXER_LINE_SRC_R;
1435 if (mask & (1<<CMPCI_CD_VOL)) bitsr |= CMPCI_SB16_MIXER_CD_SRC_R;
1436 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1437 if (mask & (1<<CMPCI_MIC_VOL)) {
1438 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1439 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1440 }
1441 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1442 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1443 if (CMPCI_ISCAP(sc, SPDIN) &&
1444 sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 &&
1445 !sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1446 if (mask & (1<<CMPCI_SPDIF_CLASS)) {
1447 /* enable SPDIF/in */
1448 cmpci_reg_set_4(sc,
1449 CMPCI_REG_FUNC_1,
1450 CMPCI_REG_SPDIF1_ENABLE);
1451 } else {
1452 cmpci_reg_clear_4(sc,
1453 CMPCI_REG_FUNC_1,
1454 CMPCI_REG_SPDIF1_ENABLE);
1455 }
1456 }
1457
1458 sc->sc_in_mask = mask;
1459
1460 return 0;
1461 }
1462
1463 static int
1464 cmpci_set_port(handle, cp)
1465 void *handle;
1466 mixer_ctrl_t *cp;
1467 {
1468 struct cmpci_softc *sc = handle;
1469 int lgain, rgain;
1470 int mask, bits;
1471 int lmask, rmask, lbits, rbits;
1472 int mute, swap;
1473
1474 switch (cp->dev) {
1475 case CMPCI_TREBLE:
1476 case CMPCI_BASS:
1477 case CMPCI_PCSPEAKER:
1478 case CMPCI_INPUT_GAIN:
1479 case CMPCI_OUTPUT_GAIN:
1480 case CMPCI_MIC_VOL:
1481 case CMPCI_LINE_IN_VOL:
1482 case CMPCI_VOICE_VOL:
1483 case CMPCI_FM_VOL:
1484 case CMPCI_CD_VOL:
1485 case CMPCI_MASTER_VOL:
1486 if (cp->type != AUDIO_MIXER_VALUE)
1487 return EINVAL;
1488 switch (cp->dev) {
1489 case CMPCI_MIC_VOL:
1490 if (cp->un.value.num_channels != 1)
1491 return EINVAL;
1492
1493 lgain = rgain =
1494 CMPCI_ADJUST_MIC_GAIN(sc,
1495 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1496 break;
1497 case CMPCI_PCSPEAKER:
1498 if (cp->un.value.num_channels != 1)
1499 return EINVAL;
1500 /* fall into */
1501 case CMPCI_INPUT_GAIN:
1502 case CMPCI_OUTPUT_GAIN:
1503 lgain = rgain = CMPCI_ADJUST_2_GAIN(sc,
1504 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1505 break;
1506 default:
1507 switch (cp->un.value.num_channels) {
1508 case 1:
1509 lgain = rgain = CMPCI_ADJUST_GAIN(sc,
1510 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1511 );
1512 break;
1513 case 2:
1514 lgain = CMPCI_ADJUST_GAIN(sc,
1515 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]
1516 );
1517 rgain = CMPCI_ADJUST_GAIN(sc,
1518 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]
1519 );
1520 break;
1521 default:
1522 return EINVAL;
1523 }
1524 break;
1525 }
1526 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1527 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1528
1529 cmpci_set_mixer_gain(sc, cp->dev);
1530 break;
1531
1532 case CMPCI_RECORD_SOURCE:
1533 if (cp->type != AUDIO_MIXER_SET)
1534 return EINVAL;
1535 #ifdef CMPCI_SPDIF_SUPPORT
1536 if (cp->un.mask & (1<<CMPCI_SPDIF_IN))
1537 cp->un.mask = 1<<CMPCI_SPDIF_IN;
1538 #endif
1539 return cmpci_set_in_ports(sc, cp->un.mask);
1540
1541 case CMPCI_AGC:
1542 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_AGC, cp->un.ord & 1);
1543 break;
1544
1545 case CMPCI_CD_OUT_MUTE:
1546 mask = CMPCI_SB16_SW_CD;
1547 goto omute;
1548 case CMPCI_MIC_OUT_MUTE:
1549 mask = CMPCI_SB16_SW_MIC;
1550 goto omute;
1551 case CMPCI_LINE_OUT_MUTE:
1552 mask = CMPCI_SB16_SW_LINE;
1553 omute:
1554 if (cp->type != AUDIO_MIXER_ENUM)
1555 return EINVAL;
1556 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1557 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1558 if (cp->un.ord)
