cmpci.c revision 1.7.2.1 1 /* $NetBSD: cmpci.c,v 1.7.2.1 2001/09/21 22:35:53 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) netbsd.org> .
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * C-Media CMI8x38 Audio Chip Support.
35 *
36 * TODO:
37 * - Legacy MPU, OPL and Joystick support.
38 *
39 */
40
41 #if defined(AUDIO_DEBUG) || defined(DEBUG)
42 #define DPRINTF(x) if (cmpcidebug) printf x
43 int cmpcidebug = 0;
44 #else
45 #define DPRINTF(x)
46 #endif
47
48 #include "mpu.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/proc.h>
56
57 #include <dev/pci/pcidevs.h>
58 #include <dev/pci/pcivar.h>
59
60 #include <sys/audioio.h>
61 #include <dev/audio_if.h>
62 #include <dev/midi_if.h>
63
64 #include <dev/mulaw.h>
65 #include <dev/auconv.h>
66 #include <dev/pci/cmpcireg.h>
67 #include <dev/pci/cmpcivar.h>
68
69 #include <dev/ic/mpuvar.h>
70 #include <machine/bus.h>
71 #include <machine/intr.h>
72
73 /*
74 * Low-level HW interface
75 */
76 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
77 uint8_t));
78 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
79 uint8_t, uint8_t));
80 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
81 int, int,
82 uint32_t, uint32_t));
83 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
84 int, uint8_t));
85 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
86 int, uint8_t));
87 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
88 int, uint32_t));
89 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
90 int, uint32_t));
91 static int cmpci_rate_to_index __P((int));
92 static __inline int cmpci_index_to_rate __P((int));
93 static __inline int cmpci_index_to_divider __P((int));
94
95 static int cmpci_adjust __P((int, int));
96 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
97 static void cmpci_set_out_ports __P((struct cmpci_softc *));
98 static int cmpci_set_in_ports __P((struct cmpci_softc *, int));
99
100
101 /*
102 * autoconf interface
103 */
104 static int cmpci_match __P((struct device *, struct cfdata *, void *));
105 static void cmpci_attach __P((struct device *, struct device *, void *));
106
107 struct cfattach cmpci_ca = {
108 sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
109 };
110
111 /* interrupt */
112 static int cmpci_intr __P((void *));
113
114
115 /*
116 * DMA stuffs
117 */
118 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
119 size_t, int, int, caddr_t *));
120 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
121 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
122 caddr_t));
123
124
125 /*
126 * interface to machine independent layer
127 */
128 static int cmpci_open __P((void *, int));
129 static void cmpci_close __P((void *));
130 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
131 static int cmpci_set_params __P((void *, int, int,
132 struct audio_params *,
133 struct audio_params *));
134 static int cmpci_round_blocksize __P((void *, int));
135 static int cmpci_halt_output __P((void *));
136 static int cmpci_halt_input __P((void *));
137 static int cmpci_getdev __P((void *, struct audio_device *));
138 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
139 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
140 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
141 static void *cmpci_allocm __P((void *, int, size_t, int, int));
142 static void cmpci_freem __P((void *, void *, int));
143 static size_t cmpci_round_buffersize __P((void *, int, size_t));
144 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
145 static int cmpci_get_props __P((void *));
146 static int cmpci_trigger_output __P((void *, void *, void *, int,
147 void (*)(void *), void *,
148 struct audio_params *));
149 static int cmpci_trigger_input __P((void *, void *, void *, int,
150 void (*)(void *), void *,
151 struct audio_params *));
152
153 static struct audio_hw_if cmpci_hw_if = {
154 cmpci_open, /* open */
155 cmpci_close, /* close */
156 NULL, /* drain */
157 cmpci_query_encoding, /* query_encoding */
158 cmpci_set_params, /* set_params */
159 cmpci_round_blocksize, /* round_blocksize */
160 NULL, /* commit_settings */
161 NULL, /* init_output */
162 NULL, /* init_input */
163 NULL, /* start_output */
164 NULL, /* start_input */
165 cmpci_halt_output, /* halt_output */
166 cmpci_halt_input, /* halt_input */
167 NULL, /* speaker_ctl */
168 cmpci_getdev, /* getdev */
169 NULL, /* setfd */
170 cmpci_set_port, /* set_port */
171 cmpci_get_port, /* get_port */
172 cmpci_query_devinfo, /* query_devinfo */
173 cmpci_allocm, /* allocm */
174 cmpci_freem, /* freem */
175 cmpci_round_buffersize,/* round_buffersize */
176 cmpci_mappage, /* mappage */
177 cmpci_get_props, /* get_props */
178 cmpci_trigger_output, /* trigger_output */
179 cmpci_trigger_input /* trigger_input */
180 };
181
182
183 /*
184 * Low-level HW interface
185 */
186
187 /* mixer register read/write */
188 static __inline uint8_t
189 cmpci_mixerreg_read(sc, no)
190 struct cmpci_softc *sc;
191 uint8_t no;
192 {
193 uint8_t ret;
194
195 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
196 delay(10);
197 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
198 delay(10);
199 return ret;
200 }
201
202 static __inline void
203 cmpci_mixerreg_write(sc, no, val)
204 struct cmpci_softc *sc;
205 uint8_t no, val;
206 {
207 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
208 delay(10);
209 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
210 delay(10);
211 }
212
213
214 /* register partial write */
215 static __inline void
216 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
217 struct cmpci_softc *sc;
218 int no, shift;
219 uint32_t mask, val;
220 {
221 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
222 (val<<shift) |
223 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
224 delay(10);
225 }
226
227 /* register set/clear bit */
228 static __inline void
229 cmpci_reg_set_1(sc, no, mask)
230 struct cmpci_softc *sc;
231 int no;
232 uint8_t mask;
233 {
234 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
235 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
236 delay(10);
237 }
238
239 static __inline void
240 cmpci_reg_clear_1(sc, no, mask)
241 struct cmpci_softc *sc;
242 int no;
243 uint8_t mask;
244 {
245 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
246 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
247 delay(10);
248 }
249
250
251 static __inline void
252 cmpci_reg_set_4(sc, no, mask)
253 struct cmpci_softc *sc;
254 int no;
255 uint32_t mask;
256 {
257 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
258 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
259 delay(10);
260 }
261
262 static __inline void
263 cmpci_reg_clear_4(sc, no, mask)
264 struct cmpci_softc *sc;
265 int no;
266 uint32_t mask;
267 {
268 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
269 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
270 delay(10);
271 }
272
273
274 /* rate */
275 static const struct {
276 int rate;
277 int divider;
278 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
279 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
280 _RATE(5512),
281 _RATE(8000),
282 _RATE(11025),
283 _RATE(16000),
284 _RATE(22050),
285 _RATE(32000),
286 _RATE(44100),
287 _RATE(48000)
288 #undef _RATE
289 };
290
291 static int
292 cmpci_rate_to_index(rate)
293 int rate;
294 {
295 int i;
296
297 for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
298 if (rate <=
299 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
300 return i;
301 return i; /* 48000 */
302 }
303
304 static __inline int
305 cmpci_index_to_rate(index)
306 int index;
307 {
308 return cmpci_rate_table[index].rate;
309 }
310
311 static __inline int
312 cmpci_index_to_divider(index)
313 int index;
314 {
315 return cmpci_rate_table[index].divider;
316 }
317
318
319 /*
320 * interface to configure the device.
