1 1.1 jklos /************************************************************************** 2 1.1 jklos 3 1.1 jklos Copyright (c) 2007, Chelsio Inc. 4 1.1 jklos All rights reserved. 5 1.1 jklos 6 1.1 jklos Redistribution and use in source and binary forms, with or without 7 1.1 jklos modification, are permitted provided that the following conditions are met: 8 1.1 jklos 9 1.1 jklos 1. Redistributions of source code must retain the above copyright notice, 10 1.1 jklos this list of conditions and the following disclaimer. 11 1.1 jklos 12 1.1 jklos 2. Neither the name of the Chelsio Corporation nor the names of its 13 1.1 jklos contributors may be used to endorse or promote products derived from 14 1.1 jklos this software without specific prior written permission. 15 1.1 jklos 16 1.1 jklos THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 17 1.1 jklos AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 1.1 jklos IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 1.1 jklos ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 20 1.1 jklos LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 1.1 jklos CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 1.1 jklos SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 1.1 jklos INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 1.1 jklos CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 1.1 jklos ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 1.1 jklos POSSIBILITY OF SUCH DAMAGE. 27 1.1 jklos 28 1.1 jklos ***************************************************************************/ 29 1.1 jklos 30 1.1 jklos #include <sys/cdefs.h> 31 1.8 andvar __KERNEL_RCSID(0, "$NetBSD: cxgb_sge.c,v 1.8 2025/05/28 06:06:53 andvar Exp $"); 32 1.1 jklos 33 1.1 jklos #include <sys/param.h> 34 1.1 jklos #include <sys/systm.h> 35 1.1 jklos #include <sys/kernel.h> 36 1.1 jklos #include <sys/conf.h> 37 1.2 dyoung #include <sys/bus.h> 38 1.1 jklos #include <sys/queue.h> 39 1.1 jklos #include <sys/sysctl.h> 40 1.1 jklos 41 1.1 jklos #include <sys/proc.h> 42 1.1 jklos #include <sys/sched.h> 43 1.1 jklos #include <sys/systm.h> 44 1.1 jklos 45 1.1 jklos #include <netinet/in_systm.h> 46 1.1 jklos #include <netinet/in.h> 47 1.1 jklos #include <netinet/ip.h> 48 1.1 jklos #include <netinet/tcp.h> 49 1.1 jklos 50 1.1 jklos #include <dev/pci/pcireg.h> 51 1.1 jklos #include <dev/pci/pcivar.h> 52 1.1 jklos 53 1.1 jklos #ifdef CONFIG_DEFINED 54 1.1 jklos #include <cxgb_include.h> 55 1.1 jklos #else 56 1.1 jklos #include <dev/pci/cxgb/cxgb_include.h> 57 1.1 jklos #endif 58 1.1 jklos 59 1.1 jklos uint32_t collapse_free = 0; 60 1.1 jklos uint32_t mb_free_vec_free = 0; 61 1.1 jklos int txq_fills = 0; 62 1.1 jklos int collapse_mbufs = 0; 63 1.1 jklos static int bogus_imm = 0; 64 1.1 jklos #ifndef DISABLE_MBUF_IOVEC 65 1.1 jklos static int recycle_enable = 1; 66 1.1 jklos #endif 67 1.1 jklos 68 1.1 jklos #define USE_GTS 0 69 1.1 jklos 70 1.1 jklos #define SGE_RX_SM_BUF_SIZE 1536 71 1.1 jklos #define SGE_RX_DROP_THRES 16 72 1.1 jklos #define SGE_RX_COPY_THRES 128 73 1.1 jklos 74 1.1 jklos /* 75 1.1 jklos * Period of the Tx buffer reclaim timer. This timer does not need to run 76 1.1 jklos * frequently as Tx buffers are usually reclaimed by new Tx packets. 77 1.1 jklos */ 78 1.1 jklos #define TX_RECLAIM_PERIOD (hz >> 1) 79 1.1 jklos 80 1.1 jklos /* 81 1.1 jklos * work request size in bytes 82 1.1 jklos */ 83 1.1 jklos #define WR_LEN (WR_FLITS * 8) 84 1.1 jklos 85 1.1 jklos /* 86 1.1 jklos * Values for sge_txq.flags 87 1.1 jklos */ 88 1.1 jklos enum { 89 1.1 jklos TXQ_RUNNING = 1 << 0, /* fetch engine is running */ 90 1.1 jklos TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ 91 1.1 jklos }; 92 1.1 jklos 93 1.1 jklos struct tx_desc { 94 1.1 jklos uint64_t flit[TX_DESC_FLITS]; 95 1.1 jklos } __packed; 96 1.1 jklos 97 1.1 jklos struct rx_desc { 98 1.1 jklos uint32_t addr_lo; 99 1.1 jklos uint32_t len_gen; 100 1.1 jklos uint32_t gen2; 101 1.1 jklos uint32_t addr_hi; 102 1.1 jklos } __packed; 103 1.1 jklos 104 1.1 jklos struct rsp_desc { /* response queue descriptor */ 105 1.1 jklos struct rss_header rss_hdr; 106 1.1 jklos uint32_t flags; 107 1.1 jklos uint32_t len_cq; 108 1.1 jklos uint8_t imm_data[47]; 109 1.1 jklos uint8_t intr_gen; 110 1.1 jklos } __packed; 111 1.1 jklos 112 1.1 jklos #define RX_SW_DESC_MAP_CREATED (1 << 0) 113 1.1 jklos #define TX_SW_DESC_MAP_CREATED (1 << 1) 114 1.1 jklos #define RX_SW_DESC_INUSE (1 << 3) 115 1.1 jklos #define TX_SW_DESC_MAPPED (1 << 4) 116 1.1 jklos 117 1.1 jklos #define RSPQ_NSOP_NEOP G_RSPD_SOP_EOP(0) 118 1.1 jklos #define RSPQ_EOP G_RSPD_SOP_EOP(F_RSPD_EOP) 119 1.1 jklos #define RSPQ_SOP G_RSPD_SOP_EOP(F_RSPD_SOP) 120 1.1 jklos #define RSPQ_SOP_EOP G_RSPD_SOP_EOP(F_RSPD_SOP|F_RSPD_EOP) 121 1.1 jklos 122 1.1 jklos struct tx_sw_desc { /* SW state per Tx descriptor */ 123 1.1 jklos struct mbuf *m; 124 1.1 jklos bus_dma_segment_t segs[1]; 125 1.1 jklos bus_dmamap_t map; 126 1.1 jklos int flags; 127 1.1 jklos }; 128 1.1 jklos 129 1.1 jklos struct rx_sw_desc { /* SW state per Rx descriptor */ 130 1.1 jklos void *cl; 131 1.1 jklos bus_dmamap_t map; 132 1.1 jklos int flags; 133 1.1 jklos }; 134 1.1 jklos 135 1.1 jklos struct txq_state { 136 1.1 jklos unsigned int compl; 137 1.1 jklos unsigned int gen; 138 1.1 jklos unsigned int pidx; 139 1.1 jklos }; 140 1.1 jklos 141 1.1 jklos /* 142 1.1 jklos * Maps a number of flits to the number of Tx descriptors that can hold them. 143 1.1 jklos * The formula is 144 1.1 jklos * 145 1.1 jklos * desc = 1 + (flits - 2) / (WR_FLITS - 1). 146 1.1 jklos * 147 1.1 jklos * HW allows up to 4 descriptors to be combined into a WR. 148 1.1 jklos */ 149 1.1 jklos static uint8_t flit_desc_map[] = { 150 1.1 jklos 0, 151 1.1 jklos #if SGE_NUM_GENBITS == 1 152 1.1 jklos 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 153 1.1 jklos 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 154 1.1 jklos 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 155 1.1 jklos 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 156 1.1 jklos #elif SGE_NUM_GENBITS == 2 157 1.1 jklos 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 158 1.1 jklos 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 159 1.1 jklos 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 160 1.1 jklos 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 161 1.1 jklos #else 162 1.1 jklos # error "SGE_NUM_GENBITS must be 1 or 2" 163 1.1 jklos #endif 164 1.1 jklos }; 165 1.1 jklos 166 1.1 jklos 167 1.1 jklos static int lro_default = 0; 168 1.1 jklos int cxgb_debug = 0; 169 1.1 jklos 170 1.1 jklos static void t3_free_qset(adapter_t *sc, struct sge_qset *q); 171 1.1 jklos static void sge_timer_cb(void *arg); 172 1.1 jklos static void sge_timer_reclaim(struct work *wk, void *arg); 173 1.1 jklos static void sge_txq_reclaim_handler(struct work *wk, void *arg); 174 1.1 jklos static int free_tx_desc(struct sge_txq *q, int n, struct mbuf **m_vec); 175 1.1 jklos 176 1.1 jklos /** 177 1.1 jklos * reclaim_completed_tx - reclaims completed Tx descriptors 178 1.1 jklos * @adapter: the adapter 179 1.1 jklos * @q: the Tx queue to reclaim completed descriptors from 180 1.1 jklos * 181 1.1 jklos * Reclaims Tx descriptors that the SGE has indicated it has processed, 182 1.1 jklos * and frees the associated buffers if possible. Called with the Tx 183 1.1 jklos * queue's lock held. 184 1.1 jklos */ 185 1.1 jklos static __inline int 186 1.1 jklos reclaim_completed_tx(struct sge_txq *q, int nbufs, struct mbuf **mvec) 187 1.1 jklos { 188 1.1 jklos int reclaimed, reclaim = desc_reclaimable(q); 189 1.1 jklos int n = 0; 190 1.1 jklos 191 1.1 jklos mtx_assert(&q->lock, MA_OWNED); 192 1.1 jklos if (reclaim > 0) { 193 1.6 riastrad n = free_tx_desc(q, uimin(reclaim, nbufs), mvec); 194 1.6 riastrad reclaimed = uimin(reclaim, nbufs); 195 1.1 jklos q->cleaned += reclaimed; 196 1.1 jklos q->in_use -= reclaimed; 197 1.1 jklos } 198 1.1 jklos return (n); 199 1.1 jklos } 200 1.1 jklos 201 1.1 jklos /** 202 1.1 jklos * should_restart_tx - are there enough resources to restart a Tx queue? 