cmpci.c revision 1.7.2.6 1 /* $NetBSD: cmpci.c,v 1.7.2.6 2002/10/18 02:42:56 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI <tshiozak (at) netbsd.org> .
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by ITOH Yasufumi.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 */
35
36 /*
37 * C-Media CMI8x38 Audio Chip Support.
38 *
39 * TODO:
40 * - 4ch / 6ch support.
41 * - Joystick support.
42 *
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: cmpci.c,v 1.7.2.6 2002/10/18 02:42:56 nathanw Exp $");
47
48 #if defined(AUDIO_DEBUG) || defined(DEBUG)
49 #define DPRINTF(x) if (cmpcidebug) printf x
50 int cmpcidebug = 0;
51 #else
52 #define DPRINTF(x)
53 #endif
54
55 #include "mpu.h"
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/proc.h>
63
64 #include <dev/pci/pcidevs.h>
65 #include <dev/pci/pcivar.h>
66
67 #include <sys/audioio.h>
68 #include <dev/audio_if.h>
69 #include <dev/midi_if.h>
70
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/pci/cmpcireg.h>
74 #include <dev/pci/cmpcivar.h>
75
76 #include <dev/ic/mpuvar.h>
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79
80 /*
81 * Low-level HW interface
82 */
83 static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
84 uint8_t));
85 static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
86 uint8_t, uint8_t));
87 static __inline void cmpci_reg_partial_write_1 __P((struct cmpci_softc *,
88 int, int,
89 unsigned, unsigned));
90 static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
91 int, int,
92 uint32_t, uint32_t));
93 static __inline void cmpci_reg_set_1 __P((struct cmpci_softc *,
94 int, uint8_t));
95 static __inline void cmpci_reg_clear_1 __P((struct cmpci_softc *,
96 int, uint8_t));
97 static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
98 int, uint32_t));
99 static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
100 int, uint32_t));
101 static int cmpci_rate_to_index __P((int));
102 static __inline int cmpci_index_to_rate __P((int));
103 static __inline int cmpci_index_to_divider __P((int));
104
105 static int cmpci_adjust __P((int, int));
106 static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
107 static void cmpci_set_out_ports __P((struct cmpci_softc *));
108 static int cmpci_set_in_ports __P((struct cmpci_softc *));
109
110
111 /*
112 * autoconf interface
113 */
114 static int cmpci_match __P((struct device *, struct cfdata *, void *));
115 static void cmpci_attach __P((struct device *, struct device *, void *));
116
117 CFATTACH_DECL(cmpci, sizeof (struct cmpci_softc),
118 cmpci_match, cmpci_attach, NULL, NULL);
119
120 /* interrupt */
121 static int cmpci_intr __P((void *));
122
123
124 /*
125 * DMA stuffs
126 */
127 static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
128 size_t, int, int, caddr_t *));
129 static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
130 static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
131 caddr_t));
132
133
134 /*
135 * interface to machine independent layer
136 */
137 static int cmpci_open __P((void *, int));
138 static void cmpci_close __P((void *));
139 static int cmpci_query_encoding __P((void *, struct audio_encoding *));
140 static int cmpci_set_params __P((void *, int, int,
141 struct audio_params *,
142 struct audio_params *));
143 static int cmpci_round_blocksize __P((void *, int));
144 static int cmpci_halt_output __P((void *));
145 static int cmpci_halt_input __P((void *));
146 static int cmpci_getdev __P((void *, struct audio_device *));
147 static int cmpci_set_port __P((void *, mixer_ctrl_t *));
148 static int cmpci_get_port __P((void *, mixer_ctrl_t *));
149 static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
150 static void *cmpci_allocm __P((void *, int, size_t, int, int));
151 static void cmpci_freem __P((void *, void *, int));
152 static size_t cmpci_round_buffersize __P((void *, int, size_t));
153 static paddr_t cmpci_mappage __P((void *, void *, off_t, int));
154 static int cmpci_get_props __P((void *));
155 static int cmpci_trigger_output __P((void *, void *, void *, int,
156 void (*)(void *), void *,
157 struct audio_params *));
158 static int cmpci_trigger_input __P((void *, void *, void *, int,
159 void (*)(void *), void *,
160 struct audio_params *));
161
162 static struct audio_hw_if cmpci_hw_if = {
163 cmpci_open, /* open */
164 cmpci_close, /* close */
165 NULL, /* drain */
166 cmpci_query_encoding, /* query_encoding */
167 cmpci_set_params, /* set_params */
168 cmpci_round_blocksize, /* round_blocksize */
169 NULL, /* commit_settings */
170 NULL, /* init_output */
171 NULL, /* init_input */
172 NULL, /* start_output */
173 NULL, /* start_input */
174 cmpci_halt_output, /* halt_output */
175 cmpci_halt_input, /* halt_input */
176 NULL, /* speaker_ctl */
177 cmpci_getdev, /* getdev */
178 NULL, /* setfd */
179 cmpci_set_port, /* set_port */
180 cmpci_get_port, /* get_port */
181 cmpci_query_devinfo, /* query_devinfo */
182 cmpci_allocm, /* allocm */
183 cmpci_freem, /* freem */
184 cmpci_round_buffersize,/* round_buffersize */
185 cmpci_mappage, /* mappage */
186 cmpci_get_props, /* get_props */
187 cmpci_trigger_output, /* trigger_output */
188 cmpci_trigger_input, /* trigger_input */
189 NULL, /* dev_ioctl */
190 };
191
192
193 /*
194 * Low-level HW interface
195 */
196
197 /* mixer register read/write */
198 static __inline uint8_t
199 cmpci_mixerreg_read(sc, no)
200 struct cmpci_softc *sc;
201 uint8_t no;
202 {
203 uint8_t ret;
204
205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
206 delay(10);
207 ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
208 delay(10);
209 return ret;
210 }
211
212 static __inline void
213 cmpci_mixerreg_write(sc, no, val)
214 struct cmpci_softc *sc;
215 uint8_t no, val;
216 {
217 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
218 delay(10);
219 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
220 delay(10);
221 }
222
223
224 /* register partial write */
225 static __inline void
226 cmpci_reg_partial_write_1(sc, no, shift, mask, val)
227 struct cmpci_softc *sc;
228 int no, shift;
229 unsigned mask, val;
230 {
231 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
232 (val<<shift) |
233 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
234 delay(10);
235 }
236
237 static __inline void
238 cmpci_reg_partial_write_4(sc, no, shift, mask, val)
239 struct cmpci_softc *sc;
240 int no, shift;
241 uint32_t mask, val;
242 {
243 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
244 (val<<shift) |
245 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
246 delay(10);
247 }
248
249 /* register set/clear bit */
250 static __inline void
251 cmpci_reg_set_1(sc, no, mask)
252 struct cmpci_softc *sc;
253 int no;
254 uint8_t mask;
255 {
256 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
257 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask));
258 delay(10);
259 }
260
261 static __inline void
262 cmpci_reg_clear_1(sc, no, mask)
263 struct cmpci_softc *sc;
264 int no;
265 uint8_t mask;
266 {
267 bus_space_write_1(sc->sc_iot, sc->sc_ioh, no,
268 (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask));
269 delay(10);
270 }
271
272
273 static __inline void
274 cmpci_reg_set_4(sc, no, mask)
275 struct cmpci_softc *sc;
276 int no;
277 uint32_t mask;
278 {
279 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
280 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
281 delay(10);
282 }
283
284 static __inline void
285 cmpci_reg_clear_4(sc, no, mask)
286 struct cmpci_softc *sc;
287 int no;
288 uint32_t mask;
289 {
290 bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
291 (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
292 delay(10);
293 }
294
295
296 /* rate */
297 static const struct {
298 int rate;
299 int divider;
300 } cmpci_rate_table[CMPCI_REG_NUMRATE] = {
301 #define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
302 _RATE(5512),
303 _RATE(8000),
304 _RATE(11025),
305 _RATE(16000),
306 _RATE(22050),
307 _RATE(32000),
308 _RATE(44100),
309 _RATE(48000)
310 #undef _RATE
311 };
312
313 static int
314 cmpci_rate_to_index(rate)
315 int rate;
316 {
317 int i;
318
319 for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++)
320 if (rate <=
321 (cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
322 return i;
323 return i; /* 48000 */
324 }
325
326 static __inline int
327 cmpci_index_to_rate(index)
328 int index;
329 {
330 return cmpci_rate_table[index].rate;
331 }
332
333 static __inline int
334 cmpci_index_to_divider(index)
335 int index;
336 {
337 return cmpci_rate_table[index].divider;
338 }
339
340
341 /*
342 * interface to configure the device.