321 */
322
323 static int
324 cmpci_match(parent, match, aux)
325 struct device *parent;
326 struct cfdata *match;
327 void *aux;
328 {
329 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
330
331 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
332 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
333 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
334 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
335 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
336 return 1;
337
338 return 0;
339 }
340
341 static void
342 cmpci_attach(parent, self, aux)
343 struct device *parent, *self;
344 void *aux;
345 {
346 struct cmpci_softc *sc = (struct cmpci_softc *)self;
347 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
348 struct audio_attach_args aa;
349 pci_intr_handle_t ih;
350 char const *strintr;
351 char devinfo[256];
352 int i, v;
353
354 sc->sc_id = pa->pa_id;
355 sc->sc_class = pa->pa_class;
356 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
357 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(sc->sc_class));
358 switch (PCI_PRODUCT(sc->sc_id)) {
359 case PCI_PRODUCT_CMEDIA_CMI8338A:
360 /*FALLTHROUGH*/
361 case PCI_PRODUCT_CMEDIA_CMI8338B:
362 sc->sc_capable = CMPCI_CAP_CMI8338;
363 break;
364 case PCI_PRODUCT_CMEDIA_CMI8738:
365 /*FALLTHROUGH*/
366 case PCI_PRODUCT_CMEDIA_CMI8738B:
367 sc->sc_capable = CMPCI_CAP_CMI8738;
368 break;
369 }
370
371 /* map I/O space */
372 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
373 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
374 printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
375 return;
376 }
377
378 /* interrupt */
379 if (pci_intr_map(pa, &ih)) {
380 printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
381 return;
382 }
383 strintr = pci_intr_string(pa->pa_pc, ih);
384 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
385 if (sc->sc_ih == NULL) {
386 printf("%s: failed to establish interrupt",
387 sc->sc_dev.dv_xname);
388 if (strintr != NULL)
389 printf(" at %s", strintr);
390 printf("\n");
391 return;
392 }
393 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
394
395 sc->sc_dmat = pa->pa_dmat;
396
397 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
398
399 /* attach OPL device */
400 aa.type = AUDIODEV_TYPE_OPL;
401 aa.hwif = NULL;
402 aa.hdl = NULL;
403 (void)config_found(&sc->sc_dev, &aa, audioprint);
404
405 /* attach MPU-401 device */
406 aa.type = AUDIODEV_TYPE_MPU;
407 aa.hwif = NULL;
408 aa.hdl = NULL;
409 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
410 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
411 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
412
413 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
414 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
415 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
416 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
417 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
418 for (i = 0; i < CMPCI_NDEVS; i++) {
419 switch(i) {
420 /* volumes */
421 case CMPCI_MASTER_VOL:
422 case CMPCI_FM_VOL:
423 case CMPCI_CD_VOL:
424 case CMPCI_VOICE_VOL:
425 case CMPCI_BASS:
426 case CMPCI_TREBLE:
427 case CMPCI_PCSPEAKER:
428 case CMPCI_INPUT_GAIN:
429 case CMPCI_OUTPUT_GAIN:
430 v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
431 break;
432 case CMPCI_MIC_VOL:
433 case CMPCI_LINE_IN_VOL:
434 v = 0;
435 break;
436
437 /* booleans, set to true */
438 case CMPCI_CD_OUT_MUTE:
439 case CMPCI_MIC_OUT_MUTE:
440 case CMPCI_LINE_OUT_MUTE:
441 case CMPCI_SPDIF_IN_MUTE:
442 v = 1;
443 break;
444 /* others are cleared */
445 case CMPCI_RECORD_SOURCE:
446 case CMPCI_CD_IN_MUTE:
447 case CMPCI_MIC_IN_MUTE:
448 case CMPCI_LINE_IN_MUTE:
449 case CMPCI_FM_IN_MUTE:
450 case CMPCI_CD_SWAP:
451 case CMPCI_MIC_SWAP:
452 case CMPCI_LINE_SWAP:
453 case CMPCI_FM_SWAP:
454 case CMPCI_SPDIF_LOOP:
455 case CMPCI_SPDIF_LEGACY:
456 case CMPCI_SPDIF_OUT_VOLTAGE:
457 case CMPCI_SPDIF_IN_PHASE:
458 case CMPCI_REAR:
459 case CMPCI_INDIVIDUAL:
460 case CMPCI_REVERSE:
461 case CMPCI_SURROUND:
462 default:
463 v = 0;
464 break;
465 }
466 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
467 cmpci_set_mixer_gain(sc, i);
468 }
469 }
470
471
472 static int
473 cmpci_intr(handle)
474 void *handle;
475 {
476 struct cmpci_softc *sc = handle;
477 uint32_t intrstat;
478
479 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
480 CMPCI_REG_INTR_STATUS);
481
482 if (!(intrstat & CMPCI_REG_ANY_INTR))
483 return 0;
484
485 delay(10);
486
487 /* disable and reset intr */
488 if (intrstat & CMPCI_REG_CH0_INTR)
489 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
490 CMPCI_REG_CH0_INTR_ENABLE);
491 if (intrstat & CMPCI_REG_CH1_INTR)
492 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
493 CMPCI_REG_CH1_INTR_ENABLE);
494
495 if (intrstat & CMPCI_REG_CH0_INTR) {
496 if (sc->sc_play.intr != NULL)
497 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
498 }
499 if (intrstat & CMPCI_REG_CH1_INTR) {
500 if (sc->sc_rec.intr != NULL)
501 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
502 }
503
504 /* enable intr */
505 if (intrstat & CMPCI_REG_CH0_INTR)
506 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
507 CMPCI_REG_CH0_INTR_ENABLE);
508 if (intrstat & CMPCI_REG_CH1_INTR)
509 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
510 CMPCI_REG_CH1_INTR_ENABLE);
511
512 #if NMPU > 0
513 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
514 mpu_intr(sc->sc_mpudev);
515 #endif
516
517 return 1;
518 }
519
520
521 /* open/close */
522 static int
523 cmpci_open(handle, flags)
524 void *handle;
525 int flags;
526 {
527 return 0;
528 }
529
530 static void
531 cmpci_close(handle)
532 void *handle;
533 {
534 }
535
536 static int
537 cmpci_query_encoding(handle, fp)
538 void *handle;
539 struct audio_encoding *fp;
540 {
541 switch (fp->index) {
542 case 0:
543 strcpy(fp->name, AudioEulinear);
544 fp->encoding = AUDIO_ENCODING_ULINEAR;
545 fp->precision = 8;
546 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
547 break;
548 case 1:
549 strcpy(fp->name, AudioEmulaw);
550 fp->encoding = AUDIO_ENCODING_ULAW;
551 fp->precision = 8;
552 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
553 break;