203 1.1 jklos * @q: the Tx queue 204 1.1 jklos * 205 1.1 jklos * Checks if there are enough descriptors to restart a suspended Tx queue. 206 1.1 jklos */ 207 1.1 jklos static __inline int 208 1.1 jklos should_restart_tx(const struct sge_txq *q) 209 1.1 jklos { 210 1.1 jklos unsigned int r = q->processed - q->cleaned; 211 1.1 jklos 212 1.1 jklos return q->in_use - r < (q->size >> 1); 213 1.1 jklos } 214 1.1 jklos 215 1.1 jklos /** 216 1.1 jklos * t3_sge_init - initialize SGE 217 1.1 jklos * @adap: the adapter 218 1.1 jklos * @p: the SGE parameters 219 1.1 jklos * 220 1.1 jklos * Performs SGE initialization needed every time after a chip reset. 221 1.1 jklos * We do not initialize any of the queue sets here, instead the driver 222 1.1 jklos * top-level must request those individually. We also do not enable DMA 223 1.1 jklos * here, that should be done after the queues have been set up. 224 1.1 jklos */ 225 1.1 jklos void 226 1.1 jklos t3_sge_init(adapter_t *adap, struct sge_params *p) 227 1.1 jklos { 228 1.1 jklos u_int ctrl, ups; 229 1.1 jklos 230 1.1 jklos ups = 0; /* = ffs(pci_resource_len(adap->pdev, 2) >> 12); */ 231 1.1 jklos 232 1.1 jklos ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | 233 1.1 jklos F_CQCRDTCTRL | 234 1.1 jklos V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | 235 1.1 jklos V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; 236 1.1 jklos #if SGE_NUM_GENBITS == 1 237 1.1 jklos ctrl |= F_EGRGENCTRL; 238 1.1 jklos #endif 239 1.1 jklos if (adap->params.rev > 0) { 240 1.1 jklos if (!(adap->flags & (USING_MSIX | USING_MSI))) 241 1.1 jklos ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; 242 1.1 jklos ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL; 243 1.1 jklos } 244 1.1 jklos t3_write_reg(adap, A_SG_CONTROL, ctrl); 245 1.1 jklos t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | 246 1.1 jklos V_LORCQDRBTHRSH(512)); 247 1.1 jklos t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); 248 1.1 jklos t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | 249 1.1 jklos V_TIMEOUT(200 * core_ticks_per_usec(adap))); 250 1.1 jklos t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000); 251 1.1 jklos t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); 252 1.1 jklos t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); 253 1.1 jklos t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); 254 1.1 jklos t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); 255 1.1 jklos t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); 256 1.1 jklos } 257 1.1 jklos 258 1.1 jklos 259 1.1 jklos /** 260 1.1 jklos * sgl_len - calculates the size of an SGL of the given capacity 261 1.1 jklos * @n: the number of SGL entries 262 1.1 jklos * 263 1.1 jklos * Calculates the number of flits needed for a scatter/gather list that 264 1.1 jklos * can hold the given number of entries. 265 1.1 jklos */ 266 1.1 jklos static __inline unsigned int 267 1.1 jklos sgl_len(unsigned int n) 268 1.1 jklos { 269 1.1 jklos return ((3 * n) / 2 + (n & 1)); 270 1.1 jklos } 271 1.1 jklos 272 1.1 jklos /** 273 1.1 jklos * get_imm_packet - return the next ingress packet buffer from a response 274 1.1 jklos * @resp: the response descriptor containing the packet data 275 1.1 jklos * 276 1.1 jklos * Return a packet containing the immediate data of the given response. 277 1.1 jklos */ 278 1.1 jklos #ifdef DISABLE_MBUF_IOVEC 279 1.1 jklos static __inline int 280 1.1 jklos get_imm_packet(adapter_t *sc, const struct rsp_desc *resp, struct t3_mbuf_hdr *mh) 281 1.1 jklos { 282 1.1 jklos struct mbuf *m; 283 1.1 jklos int len; 284 1.1 jklos uint32_t flags = ntohl(resp->flags); 285 1.1 jklos uint8_t sopeop = G_RSPD_SOP_EOP(flags); 286 1.1 jklos 287 1.1 jklos /* 288 1.1 jklos * would be a firmware bug 289 1.1 jklos */ 290 1.1 jklos if (sopeop == RSPQ_NSOP_NEOP || sopeop == RSPQ_SOP) 291 1.1 jklos return (0); 292 1.1 jklos 293 1.1 jklos m = m_gethdr(M_NOWAIT, MT_DATA); 294 1.1 jklos len = G_RSPD_LEN(ntohl(resp->len_cq)); 295 1.1 jklos 296 1.1 jklos if (m) { 297 1.7 maxv m_align(m, IMMED_PKT_SIZE); 298 1.1 jklos memcpy(m->m_data, resp->imm_data, IMMED_PKT_SIZE); 299 1.1 jklos m->m_len = len; 300 1.1 jklos 301 1.1 jklos switch (sopeop) { 302 1.1 jklos case RSPQ_SOP_EOP: 303 1.1 jklos mh->mh_head = mh->mh_tail = m; 304 1.1 jklos m->m_pkthdr.len = len; 305 1.1 jklos m->m_flags |= M_PKTHDR; 306 1.1 jklos break; 307 1.1 jklos case RSPQ_EOP: 308 1.1 jklos m->m_flags &= ~M_PKTHDR; 309 1.1 jklos mh->mh_head->m_pkthdr.len += len; 310 1.1 jklos mh->mh_tail->m_next = m; 311 1.1 jklos mh->mh_tail = m; 312 1.1 jklos break; 313 1.1 jklos } 314 1.1 jklos } 315 1.1 jklos return (m != NULL); 316 1.1 jklos } 317 1.1 jklos 318 1.1 jklos #else 319 1.1 jklos static int 320 1.1 jklos get_imm_packet(adapter_t *sc, const struct rsp_desc *resp, struct mbuf *m, void *cl, uint32_t flags) 321 1.1 jklos { 322 1.1 jklos int len, error; 323 1.1 jklos uint8_t sopeop = G_RSPD_SOP_EOP(flags); 324 1.1 jklos 325 1.1 jklos /* 326 1.1 jklos * would be a firmware bug 327 1.1 jklos */ 328 1.1 jklos len = G_RSPD_LEN(ntohl(resp->len_cq)); 329 1.1 jklos if (sopeop == RSPQ_NSOP_NEOP || sopeop == RSPQ_SOP) { 330 1.1 jklos if (cxgb_debug) 331 1.1 jklos device_printf(sc->dev, "unexpected value sopeop=%d flags=0x%x len=%din get_imm_packet\n", sopeop, flags, len); 332 1.1 jklos bogus_imm++; 333 1.1 jklos return (EINVAL); 334 1.1 jklos } 335 1.1 jklos error = 0; 336 1.1 jklos switch (sopeop) { 337 1.1 jklos case RSPQ_SOP_EOP: 338 1.1 jklos m->m_len = m->m_pkthdr.len = len; 339 1.1 jklos memcpy(mtod(m, uint8_t *), resp->imm_data, len); 340 1.1 jklos break; 341 1.1 jklos case RSPQ_EOP: 342 1.1 jklos memcpy(cl, resp->imm_data, len); 343 1.1 jklos m_iovappend(m, cl, MSIZE, len, 0); 344 1.1 jklos break; 345 1.1 jklos default: 346 1.1 jklos bogus_imm++; 347 1.1 jklos error = EINVAL; 348 1.1 jklos } 349 1.1 jklos 350 1.1 jklos return (error); 351 1.1 jklos } 352 1.1 jklos #endif 353 1.1 jklos 354 1.1 jklos static __inline u_int 355 1.1 jklos flits_to_desc(u_int n) 356 1.1 jklos { 357 1.1 jklos return (flit_desc_map[n]); 358 1.1 jklos } 359 1.1 jklos 360 1.1 jklos void 361 1.1 jklos t3_sge_err_intr_handler(adapter_t *adapter) 362 1.1 jklos { 363 1.1 jklos unsigned int v, status; 364 1.1 jklos 365 1.1 jklos 366 1.1 jklos status = t3_read_reg(adapter, A_SG_INT_CAUSE); 367 1.1 jklos 368 1.1 jklos if (status & F_RSPQCREDITOVERFOW) 369 1.1 jklos CH_ALERT(adapter, "SGE response queue credit overflow\n"); 370 1.1 jklos 371 1.1 jklos if (status & F_RSPQDISABLED) { 372 1.1 jklos v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); 373 1.1 jklos 374 1.1 jklos CH_ALERT(adapter, 375 1.1 jklos "packet delivered to disabled response queue (0x%x)\n", 376 1.1 jklos (v >> S_RSPQ0DISABLED) & 0xff); 377 1.1 jklos } 378 1.1 jklos 379 1.1 jklos t3_write_reg(adapter, A_SG_INT_CAUSE, status); 380 1.1 jklos if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED)) 381 1.1 jklos t3_fatal_err(adapter); 382 1.1 jklos } 383 1.1 jklos 384 1.1 jklos void 385 1.1 jklos t3_sge_prep(adapter_t *adap, struct sge_params *p) 386 1.1 jklos { 387 1.1 jklos int i; 388 1.1 jklos 389 1.1 jklos /* XXX Does ETHER_ALIGN need to be accounted for here? */ 390 1.1 jklos p->max_pkt_size = MJUM16BYTES - sizeof(struct cpl_rx_data); 391 1.1 jklos 392 1.1 jklos for (i = 0; i < SGE_QSETS; ++i) { 393 1.1 jklos struct qset_params *q = p->qset + i; 394 1.1 jklos 395 1.1 jklos q->polling = adap->params.rev > 0; 396 1.1 jklos 397 1.1 jklos if (adap->params.nports > 2) 398 1.1 jklos q->coalesce_nsecs = 50000; 399 1.1 jklos else 400 1.1 jklos q->coalesce_nsecs = 5000; 401 1.1 jklos 402 1.1 jklos q->rspq_size = RSPQ_Q_SIZE; 403 1.1 jklos q->fl_size = FL_Q_SIZE; 404 1.1 jklos q->jumbo_size = JUMBO_Q_SIZE; 405 1.1 jklos q->txq_size[TXQ_ETH] = TX_ETH_Q_SIZE; 406 1.1 jklos q->txq_size[TXQ_OFLD] = 1024; 407 1.1 jklos q->txq_size[TXQ_CTRL] = 256; 408 1.1 jklos q->cong_thres = 0; 409 1.1 jklos } 410 1.1 jklos } 411 1.1 jklos 412 1.1 jklos int 413 1.1 jklos t3_sge_alloc(adapter_t *sc) 414 1.1 jklos { 415 1.1 jklos /* The parent tag. */ 416 1.1 jklos sc->parent_dmat = sc->pa.pa_dmat; 417 1.1 jklos 418 1.1 jklos /* 419 1.1 jklos * DMA tag for normal sized RX frames 420 1.1 jklos */ 421 1.1 jklos sc->rx_dmat = sc->pa.pa_dmat; 422 1.1 jklos 423 1.1 jklos /* 424 1.1 jklos * DMA tag for jumbo sized RX frames. 