cmpci.c revision 1.7.2.3 1 /* $NetBSD: cmpci.c,v 1.7.2.3 2001/11/14 19:15:08 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) netbsd.org> .
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by ITOH Yasufumi.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36 /*
37 * C-Media CMI8x38 Audio Chip Support.
38 *
39 * TODO:
40 * - 4ch / 6ch support.
41 * - Joystick support.
42 *
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.7.2.3 2001/11/14 19:15:08 nathanw Exp $");
47
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54
55 #include "mpu.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 /*
81 * Low-level HW interface
82 */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 int, int,
89 unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 int, int,
92 uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 int, uint32_t));
101 static int cmpci_rate_to_index __P((int));
102 static __inline int cmpci_index_to_rate __P((int));
103 static __inline int cmpci_index_to_divider __P((int));
104
105 static int cmpci_adjust __P((int, int));
106 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
107 static void cmpci_set_out_ports __P((struct cmpci_softc *));
108 static int cmpci_set_in_ports __P((struct cmpci_softc *));
109
110
111 /*
112 * autoconf interface
113 */
114 static int cmpci_match __P((struct device *, struct cfdata *, void *));
115 static void cmpci_attach __P((struct device *, struct device *, void *));
116
117 struct cfattach cmpci_ca = {
118 sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
119 };
120
121 /* interrupt */
122 static int cmpci_intr __P((void *));
123
124
125 /*
126 * DMA stuffs
127 */
128 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
129 size_t, int, int, caddr_t *));
130 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
131 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
132 caddr_t));
133
134
135 /*
136 * interface to machine independent layer
137 */
138 static int cmpci_open __P((void *, int));
139 static void cmpci_close __P((void *));
140 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
141 static int cmpci_set_params __P((void *, int, int,
142 struct audio_params *,
143 struct audio_params *));
144 static int cmpci_round_blocksize __P((void *, int));
145 static int cmpci_halt_output __P((void *));
146 static int cmpci_halt_input __P((void *));
147 static int cmpci_getdev __P((void *, struct audio_device *));
148 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
149 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
150 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
151 static void *cmpci_allocm __P((void *, int, size_t, int, int));
152 static void cmpci_freem __P((void *, void *, int));
153 static size_t cmpci_round_buffersize __P((void *, int, size_t));
154 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
155 static int cmpci_get_props __P((void *));
156 static int cmpci_trigger_output __P((void *, void *, void *, int,
157 void (*)(void *), void *,
158 struct audio_params *));
159 static int cmpci_trigger_input __P((void *, void *, void *, int,
160 void (*)(void *), void *,
161 struct audio_params *));
162
163 static struct audio_hw_if cmpci_hw_if = {
164 cmpci_open, /* open */
165 cmpci_close, /* close */
166 NULL, /* drain */
167 cmpci_query_encoding, /* query_encoding */
168 cmpci_set_params, /* set_params */
169 cmpci_round_blocksize, /* round_blocksize */
170 NULL, /* commit_settings */
171 NULL, /* init_output */
172 NULL, /* init_input */
173 NULL, /* start_output */
174 NULL, /* start_input */
175 cmpci_halt_output, /* halt_output */
176 cmpci_halt_input, /* halt_input */
177 NULL, /* speaker_ctl */
178 cmpci_getdev, /* getdev */
179 NULL, /* setfd */
180 cmpci_set_port, /* set_port */
181 cmpci_get_port, /* get_port */
182 cmpci_query_devinfo, /* query_devinfo */
183 cmpci_allocm, /* allocm */
184 cmpci_freem, /* freem */
185 cmpci_round_buffersize,/* round_buffersize */
186 cmpci_mappage, /* mappage */
187 cmpci_get_props, /* get_props */
188 cmpci_trigger_output, /* trigger_output */
189 cmpci_trigger_input, /* trigger_input */
190 NULL, /* dev_ioctl */
191 };
192
193
194 /*
195 * Low-level HW interface
196 */
197
198 /* mixer register read/write */
199 static __inline uint8_t
200 cmpci_mixerreg_read(sc, no)
201 struct cmpci_softc *sc;
202 uint8_t no;
203 {
204 uint8_t ret;
205
206 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
207 delay(10);
208 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
209 delay(10);
210 return ret;
211 }
212
213 static __inline void
214 cmpci_mixerreg_write(sc, no, val)
215 struct cmpci_softc *sc;
216 uint8_t no, val;
217 {
218 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
219 delay(10);
220 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
221 delay(10);
222 }
223
224
225 /* register partial write */
226 static __inline void
227 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
228 struct cmpci_softc *sc;
229 int no, shift;
230 unsigned mask, val;
231 {
232 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
233 (val<<shift) |
234 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
235 delay(10);
236 }
237
238 static __inline void
239 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
240 struct cmpci_softc *sc;
241 int no, shift;
242 uint32_t mask, val;
243 {
244 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
245 (val<<shift) |
246 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
247 delay(10);
248 }
249
250 /* register set/clear bit */
251 static __inline void
252 cmpci_reg_set_1(sc, no, mask)
253 struct cmpci_softc *sc;
254 int no;
255 uint8_t mask;
256 {
257 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
258 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
259 delay(10);
260 }
261
262 static __inline void
263 cmpci_reg_clear_1(sc, no, mask)
264 struct cmpci_softc *sc;
265 int no;
266 uint8_t mask;
267 {
268 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
269 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
270 delay(10);
271 }
272
273
274 static __inline void
275 cmpci_reg_set_4(sc, no, mask)
276 struct cmpci_softc *sc;
277 int no;
278 uint32_t mask;
279 {
280 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
281 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
282 delay(10);
283 }
284
285 static __inline void
286 cmpci_reg_clear_4(sc, no, mask)
287 struct cmpci_softc *sc;
288 int no;
289 uint32_t mask;
290 {
291 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
292 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
293 delay(10);
294 }
295
296
297 /* rate */
298 static const struct {
299 int rate;
300 int divider;
301 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
302 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
303 _RATE(5512),
304 _RATE(8000),
305 _RATE(11025),
306 _RATE(16000),
307 _RATE(22050),
308 _RATE(32000),
309 _RATE(44100),
310 _RATE(48000)
311 #undef _RATE
312 };
313
314 static int
315 cmpci_rate_to_index(rate)
316 int rate;
317 {
318 int i;
319
320 for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
321 if (rate <=
322 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
323 return i;
324 return i; /* 48000 */
325 }
326
327 static __inline int
328 cmpci_index_to_rate(index)
329 int index;
330 {
331 return cmpci_rate_table[index].rate;
332 }
333
334 static __inline int
335 cmpci_index_to_divider(index)
336 int index;
337 {
338 return cmpci_rate_table[index].divider;
339 }
340
341
342 /*
343 * interface to configure the device.