554 case 2:
555 strcpy(fp->name, AudioEalaw);
556 fp->encoding = AUDIO_ENCODING_ALAW;
557 fp->precision = 8;
558 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
559 break;
560 case 3:
561 strcpy(fp->name, AudioEslinear);
562 fp->encoding = AUDIO_ENCODING_SLINEAR;
563 fp->precision = 8;
564 fp->flags = 0;
565 break;
566 case 4:
567 strcpy(fp->name, AudioEslinear_le);
568 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
569 fp->precision = 16;
570 fp->flags = 0;
571 break;
572 case 5:
573 strcpy(fp->name, AudioEulinear_le);
574 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
575 fp->precision = 16;
576 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
577 break;
578 case 6:
579 strcpy(fp->name, AudioEslinear_be);
580 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
581 fp->precision = 16;
582 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
583 break;
584 case 7:
585 strcpy(fp->name, AudioEulinear_be);
586 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
587 fp->precision = 16;
588 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
589 break;
590 default:
591 return EINVAL;
592 }
593 return 0;
594 }
595
596
597 static int
598 cmpci_set_params(handle, setmode, usemode, play, rec)
599 void *handle;
600 int setmode, usemode;
601 struct audio_params *play, *rec;
602 {
603 int i;
604 struct cmpci_softc *sc = handle;
605
606 for (i = 0; i < 2; i++) {
607 int md_format;
608 int md_divide;
609 int md_index;
610 int mode;
611 struct audio_params *p;
612
613 switch (i) {
614 case 0:
615 mode = AUMODE_PLAY;
616 p = play;
617 break;
618 case 1:
619 mode = AUMODE_RECORD;
620 p = rec;
621 break;
622 }
623
624 if (!(setmode & mode))
625 continue;
626
627
628 /* format */
629 p->sw_code = NULL;
630 switch ( p->channels ) {
631 case 1:
632 md_format = CMPCI_REG_FORMAT_MONO;
633 break;
634 case 2:
635 md_format = CMPCI_REG_FORMAT_STEREO;
636 break;
637 default:
638 return (EINVAL);
639 }
640 switch (p->encoding) {
641 case AUDIO_ENCODING_ULAW:
642 if (p->precision != 8)
643 return (EINVAL);
644 if (mode & AUMODE_PLAY) {
645 p->factor = 2;
646 p->sw_code = mulaw_to_slinear16_le;
647 md_format |= CMPCI_REG_FORMAT_16BIT;
648 } else {
649 p->sw_code = ulinear8_to_mulaw;
650 md_format |= CMPCI_REG_FORMAT_8BIT;
651 }
652 break;
653 case AUDIO_ENCODING_ALAW:
654 if (p->precision != 8)
655 return (EINVAL);
656 if (mode & AUMODE_PLAY) {
657 p->factor = 2;
658 p->sw_code = alaw_to_slinear16_le;
659 md_format |= CMPCI_REG_FORMAT_16BIT;
660 } else {
661 p->sw_code = ulinear8_to_alaw;
662 md_format |= CMPCI_REG_FORMAT_8BIT;
663 }
664 break;
665 case AUDIO_ENCODING_SLINEAR_LE:
666 switch (p->precision) {
667 case 8:
668 p->sw_code = change_sign8;
669 md_format |= CMPCI_REG_FORMAT_8BIT;
670 break;
671 case 16:
672 md_format |= CMPCI_REG_FORMAT_16BIT;
673 break;
674 default:
675 return (EINVAL);
676 }
677 break;
678 case AUDIO_ENCODING_SLINEAR_BE:
679 switch (p->precision) {
680 case 8:
681 md_format |= CMPCI_REG_FORMAT_8BIT;
682 p->sw_code = change_sign8;
683 break;
684 case 16:
685 md_format |= CMPCI_REG_FORMAT_16BIT;
686 p->sw_code = swap_bytes;
687 break;
688 default:
689 return (EINVAL);
690 }
691 break;
692 case AUDIO_ENCODING_ULINEAR_LE:
693 switch (p->precision) {
694 case 8:
695 md_format |= CMPCI_REG_FORMAT_8BIT;
696 break;
697 case 16:
698 md_format |= CMPCI_REG_FORMAT_16BIT;
699 p->sw_code = change_sign16_le;
700 break;
701 default:
702 return (EINVAL);
703 }
704 break;
705 case AUDIO_ENCODING_ULINEAR_BE:
706 switch (p->precision) {
707 case 8:
708 md_format |= CMPCI_REG_FORMAT_8BIT;
709 break;
710 case 16:
711 md_format |= CMPCI_REG_FORMAT_16BIT;
712 if (mode & AUMODE_PLAY)
713 p->sw_code =
714 swap_bytes_change_sign16_le;
715 else
716 p->sw_code =
717 change_sign16_swap_bytes_le;
718 break;
719 default:
720 return (EINVAL);
721 }
722 break;
723 default:
724 return (EINVAL);
725 }
726 if (mode & AUMODE_PLAY)
727 cmpci_reg_partial_write_4(sc,
728 CMPCI_REG_CHANNEL_FORMAT,
729 CMPCI_REG_CH0_FORMAT_SHIFT,
730 CMPCI_REG_CH0_FORMAT_MASK, md_format);
731 else
732 cmpci_reg_partial_write_4(sc,
733 CMPCI_REG_CHANNEL_FORMAT,
734 CMPCI_REG_CH1_FORMAT_SHIFT,
735 CMPCI_REG_CH1_FORMAT_MASK, md_format);
736 /* sample rate */
737 md_index = cmpci_rate_to_index(p->sample_rate);
738 md_divide = cmpci_index_to_divider(md_index);
739 p->sample_rate = cmpci_index_to_rate(md_index);
740 DPRINTF(("%s: sample:%d, divider=%d\n",
741 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
742 if (mode & AUMODE_PLAY) {
743 cmpci_reg_partial_write_4(sc,
744 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
745 CMPCI_REG_DAC_FS_MASK, md_divide);
746 sc->sc_play.md_divide = md_divide;
747 } else {
748 cmpci_reg_partial_write_4(sc,
749 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
750 CMPCI_REG_ADC_FS_MASK, md_divide);
751 sc->sc_rec.md_divide = md_divide;
752 }
753 cmpci_set_mixer_gain(sc, CMPCI_SPDIF_LOOP);
754 }
755 return 0;
756 }
757
758 /* ARGSUSED */
759 static int
760 cmpci_round_blocksize(handle, block)
761 void *handle;
762 int block;
763 {
764 return (block & -4);
765 }
766
767 static int
768 cmpci_halt_output(handle)
769 void *handle;
770 {
771 struct cmpci_softc *sc = handle;
772 int s;
773
774 s = splaudio();
775 sc->sc_play.intr = NULL;
776 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
777 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
778 /* wait for reset DMA */
779 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
780 delay(10);
781 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
782 splx(s);
783
784 return 0;
785 }
786
787 static int
788 cmpci_halt_input(handle)
789 void *handle;
790 {
791 struct cmpci_softc *sc = handle;
792 int s;
793
794 s = splaudio();
795 sc->sc_rec.intr = NULL;
796 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
797 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
798 /* wait for reset DMA */
799 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
800 delay(10);
801 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
802 splx(s);
803
804 return 0;
805 }
806
807
808 /* get audio device information */
809 static int
810 cmpci_getdev(handle, ad)
811 void *handle;
812 struct audio_device *ad;
813 {