425 1.1 jklos */ 426 1.1 jklos sc->rx_jumbo_dmat = sc->pa.pa_dmat; 427 1.1 jklos 428 1.1 jklos /* 429 1.1 jklos * DMA tag for TX frames. 430 1.1 jklos */ 431 1.1 jklos sc->tx_dmat = sc->pa.pa_dmat; 432 1.1 jklos 433 1.1 jklos return (0); 434 1.1 jklos } 435 1.1 jklos 436 1.1 jklos int 437 1.1 jklos t3_sge_free(struct adapter * sc) 438 1.1 jklos { 439 1.1 jklos return (0); 440 1.1 jklos } 441 1.1 jklos 442 1.1 jklos void 443 1.1 jklos t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) 444 1.1 jklos { 445 1.1 jklos 446 1.6 riastrad qs->rspq.holdoff_tmr = uimax(p->coalesce_nsecs/100, 1U); 447 1.1 jklos qs->rspq.polling = 0 /* p->polling */; 448 1.1 jklos } 449 1.1 jklos 450 1.1 jklos /** 451 1.1 jklos * refill_fl - refill an SGE free-buffer list 452 1.1 jklos * @sc: the controller softc 453 1.1 jklos * @q: the free-list to refill 454 1.1 jklos * @n: the number of new buffers to allocate 455 1.1 jklos * 456 1.1 jklos * (Re)populate an SGE free-buffer list with up to @n new packet buffers. 457 1.1 jklos * The caller must assure that @n does not exceed the queue's capacity. 458 1.1 jklos */ 459 1.1 jklos static void 460 1.1 jklos refill_fl(adapter_t *sc, struct sge_fl *q, int n) 461 1.1 jklos { 462 1.1 jklos struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 463 1.1 jklos struct rx_desc *d = &q->desc[q->pidx]; 464 1.1 jklos void *cl; 465 1.1 jklos int err; 466 1.1 jklos 467 1.1 jklos while (n--) { 468 1.1 jklos /* 469 1.1 jklos * We only allocate a cluster, mbuf allocation happens after rx 470 1.1 jklos */ 471 1.1 jklos if ((sd->flags & RX_SW_DESC_MAP_CREATED) == 0) 472 1.1 jklos { 473 1.1 jklos err = bus_dmamap_create(sc->pa.pa_dmat, 474 1.1 jklos q->buf_size, 1, q->buf_size, 0, 475 1.1 jklos BUS_DMA_ALLOCNOW, &sd->map); 476 1.1 jklos if (err != 0) 477 1.1 jklos { 478 1.1 jklos log(LOG_WARNING, "failure in refill_fl\n"); 479 1.1 jklos return; 480 1.1 jklos } 481 1.1 jklos sd->flags |= RX_SW_DESC_MAP_CREATED; 482 1.1 jklos } 483 1.1 jklos cl = malloc(q->buf_size, M_DEVBUF, M_NOWAIT); 484 1.1 jklos if (cl == NULL) 485 1.1 jklos { 486 1.1 jklos log(LOG_WARNING, "Failed to allocate cluster\n"); 487 1.1 jklos break; 488 1.1 jklos } 489 1.1 jklos err = bus_dmamap_load(sc->pa.pa_dmat, sd->map, cl, q->buf_size, NULL, BUS_DMA_NOWAIT); 490 1.1 jklos if (err) 491 1.1 jklos { 492 1.1 jklos log(LOG_WARNING, "failure in refill_fl\n"); 493 1.1 jklos free(cl, M_DEVBUF); 494 1.1 jklos return; 495 1.1 jklos } 496 1.1 jklos 497 1.1 jklos sd->flags |= RX_SW_DESC_INUSE; 498 1.1 jklos sd->cl = cl; 499 1.1 jklos d->addr_lo = htobe32(sd->map->dm_segs[0].ds_addr & 0xffffffff); 500 1.1 jklos d->addr_hi = htobe32(((uint64_t)sd->map->dm_segs[0].ds_addr>>32) & 0xffffffff); 501 1.1 jklos d->len_gen = htobe32(V_FLD_GEN1(q->gen)); 502 1.1 jklos d->gen2 = htobe32(V_FLD_GEN2(q->gen)); 503 1.1 jklos 504 1.1 jklos d++; 505 1.1 jklos sd++; 506 1.1 jklos 507 1.1 jklos if (++q->pidx == q->size) { 508 1.1 jklos q->pidx = 0; 509 1.1 jklos q->gen ^= 1; 510 1.1 jklos sd = q->sdesc; 511 1.1 jklos d = q->desc; 512 1.1 jklos } 513 1.1 jklos q->credits++; 514 1.1 jklos } 515 1.1 jklos 516 1.1 jklos t3_write_reg(sc, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 517 1.1 jklos } 518 1.1 jklos 519 1.1 jklos 520 1.1 jklos /** 521 1.1 jklos * free_rx_bufs - free the Rx buffers on an SGE free list 522 1.1 jklos * @sc: the controle softc 523 1.1 jklos * @q: the SGE free list to clean up 524 1.1 jklos * 525 1.1 jklos * Release the buffers on an SGE free-buffer Rx queue. HW fetching from 526 1.1 jklos * this queue should be stopped before calling this function. 527 1.1 jklos */ 528 1.1 jklos static void 529 1.1 jklos free_rx_bufs(adapter_t *sc, struct sge_fl *q) 530 1.1 jklos { 531 1.1 jklos u_int cidx = q->cidx; 532 1.1 jklos 533 1.1 jklos while (q->credits--) { 534 1.1 jklos struct rx_sw_desc *d = &q->sdesc[cidx]; 535 1.1 jklos 536 1.1 jklos if (d->flags & RX_SW_DESC_INUSE) { 537 1.1 jklos bus_dmamap_unload(q->entry_tag, d->map); 538 1.1 jklos bus_dmamap_destroy(q->entry_tag, d->map); 539 1.1 jklos d->map = NULL; 540 1.1 jklos free(d->cl, M_DEVBUF); 541 1.1 jklos d->cl = NULL; 542 1.1 jklos } 543 1.1 jklos d->cl = NULL; 544 1.1 jklos if (++cidx == q->size) 545 1.1 jklos cidx = 0; 546 1.1 jklos } 547 1.1 jklos } 548 1.1 jklos 549 1.1 jklos static __inline void 550 1.1 jklos __refill_fl(adapter_t *adap, struct sge_fl *fl) 551 1.1 jklos { 552 1.6 riastrad refill_fl(adap, fl, uimin(16U, fl->size - fl->credits)); 553 1.1 jklos } 554 1.1 jklos 555 1.1 jklos #ifndef DISABLE_MBUF_IOVEC 556 1.1 jklos /** 557 1.1 jklos * recycle_rx_buf - recycle a receive buffer 558 1.1 jklos * @adapter: the adapter 559 1.1 jklos * @q: the SGE free list 560 1.1 jklos * @idx: index of buffer to recycle 561 1.1 jklos * 562 1.1 jklos * Recycles the specified buffer on the given free list by adding it at 563 1.1 jklos * the next available slot on the list. 564 1.1 jklos */ 565 1.1 jklos static void 566 1.1 jklos recycle_rx_buf(adapter_t *adap, struct sge_fl *q, unsigned int idx) 567 1.1 jklos { 568 1.1 jklos struct rx_desc *from = &q->desc[idx]; 569 1.1 jklos struct rx_desc *to = &q->desc[q->pidx]; 570 1.1 jklos 571 1.1 jklos q->sdesc[q->pidx] = q->sdesc[idx]; 572 1.1 jklos to->addr_lo = from->addr_lo; // already big endian 573 1.1 jklos to->addr_hi = from->addr_hi; // likewise 574 1.1 jklos wmb(); 575 1.1 jklos to->len_gen = htobe32(V_FLD_GEN1(q->gen)); 576 1.1 jklos to->gen2 = htobe32(V_FLD_GEN2(q->gen)); 577 1.1 jklos q->credits++; 578 1.1 jklos 579 1.1 jklos if (++q->pidx == q->size) { 580 1.1 jklos q->pidx = 0; 581 1.1 jklos q->gen ^= 1; 582 1.1 jklos } 583 1.1 jklos t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 584 1.1 jklos } 585 1.1 jklos #endif 586 1.1 jklos 587 1.1 jklos static int 588 1.1 jklos alloc_ring(adapter_t *sc, size_t nelem, size_t elem_size, size_t sw_size, 589 1.1 jklos bus_addr_t *phys, 590 1.1 jklos void *desc, void *sdesc, bus_dma_tag_t *tag, 591 1.1 jklos bus_dmamap_t *map, bus_dma_tag_t parent_entry_tag, bus_dma_tag_t *entry_tag) 592 1.1 jklos { 593 1.1 jklos size_t len = nelem * elem_size; 594 1.1 jklos void *s = NULL; 595 1.1 jklos void *p = NULL; 596 1.1 jklos int err; 597 1.1 jklos bus_dma_segment_t phys_seg; 598 1.1 jklos 599 1.1 jklos int nsegs; 600 1.1 jklos 601 1.1 jklos *tag = sc->pa.pa_dmat; 602 1.1 jklos 603 1.1 jklos /* allocate wired physical memory for DMA descriptor array */ 604 1.1 jklos err = bus_dmamem_alloc(*tag, len, PAGE_SIZE, 0, &phys_seg, 1, 605 1.1 jklos &nsegs, BUS_DMA_NOWAIT); 606 1.1 jklos if (err != 0) 607 1.1 jklos { 608 1.1 jklos device_printf(sc->dev, "Cannot allocate descriptor memory\n"); 609 1.1 jklos return (ENOMEM); 610 1.1 jklos } 611 1.1 jklos *phys = phys_seg.ds_addr; 612 1.1 jklos 613 1.1 jklos /* map physical address to kernel virtual address */ 614 1.1 jklos err = bus_dmamem_map(*tag, &phys_seg, 1, len, &p, 615 1.1 jklos BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 616 1.1 jklos if (err != 0) 617 1.1 jklos { 618 1.1 jklos device_printf(sc->dev, "Cannot map descriptor memory\n"); 619 1.1 jklos return (ENOMEM); 620 1.1 jklos } 621 1.1 jklos 622 1.1 jklos memset(p, 0, len); 623 1.1 jklos *(void **)desc = p; 624 1.1 jklos 625 1.1 jklos if (sw_size) 626 1.1 jklos { 627 1.1 jklos len = nelem * sw_size; 628 1.1 jklos s = malloc(len, M_DEVBUF, M_WAITOK|M_ZERO); 629 1.1 jklos *(void **)sdesc = s; 630 1.1 jklos } 631 1.1 jklos 632 1.1 jklos if (parent_entry_tag == NULL) 633 1.1 jklos return (0); 634 1.1 jklos *entry_tag = sc->pa.pa_dmat; 635 1.1 jklos 636 1.1 jklos return (0); 637 1.1 jklos } 638 1.1 jklos 639 1.1 jklos static void 640 1.1 jklos sge_slow_intr_handler(struct work *wk, void *arg) 641 1.1 jklos { 642 1.1 jklos adapter_t *sc = arg; 643 1.1 jklos 644 1.1 jklos t3_slow_intr_handler(sc); 645 1.1 jklos } 646 1.1 jklos 647 1.1 jklos /** 648 1.1 jklos * sge_timer_cb - perform periodic maintenance of an SGE qset 649 1.1 jklos * @data: the SGE queue set to maintain 650 1.1 jklos * 651 1.1 jklos * Runs periodically from a timer to perform maintenance of an SGE queue 652 1.1 jklos * set. It performs two tasks: 653 1.1 jklos * 654 1.1 jklos * a) Cleans up any completed Tx descriptors that may still be pending. 