344 */
345
346 static int
347 cmpci_match(parent, match, aux)
348 struct device *parent;
349 struct cfdata *match;
350 void *aux;
351 {
352 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
353
354 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
355 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
356 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
357 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
358 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
359 return 1;
360
361 return 0;
362 }
363
364 static void
365 cmpci_attach(parent, self, aux)
366 struct device *parent, *self;
367 void *aux;
368 {
369 struct cmpci_softc *sc = (struct cmpci_softc *)self;
370 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
371 struct audio_attach_args aa;
372 pci_intr_handle_t ih;
373 char const *strintr;
374 char devinfo[256];
375 int i, v;
376
377 sc->sc_id = pa->pa_id;
378 sc->sc_class = pa->pa_class;
379 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
380 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(sc->sc_class));
381 switch (PCI_PRODUCT(sc->sc_id)) {
382 case PCI_PRODUCT_CMEDIA_CMI8338A:
383 /*FALLTHROUGH*/
384 case PCI_PRODUCT_CMEDIA_CMI8338B:
385 sc->sc_capable = CMPCI_CAP_CMI8338;
386 break;
387 case PCI_PRODUCT_CMEDIA_CMI8738:
388 /*FALLTHROUGH*/
389 case PCI_PRODUCT_CMEDIA_CMI8738B:
390 sc->sc_capable = CMPCI_CAP_CMI8738;
391 break;
392 }
393
394 /* map I/O space */
395 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
396 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
397 printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
398 return;
399 }
400
401 /* interrupt */
402 if (pci_intr_map(pa, &ih)) {
403 printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
404 return;
405 }
406 strintr = pci_intr_string(pa->pa_pc, ih);
407 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
408 if (sc->sc_ih == NULL) {
409 printf("%s: failed to establish interrupt",
410 sc->sc_dev.dv_xname);
411 if (strintr != NULL)
412 printf(" at %s", strintr);
413 printf("\n");
414 return;
415 }
416 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
417
418 sc->sc_dmat = pa->pa_dmat;
419
420 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
421
422 /* attach OPL device */
423 aa.type = AUDIODEV_TYPE_OPL;
424 aa.hwif = NULL;
425 aa.hdl = NULL;
426 (void)config_found(&sc->sc_dev, &aa, audioprint);
427
428 /* attach MPU-401 device */
429 aa.type = AUDIODEV_TYPE_MPU;
430 aa.hwif = NULL;
431 aa.hdl = NULL;
432 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
433 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
434 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
435
436 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
437 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
438 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
439 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
440 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
441 for (i = 0; i < CMPCI_NDEVS; i++) {
442 switch(i) {
443 /*
444 * CMI8738 defaults are
445 * master: 0xe0 (0x00 - 0xf8)
446 * wave, DAC: 0xc0 (0x00 - 0xf8)
447 * PC speaker: 0x80 (0x00 - 0xc0)
448 * others: 0
449 */
450 /* volume */
451 case CMPCI_MASTER_VOL:
452 v = 128; /* 224 */
453 break;
454 case CMPCI_FM_VOL:
455 case CMPCI_DAC_VOL:
456 v = 192;
457 break;
458 case CMPCI_PCSPEAKER:
459 v = 128;
460 break;
461
462 /* booleans, set to true */
463 case CMPCI_CD_MUTE:
464 case CMPCI_MIC_MUTE:
465 case CMPCI_LINE_IN_MUTE:
466 case CMPCI_AUX_IN_MUTE:
467 v = 1;
468 break;
469
470 /* volume with inital value 0 */
471 case CMPCI_CD_VOL:
472 case CMPCI_LINE_IN_VOL:
473 case CMPCI_AUX_IN_VOL:
474 case CMPCI_MIC_VOL:
475 case CMPCI_MIC_RECVOL:
476 /* FALLTHROUGH */
477
478 /* others are cleared */
479 case CMPCI_MIC_PREAMP:
480 case CMPCI_RECORD_SOURCE:
481 case CMPCI_PLAYBACK_MODE:
482 case CMPCI_SPDIF_IN_SELECT:
483 case CMPCI_SPDIF_IN_PHASE:
484 case CMPCI_SPDIF_LOOP:
485 case CMPCI_SPDIF_OUT_PLAYBACK:
486 case CMPCI_SPDIF_OUT_VOLTAGE:
487 case CMPCI_MONITOR_DAC:
488 case CMPCI_REAR:
489 case CMPCI_INDIVIDUAL:
490 case CMPCI_REVERSE:
491 case CMPCI_SURROUND:
492 default:
493 v = 0;
494 break;
495 }
496 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
497 cmpci_set_mixer_gain(sc, i);
498 }
499 }
500
501
502 static int
503 cmpci_intr(handle)
504 void *handle;
505 {
506 struct cmpci_softc *sc = handle;
507 uint32_t intrstat;
508
509 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
510 CMPCI_REG_INTR_STATUS);
511
512 if (!(intrstat & CMPCI_REG_ANY_INTR))
513 return 0;
514
515 delay(10);
516
517 /* disable and reset intr */
518 if (intrstat & CMPCI_REG_CH0_INTR)
519 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
520 CMPCI_REG_CH0_INTR_ENABLE);
521 if (intrstat & CMPCI_REG_CH1_INTR)
522 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
523 CMPCI_REG_CH1_INTR_ENABLE);
524
525 if (intrstat & CMPCI_REG_CH0_INTR) {
526 if (sc->sc_play.intr != NULL)
527 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
528 }
529 if (intrstat & CMPCI_REG_CH1_INTR) {
530 if (sc->sc_rec.intr != NULL)
531 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
532 }
533
534 /* enable intr */
535 if (intrstat & CMPCI_REG_CH0_INTR)
536 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
537 CMPCI_REG_CH0_INTR_ENABLE);
538 if (intrstat & CMPCI_REG_CH1_INTR)
539 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
540 CMPCI_REG_CH1_INTR_ENABLE);
541
542 #if NMPU > 0
543 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
544 mpu_intr(sc->sc_mpudev);
545 #endif
546
547 return 1;
548 }
549
550
551 /* open/close */
552 static int
553 cmpci_open(handle, flags)
554 void *handle;
555 int flags;
556 {
557 return 0;
558 }
559
560 static void
561 cmpci_close(handle)
562 void *handle;
563 {
564 }
565
566 static int
567 cmpci_query_encoding(handle, fp)
568 void *handle;
569 struct audio_encoding *fp;
570 {
571 switch (fp->index) {
572 case 0:
573 strcpy(fp->name, AudioEulinear);
574 fp->encoding = AUDIO_ENCODING_ULINEAR;
575 fp->precision = 8;
576 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
577 break;
578 case 1:
579 strcpy(fp->name, AudioEmulaw);
580 fp->encoding = AUDIO_ENCODING_ULAW;
581 fp->precision = 8;