814 struct cmpci_softc *sc = handle;
815
816 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
817 snprintf(ad->version, sizeof(ad->version), "0x%02x",
818 PCI_REVISION(sc->sc_class));
819 switch (PCI_PRODUCT(sc->sc_id)) {
820 case PCI_PRODUCT_CMEDIA_CMI8338A:
821 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
822 break;
823 case PCI_PRODUCT_CMEDIA_CMI8338B:
824 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
825 break;
826 case PCI_PRODUCT_CMEDIA_CMI8738:
827 strncpy(ad->config, "CMI8738", sizeof(ad->config));
828 break;
829 case PCI_PRODUCT_CMEDIA_CMI8738B:
830 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
831 break;
832 default:
833 strncpy(ad->config, "unknown", sizeof(ad->config));
834 }
835
836 return 0;
837 }
838
839
840 /* mixer device information */
841 int
842 cmpci_query_devinfo(handle, dip)
843 void *handle;
844 mixer_devinfo_t *dip;
845 {
846 switch (dip->index) {
847 case CMPCI_MASTER_VOL:
848 dip->type = AUDIO_MIXER_VALUE;
849 dip->mixer_class = CMPCI_OUTPUT_CLASS;
850 dip->prev = dip->next = AUDIO_MIXER_LAST;
851 strcpy(dip->label.name, AudioNmaster);
852 dip->un.v.num_channels = 2;
853 strcpy(dip->un.v.units.name, AudioNvolume);
854 return 0;
855 case CMPCI_FM_VOL:
856 dip->type = AUDIO_MIXER_VALUE;
857 dip->mixer_class = CMPCI_INPUT_CLASS;
858 dip->prev = AUDIO_MIXER_LAST;
859 dip->next = CMPCI_FM_IN_MUTE;
860 strcpy(dip->label.name, AudioNfmsynth);
861 dip->un.v.num_channels = 2;
862 strcpy(dip->un.v.units.name, AudioNvolume);
863 return 0;
864 case CMPCI_CD_VOL:
865 dip->type = AUDIO_MIXER_VALUE;
866 dip->mixer_class = CMPCI_INPUT_CLASS;
867 dip->prev = AUDIO_MIXER_LAST;
868 dip->next = CMPCI_CD_IN_MUTE;
869 strcpy(dip->label.name, AudioNcd);
870 dip->un.v.num_channels = 2;
871 strcpy(dip->un.v.units.name, AudioNvolume);
872 return 0;
873 case CMPCI_VOICE_VOL:
874 dip->type = AUDIO_MIXER_VALUE;
875 dip->mixer_class = CMPCI_OUTPUT_CLASS;
876 dip->prev = AUDIO_MIXER_LAST;
877 dip->next = AUDIO_MIXER_LAST;
878 strcpy(dip->label.name, AudioNdac);
879 dip->un.v.num_channels = 2;
880 strcpy(dip->un.v.units.name, AudioNvolume);
881 return 0;
882 case CMPCI_OUTPUT_CLASS:
883 dip->type = AUDIO_MIXER_CLASS;
884 dip->mixer_class = CMPCI_INPUT_CLASS;
885 dip->next = dip->prev = AUDIO_MIXER_LAST;
886 strcpy(dip->label.name, AudioCoutputs);
887 return 0;
888 case CMPCI_MIC_VOL:
889 dip->type = AUDIO_MIXER_VALUE;
890 dip->mixer_class = CMPCI_INPUT_CLASS;
891 dip->prev = AUDIO_MIXER_LAST;
892 dip->next = CMPCI_MIC_IN_MUTE;
893 strcpy(dip->label.name, AudioNmicrophone);
894 dip->un.v.num_channels = 1;
895 strcpy(dip->un.v.units.name, AudioNvolume);
896 return 0;
897 case CMPCI_LINE_IN_VOL:
898 dip->type = AUDIO_MIXER_VALUE;
899 dip->mixer_class = CMPCI_INPUT_CLASS;
900 dip->prev = AUDIO_MIXER_LAST;
901 dip->next = CMPCI_LINE_IN_MUTE;
902 strcpy(dip->label.name, AudioNline);
903 dip->un.v.num_channels = 2;
904 strcpy(dip->un.v.units.name, AudioNvolume);
905 return 0;
906 case CMPCI_RECORD_SOURCE:
907 dip->mixer_class = CMPCI_RECORD_CLASS;
908 dip->prev = dip->next = AUDIO_MIXER_LAST;
909 strcpy(dip->label.name, AudioNsource);
910 dip->type = AUDIO_MIXER_SET;
911 dip->un.s.num_mem = 5;
912 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
913 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
914 strcpy(dip->un.s.member[1].label.name, AudioNcd);
915 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
916 strcpy(dip->un.s.member[2].label.name, AudioNline);
917 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
918 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
919 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_FM;
920 strcpy(dip->un.s.member[4].label.name, CmpciNspdif);
921 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_SPDIF;
922 return 0;
923 case CMPCI_BASS:
924 dip->prev = dip->next = AUDIO_MIXER_LAST;
925 strcpy(dip->label.name, AudioNbass);
926 dip->type = AUDIO_MIXER_VALUE;
927 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
928 dip->un.v.num_channels = 2;
929 strcpy(dip->un.v.units.name, AudioNbass);
930 return 0;
931 case CMPCI_TREBLE:
932 dip->prev = dip->next = AUDIO_MIXER_LAST;
933 strcpy(dip->label.name, AudioNtreble);
934 dip->type = AUDIO_MIXER_VALUE;
935 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
936 dip->un.v.num_channels = 2;
937 strcpy(dip->un.v.units.name, AudioNtreble);
938 return 0;
939 case CMPCI_RECORD_CLASS:
940 dip->type = AUDIO_MIXER_CLASS;
941 dip->mixer_class = CMPCI_RECORD_CLASS;
942 dip->next = dip->prev = AUDIO_MIXER_LAST;
943 strcpy(dip->label.name, AudioCrecord);
944 return 0;
945 case CMPCI_INPUT_CLASS:
946 dip->type = AUDIO_MIXER_CLASS;
947 dip->mixer_class = CMPCI_INPUT_CLASS;
948 dip->next = dip->prev = AUDIO_MIXER_LAST;
949 strcpy(dip->label.name, AudioCinputs);
950 return 0;
951 case CMPCI_PCSPEAKER:
952 dip->type = AUDIO_MIXER_VALUE;
953 dip->mixer_class = CMPCI_INPUT_CLASS;
954 dip->prev = dip->next = AUDIO_MIXER_LAST;
955 strcpy(dip->label.name, "pc_speaker");
956 dip->un.v.num_channels = 1;
957 strcpy(dip->un.v.units.name, AudioNvolume);
958 return 0;
959 case CMPCI_INPUT_GAIN:
960 dip->type = AUDIO_MIXER_VALUE;
961 dip->mixer_class = CMPCI_INPUT_CLASS;
962 dip->prev = dip->next = AUDIO_MIXER_LAST;
963 strcpy(dip->label.name, AudioNinput);
964 dip->un.v.num_channels = 2;
965 strcpy(dip->un.v.units.name, AudioNvolume);
966 return 0;
967 case CMPCI_OUTPUT_GAIN:
968 dip->type = AUDIO_MIXER_VALUE;
969 dip->mixer_class = CMPCI_OUTPUT_CLASS;
970 dip->prev = dip->next = AUDIO_MIXER_LAST;
971 strcpy(dip->label.name, AudioNoutput);
972 dip->un.v.num_channels = 2;
973 strcpy(dip->un.v.units.name, AudioNvolume);
974 return 0;
975 case CMPCI_AGC:
976 dip->type = AUDIO_MIXER_ENUM;
977 dip->mixer_class = CMPCI_INPUT_CLASS;
978 dip->prev = dip->next = AUDIO_MIXER_LAST;
979 strcpy(dip->label.name, "agc");
980 goto on_off;
981 case CMPCI_EQUALIZATION_CLASS:
982 dip->type = AUDIO_MIXER_CLASS;
983 dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
984 dip->next = dip->prev = AUDIO_MIXER_LAST;
985 strcpy(dip->label.name, AudioCequalization);
986 return 0;
987 case CMPCI_SPDIF_IN_MUTE:
988 dip->type = AUDIO_MIXER_CLASS;
989 dip->mixer_class = CMPCI_INPUT_CLASS;
990 dip->next = dip->prev = AUDIO_MIXER_LAST;