655 1.1 jklos * Normal descriptor cleanup happens when new packets are added to a Tx 656 1.1 jklos * queue so this timer is relatively infrequent and does any cleanup only 657 1.1 jklos * if the Tx queue has not seen any new packets in a while. We make a 658 1.1 jklos * best effort attempt to reclaim descriptors, in that we don't wait 659 1.1 jklos * around if we cannot get a queue's lock (which most likely is because 660 1.1 jklos * someone else is queueing new packets and so will also handle the clean 661 1.1 jklos * up). Since control queues use immediate data exclusively we don't 662 1.1 jklos * bother cleaning them up here. 663 1.1 jklos * 664 1.1 jklos * b) Replenishes Rx queues that have run out due to memory shortage. 665 1.1 jklos * Normally new Rx buffers are added when existing ones are consumed but 666 1.1 jklos * when out of memory a queue can become empty. We try to add only a few 667 1.1 jklos * buffers here, the queue will be replenished fully as these new buffers 668 1.1 jklos * are used up if memory shortage has subsided. 669 1.1 jklos * 670 1.1 jklos * c) Return coalesced response queue credits in case a response queue is 671 1.1 jklos * starved. 672 1.1 jklos * 673 1.1 jklos * d) Ring doorbells for T304 tunnel queues since we have seen doorbell 674 1.1 jklos * fifo overflows and the FW doesn't implement any recovery scheme yet. 675 1.1 jklos */ 676 1.1 jklos 677 1.1 jklos static void 678 1.1 jklos sge_timer_cb(void *arg) 679 1.1 jklos { 680 1.1 jklos adapter_t *sc = arg; 681 1.1 jklos struct port_info *p; 682 1.1 jklos struct sge_qset *qs; 683 1.1 jklos struct sge_txq *txq; 684 1.1 jklos int i, j; 685 1.1 jklos int reclaim_eth, reclaim_ofl, refill_rx; 686 1.1 jklos 687 1.1 jklos for (i = 0; i < sc->params.nports; i++) 688 1.1 jklos for (j = 0; j < sc->port[i].nqsets; j++) { 689 1.1 jklos qs = &sc->sge.qs[i + j]; 690 1.1 jklos txq = &qs->txq[0]; 691 1.1 jklos reclaim_eth = txq[TXQ_ETH].processed - txq[TXQ_ETH].cleaned; 692 1.1 jklos reclaim_ofl = txq[TXQ_OFLD].processed - txq[TXQ_OFLD].cleaned; 693 1.1 jklos refill_rx = ((qs->fl[0].credits < qs->fl[0].size) || 694 1.1 jklos (qs->fl[1].credits < qs->fl[1].size)); 695 1.1 jklos if (reclaim_eth || reclaim_ofl || refill_rx) { 696 1.1 jklos p = &sc->port[i]; 697 1.1 jklos workqueue_enqueue(p->timer_reclaim_task.wq, &p->timer_reclaim_task.w, NULL); 698 1.1 jklos break; 699 1.1 jklos } 700 1.1 jklos } 701 1.1 jklos if (sc->params.nports > 2) { 702 1.1 jklos int k; 703 1.1 jklos 704 1.1 jklos for_each_port(sc, k) { 705 1.1 jklos struct port_info *pi = &sc->port[k]; 706 1.1 jklos 707 1.1 jklos t3_write_reg(sc, A_SG_KDOORBELL, 708 1.1 jklos F_SELEGRCNTX | 709 1.1 jklos (FW_TUNNEL_SGEEC_START + pi->first_qset)); 710 1.1 jklos } 711 1.1 jklos } 712 1.1 jklos if (sc->open_device_map != 0) 713 1.1 jklos callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc); 714 1.1 jklos } 715 1.1 jklos 716 1.1 jklos /* 717 1.1 jklos * This is meant to be a catch-all function to keep sge state private 718 1.1 jklos * to sge.c 719 1.1 jklos * 720 1.1 jklos */ 721 1.1 jklos int 722 1.1 jklos t3_sge_init_adapter(adapter_t *sc) 723 1.1 jklos { 724 1.1 jklos callout_init(&sc->sge_timer_ch, 0); 725 1.1 jklos callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc); 726 1.1 jklos sc->slow_intr_task.name = "sge_slow_intr"; 727 1.1 jklos sc->slow_intr_task.func = sge_slow_intr_handler; 728 1.1 jklos sc->slow_intr_task.context = sc; 729 1.1 jklos kthread_create(PRI_NONE, 0, NULL, cxgb_make_task, &sc->slow_intr_task, NULL, "cxgb_make_task"); 730 1.1 jklos return (0); 731 1.1 jklos } 732 1.1 jklos 733 1.1 jklos int 734 1.1 jklos t3_sge_init_port(struct port_info *p) 735 1.1 jklos { 736 1.1 jklos p->timer_reclaim_task.name = "sge_timer_reclaim"; 737 1.1 jklos p->timer_reclaim_task.func = sge_timer_reclaim; 738 1.1 jklos p->timer_reclaim_task.context = p; 739 1.1 jklos kthread_create(PRI_NONE, 0, NULL, cxgb_make_task, &p->timer_reclaim_task, NULL, "cxgb_make_task"); 740 1.1 jklos 741 1.1 jklos return (0); 742 1.1 jklos } 743 1.1 jklos 744 1.1 jklos void 745 1.1 jklos t3_sge_deinit_sw(adapter_t *sc) 746 1.1 jklos { 747 1.1 jklos callout_drain(&sc->sge_timer_ch); 748 1.1 jklos } 749 1.1 jklos 750 1.1 jklos /** 751 1.1 jklos * refill_rspq - replenish an SGE response queue 752 1.1 jklos * @adapter: the adapter 753 1.1 jklos * @q: the response queue to replenish 754 1.1 jklos * @credits: how many new responses to make available 755 1.1 jklos * 756 1.1 jklos * Replenishes a response queue by making the supplied number of responses 757 1.1 jklos * available to HW. 758 1.1 jklos */ 759 1.1 jklos static __inline void 760 1.1 jklos refill_rspq(adapter_t *sc, const struct sge_rspq *q, u_int credits) 761 1.1 jklos { 762 1.1 jklos 763 1.1 jklos /* mbufs are allocated on demand when a rspq entry is processed. */ 764 1.1 jklos t3_write_reg(sc, A_SG_RSPQ_CREDIT_RETURN, 765 1.1 jklos V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); 766 1.1 jklos } 767 1.1 jklos 768 1.1 jklos static __inline void 769 1.1 jklos sge_txq_reclaim_(struct sge_txq *txq) 770 1.1 jklos { 771 1.1 jklos int reclaimable, i, n; 772 1.1 jklos struct mbuf *m_vec[TX_CLEAN_MAX_DESC]; 773 1.1 jklos struct port_info *p; 774 1.1 jklos 775 1.1 jklos p = txq->port; 776 1.1 jklos reclaim_more: 777 1.1 jklos n = 0; 778 1.1 jklos reclaimable = desc_reclaimable(txq); 779 1.1 jklos if (reclaimable > 0 && mtx_trylock(&txq->lock)) { 780 1.1 jklos n = reclaim_completed_tx(txq, TX_CLEAN_MAX_DESC, m_vec); 781 1.1 jklos mtx_unlock(&txq->lock); 782 1.1 jklos } 783 1.1 jklos if (n == 0) 784 1.1 jklos return; 785 1.1 jklos 786 1.1 jklos for (i = 0; i < n; i++) { 787 1.1 jklos m_freem_vec(m_vec[i]); 788 1.1 jklos } 789 1.1 jklos if (p && p->ifp->if_drv_flags & IFF_DRV_OACTIVE && 790 1.1 jklos txq->size - txq->in_use >= TX_START_MAX_DESC) { 791 1.1 jklos txq_fills++; 792 1.1 jklos p->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 793 1.1 jklos workqueue_enqueue(p->start_task.wq, &p->start_task.w, NULL); 794 1.1 jklos } 795 1.1 jklos 796 1.1 jklos if (n) 797 1.1 jklos goto reclaim_more; 798 1.1 jklos } 799 1.1 jklos 800 1.1 jklos static void 801 1.1 jklos sge_txq_reclaim_handler(struct work *wk, void *arg) 802 1.1 jklos { 803 1.1 jklos struct sge_txq *q = arg; 804 1.1 jklos 805 1.1 jklos sge_txq_reclaim_(q); 806 1.1 jklos } 807 1.1 jklos 808 1.1 jklos static void 809 1.1 jklos sge_timer_reclaim(struct work *wk, void *arg) 810 1.1 jklos { 811 1.1 jklos struct port_info *p = arg; 812 1.1 jklos int i, nqsets = p->nqsets; 813 1.1 jklos adapter_t *sc = p->adapter; 814 1.1 jklos struct sge_qset *qs; 815 1.1 jklos struct sge_txq *txq; 816 1.1 jklos struct mtx *lock; 817 1.1 jklos 818 1.1 jklos for (i = 0; i < nqsets; i++) { 819 1.1 jklos qs = &sc->sge.qs[i]; 820 1.1 jklos txq = &qs->txq[TXQ_ETH]; 821 1.1 jklos sge_txq_reclaim_(txq); 822 1.1 jklos 823 1.1 jklos txq = &qs->txq[TXQ_OFLD]; 824 1.1 jklos sge_txq_reclaim_(txq); 825 1.1 jklos 826 1.1 jklos lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock : 827 1.1 jklos &sc->sge.qs[0].rspq.lock; 828 1.1 jklos 829 1.1 jklos if (mtx_trylock(lock)) { 830 1.1 jklos /* XXX currently assume that we are *NOT* polling */ 831 1.1 jklos uint32_t status = t3_read_reg(sc, A_SG_RSPQ_FL_STATUS); 832 1.1 jklos 833 1.1 jklos if (qs->fl[0].credits < qs->fl[0].size - 16) 834 1.1 jklos __refill_fl(sc, &qs->fl[0]); 