343 */
344
345 static int
346 cmpci_match(parent, match, aux)
347 struct device *parent;
348 struct cfdata *match;
349 void *aux;
350 {
351 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
352
353 if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
354 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
355 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
356 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738 ||
357 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738B) )
358 return 1;
359
360 return 0;
361 }
362
363 static void
364 cmpci_attach(parent, self, aux)
365 struct device *parent, *self;
366 void *aux;
367 {
368 struct cmpci_softc *sc = (struct cmpci_softc *)self;
369 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
370 struct audio_attach_args aa;
371 pci_intr_handle_t ih;
372 char const *strintr;
373 char devinfo[256];
374 int i, v;
375
376 sc->sc_id = pa->pa_id;
377 sc->sc_class = pa->pa_class;
378 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
379 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(sc->sc_class));
380 switch (PCI_PRODUCT(sc->sc_id)) {
381 case PCI_PRODUCT_CMEDIA_CMI8338A:
382 /*FALLTHROUGH*/
383 case PCI_PRODUCT_CMEDIA_CMI8338B:
384 sc->sc_capable = CMPCI_CAP_CMI8338;
385 break;
386 case PCI_PRODUCT_CMEDIA_CMI8738:
387 /*FALLTHROUGH*/
388 case PCI_PRODUCT_CMEDIA_CMI8738B:
389 sc->sc_capable = CMPCI_CAP_CMI8738;
390 break;
391 }
392
393 /* map I/O space */
394 if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
395 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
396 printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
397 return;
398 }
399
400 /* interrupt */
401 if (pci_intr_map(pa, &ih)) {
402 printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
403 return;
404 }
405 strintr = pci_intr_string(pa->pa_pc, ih);
406 sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
407 if (sc->sc_ih == NULL) {
408 printf("%s: failed to establish interrupt",
409 sc->sc_dev.dv_xname);
410 if (strintr != NULL)
411 printf(" at %s", strintr);
412 printf("\n");
413 return;
414 }
415 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, strintr);
416
417 sc->sc_dmat = pa->pa_dmat;
418
419 audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
420
421 /* attach OPL device */
422 aa.type = AUDIODEV_TYPE_OPL;
423 aa.hwif = NULL;
424 aa.hdl = NULL;
425 (void)config_found(&sc->sc_dev, &aa, audioprint);
426
427 /* attach MPU-401 device */
428 aa.type = AUDIODEV_TYPE_MPU;
429 aa.hwif = NULL;
430 aa.hdl = NULL;
431 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh,
432 CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0)
433 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
434
435 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
436 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
437 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
438 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
439 CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
440 for (i = 0; i < CMPCI_NDEVS; i++) {
441 switch(i) {
442 /*
443 * CMI8738 defaults are
444 * master: 0xe0 (0x00 - 0xf8)
445 * FM, DAC: 0xc0 (0x00 - 0xf8)
446 * PC speaker: 0x80 (0x00 - 0xc0)
447 * others: 0
448 */
449 /* volume */
450 case CMPCI_MASTER_VOL:
451 v = 128; /* 224 */
452 break;
453 case CMPCI_FM_VOL:
454 case CMPCI_DAC_VOL:
455 v = 192;
456 break;
457 case CMPCI_PCSPEAKER:
458 v = 128;
459 break;
460
461 /* booleans, set to true */
462 case CMPCI_CD_MUTE:
463 case CMPCI_MIC_MUTE:
464 case CMPCI_LINE_IN_MUTE:
465 case CMPCI_AUX_IN_MUTE:
466 v = 1;
467 break;
468
469 /* volume with inital value 0 */
470 case CMPCI_CD_VOL:
471 case CMPCI_LINE_IN_VOL:
472 case CMPCI_AUX_IN_VOL:
473 case CMPCI_MIC_VOL:
474 case CMPCI_MIC_RECVOL:
475 /* FALLTHROUGH */
476
477 /* others are cleared */
478 case CMPCI_MIC_PREAMP:
479 case CMPCI_RECORD_SOURCE:
480 case CMPCI_PLAYBACK_MODE:
481 case CMPCI_SPDIF_IN_SELECT:
482 case CMPCI_SPDIF_IN_PHASE:
483 case CMPCI_SPDIF_LOOP:
484 case CMPCI_SPDIF_OUT_PLAYBACK:
485 case CMPCI_SPDIF_OUT_VOLTAGE:
486 case CMPCI_MONITOR_DAC:
487 case CMPCI_REAR:
488 case CMPCI_INDIVIDUAL:
489 case CMPCI_REVERSE:
490 case CMPCI_SURROUND:
491 default:
492 v = 0;
493 break;
494 }
495 sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v;
496 cmpci_set_mixer_gain(sc, i);
497 }
498 }
499
500
501 static int
502 cmpci_intr(handle)
503 void *handle;
504 {
505 struct cmpci_softc *sc = handle;
506 uint32_t intrstat;
507
508 intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
509 CMPCI_REG_INTR_STATUS);
510
511 if (!(intrstat & CMPCI_REG_ANY_INTR))
512 return 0;
513
514 delay(10);
515
516 /* disable and reset intr */
517 if (intrstat & CMPCI_REG_CH0_INTR)
518 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
519 CMPCI_REG_CH0_INTR_ENABLE);
520 if (intrstat & CMPCI_REG_CH1_INTR)
521 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
522 CMPCI_REG_CH1_INTR_ENABLE);
523
524 if (intrstat & CMPCI_REG_CH0_INTR) {
525 if (sc->sc_play.intr != NULL)
526 (*sc->sc_play.intr)(sc->sc_play.intr_arg);
527 }
528 if (intrstat & CMPCI_REG_CH1_INTR) {
529 if (sc->sc_rec.intr != NULL)
530 (*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
531 }
532
533 /* enable intr */
534 if (intrstat & CMPCI_REG_CH0_INTR)
535 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
536 CMPCI_REG_CH0_INTR_ENABLE);
537 if (intrstat & CMPCI_REG_CH1_INTR)
538 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
539 CMPCI_REG_CH1_INTR_ENABLE);
540
541 #if NMPU > 0
542 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL)
543 mpu_intr(sc->sc_mpudev);
544 #endif
545
546 return 1;
547 }
548
549
550 /* open/close */
551 static int
552 cmpci_open(handle, flags)
553 void *handle;
554 int flags;
555 {
556 return 0;
557 }
558
559 static void
560 cmpci_close(handle)
561 void *handle;
562 {
563 }
564
565 static int
566 cmpci_query_encoding(handle, fp)
567 void *handle;
568 struct audio_encoding *fp;
569 {
570 switch (fp->index) {
571 case 0:
572 strcpy(fp->name, AudioEulinear);
573 fp->encoding = AUDIO_ENCODING_ULINEAR;
574 fp->precision = 8;
575 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
576 break;
577 case 1:
578 strcpy(fp->name, AudioEmulaw);
579 fp->encoding = AUDIO_ENCODING_ULAW;