991 strcpy(dip->label.name, CmpciNspdif);
992 return 0;
993 case CMPCI_SPDIF_CLASS:
994 dip->type = AUDIO_MIXER_CLASS;
995 dip->mixer_class = CMPCI_SPDIF_CLASS;
996 dip->next = dip->prev = AUDIO_MIXER_LAST;
997 strcpy(dip->label.name, CmpciCspdif);
998 return 0;
999 case CMPCI_SPDIF_LOOP:
1000 dip->mixer_class = CMPCI_SPDIF_CLASS;
1001 dip->prev = dip->next = AUDIO_MIXER_LAST;
1002 strcpy(dip->label.name, CmpciNloop);
1003 goto on_off;
1004 case CMPCI_SPDIF_LEGACY:
1005 dip->mixer_class = CMPCI_SPDIF_CLASS;
1006 dip->prev = dip->next = AUDIO_MIXER_LAST;
1007 strcpy(dip->label.name, CmpciNlegacy);
1008 goto on_off;
1009 case CMPCI_SPDIF_OUT_VOLTAGE:
1010 dip->mixer_class = CMPCI_SPDIF_CLASS;
1011 dip->prev = dip->next = AUDIO_MIXER_LAST;
1012 strcpy(dip->label.name, CmpciNout_voltage);
1013 dip->type = AUDIO_MIXER_ENUM;
1014 dip->un.e.num_mem = 2;
1015 strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
1016 dip->un.e.member[0].ord = 0;
1017 strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
1018 dip->un.e.member[1].ord = 1;
1019 return 0;
1020 case CMPCI_SPDIF_IN_PHASE:
1021 dip->mixer_class = CMPCI_SPDIF_CLASS;
1022 dip->prev = dip->next = AUDIO_MIXER_LAST;
1023 strcpy(dip->label.name, CmpciNin_phase);
1024 goto on_off;
1025 case CMPCI_REAR:
1026 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1027 dip->prev = AUDIO_MIXER_LAST;
1028 dip->next = CMPCI_INDIVIDUAL;
1029 strcpy(dip->label.name, CmpciNrear);
1030 goto on_off;
1031 case CMPCI_INDIVIDUAL:
1032 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1033 dip->prev = CMPCI_REAR;
1034 dip->next = CMPCI_REVERSE;
1035 strcpy(dip->label.name, CmpciNindividual);
1036 goto on_off;
1037 case CMPCI_REVERSE:
1038 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1039 dip->prev = CMPCI_INDIVIDUAL;
1040 dip->next = AUDIO_MIXER_LAST;
1041 strcpy(dip->label.name, CmpciNreverse);
1042 dip->type = AUDIO_MIXER_ENUM;
1043 dip->un.e.num_mem = 2;
1044 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1045 dip->un.e.member[0].ord = 0;
1046 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1047 dip->un.e.member[1].ord = 1;
1048 return 0;
1049 case CMPCI_SURROUND:
1050 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1051 dip->prev = dip->next = AUDIO_MIXER_LAST;
1052 strcpy(dip->label.name, CmpciNsurround);
1053 goto on_off;
1054
1055 case CMPCI_CD_IN_MUTE:
1056 dip->prev = CMPCI_CD_VOL;
1057 dip->next = CMPCI_CD_SWAP;
1058 dip->mixer_class = CMPCI_INPUT_CLASS;
1059 goto mute;
1060 case CMPCI_MIC_IN_MUTE:
1061 dip->prev = CMPCI_MIC_VOL;
1062 dip->next = CMPCI_MIC_SWAP;
1063 dip->mixer_class = CMPCI_INPUT_CLASS;
1064 goto mute;
1065 case CMPCI_LINE_IN_MUTE:
1066 dip->prev = CMPCI_LINE_IN_VOL;
1067 dip->next = CMPCI_LINE_SWAP;
1068 dip->mixer_class = CMPCI_INPUT_CLASS;
1069 goto mute;
1070 case CMPCI_FM_IN_MUTE:
1071 dip->prev = CMPCI_FM_VOL;
1072 dip->next = CMPCI_FM_SWAP;
1073 dip->mixer_class = CMPCI_INPUT_CLASS;
1074 goto mute;
1075 case CMPCI_CD_SWAP:
1076 dip->prev = CMPCI_CD_IN_MUTE;
1077 dip->next = CMPCI_CD_OUT_MUTE;
1078 goto swap;
1079 case CMPCI_MIC_SWAP:
1080 dip->prev = CMPCI_MIC_IN_MUTE;
1081 dip->next = CMPCI_MIC_OUT_MUTE;
1082 goto swap;
1083 case CMPCI_LINE_SWAP:
1084 dip->prev = CMPCI_LINE_IN_MUTE;
1085 dip->next = CMPCI_LINE_OUT_MUTE;
1086 goto swap;
1087 case CMPCI_FM_SWAP:
1088 dip->prev = CMPCI_FM_IN_MUTE;
1089 dip->next = AUDIO_MIXER_LAST;
1090 swap:
1091 dip->mixer_class = CMPCI_INPUT_CLASS;
1092 strcpy(dip->label.name, AudioNswap);
1093 goto on_off;
1094
1095 case CMPCI_CD_OUT_MUTE:
1096 dip->prev = CMPCI_CD_SWAP;
1097 dip->next = AUDIO_MIXER_LAST;
1098 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1099 goto mute;
1100 case CMPCI_MIC_OUT_MUTE:
1101 dip->prev = CMPCI_MIC_SWAP;
1102 dip->next = AUDIO_MIXER_LAST;
1103 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1104 goto mute;
1105 case CMPCI_LINE_OUT_MUTE:
1106 dip->prev = CMPCI_LINE_SWAP;
1107 dip->next = AUDIO_MIXER_LAST;
1108 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1109 mute:
1110 strcpy(dip->label.name, AudioNmute);
1111 on_off:
1112 dip->type = AUDIO_MIXER_ENUM;
1113 dip->un.e.num_mem = 2;
1114 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1115 dip->un.e.member[0].ord = 0;
1116 strcpy(dip->un.e.member[1].label.name, AudioNon);
1117 dip->un.e.member[1].ord = 1;
1118 return 0;
1119 }
1120
1121 return ENXIO;
1122 }
1123
1124 static int
1125 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1126 struct cmpci_softc *sc;
1127 size_t size;
1128 int type, flags;
1129 caddr_t *r_addr;
1130 {
1131 int error = 0;
1132 struct cmpci_dmanode *n;
1133 int w;
1134
1135 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1136 if (n == NULL) {
1137 error = ENOMEM;
1138 goto quit;
1139 }
1140
1141 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1142 #define CMPCI_DMABUF_ALIGN 0x4
1143 #define CMPCI_DMABUF_BOUNDARY 0x0
1144 n->cd_tag = sc->sc_dmat;
1145 n->cd_size = size;
1146 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1147 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1148 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1149 if (error)
1150 goto mfree;
1151 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1152 &n->cd_addr, w | BUS_DMA_COHERENT);
1153 if (error)
1154 goto dmafree;
1155 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1156 w, &n->cd_map);
1157 if (error)
1158 goto unmap;
1159 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1160 NULL, w);
1161 if (error)
1162 goto destroy;
1163
1164 n->cd_next = sc->sc_dmap;
1165 sc->sc_dmap = n;
1166 *r_addr = KVADDR(n);
1167 return 0;
1168
1169 destroy:
1170 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1171 unmap:
1172 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1173 dmafree:
1174 bus_dmamem_free(n->cd_tag,
1175 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1176 mfree:
1177 free(n, type);
1178 quit:
1179 return error;
1180 }
1181
1182 static int
1183 cmpci_free_dmamem(sc, addr, type)
1184 struct cmpci_softc *sc;
1185 caddr_t addr;
1186 int type;
1187 {
1188 struct cmpci_dmanode **nnp;
1189
1190 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1191 if ((*nnp)->cd_addr == addr) {
1192 struct cmpci_dmanode *n = *nnp;