835 1.1 jklos if (qs->fl[1].credits < qs->fl[1].size - 16) 836 1.1 jklos __refill_fl(sc, &qs->fl[1]); 837 1.1 jklos 838 1.1 jklos if (status & (1 << qs->rspq.cntxt_id)) { 839 1.1 jklos if (qs->rspq.credits) { 840 1.1 jklos refill_rspq(sc, &qs->rspq, 1); 841 1.1 jklos qs->rspq.credits--; 842 1.1 jklos t3_write_reg(sc, A_SG_RSPQ_FL_STATUS, 843 1.1 jklos 1 << qs->rspq.cntxt_id); 844 1.1 jklos } 845 1.1 jklos } 846 1.1 jklos mtx_unlock(lock); 847 1.1 jklos } 848 1.1 jklos } 849 1.1 jklos } 850 1.1 jklos 851 1.1 jklos /** 852 1.1 jklos * init_qset_cntxt - initialize an SGE queue set context info 853 1.1 jklos * @qs: the queue set 854 1.1 jklos * @id: the queue set id 855 1.1 jklos * 856 1.1 jklos * Initializes the TIDs and context ids for the queues of a queue set. 857 1.1 jklos */ 858 1.1 jklos static void 859 1.1 jklos init_qset_cntxt(struct sge_qset *qs, u_int id) 860 1.1 jklos { 861 1.1 jklos 862 1.1 jklos qs->rspq.cntxt_id = id; 863 1.1 jklos qs->fl[0].cntxt_id = 2 * id; 864 1.1 jklos qs->fl[1].cntxt_id = 2 * id + 1; 865 1.1 jklos qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; 866 1.1 jklos qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; 867 1.1 jklos qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; 868 1.1 jklos qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; 869 1.1 jklos qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; 870 1.1 jklos } 871 1.1 jklos 872 1.1 jklos 873 1.1 jklos static void 874 1.1 jklos txq_prod(struct sge_txq *txq, unsigned int ndesc, struct txq_state *txqs) 875 1.1 jklos { 876 1.1 jklos txq->in_use += ndesc; 877 1.1 jklos /* 878 1.1 jklos * XXX we don't handle stopping of queue 879 1.1 jklos * presumably start handles this when we bump against the end 880 1.1 jklos */ 881 1.1 jklos txqs->gen = txq->gen; 882 1.1 jklos txq->unacked += ndesc; 883 1.1 jklos txqs->compl = (txq->unacked & 8) << (S_WR_COMPL - 3); 884 1.1 jklos txq->unacked &= 7; 885 1.1 jklos txqs->pidx = txq->pidx; 886 1.1 jklos txq->pidx += ndesc; 887 1.1 jklos 888 1.1 jklos if (txq->pidx >= txq->size) { 889 1.1 jklos txq->pidx -= txq->size; 890 1.1 jklos txq->gen ^= 1; 891 1.1 jklos } 892 1.1 jklos 893 1.1 jklos } 894 1.1 jklos 895 1.1 jklos /** 896 1.1 jklos * calc_tx_descs - calculate the number of Tx descriptors for a packet 897 1.1 jklos * @m: the packet mbufs 898 1.1 jklos * @nsegs: the number of segments 899 1.1 jklos * 900 1.1 jklos * Returns the number of Tx descriptors needed for the given Ethernet 901 1.1 jklos * packet. Ethernet packets require addition of WR and CPL headers. 902 1.1 jklos */ 903 1.1 jklos static __inline unsigned int 904 1.1 jklos calc_tx_descs(const struct mbuf *m, int nsegs) 905 1.1 jklos { 906 1.1 jklos unsigned int flits; 907 1.1 jklos 908 1.1 jklos if (m->m_pkthdr.len <= WR_LEN - sizeof(struct cpl_tx_pkt)) 909 1.1 jklos return 1; 910 1.1 jklos 911 1.1 jklos flits = sgl_len(nsegs) + 2; 912 1.1 jklos #ifdef TSO_SUPPORTED 913 1.1 jklos if (m->m_pkthdr.csum_flags & (CSUM_TSO)) 914 1.1 jklos flits++; 915 1.1 jklos #endif 916 1.1 jklos return flits_to_desc(flits); 917 1.1 jklos } 918 1.1 jklos 919 1.1 jklos static unsigned int 920 1.1 jklos busdma_map_mbufs(struct mbuf **m, struct sge_txq *txq, 921 1.1 jklos struct tx_sw_desc *stx, bus_dma_segment_t *segs, int *nsegs) 922 1.1 jklos { 923 1.1 jklos struct mbuf *m0; 924 1.1 jklos int err, pktlen; 925 1.1 jklos int i, total_len; 926 1.1 jklos 927 1.1 jklos m0 = *m; 928 1.1 jklos pktlen = m0->m_pkthdr.len; 929 1.1 jklos 930 1.1 jklos m0 = *m; 931 1.1 jklos i = 0; 932 1.1 jklos total_len = 0; 933 1.1 jklos while (m0) 934 1.1 jklos { 935 1.1 jklos i++; 936 1.1 jklos total_len += m0->m_len; 937 1.1 jklos m0 = m0->m_next; 938 1.1 jklos } 939 1.1 jklos err = bus_dmamap_create(txq->entry_tag, total_len, TX_MAX_SEGS, total_len, 0, BUS_DMA_NOWAIT, &stx->map); 940 1.1 jklos if (err) 941 1.1 jklos return (err); 942 1.1 jklos err = bus_dmamap_load_mbuf(txq->entry_tag, stx->map, *m, 0); 943 1.1 jklos if (err) 944 1.1 jklos return (err); 945 1.1 jklos // feed out the physical mappings 946 1.1 jklos *nsegs = stx->map->dm_nsegs; 947 1.1 jklos for (i=0; i<*nsegs; i++) 948 1.1 jklos { 949 1.1 jklos segs[i] = stx->map->dm_segs[i]; 950 1.1 jklos } 951 1.1 jklos #ifdef DEBUG 952 1.1 jklos if (err) { 953 1.1 jklos int n = 0; 954 1.1 jklos struct mbuf *mtmp = m0; 955 1.1 jklos while(mtmp) { 956 1.1 jklos n++; 957 1.1 jklos mtmp = mtmp->m_next; 958 1.1 jklos } 959 1.1 jklos printf("map_mbufs: bus_dmamap_load_mbuf_sg failed with %d - pkthdr.len==%d nmbufs=%d\n", 960 1.1 jklos err, m0->m_pkthdr.len, n); 961 1.1 jklos } 962 1.1 jklos #endif 963 1.1 jklos if (err == EFBIG) { 964 1.1 jklos /* Too many segments, try to defrag */ 965 1.1 jklos m0 = m_defrag(m0, M_DONTWAIT); 966 1.1 jklos if (m0 == NULL) { 967 1.1 jklos m_freem(*m); 968 1.1 jklos *m = NULL; 969 1.1 jklos return (ENOBUFS); 970 1.1 jklos } 971 1.1 jklos *m = m0; 972 1.1 jklos INT3; // XXXXXXXXXXXXXXXXXX like above! 973 1.1 jklos } 974 1.1 jklos 975 1.1 jklos if (err == ENOMEM) { 976 1.1 jklos return (err); 977 1.1 jklos } 978 1.1 jklos 979 1.1 jklos if (err) { 980 1.1 jklos if (cxgb_debug) 981 1.1 jklos printf("map failure err=%d pktlen=%d\n", err, pktlen); 982 1.1 jklos m_freem_vec(m0); 983 1.1 jklos *m = NULL; 984 1.1 jklos return (err); 985 1.1 jklos } 986 1.1 jklos 987 1.1 jklos bus_dmamap_sync(txq->entry_tag, stx->map, 0, pktlen, BUS_DMASYNC_PREWRITE); 988 1.1 jklos stx->flags |= TX_SW_DESC_MAPPED; 989 1.1 jklos 990 1.1 jklos return (0); 991 1.1 jklos } 992 1.1 jklos 993 1.1 jklos /** 994 1.1 jklos * make_sgl - populate a scatter/gather list for a packet 995 1.1 jklos * @sgp: the SGL to populate 996 1.1 jklos * @segs: the packet dma segments 997 1.1 jklos * @nsegs: the number of segments 998 1.1 jklos * 999 1.1 jklos * Generates a scatter/gather list for the buffers that make up a packet 1000 1.1 jklos * and returns the SGL size in 8-byte words. The caller must size the SGL 1001 1.1 jklos * appropriately. 1002 1.1 jklos */ 1003 1.1 jklos static __inline void 1004 1.1 jklos make_sgl(struct sg_ent *sgp, bus_dma_segment_t *segs, int nsegs) 1005 1.1 jklos { 1006 1.1 jklos int i, idx; 1007 1.1 jklos 1008 1.1 jklos for (idx = 0, i = 0; i < nsegs; i++, idx ^= 1) { 1009 1.1 jklos if (i && idx == 0) 1010 1.1 jklos ++sgp; 1011 1.1 jklos 1012 1.1 jklos sgp->len[idx] = htobe32(segs[i].ds_len); 1013 1.1 jklos sgp->addr[idx] = htobe64(segs[i].ds_addr); 1014 1.1 jklos } 1015 1.1 jklos 1016 1.1 jklos if (idx) 1017 1.1 jklos sgp->len[idx] = 0; 1018 1.1 jklos } 1019 1.1 jklos 1020 1.1 jklos /** 1021 1.1 jklos * check_ring_tx_db - check and potentially ring a Tx queue's doorbell 1022 1.1 jklos * @adap: the adapter 1023 1.1 jklos * @q: the Tx queue 1024 1.1 jklos * 1025 1.1 jklos * Ring the doorbel if a Tx queue is asleep. There is a natural race, 1026 1.1 jklos * where the HW is going to sleep just after we checked, however, 1027 1.1 jklos * then the interrupt handler will detect the outstanding TX packet 1028 1.1 jklos * and ring the doorbell for us. 1029 1.1 jklos * 1030 1.1 jklos * When GTS is disabled we unconditionally ring the doorbell. 