582 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
583 break;
584 case 2:
585 strcpy(fp->name, AudioEalaw);
586 fp->encoding = AUDIO_ENCODING_ALAW;
587 fp->precision = 8;
588 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
589 break;
590 case 3:
591 strcpy(fp->name, AudioEslinear);
592 fp->encoding = AUDIO_ENCODING_SLINEAR;
593 fp->precision = 8;
594 fp->flags = 0;
595 break;
596 case 4:
597 strcpy(fp->name, AudioEslinear_le);
598 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
599 fp->precision = 16;
600 fp->flags = 0;
601 break;
602 case 5:
603 strcpy(fp->name, AudioEulinear_le);
604 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
605 fp->precision = 16;
606 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
607 break;
608 case 6:
609 strcpy(fp->name, AudioEslinear_be);
610 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
611 fp->precision = 16;
612 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
613 break;
614 case 7:
615 strcpy(fp->name, AudioEulinear_be);
616 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
617 fp->precision = 16;
618 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
619 break;
620 default:
621 return EINVAL;
622 }
623 return 0;
624 }
625
626
627 static int
628 cmpci_set_params(handle, setmode, usemode, play, rec)
629 void *handle;
630 int setmode, usemode;
631 struct audio_params *play, *rec;
632 {
633 int i;
634 struct cmpci_softc *sc = handle;
635
636 for (i = 0; i < 2; i++) {
637 int md_format;
638 int md_divide;
639 int md_index;
640 int mode;
641 struct audio_params *p;
642
643 switch (i) {
644 case 0:
645 mode = AUMODE_PLAY;
646 p = play;
647 break;
648 case 1:
649 mode = AUMODE_RECORD;
650 p = rec;
651 break;
652 }
653
654 if (!(setmode & mode))
655 continue;
656
657
658 /* format */
659 p->sw_code = NULL;
660 switch ( p->channels ) {
661 case 1:
662 md_format = CMPCI_REG_FORMAT_MONO;
663 break;
664 case 2:
665 md_format = CMPCI_REG_FORMAT_STEREO;
666 break;
667 default:
668 return (EINVAL);
669 }
670 switch (p->encoding) {
671 case AUDIO_ENCODING_ULAW:
672 if (p->precision != 8)
673 return (EINVAL);
674 if (mode & AUMODE_PLAY) {
675 p->factor = 2;
676 p->sw_code = mulaw_to_slinear16_le;
677 md_format |= CMPCI_REG_FORMAT_16BIT;
678 } else {
679 p->sw_code = ulinear8_to_mulaw;
680 md_format |= CMPCI_REG_FORMAT_8BIT;
681 }
682 break;
683 case AUDIO_ENCODING_ALAW:
684 if (p->precision != 8)
685 return (EINVAL);
686 if (mode & AUMODE_PLAY) {
687 p->factor = 2;
688 p->sw_code = alaw_to_slinear16_le;
689 md_format |= CMPCI_REG_FORMAT_16BIT;
690 } else {
691 p->sw_code = ulinear8_to_alaw;
692 md_format |= CMPCI_REG_FORMAT_8BIT;
693 }
694 break;
695 case AUDIO_ENCODING_SLINEAR_LE:
696 switch (p->precision) {
697 case 8:
698 p->sw_code = change_sign8;
699 md_format |= CMPCI_REG_FORMAT_8BIT;
700 break;
701 case 16:
702 md_format |= CMPCI_REG_FORMAT_16BIT;
703 break;
704 default:
705 return (EINVAL);
706 }
707 break;
708 case AUDIO_ENCODING_SLINEAR_BE:
709 switch (p->precision) {
710 case 8:
711 md_format |= CMPCI_REG_FORMAT_8BIT;
712 p->sw_code = change_sign8;
713 break;
714 case 16:
715 md_format |= CMPCI_REG_FORMAT_16BIT;
716 p->sw_code = swap_bytes;
717 break;
718 default:
719 return (EINVAL);
720 }
721 break;
722 case AUDIO_ENCODING_ULINEAR_LE:
723 switch (p->precision) {
724 case 8:
725 md_format |= CMPCI_REG_FORMAT_8BIT;
726 break;
727 case 16:
728 md_format |= CMPCI_REG_FORMAT_16BIT;
729 p->sw_code = change_sign16_le;
730 break;
731 default:
732 return (EINVAL);
733 }
734 break;
735 case AUDIO_ENCODING_ULINEAR_BE:
736 switch (p->precision) {
737 case 8:
738 md_format |= CMPCI_REG_FORMAT_8BIT;
739 break;
740 case 16:
741 md_format |= CMPCI_REG_FORMAT_16BIT;
742 if (mode & AUMODE_PLAY)
743 p->sw_code =
744 swap_bytes_change_sign16_le;
745 else
746 p->sw_code =
747 change_sign16_swap_bytes_le;
748 break;
749 default:
750 return (EINVAL);
751 }
752 break;
753 default:
754 return (EINVAL);
755 }
756 if (mode & AUMODE_PLAY)
757 cmpci_reg_partial_write_4(sc,
758 CMPCI_REG_CHANNEL_FORMAT,
759 CMPCI_REG_CH0_FORMAT_SHIFT,
760 CMPCI_REG_CH0_FORMAT_MASK, md_format);
761 else
762 cmpci_reg_partial_write_4(sc,
763 CMPCI_REG_CHANNEL_FORMAT,
764 CMPCI_REG_CH1_FORMAT_SHIFT,
765 CMPCI_REG_CH1_FORMAT_MASK, md_format);
766 /* sample rate */
767 md_index = cmpci_rate_to_index(p->sample_rate);
768 md_divide = cmpci_index_to_divider(md_index);
769 p->sample_rate = cmpci_index_to_rate(md_index);
770 DPRINTF(("%s: sample:%d, divider=%d\n",
771 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
772 if (mode & AUMODE_PLAY) {
773 cmpci_reg_partial_write_4(sc,
774 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
775 CMPCI_REG_DAC_FS_MASK, md_divide);
776 sc->sc_play.md_divide = md_divide;
777 } else {
778 cmpci_reg_partial_write_4(sc,
779 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
780 CMPCI_REG_ADC_FS_MASK, md_divide);
781 sc->sc_rec.md_divide = md_divide;
782 }
783 cmpci_set_out_ports(sc);
784 cmpci_set_in_ports(sc);
785 }
786 return 0;
787 }
788
789 /* ARGSUSED */
790 static int
791 cmpci_round_blocksize(handle, block)
792 void *handle;
793 int block;
794 {
795 return (block & -4);
796 }
797
798 static int
799 cmpci_halt_output(handle)
800 void *handle;
801 {
802 struct cmpci_softc *sc = handle;
803 int s;
804
805 s = splaudio();
806 sc->sc_play.intr = NULL;
807 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
808 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
809 /* wait for reset DMA */
810 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
811 delay(10);
812 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
813 splx(s);
814
815 return 0;
816 }
817
818 static int
819 cmpci_halt_input(handle)
820 void *handle;
821 {
822 struct cmpci_softc *sc = handle;
823 int s;
824
825 s = splaudio();
826 sc->sc_rec.intr = NULL;
827 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
828 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
829 /* wait for reset DMA */
830 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
831 delay(10);
832 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
833 splx(s);
834
835 return 0;
836 }
837
838
839 /* get audio device information */
840 static int
841 cmpci_getdev(handle, ad)
842 void *handle;
843 struct audio_device *ad;