1193 bus_dmamap_unload(n->cd_tag, n->cd_map);
1194 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1195 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1196 bus_dmamem_free(n->cd_tag, n->cd_segs,
1197 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1198 free(n, type);
1199 return 0;
1200 }
1201 }
1202 return -1;
1203 }
1204
1205 static struct cmpci_dmanode *
1206 cmpci_find_dmamem(sc, addr)
1207 struct cmpci_softc *sc;
1208 caddr_t addr;
1209 {
1210 struct cmpci_dmanode *p;
1211 for (p=sc->sc_dmap; p; p=p->cd_next)
1212 if ( KVADDR(p) == (void *)addr )
1213 break;
1214 return p;
1215 }
1216
1217
1218 #if 0
1219 static void
1220 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1221 static void
1222 cmpci_print_dmamem(p)
1223 struct cmpci_dmanode *p;
1224 {
1225 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1226 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1227 (void *)DMAADDR(p), (void *)p->cd_size));
1228 }
1229 #endif /* DEBUG */
1230
1231
1232 static void *
1233 cmpci_allocm(handle, direction, size, type, flags)
1234 void *handle;
1235 int direction;
1236 size_t size;
1237 int type, flags;
1238 {
1239 struct cmpci_softc *sc = handle;
1240 caddr_t addr;
1241
1242 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1243 return NULL;
1244 return addr;
1245 }
1246
1247 static void
1248 cmpci_freem(handle, addr, type)
1249 void *handle;
1250 void *addr;
1251 int type;
1252 {
1253 struct cmpci_softc *sc = handle;
1254
1255 cmpci_free_dmamem(sc, addr, type);
1256 }
1257
1258
1259 #define MAXVAL 256
1260 static int
1261 cmpci_adjust(val, mask)
1262 int val, mask;
1263 {
1264 val += (MAXVAL - mask) >> 1;
1265 if (val >= MAXVAL)
1266 val = MAXVAL-1;
1267 return val & mask;
1268 }
1269
1270 static void
1271 cmpci_set_mixer_gain(sc, port)
1272 struct cmpci_softc *sc;
1273 int port;
1274 {
1275 int src;
1276
1277 switch (port) {
1278 case CMPCI_MIC_VOL:
1279 src = CMPCI_SB16_MIXER_MIC;
1280 break;
1281 case CMPCI_MASTER_VOL:
1282 src = CMPCI_SB16_MIXER_MASTER_L;
1283 break;
1284 case CMPCI_LINE_IN_VOL:
1285 src = CMPCI_SB16_MIXER_LINE_L;
1286 break;
1287 case CMPCI_VOICE_VOL:
1288 src = CMPCI_SB16_MIXER_VOICE_L;
1289 break;
1290 case CMPCI_FM_VOL:
1291 src = CMPCI_SB16_MIXER_FM_L;
1292 break;
1293 case CMPCI_CD_VOL:
1294 src = CMPCI_SB16_MIXER_CDDA_L;
1295 break;
1296 case CMPCI_INPUT_GAIN:
1297 src = CMPCI_SB16_MIXER_INGAIN_L;
1298 break;
1299 case CMPCI_OUTPUT_GAIN:
1300 src = CMPCI_SB16_MIXER_OUTGAIN_L;
1301 break;
1302 case CMPCI_TREBLE:
1303 src = CMPCI_SB16_MIXER_TREBLE_L;
1304 break;
1305 case CMPCI_BASS:
1306 src = CMPCI_SB16_MIXER_BASS_L;
1307 break;
1308 case CMPCI_PCSPEAKER:
1309 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1310 sc->sc_gain[port][CMPCI_LEFT]);
1311 return;
1312 case CMPCI_SPDIF_IN_MUTE:
1313 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1314 if (sc->sc_gain[CMPCI_SPDIF_IN_MUTE][CMPCI_LR])
1315 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1316 CMPCI_REG_SPDIN_MONITOR);
1317 else
1318 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1319 CMPCI_REG_SPDIN_MONITOR);
1320 }
1321 return;
1322 case CMPCI_SPDIF_LOOP:
1323 /*FALLTHROUGH*/
1324 case CMPCI_SPDIF_LEGACY:
1325 cmpci_set_out_ports(sc);
1326 return;
1327 case CMPCI_SPDIF_OUT_VOLTAGE:
1328 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1329 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR])
1330 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1331 CMPCI_REG_5V);
1332 else
1333 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1334 CMPCI_REG_5V);
1335 }
1336 return;
1337 case CMPCI_SURROUND:
1338 if (CMPCI_ISCAP(sc, SURROUND)) {
1339 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1340 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1341 CMPCI_REG_SURROUND);
1342 else
1343 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1344 CMPCI_REG_SURROUND);
1345 }
1346 return;
1347 case CMPCI_REAR:
1348 if (CMPCI_ISCAP(sc, REAR)) {
1349 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1350 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1351 CMPCI_REG_N4SPK3D);
1352 else
1353 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1354 CMPCI_REG_N4SPK3D);
1355 }
1356 return;
1357 case CMPCI_INDIVIDUAL:
1358 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1359 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1360 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1361 CMPCI_REG_INDIVIDUAL);
1362 else
1363 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1364 CMPCI_REG_INDIVIDUAL);
1365 }
1366 return;
1367 case CMPCI_REVERSE:
1368 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1369 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1370 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1371 CMPCI_REG_REVERSE_FR);
1372 else
1373 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1374 CMPCI_REG_REVERSE_FR);
1375 }
1376 return;
1377 case CMPCI_SPDIF_IN_PHASE:
1378 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1379 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR])
1380 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1381 CMPCI_REG_SPDIN_PHASE);
1382 else
1383 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1384 CMPCI_REG_SPDIN_PHASE);
1385 }
1386 return;
1387 default:
1388 return;
1389 }
1390 cmpci_mixerreg_write(sc, src, sc->sc_gain[port][CMPCI_LEFT]);
1391 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1392 sc->sc_gain[port][CMPCI_RIGHT]);
1393 }
1394
1395 static void
1396 cmpci_set_out_ports(sc)
1397 struct cmpci_softc *sc;
1398 {
1399 if (!CMPCI_ISCAP(sc, SPDLOOP))
1400 return;
1401 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1402 /* loop on */
1403 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1404 CMPCI_REG_SPDIF0_ENABLE |
1405 CMPCI_REG_SPDIF1_ENABLE);
1406 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1407 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1408 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1409 CMPCI_REG_SPDIF_LOOP);
1410 } else {
1411 /* loop off */
1412 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1413 CMPCI_REG_SPDIF_LOOP);
1414 cmpci_set_in_ports(sc, sc->sc_in_mask);
1415 if (CMPCI_ISCAP(sc, SPDOUT) &&