1031 1.1 jklos */ 1032 1.1 jklos static __inline void 1033 1.1 jklos check_ring_tx_db(adapter_t *adap, struct sge_txq *q) 1034 1.1 jklos { 1035 1.1 jklos #if USE_GTS 1036 1.1 jklos clear_bit(TXQ_LAST_PKT_DB, &q->flags); 1037 1.1 jklos if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { 1038 1.1 jklos set_bit(TXQ_LAST_PKT_DB, &q->flags); 1039 1.1 jklos #ifdef T3_TRACE 1040 1.1 jklos T3_TRACE1(adap->tb[q->cntxt_id & 7], "doorbell Tx, cntxt %d", 1041 1.1 jklos q->cntxt_id); 1042 1.1 jklos #endif 1043 1.1 jklos t3_write_reg(adap, A_SG_KDOORBELL, 1044 1.1 jklos F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1045 1.1 jklos } 1046 1.1 jklos #else 1047 1.1 jklos wmb(); /* write descriptors before telling HW */ 1048 1.1 jklos t3_write_reg(adap, A_SG_KDOORBELL, 1049 1.1 jklos F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1050 1.1 jklos #endif 1051 1.1 jklos } 1052 1.1 jklos 1053 1.1 jklos static __inline void 1054 1.1 jklos wr_gen2(struct tx_desc *d, unsigned int gen) 1055 1.1 jklos { 1056 1.1 jklos #if SGE_NUM_GENBITS == 2 1057 1.1 jklos d->flit[TX_DESC_FLITS - 1] = htobe64(gen); 1058 1.1 jklos #endif 1059 1.1 jklos } 1060 1.1 jklos 1061 1.1 jklos 1062 1.1 jklos 1063 1.1 jklos /** 1064 1.1 jklos * write_wr_hdr_sgl - write a WR header and, optionally, SGL 1065 1.1 jklos * @ndesc: number of Tx descriptors spanned by the SGL 1066 1.1 jklos * @txd: first Tx descriptor to be written 1067 1.1 jklos * @txqs: txq state (generation and producer index) 1068 1.1 jklos * @txq: the SGE Tx queue 1069 1.1 jklos * @sgl: the SGL 1070 1.1 jklos * @flits: number of flits to the start of the SGL in the first descriptor 1071 1.1 jklos * @sgl_flits: the SGL size in flits 1072 1.1 jklos * @wr_hi: top 32 bits of WR header based on WR type (big endian) 1073 1.1 jklos * @wr_lo: low 32 bits of WR header based on WR type (big endian) 1074 1.1 jklos * 1075 1.1 jklos * Write a work request header and an associated SGL. If the SGL is 1076 1.1 jklos * small enough to fit into one Tx descriptor it has already been written 1077 1.1 jklos * and we just need to write the WR header. Otherwise we distribute the 1078 1.1 jklos * SGL across the number of descriptors it spans. 1079 1.1 jklos */ 1080 1.1 jklos 1081 1.1 jklos static void 1082 1.1 jklos write_wr_hdr_sgl(unsigned int ndesc, struct tx_desc *txd, struct txq_state *txqs, 1083 1.1 jklos const struct sge_txq *txq, const struct sg_ent *sgl, unsigned int flits, 1084 1.1 jklos unsigned int sgl_flits, unsigned int wr_hi, unsigned int wr_lo) 1085 1.1 jklos { 1086 1.1 jklos 1087 1.1 jklos struct work_request_hdr *wrp = (struct work_request_hdr *)txd; 1088 1.1 jklos struct tx_sw_desc *txsd = &txq->sdesc[txqs->pidx]; 1089 1.1 jklos 1090 1.1 jklos if (__predict_true(ndesc == 1)) { 1091 1.1 jklos wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | 1092 1.1 jklos V_WR_SGLSFLT(flits)) | wr_hi; 1093 1.1 jklos wmb(); 1094 1.1 jklos wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | 1095 1.1 jklos V_WR_GEN(txqs->gen)) | wr_lo; 1096 1.1 jklos /* XXX gen? */ 1097 1.1 jklos wr_gen2(txd, txqs->gen); 1098 1.1 jklos } else { 1099 1.1 jklos unsigned int ogen = txqs->gen; 1100 1.1 jklos const uint64_t *fp = (const uint64_t *)sgl; 1101 1.1 jklos struct work_request_hdr *wp = wrp; 1102 1.1 jklos 1103 1.1 jklos wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | 1104 1.1 jklos V_WR_SGLSFLT(flits)) | wr_hi; 1105 1.1 jklos 1106 1.1 jklos while (sgl_flits) { 1107 1.1 jklos unsigned int avail = WR_FLITS - flits; 1108 1.1 jklos 1109 1.1 jklos if (avail > sgl_flits) 1110 1.1 jklos avail = sgl_flits; 1111 1.1 jklos memcpy(&txd->flit[flits], fp, avail * sizeof(*fp)); 1112 1.1 jklos sgl_flits -= avail; 1113 1.1 jklos ndesc--; 1114 1.1 jklos if (!sgl_flits) 1115 1.1 jklos break; 1116 1.1 jklos 1117 1.1 jklos fp += avail; 1118 1.1 jklos txd++; 1119 1.1 jklos txsd++; 1120 1.1 jklos if (++txqs->pidx == txq->size) { 1121 1.1 jklos txqs->pidx = 0; 1122 1.1 jklos txqs->gen ^= 1; 1123 1.1 jklos txd = txq->desc; 1124 1.1 jklos txsd = txq->sdesc; 1125 1.1 jklos } 1126 1.1 jklos 1127 1.1 jklos /* 1128 1.1 jklos * when the head of the mbuf chain 1129 1.1 jklos * is freed all clusters will be freed 1130 1.1 jklos * with it 1131 1.1 jklos */ 1132 1.1 jklos txsd->m = NULL; 1133 1.1 jklos wrp = (struct work_request_hdr *)txd; 1134 1.1 jklos wrp->wr_hi = htonl(V_WR_DATATYPE(1) | 1135 1.1 jklos V_WR_SGLSFLT(1)) | wr_hi; 1136 1.6 riastrad wrp->wr_lo = htonl(V_WR_LEN(uimin(WR_FLITS, 1137 1.1 jklos sgl_flits + 1)) | 1138 1.1 jklos V_WR_GEN(txqs->gen)) | wr_lo; 1139 1.1 jklos wr_gen2(txd, txqs->gen); 1140 1.1 jklos flits = 1; 1141 1.1 jklos } 1142 1.1 jklos wrp->wr_hi |= htonl(F_WR_EOP); 1143 1.1 jklos wmb(); 1144 1.1 jklos wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; 1145 1.1 jklos wr_gen2((struct tx_desc *)wp, ogen); 1146 1.1 jklos } 1147 1.1 jklos } 1148 1.1 jklos 1149 1.1 jklos 1150 1.1 jklos /* sizeof(*eh) + sizeof(*vhdr) + sizeof(*ip) + sizeof(*tcp) */ 1151 1.1 jklos #define TCPPKTHDRSIZE (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 20 + 20) 1152 1.1 jklos 1153 1.1 jklos int 1154 1.1 jklos t3_encap(struct port_info *p, struct mbuf **m, int *free_it) 1155 1.1 jklos { 1156 1.1 jklos adapter_t *sc; 1157 1.1 jklos struct mbuf *m0; 1158 1.1 jklos struct sge_qset *qs; 1159 1.1 jklos struct sge_txq *txq; 1160 1.1 jklos struct tx_sw_desc *stx; 1161 1.1 jklos struct txq_state txqs; 1162 1.1 jklos unsigned int ndesc, flits, cntrl, mlen; 1163 1.1 jklos int err, nsegs, tso_info = 0; 1164 1.1 jklos 1165 1.1 jklos struct work_request_hdr *wrp; 1166 1.1 jklos struct tx_sw_desc *txsd; 1167 1.1 jklos struct sg_ent *sgp, sgl[TX_MAX_SEGS / 2 + 1]; 1168 1.1 jklos bus_dma_segment_t segs[TX_MAX_SEGS]; 1169 1.1 jklos uint32_t wr_hi, wr_lo, sgl_flits; 1170 1.1 jklos 1171 1.1 jklos struct tx_desc *txd; 1172 1.1 jklos struct cpl_tx_pkt *cpl; 1173 1.1 jklos 1174 1.1 jklos m0 = *m; 1175 1.1 jklos sc = p->adapter; 1176 1.1 jklos 1177 1.1 jklos DPRINTF("t3_encap port_id=%d qsidx=%d ", p->port_id, p->first_qset); 1178 1.1 jklos 1179 1.1 jklos /* port_id=1 qsid=1 txpkt_intf=2 tx_chan=0 */ 1180 1.1 jklos 1181 1.1 jklos qs = &sc->sge.qs[p->first_qset]; 1182 1.1 jklos 1183 1.1 jklos txq = &qs->txq[TXQ_ETH]; 1184 1.1 jklos stx = &txq->sdesc[txq->pidx]; 1185 1.1 jklos txd = &txq->desc[txq->pidx]; 1186 1.1 jklos cpl = (struct cpl_tx_pkt *)txd; 1187 1.1 jklos mlen = m0->m_pkthdr.len; 1188 1.1 jklos cpl->len = htonl(mlen | 0x80000000); 1189 1.1 jklos 1190 1.1 jklos DPRINTF("mlen=%d txpkt_intf=%d tx_chan=%d\n", mlen, p->txpkt_intf, p->tx_chan); 1191 1.1 jklos /* 1192 1.1 jklos * XXX handle checksum, TSO, and VLAN here 1193 1.1 jklos * 1194 1.1 jklos */ 1195 1.1 jklos cntrl = V_TXPKT_INTF(p->txpkt_intf); 1196 1.1 jklos 1197 1.1 jklos /* 1198 1.1 jklos * XXX need to add VLAN support for 6.x 1199 1.1 jklos */ 1200 1.1 jklos #ifdef VLAN_SUPPORTED 1201 1.5 knakahar if (vlan_has_tag(m0)) 1202 1.5 knakahar cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_get_tag(m0)); 1203 1.1 jklos if (m0->m_pkthdr.csum_flags & (CSUM_TSO)) 1204 1.1 jklos tso_info = V_LSO_MSS(m0->m_pkthdr.tso_segsz); 1205 1.1 jklos #endif 1206 1.1 jklos if (tso_info) { 1207 1.1 jklos int eth_type; 1208 1.1 jklos struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *) cpl; 1209 1.1 jklos struct ip *ip; 1210 1.1 jklos struct tcphdr *tcp; 1211 1.1 jklos char *pkthdr, tmp[TCPPKTHDRSIZE]; /* is this too large for the stack? */ 1212 1.1 jklos 1213 1.1 jklos txd->flit[2] = 0; 1214 1.1 jklos cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); 1215 1.1 jklos hdr->cntrl = htonl(cntrl); 1216 1.1 jklos 1217 1.1 jklos if (__predict_false(m0->m_len < TCPPKTHDRSIZE)) { 1218 1.1 jklos pkthdr = &tmp[0]; 1219 1.1 jklos m_copydata(m0, 0, TCPPKTHDRSIZE, pkthdr); 1220 1.1 jklos } else { 1221 1.1 jklos pkthdr = mtod(m0, char *); 1222 1.1 jklos } 1223 1.1 jklos 1224 1.1 jklos #ifdef VLAN_SUPPORTED 1225 1.5 knakahar if (vlan_has_tag(m0)) { 1226 1.1 jklos eth_type = CPL_ETH_II_VLAN; 1227 1.1 jklos ip = (struct ip *)(pkthdr + ETHER_HDR_LEN + 1228 1.1 jklos ETHER_VLAN_ENCAP_LEN); 1229 1.1 jklos } else { 1230 1.1 jklos eth_type = CPL_ETH_II; 1231 1.1 jklos ip = (struct ip *)(pkthdr + ETHER_HDR_LEN); 1232 1.1 jklos } 1233 1.1 jklos #else 1234 1.1 jklos eth_type = CPL_ETH_II; 1235 1.1 jklos ip = (struct ip *)(pkthdr + ETHER_HDR_LEN); 1236 1.1 jklos #endif 1237 1.1 jklos tcp = (struct tcphdr *)((uint8_t *)ip + 1238 1.1 jklos sizeof(*ip)); 1239 1.1 jklos 1240 1.1 jklos tso_info |= V_LSO_ETH_TYPE(eth_type) | 1241 1.1 jklos V_LSO_IPHDR_WORDS(ip->ip_hl) | 1242 1.1 jklos V_LSO_TCPHDR_WORDS(tcp->th_off); 1243 1.1 jklos hdr->lso_info = htonl(tso_info); 1244 1.1 jklos flits = 3; 1245 1.1 jklos } else { 1246 1.1 jklos cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); 1247 1.1 jklos cpl->cntrl = htonl(cntrl); 1248 1.1 jklos 1249 1.1 jklos if (mlen <= WR_LEN - sizeof(*cpl)) { 1250 1.1 jklos