844 {
845 struct cmpci_softc *sc = handle;
846
847 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
848 snprintf(ad->version, sizeof(ad->version), "0x%02x",
849 PCI_REVISION(sc->sc_class));
850 switch (PCI_PRODUCT(sc->sc_id)) {
851 case PCI_PRODUCT_CMEDIA_CMI8338A:
852 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
853 break;
854 case PCI_PRODUCT_CMEDIA_CMI8338B:
855 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
856 break;
857 case PCI_PRODUCT_CMEDIA_CMI8738:
858 strncpy(ad->config, "CMI8738", sizeof(ad->config));
859 break;
860 case PCI_PRODUCT_CMEDIA_CMI8738B:
861 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
862 break;
863 default:
864 strncpy(ad->config, "unknown", sizeof(ad->config));
865 }
866
867 return 0;
868 }
869
870
871 /* mixer device information */
872 int
873 cmpci_query_devinfo(handle, dip)
874 void *handle;
875 mixer_devinfo_t *dip;
876 {
877 static const char *const mixer_port_names[] = {
878 AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
879 AudioNmicrophone
880 };
881 static const char *const mixer_classes[] = {
882 AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
883 CmpciCspdif
884 };
885 struct cmpci_softc *sc = handle;
886 int i;
887
888 dip->prev = dip->next = AUDIO_MIXER_LAST;
889
890 switch (dip->index) {
891 case CMPCI_INPUT_CLASS:
892 case CMPCI_OUTPUT_CLASS:
893 case CMPCI_RECORD_CLASS:
894 case CMPCI_PLAYBACK_CLASS:
895 case CMPCI_SPDIF_CLASS:
896 dip->type = AUDIO_MIXER_CLASS;
897 dip->mixer_class = dip->index;
898 strcpy(dip->label.name,
899 mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
900 return 0;
901
902 case CMPCI_AUX_IN_VOL:
903 dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
904 goto vol1;
905 case CMPCI_DAC_VOL:
906 case CMPCI_FM_VOL:
907 case CMPCI_CD_VOL:
908 case CMPCI_LINE_IN_VOL:
909 case CMPCI_MIC_VOL:
910 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
911 vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
912 dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
913 strcpy(dip->label.name, mixer_port_names[dip->index]);
914 dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
915 vol:
916 dip->type = AUDIO_MIXER_VALUE;
917 strcpy(dip->un.v.units.name, AudioNvolume);
918 return 0;
919
920 case CMPCI_MIC_MUTE:
921 dip->next = CMPCI_MIC_PREAMP;
922 /* FALLTHROUGH */
923 case CMPCI_DAC_MUTE:
924 case CMPCI_FM_MUTE:
925 case CMPCI_CD_MUTE:
926 case CMPCI_LINE_IN_MUTE:
927 case CMPCI_AUX_IN_MUTE:
928 dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
929 dip->mixer_class = CMPCI_INPUT_CLASS;
930 strcpy(dip->label.name, AudioNmute);
931 goto on_off;
932 on_off:
933 dip->type = AUDIO_MIXER_ENUM;
934 dip->un.e.num_mem = 2;
935 strcpy(dip->un.e.member[0].label.name, AudioNoff);
936 dip->un.e.member[0].ord = 0;
937 strcpy(dip->un.e.member[1].label.name, AudioNon);
938 dip->un.e.member[1].ord = 1;
939 return 0;
940
941 case CMPCI_MIC_PREAMP:
942 dip->mixer_class = CMPCI_INPUT_CLASS;
943 dip->prev = CMPCI_MIC_MUTE;
944 strcpy(dip->label.name, AudioNpreamp);
945 goto on_off;
946 case CMPCI_PCSPEAKER:
947 dip->mixer_class = CMPCI_INPUT_CLASS;
948 strcpy(dip->label.name, AudioNspeaker);
949 dip->un.v.num_channels = 1;
950 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
951 goto vol;
952 case CMPCI_RECORD_SOURCE:
953 dip->mixer_class = CMPCI_RECORD_CLASS;
954 strcpy(dip->label.name, AudioNsource);
955 dip->type = AUDIO_MIXER_SET;
956 dip->un.s.num_mem = 7;
957 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
958 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
959 strcpy(dip->un.s.member[1].label.name, AudioNcd);
960 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
961 strcpy(dip->un.s.member[2].label.name, AudioNline);
962 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
963 strcpy(dip->un.s.member[3].label.name, AudioNaux);
964 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
965 strcpy(dip->un.s.member[4].label.name, AudioNwave);
966 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
967 strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
968 dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
969 strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
970 dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
971 return 0;
972 case CMPCI_MIC_RECVOL:
973 dip->mixer_class = CMPCI_RECORD_CLASS;
974 strcpy(dip->label.name, AudioNmicrophone);
975 dip->un.v.num_channels = 1;
976 dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
977 goto vol;
978
979 case CMPCI_PLAYBACK_MODE:
980 dip->mixer_class = CMPCI_PLAYBACK_CLASS;
981 dip->type = AUDIO_MIXER_ENUM;
982 strcpy(dip->label.name, AudioNmode);
983 dip->un.e.num_mem = 2;
984 strcpy(dip->un.e.member[0].label.name, AudioNdac);
985 dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
986 strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
987 dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
988 return 0;
989 case CMPCI_SPDIF_IN_SELECT:
990 dip->mixer_class = CMPCI_SPDIF_CLASS;
991 dip->type = AUDIO_MIXER_ENUM;
992 dip->next = CMPCI_SPDIF_IN_PHASE;
993 strcpy(dip->label.name, AudioNinput);
994 i = 0;
995 strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
996 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
997 if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
998 strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
999 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
1000 }
1001 strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
1002 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
1003 dip->un.e.num_mem = i;
1004 return 0;
1005 case CMPCI_SPDIF_IN_PHASE:
1006 dip->mixer_class = CMPCI_SPDIF_CLASS;
1007 dip->prev = CMPCI_SPDIF_IN_SELECT;
1008 strcpy(dip->label.name, CmpciNphase);
1009 dip->type = AUDIO_MIXER_ENUM;
1010 dip->un.e.num_mem = 2;
1011 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1012 dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
1013 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1014 dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
1015 return 0;
1016 case CMPCI_SPDIF_LOOP:
1017 dip->mixer_class = CMPCI_SPDIF_CLASS;
1018 dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
1019 strcpy(dip->label.name, AudioNoutput);