1416 (sc->sc_play.md_divide==CMPCI_REG_RATE_44100 ||
1417 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1418 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1419 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1420 CMPCI_REG_SPDIF0_ENABLE);
1421 if (CMPCI_ISCAP(sc, XSPDOUT))
1422 cmpci_reg_set_4(sc,
1423 CMPCI_REG_LEGACY_CTRL,
1424 CMPCI_REG_XSPDIF_ENABLE);
1425 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1426 cmpci_reg_set_4(sc,
1427 CMPCI_REG_MISC,
1428 CMPCI_REG_SPDIF_48K);
1429 else
1430 cmpci_reg_clear_4(sc,
1431 CMPCI_REG_MISC,
1432 CMPCI_REG_SPDIF_48K);
1433 } else {
1434 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1435 CMPCI_REG_SPDIF0_ENABLE);
1436 if (CMPCI_ISCAP(sc, XSPDOUT))
1437 cmpci_reg_clear_4(sc,
1438 CMPCI_REG_LEGACY_CTRL,
1439 CMPCI_REG_XSPDIF_ENABLE);
1440 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1441 cmpci_reg_clear_4(sc,
1442 CMPCI_REG_MISC,
1443 CMPCI_REG_SPDIF_48K);
1444 }
1445 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1446 if (sc->sc_gain[CMPCI_SPDIF_LEGACY][CMPCI_LR])
1447 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1448 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1449 else
1450 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1451 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1452 }
1453 }
1454 }
1455
1456 static int
1457 cmpci_set_in_ports(sc, mask)
1458 struct cmpci_softc *sc;
1459 int mask;
1460 {
1461 int bitsl, bitsr;
1462
1463 if (mask & ~(CMPCI_RECORD_SOURCE_MIC | CMPCI_RECORD_SOURCE_CD |
1464 CMPCI_RECORD_SOURCE_LINE_IN | CMPCI_RECORD_SOURCE_FM |
1465 CMPCI_RECORD_SOURCE_SPDIF))
1466 return EINVAL;
1467 bitsr = 0;
1468 if (mask & CMPCI_RECORD_SOURCE_FM)
1469 bitsr |= CMPCI_SB16_MIXER_FM_SRC_R;
1470 if (mask & CMPCI_RECORD_SOURCE_LINE_IN)
1471 bitsr |= CMPCI_SB16_MIXER_LINE_SRC_R;
1472 if (mask & CMPCI_RECORD_SOURCE_CD)
1473 bitsr |= CMPCI_SB16_MIXER_CD_SRC_R;
1474 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1475 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1476 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1477 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1478 }
1479 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1480 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1481 if (CMPCI_ISCAP(sc, SPDIN) &&
1482 sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 &&
1483 !sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR]) {
1484 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1485 /* enable SPDIF/in */
1486 cmpci_reg_set_4(sc,
1487 CMPCI_REG_FUNC_1,
1488 CMPCI_REG_SPDIF1_ENABLE);
1489 } else {
1490 cmpci_reg_clear_4(sc,
1491 CMPCI_REG_FUNC_1,
1492 CMPCI_REG_SPDIF1_ENABLE);
1493 }
1494 }
1495
1496 sc->sc_in_mask = mask;
1497
1498 return 0;
1499 }
1500
1501 static int
1502 cmpci_set_port(handle, cp)
1503 void *handle;
1504 mixer_ctrl_t *cp;
1505 {
1506 struct cmpci_softc *sc = handle;
1507 int lgain, rgain;
1508 int mask, bits;
1509 int lmask, rmask, lbits, rbits;
1510 int mute, swap;
1511
1512 switch (cp->dev) {
1513 case CMPCI_TREBLE:
1514 case CMPCI_BASS:
1515 case CMPCI_PCSPEAKER:
1516 case CMPCI_INPUT_GAIN:
1517 case CMPCI_OUTPUT_GAIN:
1518 case CMPCI_MIC_VOL:
1519 case CMPCI_LINE_IN_VOL:
1520 case CMPCI_VOICE_VOL:
1521 case CMPCI_FM_VOL:
1522 case CMPCI_CD_VOL:
1523 case CMPCI_MASTER_VOL:
1524 if (cp->type != AUDIO_MIXER_VALUE)
1525 return EINVAL;
1526 switch (cp->dev) {
1527 case CMPCI_MIC_VOL:
1528 if (cp->un.value.num_channels != 1)
1529 return EINVAL;
1530
1531 lgain = rgain =
1532 CMPCI_ADJUST_MIC_GAIN(sc,
1533 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1534 break;
1535 case CMPCI_PCSPEAKER:
1536 if (cp->un.value.num_channels != 1)
1537 return EINVAL;
1538 /* fall into */
1539 case CMPCI_INPUT_GAIN:
1540 case CMPCI_OUTPUT_GAIN:
1541 lgain = rgain = CMPCI_ADJUST_2_GAIN(sc,
1542 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1543 break;
1544 default:
1545 switch (cp->un.value.num_channels) {
1546 case 1:
1547 lgain = rgain = CMPCI_ADJUST_GAIN(sc,
1548 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1549 );
1550 break;
1551 case 2:
1552 lgain = CMPCI_ADJUST_GAIN(sc,
1553 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]
1554 );
1555 rgain = CMPCI_ADJUST_GAIN(sc,
1556 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]
1557 );
1558 break;
1559 default:
1560 return EINVAL;
1561 }
1562 break;
1563 }
1564 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1565 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1566
1567 cmpci_set_mixer_gain(sc, cp->dev);
1568 break;
1569
1570 case CMPCI_RECORD_SOURCE:
1571 if (cp->type != AUDIO_MIXER_SET)
1572 return EINVAL;
1573
1574 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1575 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1576
1577 return cmpci_set_in_ports(sc, cp->un.mask);
1578
1579 case CMPCI_AGC:
1580 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_AGC, cp->un.ord & 1);
1581 break;
1582
1583 case CMPCI_CD_OUT_MUTE:
1584 mask = CMPCI_SB16_SW_CD;
1585 goto omute;
1586 case CMPCI_MIC_OUT_MUTE:
1587 mask = CMPCI_SB16_SW_MIC;
1588 goto omute;
1589 case CMPCI_LINE_OUT_MUTE:
1590 mask = CMPCI_SB16_SW_LINE;
1591 omute:
1592 if (cp->type != AUDIO_MIXER_ENUM)
1593 return EINVAL;
1594 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1595 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1596 if (cp->un.ord)
1597 bits = bits & ~mask;
1598 else
1599 bits = bits | mask;
1600 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1601 break;
1602
1603 case CMPCI_MIC_IN_MUTE:
1604 case CMPCI_MIC_SWAP:
1605 lmask = rmask = CMPCI_SB16_SW_MIC;
1606 goto imute;
1607 case CMPCI_CD_IN_MUTE:
1608 case CMPCI_CD_SWAP:
1609 lmask = CMPCI_SB16_SW_CD_L;
1610 rmask = CMPCI_SB16_SW_CD_R;
1611 goto imute;
1612 case CMPCI_LINE_IN_MUTE:
1613 case CMPCI_LINE_SWAP:
1614 lmask = CMPCI_SB16_SW_LINE_L;
1615 rmask = CMPCI_SB16_SW_LINE_R;
1616 goto imute;
1617 case CMPCI_FM_IN_MUTE:
1618 case CMPCI_FM_SWAP:
1619 lmask = CMPCI_SB16_SW_FM_L;
1620 rmask = CMPCI_SB16_SW_FM_R;
1621 imute:
1622 if (cp->type != AUDIO_MIXER_ENUM)
1623 return EINVAL;
1624 mask = lmask | rmask;
1625 lbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_L)
1626 & ~mask;