1559 bits = bits & ~mask;
1560 else
1561 bits = bits | mask;
1562 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1563 break;
1564
1565 case CMPCI_MIC_IN_MUTE:
1566 case CMPCI_MIC_SWAP:
1567 lmask = rmask = CMPCI_SB16_SW_MIC;
1568 goto imute;
1569 case CMPCI_CD_IN_MUTE:
1570 case CMPCI_CD_SWAP:
1571 lmask = CMPCI_SB16_SW_CD_L;
1572 rmask = CMPCI_SB16_SW_CD_R;
1573 goto imute;
1574 case CMPCI_LINE_IN_MUTE:
1575 case CMPCI_LINE_SWAP:
1576 lmask = CMPCI_SB16_SW_LINE_L;
1577 rmask = CMPCI_SB16_SW_LINE_R;
1578 goto imute;
1579 case CMPCI_FM_IN_MUTE:
1580 case CMPCI_FM_SWAP:
1581 lmask = CMPCI_SB16_SW_FM_L;
1582 rmask = CMPCI_SB16_SW_FM_R;
1583 imute:
1584 if (cp->type != AUDIO_MIXER_ENUM)
1585 return EINVAL;
1586 mask = lmask | rmask;
1587 lbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_L)
1588 & ~mask;
1589 rbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_R)
1590 & ~mask;
1591 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1592 if (CMPCI_IS_IN_MUTE(cp->dev)) {
1593 mute = cp->dev;
1594 swap = mute - CMPCI_CD_IN_MUTE + CMPCI_CD_SWAP;
1595 } else {
1596 swap = cp->dev;
1597 mute = swap + CMPCI_CD_IN_MUTE - CMPCI_CD_SWAP;
1598 }
1599 if (sc->sc_gain[swap][CMPCI_LR]) {
1600 mask = lmask;
1601 lmask = rmask;
1602 rmask = mask;
1603 }
1604 if (!sc->sc_gain[mute][CMPCI_LR]) {
1605 lbits = lbits | lmask;
1606 rbits = rbits | rmask;
1607 }
1608 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, lbits);
1609 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, rbits);
1610 break;
1611 case CMPCI_SPDIF_LOOP:
1612 case CMPCI_SPDIF_OUT_VOLTAGE:
1613 case CMPCI_SPDIF_IN_PHASE:
1614 case CMPCI_REAR:
1615 case CMPCI_INDIVIDUAL:
1616 case CMPCI_REVERSE:
1617 case CMPCI_SURROUND:
1618 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1619 break;
1620
1621 default:
1622 return EINVAL;
1623 }
1624
1625 return 0;
1626 }
1627
1628 static int
1629 cmpci_get_port(handle, cp)
1630 void *handle;
1631 mixer_ctrl_t *cp;
1632 {
1633 struct cmpci_softc *sc = handle;
1634
1635 switch (cp->dev) {
1636 case CMPCI_MIC_VOL:
1637 case CMPCI_LINE_IN_VOL:
1638 if (cp->un.value.num_channels != 1)
1639 return EINVAL;
1640 /* fall into */
1641 case CMPCI_TREBLE:
1642 case CMPCI_BASS:
1643 case CMPCI_PCSPEAKER:
1644 case CMPCI_INPUT_GAIN:
1645 case CMPCI_OUTPUT_GAIN:
1646 case CMPCI_VOICE_VOL:
1647 case CMPCI_FM_VOL:
1648 case CMPCI_CD_VOL:
1649 case CMPCI_MASTER_VOL:
1650 switch (cp->un.value.num_channels) {
1651 case 1:
1652 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1653 sc->sc_gain[cp->dev][CMPCI_LEFT];
1654 break;
1655 case 2:
1656 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1657 sc->sc_gain[cp->dev][CMPCI_LEFT];
1658 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1659 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1660 break;
1661 default:
1662 return EINVAL;
1663 }
1664 break;
1665
1666 case CMPCI_RECORD_SOURCE:
1667 cp->un.mask = sc->sc_in_mask;
1668 break;
1669
1670 case CMPCI_AGC:
1671 cp->un.ord = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_AGC);
1672 break;
1673
1674 case CMPCI_CD_IN_MUTE:
1675 case CMPCI_MIC_IN_MUTE:
1676 case CMPCI_LINE_IN_MUTE:
1677 case CMPCI_FM_IN_MUTE:
1678 case CMPCI_CD_SWAP:
1679 case CMPCI_MIC_SWAP:
1680 case CMPCI_LINE_SWAP:
1681 case CMPCI_FM_SWAP:
1682 case CMPCI_CD_OUT_MUTE:
1683 case CMPCI_MIC_OUT_MUTE:
1684 case CMPCI_LINE_OUT_MUTE:
1685 case CMPCI_SPDIF_IN_MUTE:
1686 case CMPCI_SPDIF_LOOP:
1687 case CMPCI_SPDIF_LEGACY:
1688 case CMPCI_SPDIF_OUT_VOLTAGE:
1689 case CMPCI_SPDIF_IN_PHASE:
1690 case CMPCI_REAR:
1691 case CMPCI_INDIVIDUAL:
1692 case CMPCI_REVERSE:
1693 case CMPCI_SURROUND:
1694 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1695 break;
1696
1697 default:
1698 return EINVAL;
1699 }
1700
1701 return 0;
1702 }
1703
1704 /* ARGSUSED */
1705 static size_t
1706 cmpci_round_buffersize(handle, direction, bufsize)
1707 void *handle;
1708 int direction;
1709 size_t bufsize;
1710 {
1711 if (bufsize > 0x10000)
1712 bufsize = 0x10000;
1713
1714 return bufsize;
1715 }
1716
1717
1718 static paddr_t
1719 cmpci_mappage(handle, addr, offset, prot)
1720 void *handle;
1721 void *addr;
1722 off_t offset;
1723 int prot;
1724 {
1725 struct cmpci_softc *sc = handle;
1726 struct cmpci_dmanode *p;
1727
1728 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1729 return -1;
1730
1731 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1732 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1733 offset, prot, BUS_DMA_WAITOK);
1734 }
1735
1736
1737 /* ARGSUSED */
1738 static int
1739 cmpci_get_props(handle)
1740 void *handle;
1741 {
1742 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1743 }
1744
1745
1746 static int
1747 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1748 void *handle;
1749 void *start, *end;
1750 int blksize;
1751 void (*intr) __P((void *));
1752 void *arg;
1753 struct audio_params *param;
1754 {
1755 struct cmpci_softc *sc = handle;
1756 struct cmpci_dmanode *p;
1757 int bps;
1758
1759 sc->sc_play.intr = intr;
1760 sc->sc_play.intr_arg = arg;
1761 bps = param->channels*param->precision*param->factor / 8;
1762 if (!bps)
1763 return EINVAL;
1764
1765 /* set DMA frame */
1766 if (!(p = cmpci_find_dmamem(sc, start)))
1767 return EINVAL;
1768 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1769 DMAADDR(p));
1770 delay(10);
1771 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1772 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1773 delay(10);
1774
1775 /* set interrupt count */
1776 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1777 (blksize + bps - 1) / bps - 1);
1778 delay(10);
1779
1780 /* start DMA */
1781 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1782 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1783 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1784
1785 return 0;
1786 }
1787
1788 static int
1789 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1790 void *handle;
1791 void *start, *end;
1792 int blksize;
1793 void (*intr) __P((void *));
1794 void *arg;
1795 struct audio_params *param;
1796 {
1797 struct cmpci_softc *sc = handle;
1798 struct cmpci_dmanode *p;
1799 int bps;
1800
1801 sc->sc_rec.intr = intr;
1802 sc->sc_rec.intr_arg = arg;
1803 bps = param->channels*param->precision*param->factor/8;
1804 if (!bps)
1805 return EINVAL;
1806
1807 /* set DMA frame */
1808 if (!(p=cmpci_find_dmamem(sc, start)))
1809 return EINVAL;
1810 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1811 DMAADDR(p));
1812 delay(10);
1813 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1814 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1815 delay(10);
1816
1817 /* set interrupt count */
1818 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1819 (blksize + bps - 1) / bps - 1);
1820 delay(10);
1821
1822 /* start DMA */
1823 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1824 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1825 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1826
1827 return 0;
1828 }
1829
1830
1831 /* end of file */
1832