1020 dip->type = AUDIO_MIXER_ENUM;
1021 dip->un.e.num_mem = 2;
1022 strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
1023 dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
1024 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1025 dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1026 return 0;
1027 case CMPCI_SPDIF_OUT_PLAYBACK:
1028 dip->mixer_class = CMPCI_SPDIF_CLASS;
1029 dip->prev = CMPCI_SPDIF_LOOP;
1030 dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1031 strcpy(dip->label.name, CmpciNplayback);
1032 dip->type = AUDIO_MIXER_ENUM;
1033 dip->un.e.num_mem = 2;
1034 strcpy(dip->un.e.member[0].label.name, AudioNwave);
1035 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1036 strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1037 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1038 return 0;
1039 case CMPCI_SPDIF_OUT_VOLTAGE:
1040 dip->mixer_class = CMPCI_SPDIF_CLASS;
1041 dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1042 strcpy(dip->label.name, CmpciNvoltage);
1043 dip->type = AUDIO_MIXER_ENUM;
1044 dip->un.e.num_mem = 2;
1045 strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
1046 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1047 strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
1048 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1049 return 0;
1050 case CMPCI_MONITOR_DAC:
1051 dip->mixer_class = CMPCI_SPDIF_CLASS;
1052 strcpy(dip->label.name, AudioNmonitor);
1053 dip->type = AUDIO_MIXER_ENUM;
1054 dip->un.e.num_mem = 3;
1055 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1056 dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1057 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1058 dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1059 strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1060 dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1061 return 0;
1062
1063 case CMPCI_MASTER_VOL:
1064 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1065 strcpy(dip->label.name, AudioNmaster);
1066 dip->un.v.num_channels = 2;
1067 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1068 goto vol;
1069 case CMPCI_REAR:
1070 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1071 dip->next = CMPCI_INDIVIDUAL;
1072 strcpy(dip->label.name, CmpciNrear);
1073 goto on_off;
1074 case CMPCI_INDIVIDUAL:
1075 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1076 dip->prev = CMPCI_REAR;
1077 dip->next = CMPCI_REVERSE;
1078 strcpy(dip->label.name, CmpciNindividual);
1079 goto on_off;
1080 case CMPCI_REVERSE:
1081 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1082 dip->prev = CMPCI_INDIVIDUAL;
1083 strcpy(dip->label.name, CmpciNreverse);
1084 goto on_off;
1085 case CMPCI_SURROUND:
1086 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1087 strcpy(dip->label.name, CmpciNsurround);
1088 goto on_off;
1089 }
1090
1091 return ENXIO;
1092 }
1093
1094 static int
1095 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1096 struct cmpci_softc *sc;
1097 size_t size;
1098 int type, flags;
1099 caddr_t *r_addr;
1100 {
1101 int error = 0;
1102 struct cmpci_dmanode *n;
1103 int w;
1104
1105 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1106 if (n == NULL) {
1107 error = ENOMEM;
1108 goto quit;
1109 }
1110
1111 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1112 #define CMPCI_DMABUF_ALIGN 0x4
1113 #define CMPCI_DMABUF_BOUNDARY 0x0
1114 n->cd_tag = sc->sc_dmat;
1115 n->cd_size = size;
1116 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1117 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1118 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1119 if (error)
1120 goto mfree;
1121 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1122 &n->cd_addr, w | BUS_DMA_COHERENT);
1123 if (error)
1124 goto dmafree;
1125 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1126 w, &n->cd_map);
1127 if (error)
1128 goto unmap;
1129 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1130 NULL, w);
1131 if (error)
1132 goto destroy;
1133
1134 n->cd_next = sc->sc_dmap;
1135 sc->sc_dmap = n;
1136 *r_addr = KVADDR(n);
1137 return 0;
1138
1139 destroy:
1140 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1141 unmap:
1142 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1143 dmafree:
1144 bus_dmamem_free(n->cd_tag,
1145 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1146 mfree:
1147 free(n, type);
1148 quit:
1149 return error;
1150 }
1151
1152 static int
1153 cmpci_free_dmamem(sc, addr, type)
1154 struct cmpci_softc *sc;
1155 caddr_t addr;
1156 int type;
1157 {
1158 struct cmpci_dmanode **nnp;
1159
1160 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1161 if ((*nnp)->cd_addr == addr) {
1162 struct cmpci_dmanode *n = *nnp;
1163 bus_dmamap_unload(n->cd_tag, n->cd_map);
1164 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1165 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1166 bus_dmamem_free(n->cd_tag, n->cd_segs,
1167 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1168 free(n, type);
1169 return 0;
1170 }
1171 }
1172 return -1;
1173 }
1174
1175 static struct cmpci_dmanode *
1176 cmpci_find_dmamem(sc, addr)
1177 struct cmpci_softc *sc;
1178 caddr_t addr;
1179 {
1180 struct cmpci_dmanode *p;
1181
1182 for (p=sc->sc_dmap; p; p=p->cd_next)
1183 if ( KVADDR(p) == (void *)addr )
1184 break;
1185 return p;
1186 }
1187
1188
1189 #if 0
1190 static void
1191 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1192 static void
1193 cmpci_print_dmamem(p)
1194 struct cmpci_dmanode *p;
1195 {
1196 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1197 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1198 (void *)DMAADDR(p), (void *)p->cd_size));
1199 }
1200 #endif /* DEBUG */
1201
1202
1203 static void *
1204 cmpci_allocm(handle, direction, size, type, flags)
1205 void *handle;
1206 int direction;
1207 size_t size;
1208 int type, flags;
1209 {
1210 struct cmpci_softc *sc = handle;
1211 caddr_t addr;
1212
1213 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1214 return NULL;
1215 return addr;
1216 }
1217
1218 static void
1219 cmpci_freem(handle, addr, type)
1220 void *handle;
1221 void *addr;
1222 int type;
1223 {
1224 struct cmpci_softc *sc = handle;
1225
1226 cmpci_free_dmamem(sc, addr, type);