580 fp->precision = 8;
581 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
582 break;
583 case 2:
584 strcpy(fp->name, AudioEalaw);
585 fp->encoding = AUDIO_ENCODING_ALAW;
586 fp->precision = 8;
587 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
588 break;
589 case 3:
590 strcpy(fp->name, AudioEslinear);
591 fp->encoding = AUDIO_ENCODING_SLINEAR;
592 fp->precision = 8;
593 fp->flags = 0;
594 break;
595 case 4:
596 strcpy(fp->name, AudioEslinear_le);
597 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
598 fp->precision = 16;
599 fp->flags = 0;
600 break;
601 case 5:
602 strcpy(fp->name, AudioEulinear_le);
603 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
604 fp->precision = 16;
605 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
606 break;
607 case 6:
608 strcpy(fp->name, AudioEslinear_be);
609 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
610 fp->precision = 16;
611 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
612 break;
613 case 7:
614 strcpy(fp->name, AudioEulinear_be);
615 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
616 fp->precision = 16;
617 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
618 break;
619 default:
620 return EINVAL;
621 }
622 return 0;
623 }
624
625
626 static int
627 cmpci_set_params(handle, setmode, usemode, play, rec)
628 void *handle;
629 int setmode, usemode;
630 struct audio_params *play, *rec;
631 {
632 int i;
633 struct cmpci_softc *sc = handle;
634
635 for (i = 0; i < 2; i++) {
636 int md_format;
637 int md_divide;
638 int md_index;
639 int mode;
640 struct audio_params *p;
641
642 switch (i) {
643 case 0:
644 mode = AUMODE_PLAY;
645 p = play;
646 break;
647 case 1:
648 mode = AUMODE_RECORD;
649 p = rec;
650 break;
651 }
652
653 if (!(setmode & mode))
654 continue;
655
656
657 /* format */
658 p->sw_code = NULL;
659 switch ( p->channels ) {
660 case 1:
661 md_format = CMPCI_REG_FORMAT_MONO;
662 break;
663 case 2:
664 md_format = CMPCI_REG_FORMAT_STEREO;
665 break;
666 default:
667 return (EINVAL);
668 }
669 switch (p->encoding) {
670 case AUDIO_ENCODING_ULAW:
671 if (p->precision != 8)
672 return (EINVAL);
673 if (mode & AUMODE_PLAY) {
674 p->factor = 2;
675 p->sw_code = mulaw_to_slinear16_le;
676 md_format |= CMPCI_REG_FORMAT_16BIT;
677 } else {
678 p->sw_code = ulinear8_to_mulaw;
679 md_format |= CMPCI_REG_FORMAT_8BIT;
680 }
681 break;
682 case AUDIO_ENCODING_ALAW:
683 if (p->precision != 8)
684 return (EINVAL);
685 if (mode & AUMODE_PLAY) {
686 p->factor = 2;
687 p->sw_code = alaw_to_slinear16_le;
688 md_format |= CMPCI_REG_FORMAT_16BIT;
689 } else {
690 p->sw_code = ulinear8_to_alaw;
691 md_format |= CMPCI_REG_FORMAT_8BIT;
692 }
693 break;
694 case AUDIO_ENCODING_SLINEAR_LE:
695 switch (p->precision) {
696 case 8:
697 p->sw_code = change_sign8;
698 md_format |= CMPCI_REG_FORMAT_8BIT;
699 break;
700 case 16:
701 md_format |= CMPCI_REG_FORMAT_16BIT;
702 break;
703 default:
704 return (EINVAL);
705 }
706 break;
707 case AUDIO_ENCODING_SLINEAR_BE:
708 switch (p->precision) {
709 case 8:
710 md_format |= CMPCI_REG_FORMAT_8BIT;
711 p->sw_code = change_sign8;
712 break;
713 case 16:
714 md_format |= CMPCI_REG_FORMAT_16BIT;
715 p->sw_code = swap_bytes;
716 break;
717 default:
718 return (EINVAL);
719 }
720 break;
721 case AUDIO_ENCODING_ULINEAR_LE:
722 switch (p->precision) {
723 case 8:
724 md_format |= CMPCI_REG_FORMAT_8BIT;
725 break;
726 case 16:
727 md_format |= CMPCI_REG_FORMAT_16BIT;
728 p->sw_code = change_sign16_le;
729 break;
730 default:
731 return (EINVAL);
732 }
733 break;
734 case AUDIO_ENCODING_ULINEAR_BE:
735 switch (p->precision) {
736 case 8:
737 md_format |= CMPCI_REG_FORMAT_8BIT;
738 break;
739 case 16:
740 md_format |= CMPCI_REG_FORMAT_16BIT;
741 if (mode & AUMODE_PLAY)
742 p->sw_code =
743 swap_bytes_change_sign16_le;
744 else
745 p->sw_code =
746 change_sign16_swap_bytes_le;
747 break;
748 default:
749 return (EINVAL);
750 }
751 break;
752 default:
753 return (EINVAL);
754 }
755 if (mode & AUMODE_PLAY)
756 cmpci_reg_partial_write_4(sc,
757 CMPCI_REG_CHANNEL_FORMAT,
758 CMPCI_REG_CH0_FORMAT_SHIFT,
759 CMPCI_REG_CH0_FORMAT_MASK, md_format);
760 else
761 cmpci_reg_partial_write_4(sc,
762 CMPCI_REG_CHANNEL_FORMAT,
763 CMPCI_REG_CH1_FORMAT_SHIFT,
764 CMPCI_REG_CH1_FORMAT_MASK, md_format);
765 /* sample rate */
766 md_index = cmpci_rate_to_index(p->sample_rate);
767 md_divide = cmpci_index_to_divider(md_index);
768 p->sample_rate = cmpci_index_to_rate(md_index);
769 DPRINTF(("%s: sample:%d, divider=%d\n",
770 sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
771 if (mode & AUMODE_PLAY) {
772 cmpci_reg_partial_write_4(sc,
773 CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
774 CMPCI_REG_DAC_FS_MASK, md_divide);
775 sc->sc_play.md_divide = md_divide;
776 } else {
777 cmpci_reg_partial_write_4(sc,
778 CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
779 CMPCI_REG_ADC_FS_MASK, md_divide);
780 sc->sc_rec.md_divide = md_divide;
781 }
782 cmpci_set_out_ports(sc);
783 cmpci_set_in_ports(sc);
784 }
785 return 0;
786 }
787
788 /* ARGSUSED */
789 static int
790 cmpci_round_blocksize(handle, block)
791 void *handle;
792 int block;
793 {
794 return (block & -4);
795 }
796
797 static int
798 cmpci_halt_output(handle)
799 void *handle;
800 {
801 struct cmpci_softc *sc = handle;
802 int s;
803
804 s = splaudio();
805 sc->sc_play.intr = NULL;
806 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
807 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
808 /* wait for reset DMA */
809 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
810 delay(10);
811 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
812 splx(s);
813
814 return 0;
815 }
816
817 static int
818 cmpci_halt_input(handle)
819 void *handle;
820 {
821 struct cmpci_softc *sc = handle;
822 int s;
823
824 s = splaudio();
825 sc->sc_rec.intr = NULL;
826 cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
827 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
828 /* wait for reset DMA */
829 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
830 delay(10);
831 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
832 splx(s);
833
834 return 0;
835 }
836
837
838 /* get audio device information */
839 static int
840 cmpci_getdev(handle, ad)