1627 rbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_R)
1628 & ~mask;
1629 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1630 if (CMPCI_IS_IN_MUTE(cp->dev)) {
1631 mute = cp->dev;
1632 swap = mute - CMPCI_CD_IN_MUTE + CMPCI_CD_SWAP;
1633 } else {
1634 swap = cp->dev;
1635 mute = swap + CMPCI_CD_IN_MUTE - CMPCI_CD_SWAP;
1636 }
1637 if (sc->sc_gain[swap][CMPCI_LR]) {
1638 mask = lmask;
1639 lmask = rmask;
1640 rmask = mask;
1641 }
1642 if (!sc->sc_gain[mute][CMPCI_LR]) {
1643 lbits = lbits | lmask;
1644 rbits = rbits | rmask;
1645 }
1646 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, lbits);
1647 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, rbits);
1648 break;
1649 case CMPCI_SPDIF_LOOP:
1650 case CMPCI_SPDIF_LEGACY:
1651 case CMPCI_SPDIF_OUT_VOLTAGE:
1652 case CMPCI_SPDIF_IN_PHASE:
1653 case CMPCI_REAR:
1654 case CMPCI_INDIVIDUAL:
1655 case CMPCI_REVERSE:
1656 case CMPCI_SURROUND:
1657 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1658 break;
1659
1660 default:
1661 return EINVAL;
1662 }
1663
1664 return 0;
1665 }
1666
1667 static int
1668 cmpci_get_port(handle, cp)
1669 void *handle;
1670 mixer_ctrl_t *cp;
1671 {
1672 struct cmpci_softc *sc = handle;
1673
1674 switch (cp->dev) {
1675 case CMPCI_MIC_VOL:
1676 case CMPCI_LINE_IN_VOL:
1677 if (cp->un.value.num_channels != 1)
1678 return EINVAL;
1679 /* fall into */
1680 case CMPCI_TREBLE:
1681 case CMPCI_BASS:
1682 case CMPCI_PCSPEAKER:
1683 case CMPCI_INPUT_GAIN:
1684 case CMPCI_OUTPUT_GAIN:
1685 case CMPCI_VOICE_VOL:
1686 case CMPCI_FM_VOL:
1687 case CMPCI_CD_VOL:
1688 case CMPCI_MASTER_VOL:
1689 switch (cp->un.value.num_channels) {
1690 case 1:
1691 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1692 sc->sc_gain[cp->dev][CMPCI_LEFT];
1693 break;
1694 case 2:
1695 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1696 sc->sc_gain[cp->dev][CMPCI_LEFT];
1697 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1698 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1699 break;
1700 default:
1701 return EINVAL;
1702 }
1703 break;
1704
1705 case CMPCI_RECORD_SOURCE:
1706 cp->un.mask = sc->sc_in_mask;
1707 break;
1708
1709 case CMPCI_AGC:
1710 cp->un.ord = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_AGC);
1711 break;
1712
1713 case CMPCI_CD_IN_MUTE:
1714 case CMPCI_MIC_IN_MUTE:
1715 case CMPCI_LINE_IN_MUTE:
1716 case CMPCI_FM_IN_MUTE:
1717 case CMPCI_CD_SWAP:
1718 case CMPCI_MIC_SWAP:
1719 case CMPCI_LINE_SWAP:
1720 case CMPCI_FM_SWAP:
1721 case CMPCI_CD_OUT_MUTE:
1722 case CMPCI_MIC_OUT_MUTE:
1723 case CMPCI_LINE_OUT_MUTE:
1724 case CMPCI_SPDIF_IN_MUTE:
1725 case CMPCI_SPDIF_LOOP:
1726 case CMPCI_SPDIF_LEGACY:
1727 case CMPCI_SPDIF_OUT_VOLTAGE:
1728 case CMPCI_SPDIF_IN_PHASE:
1729 case CMPCI_REAR:
1730 case CMPCI_INDIVIDUAL:
1731 case CMPCI_REVERSE:
1732 case CMPCI_SURROUND:
1733 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1734 break;
1735
1736 default:
1737 return EINVAL;
1738 }
1739
1740 return 0;
1741 }
1742
1743 /* ARGSUSED */
1744 static size_t
1745 cmpci_round_buffersize(handle, direction, bufsize)
1746 void *handle;
1747 int direction;
1748 size_t bufsize;
1749 {
1750 if (bufsize > 0x10000)
1751 bufsize = 0x10000;
1752
1753 return bufsize;
1754 }
1755
1756
1757 static paddr_t
1758 cmpci_mappage(handle, addr, offset, prot)
1759 void *handle;
1760 void *addr;
1761 off_t offset;
1762 int prot;
1763 {
1764 struct cmpci_softc *sc = handle;
1765 struct cmpci_dmanode *p;
1766
1767 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1768 return -1;
1769
1770 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1771 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1772 offset, prot, BUS_DMA_WAITOK);
1773 }
1774
1775
1776 /* ARGSUSED */
1777 static int
1778 cmpci_get_props(handle)
1779 void *handle;
1780 {
1781 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1782 }
1783
1784
1785 static int
1786 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1787 void *handle;
1788 void *start, *end;
1789 int blksize;
1790 void (*intr) __P((void *));
1791 void *arg;
1792 struct audio_params *param;
1793 {
1794 struct cmpci_softc *sc = handle;
1795 struct cmpci_dmanode *p;
1796 int bps;
1797
1798 sc->sc_play.intr = intr;
1799 sc->sc_play.intr_arg = arg;
1800 bps = param->channels*param->precision*param->factor / 8;
1801 if (!bps)
1802 return EINVAL;
1803
1804 /* set DMA frame */
1805 if (!(p = cmpci_find_dmamem(sc, start)))
1806 return EINVAL;
1807 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1808 DMAADDR(p));
1809 delay(10);
1810 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1811 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1812 delay(10);
1813
1814 /* set interrupt count */
1815 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1816 (blksize + bps - 1) / bps - 1);
1817 delay(10);
1818
1819 /* start DMA */
1820 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1821 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1822 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1823
1824 return 0;
1825 }
1826
1827 static int
1828 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1829 void *handle;
1830 void *start, *end;
1831 int blksize;
1832 void (*intr) __P((void *));
1833 void *arg;
1834 struct audio_params *param;
1835 {
1836 struct cmpci_softc *sc = handle;
1837 struct cmpci_dmanode *p;
1838 int bps;
1839
1840 sc->sc_rec.intr = intr;
1841 sc->sc_rec.intr_arg = arg;
1842 bps = param->channels*param->precision*param->factor/8;
1843 if (!bps)
1844 return EINVAL;
1845
1846 /* set DMA frame */
1847 if (!(p=cmpci_find_dmamem(sc, start)))
1848 return EINVAL;
1849 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1850 DMAADDR(p));
1851 delay(10);
1852 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1853 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1854 delay(10);
1855
1856 /* set interrupt count */
1857 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1858 (blksize + bps - 1) / bps - 1);
1859 delay(10);
1860
1861 /* start DMA */
1862 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1863 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1864 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1865
1866 return 0;
1867 }
1868
1869
1870 /* end of file */
1871