1227 }
1228
1229
1230 #define MAXVAL 256
1231 static int
1232 cmpci_adjust(val, mask)
1233 int val, mask;
1234 {
1235 val += (MAXVAL - mask) >> 1;
1236 if (val >= MAXVAL)
1237 val = MAXVAL-1;
1238 return val & mask;
1239 }
1240
1241 static void
1242 cmpci_set_mixer_gain(sc, port)
1243 struct cmpci_softc *sc;
1244 int port;
1245 {
1246 int src;
1247 int bits, mask;
1248
1249 switch (port) {
1250 case CMPCI_MIC_VOL:
1251 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1252 CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1253 break;
1254 case CMPCI_MASTER_VOL:
1255 src = CMPCI_SB16_MIXER_MASTER_L;
1256 break;
1257 case CMPCI_LINE_IN_VOL:
1258 src = CMPCI_SB16_MIXER_LINE_L;
1259 break;
1260 case CMPCI_AUX_IN_VOL:
1261 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1262 CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1263 sc->sc_gain[port][CMPCI_RIGHT]));
1264 return;
1265 case CMPCI_MIC_RECVOL:
1266 cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1267 CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1268 CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1269 return;
1270 case CMPCI_DAC_VOL:
1271 src = CMPCI_SB16_MIXER_VOICE_L;
1272 break;
1273 case CMPCI_FM_VOL:
1274 src = CMPCI_SB16_MIXER_FM_L;
1275 break;
1276 case CMPCI_CD_VOL:
1277 src = CMPCI_SB16_MIXER_CDDA_L;
1278 break;
1279 case CMPCI_PCSPEAKER:
1280 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1281 CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1282 return;
1283 case CMPCI_MIC_PREAMP:
1284 if (sc->sc_gain[port][CMPCI_LR])
1285 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1286 CMPCI_REG_MICGAINZ);
1287 else
1288 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1289 CMPCI_REG_MICGAINZ);
1290 return;
1291
1292 case CMPCI_DAC_MUTE:
1293 if (sc->sc_gain[port][CMPCI_LR])
1294 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1295 CMPCI_REG_WSMUTE);
1296 else
1297 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1298 CMPCI_REG_WSMUTE);
1299 return;
1300 case CMPCI_FM_MUTE:
1301 if (sc->sc_gain[port][CMPCI_LR])
1302 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1303 CMPCI_REG_FMMUTE);
1304 else
1305 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1306 CMPCI_REG_FMMUTE);
1307 return;
1308 case CMPCI_AUX_IN_MUTE:
1309 if (sc->sc_gain[port][CMPCI_LR])
1310 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1311 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1312 else
1313 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1314 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1315 return;
1316 case CMPCI_CD_MUTE:
1317 mask = CMPCI_SB16_SW_CD;
1318 goto sbmute;
1319 case CMPCI_MIC_MUTE:
1320 mask = CMPCI_SB16_SW_MIC;
1321 goto sbmute;
1322 case CMPCI_LINE_IN_MUTE:
1323 mask = CMPCI_SB16_SW_LINE;
1324 sbmute:
1325 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1326 if (sc->sc_gain[port][CMPCI_LR])
1327 bits = bits & ~mask;
1328 else
1329 bits = bits | mask;
1330 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1331 return;
1332
1333 case CMPCI_SPDIF_IN_SELECT:
1334 case CMPCI_MONITOR_DAC:
1335 case CMPCI_PLAYBACK_MODE:
1336 case CMPCI_SPDIF_LOOP:
1337 case CMPCI_SPDIF_OUT_PLAYBACK:
1338 cmpci_set_out_ports(sc);
1339 return;
1340 case CMPCI_SPDIF_OUT_VOLTAGE:
1341 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1342 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1343 == CMPCI_SPDIF_OUT_VOLTAGE_LOW)
1344 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1345 CMPCI_REG_5V);
1346 else
1347 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1348 CMPCI_REG_5V);
1349 }
1350 return;
1351 case CMPCI_SURROUND:
1352 if (CMPCI_ISCAP(sc, SURROUND)) {
1353 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1354 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1355 CMPCI_REG_SURROUND);
1356 else
1357 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1358 CMPCI_REG_SURROUND);
1359 }
1360 return;
1361 case CMPCI_REAR:
1362 if (CMPCI_ISCAP(sc, REAR)) {
1363 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1364 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1365 CMPCI_REG_N4SPK3D);
1366 else
1367 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1368 CMPCI_REG_N4SPK3D);
1369 }
1370 return;
1371 case CMPCI_INDIVIDUAL:
1372 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1373 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1374 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1375 CMPCI_REG_INDIVIDUAL);
1376 else
1377 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1378 CMPCI_REG_INDIVIDUAL);
1379 }
1380 return;
1381 case CMPCI_REVERSE:
1382 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1383 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1384 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1385 CMPCI_REG_REVERSE_FR);
1386 else
1387 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1388 CMPCI_REG_REVERSE_FR);
1389 }
1390 return;
1391 case CMPCI_SPDIF_IN_PHASE:
1392 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1393 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1394 == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1395 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1396 CMPCI_REG_SPDIN_PHASE);
1397 else
1398 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1399 CMPCI_REG_SPDIN_PHASE);
1400 }
1401 return;
1402 default:
1403 return;
1404 }
1405
1406 cmpci_mixerreg_write(sc, src,
1407 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1408 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1409 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1410 }
1411
1412 static void
1413 cmpci_set_out_ports(sc)
1414 struct cmpci_softc *sc;
1415 {
1416 u_int8_t v;
1417 int enspdout = 0;
1418
1419 if (!CMPCI_ISCAP(sc, SPDLOOP))
1420 return;
1421
1422 /* SPDIF/out select */
1423 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1424 /* playback */
1425 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1426 } else {
1427 /* monitor SPDIF/in */
1428 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1429 }
1430
1431 /* SPDIF in select */
1432 v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1433 if (v & CMPCI_SPDIFIN_SPDIFIN2)
1434 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1435 else