841 void *handle;
842 struct audio_device *ad;
843 {
844 struct cmpci_softc *sc = handle;
845
846 strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
847 snprintf(ad->version, sizeof(ad->version), "0x%02x",
848 PCI_REVISION(sc->sc_class));
849 switch (PCI_PRODUCT(sc->sc_id)) {
850 case PCI_PRODUCT_CMEDIA_CMI8338A:
851 strncpy(ad->config, "CMI8338A", sizeof(ad->config));
852 break;
853 case PCI_PRODUCT_CMEDIA_CMI8338B:
854 strncpy(ad->config, "CMI8338B", sizeof(ad->config));
855 break;
856 case PCI_PRODUCT_CMEDIA_CMI8738:
857 strncpy(ad->config, "CMI8738", sizeof(ad->config));
858 break;
859 case PCI_PRODUCT_CMEDIA_CMI8738B:
860 strncpy(ad->config, "CMI8738B", sizeof(ad->config));
861 break;
862 default:
863 strncpy(ad->config, "unknown", sizeof(ad->config));
864 }
865
866 return 0;
867 }
868
869
870 /* mixer device information */
871 int
872 cmpci_query_devinfo(handle, dip)
873 void *handle;
874 mixer_devinfo_t *dip;
875 {
876 static const char *const mixer_port_names[] = {
877 AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux,
878 AudioNmicrophone
879 };
880 static const char *const mixer_classes[] = {
881 AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback,
882 CmpciCspdif
883 };
884 struct cmpci_softc *sc = handle;
885 int i;
886
887 dip->prev = dip->next = AUDIO_MIXER_LAST;
888
889 switch (dip->index) {
890 case CMPCI_INPUT_CLASS:
891 case CMPCI_OUTPUT_CLASS:
892 case CMPCI_RECORD_CLASS:
893 case CMPCI_PLAYBACK_CLASS:
894 case CMPCI_SPDIF_CLASS:
895 dip->type = AUDIO_MIXER_CLASS;
896 dip->mixer_class = dip->index;
897 strcpy(dip->label.name,
898 mixer_classes[dip->index - CMPCI_INPUT_CLASS]);
899 return 0;
900
901 case CMPCI_AUX_IN_VOL:
902 dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS);
903 goto vol1;
904 case CMPCI_DAC_VOL:
905 case CMPCI_FM_VOL:
906 case CMPCI_CD_VOL:
907 case CMPCI_LINE_IN_VOL:
908 case CMPCI_MIC_VOL:
909 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
910 vol1: dip->mixer_class = CMPCI_INPUT_CLASS;
911 dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */
912 strcpy(dip->label.name, mixer_port_names[dip->index]);
913 dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2);
914 vol:
915 dip->type = AUDIO_MIXER_VALUE;
916 strcpy(dip->un.v.units.name, AudioNvolume);
917 return 0;
918
919 case CMPCI_MIC_MUTE:
920 dip->next = CMPCI_MIC_PREAMP;
921 /* FALLTHROUGH */
922 case CMPCI_DAC_MUTE:
923 case CMPCI_FM_MUTE:
924 case CMPCI_CD_MUTE:
925 case CMPCI_LINE_IN_MUTE:
926 case CMPCI_AUX_IN_MUTE:
927 dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */
928 dip->mixer_class = CMPCI_INPUT_CLASS;
929 strcpy(dip->label.name, AudioNmute);
930 goto on_off;
931 on_off:
932 dip->type = AUDIO_MIXER_ENUM;
933 dip->un.e.num_mem = 2;
934 strcpy(dip->un.e.member[0].label.name, AudioNoff);
935 dip->un.e.member[0].ord = 0;
936 strcpy(dip->un.e.member[1].label.name, AudioNon);
937 dip->un.e.member[1].ord = 1;
938 return 0;
939
940 case CMPCI_MIC_PREAMP:
941 dip->mixer_class = CMPCI_INPUT_CLASS;
942 dip->prev = CMPCI_MIC_MUTE;
943 strcpy(dip->label.name, AudioNpreamp);
944 goto on_off;
945 case CMPCI_PCSPEAKER:
946 dip->mixer_class = CMPCI_INPUT_CLASS;
947 strcpy(dip->label.name, AudioNspeaker);
948 dip->un.v.num_channels = 1;
949 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS);
950 goto vol;
951 case CMPCI_RECORD_SOURCE:
952 dip->mixer_class = CMPCI_RECORD_CLASS;
953 strcpy(dip->label.name, AudioNsource);
954 dip->type = AUDIO_MIXER_SET;
955 dip->un.s.num_mem = 7;
956 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
957 dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC;
958 strcpy(dip->un.s.member[1].label.name, AudioNcd);
959 dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD;
960 strcpy(dip->un.s.member[2].label.name, AudioNline);
961 dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN;
962 strcpy(dip->un.s.member[3].label.name, AudioNaux);
963 dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN;
964 strcpy(dip->un.s.member[4].label.name, AudioNwave);
965 dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE;
966 strcpy(dip->un.s.member[5].label.name, AudioNfmsynth);
967 dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM;
968 strcpy(dip->un.s.member[6].label.name, CmpciNspdif);
969 dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF;
970 return 0;
971 case CMPCI_MIC_RECVOL:
972 dip->mixer_class = CMPCI_RECORD_CLASS;
973 strcpy(dip->label.name, AudioNmicrophone);
974 dip->un.v.num_channels = 1;
975 dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS);
976 goto vol;
977
978 case CMPCI_PLAYBACK_MODE:
979 dip->mixer_class = CMPCI_PLAYBACK_CLASS;
980 dip->type = AUDIO_MIXER_ENUM;
981 strcpy(dip->label.name, AudioNmode);
982 dip->un.e.num_mem = 2;
983 strcpy(dip->un.e.member[0].label.name, AudioNdac);
984 dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE;
985 strcpy(dip->un.e.member[1].label.name, CmpciNspdif);
986 dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF;
987 return 0;
988 case CMPCI_SPDIF_IN_SELECT:
989 dip->mixer_class = CMPCI_SPDIF_CLASS;
990 dip->type = AUDIO_MIXER_ENUM;
991 dip->next = CMPCI_SPDIF_IN_PHASE;
992 strcpy(dip->label.name, AudioNinput);
993 i = 0;
994 strcpy(dip->un.e.member[i].label.name, CmpciNspdin1);
995 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1;
996 if (CMPCI_ISCAP(sc, 2ND_SPDIN)) {
997 strcpy(dip->un.e.member[i].label.name, CmpciNspdin2);
998 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2;
999 }
1000 strcpy(dip->un.e.member[i].label.name, CmpciNspdout);
1001 dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT;
1002 dip->un.e.num_mem = i;
1003 return 0;
1004 case CMPCI_SPDIF_IN_PHASE:
1005 dip->mixer_class = CMPCI_SPDIF_CLASS;
1006 dip->prev = CMPCI_SPDIF_IN_SELECT;
1007 strcpy(dip->label.name, CmpciNphase);
1008 dip->type = AUDIO_MIXER_ENUM;
1009 dip->un.e.num_mem = 2;
1010 strcpy(dip->un.e.member[0].label.name, CmpciNpositive);
1011 dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE;
1012 strcpy(dip->un.e.member[1].label.name, CmpciNnegative);
1013 dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE;
1014 return 0;
1015 case CMPCI_SPDIF_LOOP:
1016 dip->mixer_class = CMPCI_SPDIF_CLASS;
1017 dip->next = CMPCI_SPDIF_OUT_PLAYBACK;
1018 strcpy(dip->label.name, AudioNoutput);