txq_prod(txq, 1, &txqs); 1251 1.1 jklos txq->sdesc[txqs.pidx].m = NULL; 1252 1.1 jklos 1253 1.1 jklos if (m0->m_len == m0->m_pkthdr.len) 1254 1.1 jklos memcpy(&txd->flit[2], mtod(m0, uint8_t *), mlen); 1255 1.1 jklos else 1256 1.1 jklos m_copydata(m0, 0, mlen, (void *)&txd->flit[2]); 1257 1.1 jklos 1258 1.1 jklos *free_it = 1; 1259 1.1 jklos flits = (mlen + 7) / 8 + 2; 1260 1.1 jklos cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) | 1261 1.1 jklos V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | 1262 1.1 jklos F_WR_SOP | F_WR_EOP | txqs.compl); 1263 1.1 jklos wmb(); 1264 1.1 jklos cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | 1265 1.1 jklos V_WR_GEN(txqs.gen) | V_WR_TID(txq->token)); 1266 1.1 jklos 1267 1.1 jklos wr_gen2(txd, txqs.gen); 1268 1.1 jklos check_ring_tx_db(sc, txq); 1269 1.1 jklos return (0); 1270 1.1 jklos } 1271 1.1 jklos flits = 2; 1272 1.1 jklos } 1273 1.1 jklos 1274 1.1 jklos wrp = (struct work_request_hdr *)txd; 1275 1.1 jklos 1276 1.1 jklos if ((err = busdma_map_mbufs(m, txq, stx, segs, &nsegs)) != 0) { 1277 1.1 jklos return (err); 1278 1.1 jklos } 1279 1.1 jklos m0 = *m; 1280 1.1 jklos ndesc = calc_tx_descs(m0, nsegs); 1281 1.1 jklos 1282 1.1 jklos sgp = (ndesc == 1) ? (struct sg_ent *)&txd->flit[flits] : sgl; 1283 1.1 jklos make_sgl(sgp, segs, nsegs); 1284 1.1 jklos 1285 1.1 jklos sgl_flits = sgl_len(nsegs); 1286 1.1 jklos 1287 1.1 jklos DPRINTF("make_sgl success nsegs==%d ndesc==%d\n", nsegs, ndesc); 1288 1.1 jklos txq_prod(txq, ndesc, &txqs); 1289 1.1 jklos txsd = &txq->sdesc[txqs.pidx]; 1290 1.1 jklos wr_hi = htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl); 1291 1.1 jklos wr_lo = htonl(V_WR_TID(txq->token)); 1292 1.1 jklos txsd->m = m0; 1293 1.1 jklos m_set_priority(m0, txqs.pidx); 1294 1.1 jklos 1295 1.1 jklos write_wr_hdr_sgl(ndesc, txd, &txqs, txq, sgl, flits, sgl_flits, wr_hi, wr_lo); 1296 1.1 jklos check_ring_tx_db(p->adapter, txq); 1297 1.1 jklos 1298 1.1 jklos return (0); 1299 1.1 jklos } 1300 1.1 jklos 1301 1.1 jklos 1302 1.1 jklos /** 1303 1.1 jklos * write_imm - write a packet into a Tx descriptor as immediate data 1304 1.1 jklos * @d: the Tx descriptor to write 1305 1.1 jklos * @m: the packet 1306 1.1 jklos * @len: the length of packet data to write as immediate data 1307 1.1 jklos * @gen: the generation bit value to write 1308 1.1 jklos * 1309 1.1 jklos * Writes a packet as immediate data into a Tx descriptor. The packet 1310 1.1 jklos * contains a work request at its beginning. We must write the packet 1311 1.1 jklos * carefully so the SGE doesn't read accidentally before it's written in 1312 1.1 jklos * its entirety. 1313 1.1 jklos */ 1314 1.1 jklos static __inline void 1315 1.1 jklos write_imm(struct tx_desc *d, struct mbuf *m, 1316 1.1 jklos unsigned int len, unsigned int gen) 1317 1.1 jklos { 1318 1.1 jklos struct work_request_hdr *from = mtod(m, struct work_request_hdr *); 1319 1.1 jklos struct work_request_hdr *to = (struct work_request_hdr *)d; 1320 1.1 jklos 1321 1.1 jklos memcpy(&to[1], &from[1], len - sizeof(*from)); 1322 1.1 jklos to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | 1323 1.1 jklos V_WR_BCNTLFLT(len & 7)); 1324 1.1 jklos wmb(); 1325 1.1 jklos to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | 1326 1.1 jklos V_WR_LEN((len + 7) / 8)); 1327 1.1 jklos wr_gen2(d, gen); 1328 1.1 jklos m_freem(m); 1329 1.1 jklos } 1330 1.1 jklos 1331 1.1 jklos /** 1332 1.1 jklos * check_desc_avail - check descriptor availability on a send queue 1333 1.1 jklos * @adap: the adapter 1334 1.1 jklos * @q: the TX queue 1335 1.1 jklos * @m: the packet needing the descriptors 1336 1.1 jklos * @ndesc: the number of Tx descriptors needed 1337 1.1 jklos * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) 1338 1.1 jklos * 1339 1.1 jklos * Checks if the requested number of Tx descriptors is available on an 1340 1.1 jklos * SGE send queue. If the queue is already suspended or not enough 1341 1.1 jklos * descriptors are available the packet is queued for later transmission. 1342 1.1 jklos * Must be called with the Tx queue locked. 1343 1.1 jklos * 1344 1.1 jklos * Returns 0 if enough descriptors are available, 1 if there aren't 1345 1.1 jklos * enough descriptors and the packet has been queued, and 2 if the caller 1346 1.1 jklos * needs to retry because there weren't enough descriptors at the 1347 1.1 jklos * beginning of the call but some freed up in the mean time. 1348 1.1 jklos */ 1349 1.1 jklos static __inline int 1350 1.1 jklos check_desc_avail(adapter_t *adap, struct sge_txq *q, 1351 1.1 jklos struct mbuf *m, unsigned int ndesc, 1352 1.1 jklos unsigned int qid) 1353 1.1 jklos { 1354 1.1 jklos /* 1355 1.1 jklos * XXX We currently only use this for checking the control queue 1356 1.1 jklos * the control queue is only used for binding qsets which happens 1357 1.1 jklos * at init time so we are guaranteed enough descriptors 1358 1.1 jklos */ 1359 1.1 jklos if (__predict_false(!mbufq_empty(&q->sendq))) { 1360 1.1 jklos addq_exit: mbufq_tail(&q->sendq, m); 1361 1.1 jklos return 1; 1362 1.1 jklos } 1363 1.1 jklos if (__predict_false(q->size - q->in_use < ndesc)) { 1364 1.1 jklos 1365 1.1 jklos struct sge_qset *qs = txq_to_qset(q, qid); 1366 1.1 jklos 1367 1.1 jklos setbit(&qs->txq_stopped, qid); 1368 1.1 jklos smp_mb(); 1369 1.1 jklos 1370 1.1 jklos if (should_restart_tx(q) && 1371 1.1 jklos test_and_clear_bit(qid, &qs->txq_stopped)) 1372 1.1 jklos return 2; 1373 1.1 jklos 1374 1.1 jklos q->stops++; 1375 1.1 jklos goto addq_exit; 1376 1.1 jklos } 1377 1.1 jklos return 0; 1378 1.1 jklos } 1379 1.1 jklos 1380 1.1 jklos 1381 1.1 jklos /** 1382 1.1 jklos * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1383 1.1 jklos * @q: the SGE control Tx queue 1384 1.1 jklos * 1385 1.1 jklos * This is a variant of reclaim_completed_tx() that is used for Tx queues 1386 1.1 jklos * that send only immediate data (presently just the control queues) and 1387 1.1 jklos * thus do not have any mbufs 1388 1.1 jklos */ 1389 1.1 jklos static __inline void 1390 1.1 jklos reclaim_completed_tx_imm(struct sge_txq *q) 1391 1.1 jklos { 1392 1.1 jklos unsigned int reclaim = q->processed - q->cleaned; 1393 1.1 jklos 1394 1.1 jklos mtx_assert(&q->lock, MA_OWNED); 1395 1.1 jklos 1396 1.1 jklos q->in_use -= reclaim; 1397 1.1 jklos q->cleaned += reclaim; 1398 1.1 jklos } 1399 1.1 jklos 1400 1.1 jklos static __inline int 1401 1.1 jklos immediate(const struct mbuf *m) 1402 1.1 jklos { 1403 1.1 jklos return m->m_len <= WR_LEN && m->m_pkthdr.len <= WR_LEN ; 1404 1.1 jklos } 1405 1.1 jklos 1406 1.1 jklos /** 1407 1.1 jklos * ctrl_xmit - send a packet through an SGE control Tx queue 1408 1.1 jklos * @adap: the adapter 1409 1.1 jklos * @q: the control queue 1410 1.1 jklos * @m: the packet 1411 1.1 jklos * 1412 1.1 jklos * Send a packet through an SGE control Tx queue. Packets sent through 1413 1.1 jklos * a control queue must fit entirely as immediate data in a single Tx 1414 1.1 jklos * descriptor and have no page fragments. 1415 1.1 jklos */ 1416 1.1 jklos static int 1417 1.1 jklos ctrl_xmit(adapter_t *adap, struct sge_txq *q, struct mbuf *m) 1418 1.1 jklos { 1419 1.1 jklos int ret; 1420 1.1 jklos struct work_request_hdr *wrp = mtod(m, struct work_request_hdr *); 1421 1.1 jklos 1422 1.1 jklos if (__predict_false(!immediate(m))) { 1423 1.1 jklos m_freem(m); 1424 1.1 jklos return 0; 1425 1.1 jklos } 1426 1.1 jklos 1427 1.1 jklos wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); 1428 1.1 jklos wrp->wr_lo = htonl(V_WR_TID(q->token)); 1429 1.1 jklos 1430 1.1 jklos mtx_lock(&q->lock); 1431 1.1 jklos again: reclaim_completed_tx_imm(q); 1432 1.1 jklos 1433 1.1 jklos ret = check_desc_avail(adap, q, m, 1, TXQ_CTRL); 1434 1.1 jklos if (__predict_false(ret)) { 1435 1.1 jklos if (ret == 1) { 1436 1.1 jklos mtx_unlock(&q->lock); 1437 1.1 jklos return (-1); 1438 1.1 jklos } 1439 1.1 jklos goto again; 1440 1.1 jklos } 1441 1.1 jklos 1442 1.1 jklos write_imm(&q->desc[q->pidx], m, m->m_len, q->gen); 1443 1.1 jklos 1444 1.1 jklos q->in_use++; 1445 1.1 jklos if (++q->pidx >= q->size) { 1446 1.1 jklos q->pidx = 0; 1447 1.1 jklos q->gen ^= 1; 1448 1.1 jklos } 1449 1.1 jklos mtx_unlock(&q->lock); 1450 1.1 jklos wmb(); 1451 1.1 jklos t3_write_reg(adap, A_SG_KDOORBELL, 1452 1.1 jklos F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1453 1.1 jklos return (0); 1454 1.1 jklos } 1455 1.1 jklos 1456 1.1 jklos 1457 1.1 jklos /** 1458 1.1 jklos * restart_ctrlq - restart a suspended control queue 1459 1.8 andvar * @qs: the queue set containing the control queue 1460 1.1 jklos * 1461 1.1 jklos * Resumes transmission on a suspended Tx control queue. 