1436 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1437 if (v & CMPCI_SPDIFIN_SPDIFOUT)
1438 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1439 else
1440 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1441
1442 /* playback to ... */
1443 if (CMPCI_ISCAP(sc, SPDOUT) &&
1444 sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1445 == CMPCI_PLAYBACK_MODE_SPDIF &&
1446 (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1447 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1448 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1449 /* playback to SPDIF */
1450 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1451 enspdout = 1;
1452 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1453 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1454 CMPCI_REG_SPDIF_48K);
1455 else
1456 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1457 CMPCI_REG_SPDIF_48K);
1458 } else {
1459 /* playback to DAC */
1460 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1461 CMPCI_REG_SPDIF0_ENABLE);
1462 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1463 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1464 CMPCI_REG_SPDIF_48K);
1465 }
1466
1467 /* legacy to SPDIF/out or not */
1468 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1469 if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1470 == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1471 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1472 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1473 else {
1474 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1475 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1476 enspdout = 1;
1477 }
1478 }
1479
1480 /* enable/disable SPDIF/out */
1481 if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1482 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1483 CMPCI_REG_XSPDIF_ENABLE);
1484 else
1485 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1486 CMPCI_REG_XSPDIF_ENABLE);
1487
1488 /* SPDIF monitor (digital to alalog output) */
1489 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1490 v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1491 if (!(v & CMPCI_MONDAC_ENABLE))
1492 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1493 CMPCI_REG_SPDIN_MONITOR);
1494 if (v & CMPCI_MONDAC_SPDOUT)
1495 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1496 CMPCI_REG_SPDIFOUT_DAC);
1497 else
1498 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1499 CMPCI_REG_SPDIFOUT_DAC);
1500 if (v & CMPCI_MONDAC_ENABLE)
1501 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1502 CMPCI_REG_SPDIN_MONITOR);
1503 }
1504 }
1505
1506 static int
1507 cmpci_set_in_ports(sc)
1508 struct cmpci_softc *sc;
1509 {
1510 int mask;
1511 int bitsl, bitsr;
1512
1513 mask = sc->sc_in_mask;
1514
1515 /*
1516 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1517 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1518 * of the mixer register.
1519 */
1520 bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1521 CMPCI_RECORD_SOURCE_FM);
1522
1523 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1524 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1525 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1526 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1527 }
1528 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1529 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1530
1531 if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1532 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1533 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1534 else
1535 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1536 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1537
1538 if (mask & CMPCI_RECORD_SOURCE_WAVE)
1539 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1540 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1541 else
1542 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1543 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1544
1545 if (CMPCI_ISCAP(sc, SPDIN) &&
1546 (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1547 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1548 sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1549 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1550 /* enable SPDIF/in */
1551 cmpci_reg_set_4(sc,
1552 CMPCI_REG_FUNC_1,
1553 CMPCI_REG_SPDIF1_ENABLE);
1554 } else {
1555 cmpci_reg_clear_4(sc,
1556 CMPCI_REG_FUNC_1,
1557 CMPCI_REG_SPDIF1_ENABLE);
1558 }
1559 }
1560
1561 return 0;
1562 }
1563
1564 static int
1565 cmpci_set_port(handle, cp)
1566 void *handle;
1567 mixer_ctrl_t *cp;
1568 {
1569 struct cmpci_softc *sc = handle;
1570 int lgain, rgain;
1571
1572 switch (cp->dev) {
1573 case CMPCI_MIC_VOL:
1574 case CMPCI_PCSPEAKER:
1575 case CMPCI_MIC_RECVOL:
1576 if (cp->un.value.num_channels != 1)
1577 return EINVAL;
1578 /* FALLTHROUGH */
1579 case CMPCI_DAC_VOL:
1580 case CMPCI_FM_VOL:
1581 case CMPCI_CD_VOL:
1582 case CMPCI_LINE_IN_VOL:
1583 case CMPCI_AUX_IN_VOL:
1584 case CMPCI_MASTER_VOL:
1585 if (cp->type != AUDIO_MIXER_VALUE)
1586 return EINVAL;
1587 switch (cp->un.value.num_channels) {
1588 case 1:
1589 lgain = rgain =
1590 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1591 break;
1592 case 2:
1593 lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1594 rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1595 break;
1596 default:
1597 return EINVAL;
1598 }
1599 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1600 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1601
1602 cmpci_set_mixer_gain(sc, cp->dev);
1603 break;
1604
1605 case CMPCI_RECORD_SOURCE:
1606 if (cp->type != AUDIO_MIXER_SET)
1607 return EINVAL;
1608
1609 if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1610 CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1611 CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1612 CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1613 return EINVAL;
1614
1615 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1616 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1617
1618 sc->sc_in_mask = cp->un.mask;
1619 return cmpci_set_in_ports(sc);
1620
1621 /* boolean */
1622 case CMPCI_DAC_MUTE:
1623 case CMPCI_FM_MUTE:
1624 case CMPCI_CD_MUTE:
1625 case CMPCI_LINE_IN_MUTE:
1626 case CMPCI_AUX_IN_MUTE:
1627 case CMPCI_MIC_MUTE:
1628 case CMPCI_MIC_PREAMP:
1629 case CMPCI_PLAYBACK_MODE:
1630 case CMPCI_SPDIF_IN_PHASE:
1631 case CMPCI_SPDIF_LOOP:
1632 case CMPCI_SPDIF_OUT_PLAYBACK:
1633 case CMPCI_SPDIF_OUT_VOLTAGE:
1634 case CMPCI_REAR:
1635 case CMPCI_INDIVIDUAL:
1636 case CMPCI_REVERSE:
1637 case CMPCI_SURROUND:
1638 if (cp->type != AUDIO_MIXER_ENUM)
1639 return EINVAL;
1640 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1641 cmpci_set_mixer_gain(sc, cp->dev);
1642 break;
1643
1644 case CMPCI_SPDIF_IN_SELECT:
1645 switch (cp->un.ord) {
1646 case CMPCI_SPDIF_IN_SPDIN1:
1647 case CMPCI_SPDIF_IN_SPDIN2:
1648 case CMPCI_SPDIF_IN_SPDOUT:
1649 break;
1650 default:
1651 return EINVAL;
1652 }
1653 goto xenum;
1654 case CMPCI_MONITOR_DAC:
1655 switch (cp->un.ord) {
1656 case CMPCI_MONITOR_DAC_OFF:
1657 case CMPCI_MONITOR_DAC_SPDIN:
1658 case CMPCI_MONITOR_DAC_SPDOUT:
1659 break;
1660 default:
1661 return EINVAL;
1662 }
1663 xenum:
1664 if (cp->type != AUDIO_MIXER_ENUM)
1665 return EINVAL;
1666 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1667 cmpci_set_mixer_gain(sc, cp->dev);
1668 break;
1669
1670 default:
1671 return EINVAL;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static int
1678 cmpci_get_port(handle, cp)
1679 void *handle;
1680 mixer_ctrl_t *cp;
1681 {
1682 struct cmpci_softc *sc = handle;
1683
1684 switch (cp->dev) {
1685 case CMPCI_MIC_VOL:
1686 case CMPCI_PCSPEAKER:
1687 case CMPCI_MIC_RECVOL:
1688 if (cp->un.value.num_channels != 1)
1689 return EINVAL;
1690 /* fall into */
1691 case CMPCI_DAC_VOL:
1692 case CMPCI_FM_VOL:
1693 case CMPCI_CD_VOL:
1694 case CMPCI_LINE_IN_VOL:
1695 case CMPCI_AUX_IN_VOL:
1696 case CMPCI_MASTER_VOL:
1697 switch (cp->un.value.num_channels) {
1698 case 1:
1699 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1700 sc->sc_gain[cp->dev][CMPCI_LEFT];
1701 break;
1702 case 2:
1703 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1704 sc->sc_gain[cp->dev][CMPCI_LEFT];
1705 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1706 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1707 break;
1708 default:
1709 return EINVAL;
1710 }
1711 break;
1712
1713 case CMPCI_RECORD_SOURCE:
1714 cp->un.mask = sc->sc_in_mask;
1715 break;
1716
1717 case CMPCI_DAC_MUTE:
1718 case CMPCI_FM_MUTE:
1719 case CMPCI_CD_MUTE:
1720 case CMPCI_LINE_IN_MUTE:
1721 case CMPCI_AUX_IN_MUTE:
1722 case CMPCI_MIC_MUTE:
1723 case CMPCI_MIC_PREAMP:
1724 case CMPCI_PLAYBACK_MODE:
1725 case CMPCI_SPDIF_IN_SELECT:
1726 case CMPCI_SPDIF_IN_PHASE:
1727 case CMPCI_SPDIF_LOOP:
1728 case CMPCI_SPDIF_OUT_PLAYBACK:
1729 case CMPCI_SPDIF_OUT_VOLTAGE:
1730 case CMPCI_MONITOR_DAC:
1731 case CMPCI_REAR:
1732 case CMPCI_INDIVIDUAL:
1733 case CMPCI_REVERSE:
1734 case CMPCI_SURROUND:
1735 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1736 break;
1737
1738 default:
1739 return EINVAL;
1740 }
1741
1742 return 0;
1743 }
1744
1745 /* ARGSUSED */
1746 static size_t
1747 cmpci_round_buffersize(handle, direction, bufsize)
1748 void *handle;
1749 int direction;
1750 size_t bufsize;
1751 {
1752 if (bufsize > 0x10000)
1753 bufsize = 0x10000;
1754
1755 return bufsize;
1756 }
1757
1758
1759 static paddr_t
1760 cmpci_mappage(handle, addr, offset, prot)
1761 void *handle;
1762 void *addr;
1763 off_t offset;
1764 int prot;
1765 {
1766 struct cmpci_softc *sc = handle;
1767 struct cmpci_dmanode *p;
1768
1769 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1770 return -1;
1771
1772 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1773 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1774 offset, prot, BUS_DMA_WAITOK);
1775 }
1776
1777
1778 /* ARGSUSED */
1779 static int
1780 cmpci_get_props(handle)
1781 void *handle;
1782 {
1783 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1784 }
1785
1786
1787 static int
1788 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1789 void *handle;
1790 void *start, *end;
1791 int blksize;
1792 void (*intr) __P((void *));
1793 void *arg;
1794 struct audio_params *param;
1795 {
1796 struct cmpci_softc *sc = handle;
1797 struct cmpci_dmanode *p;
1798 int bps;
1799
1800 sc->sc_play.intr = intr;
1801 sc->sc_play.intr_arg = arg;
1802 bps = param->channels*param->precision*param->factor / 8;
1803 if (!bps)
1804 return EINVAL;
1805
1806 /* set DMA frame */
1807 if (!(p = cmpci_find_dmamem(sc, start)))
1808 return EINVAL;
1809 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1810 DMAADDR(p));
1811 delay(10);
1812 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1813 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1814 delay(10);
1815
1816 /* set interrupt count */
1817 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1818 (blksize + bps - 1) / bps - 1);
1819 delay(10);
1820
1821 /* start DMA */
1822 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1823 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1824 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1825
1826 return 0;
1827 }
1828
1829 static int
1830 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1831 void *handle;
1832 void *start, *end;
1833 int blksize;
1834 void (*intr) __P((void *));
1835 void *arg;
1836 struct audio_params *param;
1837 {
1838 struct cmpci_softc *sc = handle;
1839 struct cmpci_dmanode *p;
1840 int bps;
1841
1842 sc->sc_rec.intr = intr;
1843 sc->sc_rec.intr_arg = arg;
1844 bps = param->channels*param->precision*param->factor/8;
1845 if (!bps)
1846 return EINVAL;
1847
1848 /* set DMA frame */
1849 if (!(p=cmpci_find_dmamem(sc, start)))
1850 return EINVAL;
1851 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1852 DMAADDR(p));
1853 delay(10);
1854 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1855 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1856 delay(10);
1857
1858 /* set interrupt count */
1859 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1860 (blksize + bps - 1) / bps - 1);
1861 delay(10);
1862
1863 /* start DMA */
1864 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1865 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1866 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1867
1868 return 0;
1869 }
1870
1871
1872 /* end of file */
1873