1019 dip->type = AUDIO_MIXER_ENUM;
1020 dip->un.e.num_mem = 2;
1021 strcpy(dip->un.e.member[0].label.name, CmpciNplayback);
1022 dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF;
1023 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1024 dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON;
1025 return 0;
1026 case CMPCI_SPDIF_OUT_PLAYBACK:
1027 dip->mixer_class = CMPCI_SPDIF_CLASS;
1028 dip->prev = CMPCI_SPDIF_LOOP;
1029 dip->next = CMPCI_SPDIF_OUT_VOLTAGE;
1030 strcpy(dip->label.name, CmpciNplayback);
1031 dip->type = AUDIO_MIXER_ENUM;
1032 dip->un.e.num_mem = 2;
1033 strcpy(dip->un.e.member[0].label.name, AudioNwave);
1034 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE;
1035 strcpy(dip->un.e.member[1].label.name, CmpciNlegacy);
1036 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY;
1037 return 0;
1038 case CMPCI_SPDIF_OUT_VOLTAGE:
1039 dip->mixer_class = CMPCI_SPDIF_CLASS;
1040 dip->prev = CMPCI_SPDIF_OUT_PLAYBACK;
1041 strcpy(dip->label.name, CmpciNvoltage);
1042 dip->type = AUDIO_MIXER_ENUM;
1043 dip->un.e.num_mem = 2;
1044 strcpy(dip->un.e.member[0].label.name, CmpciNlow_v);
1045 dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW;
1046 strcpy(dip->un.e.member[1].label.name, CmpciNhigh_v);
1047 dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH;
1048 return 0;
1049 case CMPCI_MONITOR_DAC:
1050 dip->mixer_class = CMPCI_SPDIF_CLASS;
1051 strcpy(dip->label.name, AudioNmonitor);
1052 dip->type = AUDIO_MIXER_ENUM;
1053 dip->un.e.num_mem = 3;
1054 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1055 dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF;
1056 strcpy(dip->un.e.member[1].label.name, CmpciNspdin);
1057 dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN;
1058 strcpy(dip->un.e.member[2].label.name, CmpciNspdout);
1059 dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT;
1060 return 0;
1061
1062 case CMPCI_MASTER_VOL:
1063 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1064 strcpy(dip->label.name, AudioNmaster);
1065 dip->un.v.num_channels = 2;
1066 dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS);
1067 goto vol;
1068 case CMPCI_REAR:
1069 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1070 dip->next = CMPCI_INDIVIDUAL;
1071 strcpy(dip->label.name, CmpciNrear);
1072 goto on_off;
1073 case CMPCI_INDIVIDUAL:
1074 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1075 dip->prev = CMPCI_REAR;
1076 dip->next = CMPCI_REVERSE;
1077 strcpy(dip->label.name, CmpciNindividual);
1078 goto on_off;
1079 case CMPCI_REVERSE:
1080 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1081 dip->prev = CMPCI_INDIVIDUAL;
1082 strcpy(dip->label.name, CmpciNreverse);
1083 goto on_off;
1084 case CMPCI_SURROUND:
1085 dip->mixer_class = CMPCI_OUTPUT_CLASS;
1086 strcpy(dip->label.name, CmpciNsurround);
1087 goto on_off;
1088 }
1089
1090 return ENXIO;
1091 }
1092
1093 static int
1094 cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
1095 struct cmpci_softc *sc;
1096 size_t size;
1097 int type, flags;
1098 caddr_t *r_addr;
1099 {
1100 int error = 0;
1101 struct cmpci_dmanode *n;
1102 int w;
1103
1104 n = malloc(sizeof(struct cmpci_dmanode), type, flags);
1105 if (n == NULL) {
1106 error = ENOMEM;
1107 goto quit;
1108 }
1109
1110 w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1111 #define CMPCI_DMABUF_ALIGN 0x4
1112 #define CMPCI_DMABUF_BOUNDARY 0x0
1113 n->cd_tag = sc->sc_dmat;
1114 n->cd_size = size;
1115 error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
1116 CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
1117 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
1118 if (error)
1119 goto mfree;
1120 error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
1121 &n->cd_addr, w | BUS_DMA_COHERENT);
1122 if (error)
1123 goto dmafree;
1124 error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
1125 w, &n->cd_map);
1126 if (error)
1127 goto unmap;
1128 error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
1129 NULL, w);
1130 if (error)
1131 goto destroy;
1132
1133 n->cd_next = sc->sc_dmap;
1134 sc->sc_dmap = n;
1135 *r_addr = KVADDR(n);
1136 return 0;
1137
1138 destroy:
1139 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1140 unmap:
1141 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1142 dmafree:
1143 bus_dmamem_free(n->cd_tag,
1144 n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1145 mfree:
1146 free(n, type);
1147 quit:
1148 return error;
1149 }
1150
1151 static int
1152 cmpci_free_dmamem(sc, addr, type)
1153 struct cmpci_softc *sc;
1154 caddr_t addr;
1155 int type;
1156 {
1157 struct cmpci_dmanode **nnp;
1158
1159 for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
1160 if ((*nnp)->cd_addr == addr) {
1161 struct cmpci_dmanode *n = *nnp;
1162 bus_dmamap_unload(n->cd_tag, n->cd_map);
1163 bus_dmamap_destroy(n->cd_tag, n->cd_map);
1164 bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
1165 bus_dmamem_free(n->cd_tag, n->cd_segs,
1166 sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
1167 free(n, type);
1168 return 0;
1169 }
1170 }
1171 return -1;
1172 }
1173
1174 static struct cmpci_dmanode *
1175 cmpci_find_dmamem(sc, addr)
1176 struct cmpci_softc *sc;
1177 caddr_t addr;
1178 {
1179 struct cmpci_dmanode *p;
1180
1181 for (p=sc->sc_dmap; p; p=p->cd_next)
1182 if ( KVADDR(p) == (void *)addr )
1183 break;
1184 return p;
1185 }
1186
1187
1188 #if 0
1189 static void
1190 cmpci_print_dmamem __P((struct cmpci_dmanode *p));
1191 static void
1192 cmpci_print_dmamem(p)
1193 struct cmpci_dmanode *p;
1194 {
1195 DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
1196 (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
1197 (void *)DMAADDR(p), (void *)p->cd_size));
1198 }
1199 #endif /* DEBUG */
1200
1201
1202 static void *
1203 cmpci_allocm(handle, direction, size, type, flags)
1204 void *handle;
1205 int direction;
1206 size_t size;
1207 int type, flags;
1208 {
1209 struct cmpci_softc *sc = handle;
1210 caddr_t addr;
1211
1212 if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
1213 return NULL;
1214 return addr;
1215 }
1216
1217 static void
1218 cmpci_freem(handle, addr, type)
1219 void *handle;
1220 void *addr;
1221 int type;
1222 {
1223 struct cmpci_softc *sc = handle;
1224
1225 cmpci_free_dmamem(sc, addr, type);
1226 }
1227
1228
1229 #define MAXVAL 256
1230 static int
1231 cmpci_adjust(val, mask)
1232 int val, mask;
1233 {
1234 val += (MAXVAL - mask) >> 1;
1235 if (val >= MAXVAL)
1236 val = MAXVAL-1;
1237 return val & mask;
1238 }
1239
1240 static void
1241 cmpci_set_mixer_gain(sc, port)
1242 struct cmpci_softc *sc;
1243 int port;
1244 {
1245 int src;
1246 int bits, mask;
1247
1248 switch (port) {
1249 case CMPCI_MIC_VOL:
1250 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC,
1251 CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1252 break;
1253 case CMPCI_MASTER_VOL:
1254 src = CMPCI_SB16_MIXER_MASTER_L;
1255 break;
1256 case CMPCI_LINE_IN_VOL:
1257 src = CMPCI_SB16_MIXER_LINE_L;
1258 break;
1259 case CMPCI_AUX_IN_VOL:
1260 bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX,
1261 CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT],
1262 sc->sc_gain[port][CMPCI_RIGHT]));
1263 return;
1264 case CMPCI_MIC_RECVOL:
1265 cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25,
1266 CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK,
1267 CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1268 return;
1269 case CMPCI_DAC_VOL:
1270 src = CMPCI_SB16_MIXER_VOICE_L;
1271 break;
1272 case CMPCI_FM_VOL:
1273 src = CMPCI_SB16_MIXER_FM_L;
1274 break;
1275 case CMPCI_CD_VOL:
1276 src = CMPCI_SB16_MIXER_CDDA_L;
1277 break;
1278 case CMPCI_PCSPEAKER:
1279 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
1280 CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR]));
1281 return;
1282 case CMPCI_MIC_PREAMP:
1283 if (sc->sc_gain[port][CMPCI_LR])
1284 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1285 CMPCI_REG_MICGAINZ);
1286 else
1287 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1288 CMPCI_REG_MICGAINZ);
1289 return;
1290
1291 case CMPCI_DAC_MUTE:
1292 if (sc->sc_gain[port][CMPCI_LR])
1293 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1294 CMPCI_REG_WSMUTE);
1295 else
1296 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1297 CMPCI_REG_WSMUTE);
1298 return;
1299 case CMPCI_FM_MUTE:
1300 if (sc->sc_gain[port][CMPCI_LR])
1301 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1302 CMPCI_REG_FMMUTE);
1303 else
1304 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1305 CMPCI_REG_FMMUTE);
1306 return;
1307 case CMPCI_AUX_IN_MUTE:
1308 if (sc->sc_gain[port][CMPCI_LR])
1309 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1310 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1311 else
1312 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1313 CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM);
1314 return;
1315 case CMPCI_CD_MUTE:
1316 mask = CMPCI_SB16_SW_CD;
1317 goto sbmute;
1318 case CMPCI_MIC_MUTE:
1319 mask = CMPCI_SB16_SW_MIC;
1320 goto sbmute;
1321 case CMPCI_LINE_IN_MUTE:
1322 mask = CMPCI_SB16_SW_LINE;
1323 sbmute:
1324 bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
1325 if (sc->sc_gain[port][CMPCI_LR])
1326 bits = bits & ~mask;
1327 else
1328 bits = bits | mask;
1329 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
1330 return;
1331
1332 case CMPCI_SPDIF_IN_SELECT:
1333 case CMPCI_MONITOR_DAC:
1334 case CMPCI_PLAYBACK_MODE:
1335 case CMPCI_SPDIF_LOOP:
1336 case CMPCI_SPDIF_OUT_PLAYBACK:
1337 cmpci_set_out_ports(sc);
1338 return;
1339 case CMPCI_SPDIF_OUT_VOLTAGE:
1340 if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) {
1341 if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR]
1342 == CMPCI_SPDIF_OUT_VOLTAGE_LOW)
1343 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1344 CMPCI_REG_5V);
1345 else
1346 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1347 CMPCI_REG_5V);
1348 }
1349 return;
1350 case CMPCI_SURROUND:
1351 if (CMPCI_ISCAP(sc, SURROUND)) {
1352 if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR])
1353 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1354 CMPCI_REG_SURROUND);
1355 else
1356 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1357 CMPCI_REG_SURROUND);
1358 }
1359 return;
1360 case CMPCI_REAR:
1361 if (CMPCI_ISCAP(sc, REAR)) {
1362 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1363 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1364 CMPCI_REG_N4SPK3D);
1365 else
1366 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1367 CMPCI_REG_N4SPK3D);
1368 }
1369 return;
1370 case CMPCI_INDIVIDUAL:
1371 if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) {
1372 if (sc->sc_gain[CMPCI_REAR][CMPCI_LR])
1373 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1374 CMPCI_REG_INDIVIDUAL);
1375 else
1376 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1377 CMPCI_REG_INDIVIDUAL);
1378 }
1379 return;
1380 case CMPCI_REVERSE:
1381 if (CMPCI_ISCAP(sc, REVERSE_FR)) {
1382 if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR])
1383 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1384 CMPCI_REG_REVERSE_FR);
1385 else
1386 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1387 CMPCI_REG_REVERSE_FR);
1388 }
1389 return;
1390 case CMPCI_SPDIF_IN_PHASE:
1391 if (CMPCI_ISCAP(sc, SPDIN_PHASE)) {
1392 if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR]
1393 == CMPCI_SPDIF_IN_PHASE_POSITIVE)
1394 cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1395 CMPCI_REG_SPDIN_PHASE);
1396 else
1397 cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT,
1398 CMPCI_REG_SPDIN_PHASE);
1399 }
1400 return;
1401 default:
1402 return;
1403 }
1404
1405 cmpci_mixerreg_write(sc, src,
1406 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT]));
1407 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
1408 CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT]));
1409 }
1410
1411 static void
1412 cmpci_set_out_ports(sc)
1413 struct cmpci_softc *sc;
1414 {
1415 u_int8_t v;
1416 int enspdout = 0;
1417
1418 if (!CMPCI_ISCAP(sc, SPDLOOP))
1419 return;
1420
1421 /* SPDIF/out select */
1422 if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) {
1423 /* playback */
1424 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1425 } else {
1426 /* monitor SPDIF/in */
1427 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP);
1428 }
1429
1430 /* SPDIF in select */
1431 v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR];
1432 if (v & CMPCI_SPDIFIN_SPDIFIN2)
1433 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1434 else
1435 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_2ND_SPDIFIN);
1436 if (v & CMPCI_SPDIFIN_SPDIFOUT)
1437 cmpci_reg_set_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1438 else
1439 cmpci_reg_clear_4(sc, CMPCI_REG_MISC, CMPCI_REG_SPDFLOOPI);
1440
1441 /* playback to ... */
1442 if (CMPCI_ISCAP(sc, SPDOUT) &&
1443 sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR]
1444 == CMPCI_PLAYBACK_MODE_SPDIF &&
1445 (sc->sc_play.md_divide == CMPCI_REG_RATE_44100 ||
1446 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1447 sc->sc_play.md_divide==CMPCI_REG_RATE_48000))) {
1448 /* playback to SPDIF */
1449 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE);
1450 enspdout = 1;
1451 if (sc->sc_play.md_divide==CMPCI_REG_RATE_48000)
1452 cmpci_reg_set_4(sc, CMPCI_REG_MISC,
1453 CMPCI_REG_SPDIF_48K);
1454 else
1455 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1456 CMPCI_REG_SPDIF_48K);
1457 } else {
1458 /* playback to DAC */
1459 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1460 CMPCI_REG_SPDIF0_ENABLE);
1461 if (CMPCI_ISCAP(sc, SPDOUT_48K))
1462 cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
1463 CMPCI_REG_SPDIF_48K);
1464 }
1465
1466 /* legacy to SPDIF/out or not */
1467 if (CMPCI_ISCAP(sc, SPDLEGACY)) {
1468 if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR]
1469 == CMPCI_SPDIF_OUT_PLAYBACK_WAVE)
1470 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1471 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1472 else {
1473 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1474 CMPCI_REG_LEGACY_SPDIF_ENABLE);
1475 enspdout = 1;
1476 }
1477 }
1478
1479 /* enable/disable SPDIF/out */
1480 if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout)
1481 cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL,
1482 CMPCI_REG_XSPDIF_ENABLE);
1483 else
1484 cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL,
1485 CMPCI_REG_XSPDIF_ENABLE);
1486
1487 /* SPDIF monitor (digital to alalog output) */
1488 if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) {
1489 v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR];
1490 if (!(v & CMPCI_MONDAC_ENABLE))
1491 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1492 CMPCI_REG_SPDIN_MONITOR);
1493 if (v & CMPCI_MONDAC_SPDOUT)
1494 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
1495 CMPCI_REG_SPDIFOUT_DAC);
1496 else
1497 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
1498 CMPCI_REG_SPDIFOUT_DAC);
1499 if (v & CMPCI_MONDAC_ENABLE)
1500 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1501 CMPCI_REG_SPDIN_MONITOR);
1502 }
1503 }
1504
1505 static int
1506 cmpci_set_in_ports(sc)
1507 struct cmpci_softc *sc;
1508 {
1509 int mask;
1510 int bitsl, bitsr;
1511
1512 mask = sc->sc_in_mask;
1513
1514 /*
1515 * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and
1516 * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit
1517 * of the mixer register.
1518 */
1519 bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1520 CMPCI_RECORD_SOURCE_FM);
1521
1522 bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
1523 if (mask & CMPCI_RECORD_SOURCE_MIC) {
1524 bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
1525 bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
1526 }
1527 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
1528 cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
1529
1530 if (mask & CMPCI_RECORD_SOURCE_AUX_IN)
1531 cmpci_reg_set_1(sc, CMPCI_REG_MIXER25,
1532 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1533 else
1534 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25,
1535 CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN);
1536
1537 if (mask & CMPCI_RECORD_SOURCE_WAVE)
1538 cmpci_reg_set_1(sc, CMPCI_REG_MIXER24,
1539 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1540 else
1541 cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24,
1542 CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR);
1543
1544 if (CMPCI_ISCAP(sc, SPDIN) &&
1545 (sc->sc_rec.md_divide == CMPCI_REG_RATE_44100 ||
1546 (CMPCI_ISCAP(sc, SPDOUT_48K) &&
1547 sc->sc_rec.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) {
1548 if (mask & CMPCI_RECORD_SOURCE_SPDIF) {
1549 /* enable SPDIF/in */
1550 cmpci_reg_set_4(sc,
1551 CMPCI_REG_FUNC_1,
1552 CMPCI_REG_SPDIF1_ENABLE);
1553 } else {
1554 cmpci_reg_clear_4(sc,
1555 CMPCI_REG_FUNC_1,
1556 CMPCI_REG_SPDIF1_ENABLE);
1557 }
1558 }
1559
1560 return 0;
1561 }
1562
1563 static int
1564 cmpci_set_port(handle, cp)
1565 void *handle;
1566 mixer_ctrl_t *cp;
1567 {
1568 struct cmpci_softc *sc = handle;
1569 int lgain, rgain;
1570
1571 switch (cp->dev) {
1572 case CMPCI_MIC_VOL:
1573 case CMPCI_PCSPEAKER:
1574 case CMPCI_MIC_RECVOL:
1575 if (cp->un.value.num_channels != 1)
1576 return EINVAL;
1577 /* FALLTHROUGH */
1578 case CMPCI_DAC_VOL:
1579 case CMPCI_FM_VOL:
1580 case CMPCI_CD_VOL:
1581 case CMPCI_LINE_IN_VOL:
1582 case CMPCI_AUX_IN_VOL:
1583 case CMPCI_MASTER_VOL:
1584 if (cp->type != AUDIO_MIXER_VALUE)
1585 return EINVAL;
1586 switch (cp->un.value.num_channels) {
1587 case 1:
1588 lgain = rgain =
1589 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1590 break;
1591 case 2:
1592 lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1593 rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1594 break;
1595 default:
1596 return EINVAL;
1597 }
1598 sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain;
1599 sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain;
1600
1601 cmpci_set_mixer_gain(sc, cp->dev);
1602 break;
1603
1604 case CMPCI_RECORD_SOURCE:
1605 if (cp->type != AUDIO_MIXER_SET)
1606 return EINVAL;
1607
1608 if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC |
1609 CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN |
1610 CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE |
1611 CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF))
1612 return EINVAL;
1613
1614 if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF)
1615 cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF;
1616
1617 sc->sc_in_mask = cp->un.mask;
1618 return cmpci_set_in_ports(sc);
1619
1620 /* boolean */
1621 case CMPCI_DAC_MUTE:
1622 case CMPCI_FM_MUTE:
1623 case CMPCI_CD_MUTE:
1624 case CMPCI_LINE_IN_MUTE:
1625 case CMPCI_AUX_IN_MUTE:
1626 case CMPCI_MIC_MUTE:
1627 case CMPCI_MIC_PREAMP:
1628 case CMPCI_PLAYBACK_MODE:
1629 case CMPCI_SPDIF_IN_PHASE:
1630 case CMPCI_SPDIF_LOOP:
1631 case CMPCI_SPDIF_OUT_PLAYBACK:
1632 case CMPCI_SPDIF_OUT_VOLTAGE:
1633 case CMPCI_REAR:
1634 case CMPCI_INDIVIDUAL:
1635 case CMPCI_REVERSE:
1636 case CMPCI_SURROUND:
1637 if (cp->type != AUDIO_MIXER_ENUM)
1638 return EINVAL;
1639 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
1640 cmpci_set_mixer_gain(sc, cp->dev);
1641 break;
1642
1643 case CMPCI_SPDIF_IN_SELECT:
1644 switch (cp->un.ord) {
1645 case CMPCI_SPDIF_IN_SPDIN1:
1646 case CMPCI_SPDIF_IN_SPDIN2:
1647 case CMPCI_SPDIF_IN_SPDOUT:
1648 break;
1649 default:
1650 return EINVAL;
1651 }
1652 goto xenum;
1653 case CMPCI_MONITOR_DAC:
1654 switch (cp->un.ord) {
1655 case CMPCI_MONITOR_DAC_OFF:
1656 case CMPCI_MONITOR_DAC_SPDIN:
1657 case CMPCI_MONITOR_DAC_SPDOUT:
1658 break;
1659 default:
1660 return EINVAL;
1661 }
1662 xenum:
1663 if (cp->type != AUDIO_MIXER_ENUM)
1664 return EINVAL;
1665 sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord;
1666 cmpci_set_mixer_gain(sc, cp->dev);
1667 break;
1668
1669 default:
1670 return EINVAL;
1671 }
1672
1673 return 0;
1674 }
1675
1676 static int
1677 cmpci_get_port(handle, cp)
1678 void *handle;
1679 mixer_ctrl_t *cp;
1680 {
1681 struct cmpci_softc *sc = handle;
1682
1683 switch (cp->dev) {
1684 case CMPCI_MIC_VOL:
1685 case CMPCI_PCSPEAKER:
1686 case CMPCI_MIC_RECVOL:
1687 if (cp->un.value.num_channels != 1)
1688 return EINVAL;
1689 /*FALLTHROUGH*/
1690 case CMPCI_DAC_VOL:
1691 case CMPCI_FM_VOL:
1692 case CMPCI_CD_VOL:
1693 case CMPCI_LINE_IN_VOL:
1694 case CMPCI_AUX_IN_VOL:
1695 case CMPCI_MASTER_VOL:
1696 switch (cp->un.value.num_channels) {
1697 case 1:
1698 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1699 sc->sc_gain[cp->dev][CMPCI_LEFT];
1700 break;
1701 case 2:
1702 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1703 sc->sc_gain[cp->dev][CMPCI_LEFT];
1704 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1705 sc->sc_gain[cp->dev][CMPCI_RIGHT];
1706 break;
1707 default:
1708 return EINVAL;
1709 }
1710 break;
1711
1712 case CMPCI_RECORD_SOURCE:
1713 cp->un.mask = sc->sc_in_mask;
1714 break;
1715
1716 case CMPCI_DAC_MUTE:
1717 case CMPCI_FM_MUTE:
1718 case CMPCI_CD_MUTE:
1719 case CMPCI_LINE_IN_MUTE:
1720 case CMPCI_AUX_IN_MUTE:
1721 case CMPCI_MIC_MUTE:
1722 case CMPCI_MIC_PREAMP:
1723 case CMPCI_PLAYBACK_MODE:
1724 case CMPCI_SPDIF_IN_SELECT:
1725 case CMPCI_SPDIF_IN_PHASE:
1726 case CMPCI_SPDIF_LOOP:
1727 case CMPCI_SPDIF_OUT_PLAYBACK:
1728 case CMPCI_SPDIF_OUT_VOLTAGE:
1729 case CMPCI_MONITOR_DAC:
1730 case CMPCI_REAR:
1731 case CMPCI_INDIVIDUAL:
1732 case CMPCI_REVERSE:
1733 case CMPCI_SURROUND:
1734 cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR];
1735 break;
1736
1737 default:
1738 return EINVAL;
1739 }
1740
1741 return 0;
1742 }
1743
1744 /* ARGSUSED */
1745 static size_t
1746 cmpci_round_buffersize(handle, direction, bufsize)
1747 void *handle;
1748 int direction;
1749 size_t bufsize;
1750 {
1751 if (bufsize > 0x10000)
1752 bufsize = 0x10000;
1753
1754 return bufsize;
1755 }
1756
1757
1758 static paddr_t
1759 cmpci_mappage(handle, addr, offset, prot)
1760 void *handle;
1761 void *addr;
1762 off_t offset;
1763 int prot;
1764 {
1765 struct cmpci_softc *sc = handle;
1766 struct cmpci_dmanode *p;
1767
1768 if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
1769 return -1;
1770
1771 return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
1772 sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
1773 offset, prot, BUS_DMA_WAITOK);
1774 }
1775
1776
1777 /* ARGSUSED */
1778 static int
1779 cmpci_get_props(handle)
1780 void *handle;
1781 {
1782 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1783 }
1784
1785
1786 static int
1787 cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
1788 void *handle;
1789 void *start, *end;
1790 int blksize;
1791 void (*intr) __P((void *));
1792 void *arg;
1793 struct audio_params *param;
1794 {
1795 struct cmpci_softc *sc = handle;
1796 struct cmpci_dmanode *p;
1797 int bps;
1798
1799 sc->sc_play.intr = intr;
1800 sc->sc_play.intr_arg = arg;
1801 bps = param->channels*param->precision*param->factor / 8;
1802 if (!bps)
1803 return EINVAL;
1804
1805 /* set DMA frame */
1806 if (!(p = cmpci_find_dmamem(sc, start)))
1807 return EINVAL;
1808 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
1809 DMAADDR(p));
1810 delay(10);
1811 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
1812 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1813 delay(10);
1814
1815 /* set interrupt count */
1816 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
1817 (blksize + bps - 1) / bps - 1);
1818 delay(10);
1819
1820 /* start DMA */
1821 cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
1822 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
1823 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
1824
1825 return 0;
1826 }
1827
1828 static int
1829 cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
1830 void *handle;
1831 void *start, *end;
1832 int blksize;
1833 void (*intr) __P((void *));
1834 void *arg;
1835 struct audio_params *param;
1836 {
1837 struct cmpci_softc *sc = handle;
1838 struct cmpci_dmanode *p;
1839 int bps;
1840
1841 sc->sc_rec.intr = intr;
1842 sc->sc_rec.intr_arg = arg;
1843 bps = param->channels*param->precision*param->factor/8;
1844 if (!bps)
1845 return EINVAL;
1846
1847 /* set DMA frame */
1848 if (!(p=cmpci_find_dmamem(sc, start)))
1849 return EINVAL;
1850 bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
1851 DMAADDR(p));
1852 delay(10);
1853 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
1854 ((caddr_t)end - (caddr_t)start + 1) / bps - 1);
1855 delay(10);
1856
1857 /* set interrupt count */
1858 bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
1859 (blksize + bps - 1) / bps - 1);
1860 delay(10);
1861
1862 /* start DMA */
1863 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
1864 cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
1865 cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
1866
1867 return 0;
1868 }
1869
1870
1871 /* end of file */
1872