1462 1.1 jklos */ 1463 1.1 jklos static void 1464 1.1 jklos restart_ctrlq(struct work *wk, void *data) 1465 1.1 jklos { 1466 1.1 jklos struct mbuf *m; 1467 1.1 jklos struct sge_qset *qs = (struct sge_qset *)data; 1468 1.1 jklos struct sge_txq *q = &qs->txq[TXQ_CTRL]; 1469 1.1 jklos adapter_t *adap = qs->port->adapter; 1470 1.1 jklos 1471 1.1 jklos mtx_lock(&q->lock); 1472 1.1 jklos again: reclaim_completed_tx_imm(q); 1473 1.1 jklos 1474 1.1 jklos while (q->in_use < q->size && 1475 1.1 jklos (m = mbufq_dequeue(&q->sendq)) != NULL) { 1476 1.1 jklos 1477 1.1 jklos write_imm(&q->desc[q->pidx], m, m->m_len, q->gen); 1478 1.1 jklos 1479 1.1 jklos if (++q->pidx >= q->size) { 1480 1.1 jklos q->pidx = 0; 1481 1.1 jklos q->gen ^= 1; 1482 1.1 jklos } 1483 1.1 jklos q->in_use++; 1484 1.1 jklos } 1485 1.1 jklos if (!mbufq_empty(&q->sendq)) { 1486 1.1 jklos setbit(&qs->txq_stopped, TXQ_CTRL); 1487 1.1 jklos smp_mb(); 1488 1.1 jklos 1489 1.1 jklos if (should_restart_tx(q) && 1490 1.1 jklos test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) 1491 1.1 jklos goto again; 1492 1.1 jklos q->stops++; 1493 1.1 jklos } 1494 1.1 jklos mtx_unlock(&q->lock); 1495 1.1 jklos t3_write_reg(adap, A_SG_KDOORBELL, 1496 1.1 jklos F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1497 1.1 jklos } 1498 1.1 jklos 1499 1.1 jklos 1500 1.1 jklos /* 1501 1.1 jklos * Send a management message through control queue 0 1502 1.1 jklos */ 1503 1.1 jklos int 1504 1.1 jklos t3_mgmt_tx(struct adapter *adap, struct mbuf *m) 1505 1.1 jklos { 1506 1.1 jklos return ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], m); 1507 1.1 jklos } 1508 1.1 jklos 1509 1.1 jklos /** 1510 1.1 jklos * free_qset - free the resources of an SGE queue set 1511 1.1 jklos * @sc: the controller owning the queue set 1512 1.1 jklos * @q: the queue set 1513 1.1 jklos * 1514 1.1 jklos * Release the HW and SW resources associated with an SGE queue set, such 1515 1.1 jklos * as HW contexts, packet buffers, and descriptor rings. Traffic to the 1516 1.1 jklos * queue set must be quiesced prior to calling this. 1517 1.1 jklos */ 1518 1.1 jklos static void 1519 1.1 jklos t3_free_qset(adapter_t *sc, struct sge_qset *q) 1520 1.1 jklos { 1521 1.1 jklos int i; 1522 1.1 jklos 1523 1.1 jklos for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 1524 1.1 jklos if (q->fl[i].desc) { 1525 1.1 jklos mtx_lock(&sc->sge.reg_lock); 1526 1.1 jklos t3_sge_disable_fl(sc, q->fl[i].cntxt_id); 1527 1.1 jklos mtx_unlock(&sc->sge.reg_lock); 1528 1.1 jklos bus_dmamap_unload(q->fl[i].desc_tag, q->fl[i].desc_map); 1529 1.1 jklos INT3; 1530 1.1 jklos // bus_dmamem_free(q->fl[i].desc_tag, &q->fl[i].phys_addr, 1); 1531 1.1 jklos // XXXXXXXXXXX destroy DMA tags???? 1532 1.1 jklos } 1533 1.1 jklos if (q->fl[i].sdesc) { 1534 1.1 jklos free_rx_bufs(sc, &q->fl[i]); 1535 1.1 jklos free(q->fl[i].sdesc, M_DEVBUF); 1536 1.1 jklos } 1537 1.1 jklos } 1538 1.1 jklos 1539 1.1 jklos for (i = 0; i < SGE_TXQ_PER_SET; i++) { 1540 1.1 jklos if (q->txq[i].desc) { 1541 1.1 jklos mtx_lock(&sc->sge.reg_lock); 1542 1.1 jklos t3_sge_enable_ecntxt(sc, q->txq[i].cntxt_id, 0); 1543 1.1 jklos mtx_unlock(&sc->sge.reg_lock); 1544 1.1 jklos bus_dmamap_unload(q->txq[i].desc_tag, 1545 1.1 jklos q->txq[i].desc_map); 1546 1.1 jklos INT3; 1547 1.1 jklos // bus_dmamem_free(q->txq[i].desc_tag, &q->txq[i].phys_addr, 1); 1548 1.1 jklos // XXXXXXXXXXX destroy DMA tags???? And the lock?!??! 1549 1.1 jklos 1550 1.1 jklos } 1551 1.1 jklos if (q->txq[i].sdesc) { 1552 1.1 jklos free(q->txq[i].sdesc, M_DEVBUF); 1553 1.1 jklos } 1554 1.1 jklos } 1555 1.1 jklos 1556 1.1 jklos if (q->rspq.desc) { 1557 1.1 jklos mtx_lock(&sc->sge.reg_lock); 1558 1.1 jklos t3_sge_disable_rspcntxt(sc, q->rspq.cntxt_id); 1559 1.1 jklos mtx_unlock(&sc->sge.reg_lock); 1560 1.1 jklos 1561 1.1 jklos bus_dmamap_unload(q->rspq.desc_tag, q->rspq.desc_map); 1562 1.1 jklos INT3; 1563 1.1 jklos // bus_dmamem_free(q->rspq.desc_tag, &q->rspq.phys_addr, 1); 1564 1.1 jklos // XXXXXXXXXXX destroy DMA tags???? and the LOCK ?!?!? 1565 1.1 jklos } 1566 1.1 jklos 1567 1.1 jklos memset(q, 0, sizeof(*q)); 1568 1.1 jklos } 1569 1.1 jklos 1570 1.1 jklos /** 1571 1.1 jklos * t3_free_sge_resources - free SGE resources 1572 1.1 jklos * @sc: the adapter softc 1573 1.1 jklos * 1574 1.1 jklos * Frees resources used by the SGE queue sets. 1575 1.1 jklos */ 1576 1.1 jklos void 1577 1.1 jklos t3_free_sge_resources(adapter_t *sc) 1578 1.1 jklos { 1579 1.1 jklos int i, nqsets; 1580 1.1 jklos 1581 1.1 jklos for (nqsets = i = 0; i < (sc)->params.nports; i++) 1582 1.1 jklos nqsets += sc->port[i].nqsets; 1583 1.1 jklos 1584 1.1 jklos for (i = 0; i < nqsets; ++i) 1585 1.1 jklos t3_free_qset(sc, &sc->sge.qs[i]); 1586 1.1 jklos } 1587 1.1 jklos 1588 1.1 jklos /** 1589 1.1 jklos * t3_sge_start - enable SGE 1590 1.1 jklos * @sc: the controller softc 1591 1.1 jklos * 1592 1.1 jklos * Enables the SGE for DMAs. This is the last step in starting packet 1593 1.1 jklos * transfers. 1594 1.1 jklos */ 1595 1.1 jklos void 1596 1.1 jklos t3_sge_start(adapter_t *sc) 1597 1.1 jklos { 1598 1.1 jklos t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); 1599 1.1 jklos } 1600 1.1 jklos 1601 1.1 jklos /** 1602 1.1 jklos * t3_sge_stop - disable SGE operation 1603 1.1 jklos * @sc: the adapter 1604 1.1 jklos * 1605 1.1 jklos * Disables the DMA engine. This can be called in emeregencies (e.g., 1606 1.1 jklos * from error interrupts) or from normal process context. In the latter 1607 1.1 jklos * case it also disables any pending queue restart tasklets. Note that 1608 1.1 jklos * if it is called in interrupt context it cannot disable the restart 1609 1.1 jklos * tasklets as it cannot wait, however the tasklets will have no effect 1610 1.1 jklos * since the doorbells are disabled and the driver will call this again 1611 1.1 jklos * later from process context, at which time the tasklets will be stopped 1612 1.1 jklos * if they are still running. 1613 1.1 jklos */ 1614 1.1 jklos void 1615 1.1 jklos t3_sge_stop(adapter_t *sc) 1616 1.1 jklos { 1617 1.1 jklos int i, nqsets; 1618 1.1 jklos 1619 1.1 jklos t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, 0); 1620 1.1 jklos 1621 1.1 jklos for (nqsets = i = 0; i < (sc)->params.nports; i++) 1622 1.1 jklos nqsets += sc->port[i].nqsets; 1623 1.1 jklos 1624 1.1 jklos for (i = 0; i < nqsets; ++i) { 1625 1.1 jklos } 1626 1.1 jklos } 1627 1.1 jklos 1628 1.1 jklos 1629 1.1 jklos /** 1630 1.1 jklos * free_tx_desc - reclaims Tx descriptors and their buffers 1631 1.1 jklos * @adapter: the adapter 1632 1.1 jklos * @q: the Tx queue to reclaim descriptors from 1633 1.1 jklos * @n: the number of descriptors to reclaim 1634 1.1 jklos * 1635 1.1 jklos * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 1636 1.1 jklos * Tx buffers. Called with the Tx queue lock held. 1637 1.1 jklos */ 1638 1.1 jklos int 1639 1.1 jklos free_tx_desc(struct sge_txq *q, int n, struct mbuf **m_vec) 1640 1.1 jklos { 1641 1.1 jklos struct tx_sw_desc *d; 1642 1.1 jklos unsigned int cidx = q->cidx; 1643 1.1 jklos int nbufs = 0; 1644 1.1 jklos 1645 1.1 jklos #ifdef T3_TRACE 1646 1.1 jklos T3_TRACE2(sc->tb[q->cntxt_id & 7], 1647 1.1 jklos "reclaiming %u Tx descriptors at cidx %u", n, cidx); 1648 1.1 jklos #endif 1649 1.1 jklos d = &q->sdesc[cidx]; 1650 1.1 jklos 1651 1.1 jklos while (n-- > 0) { 1652 1.1 jklos DPRINTF("cidx=%d d=%p\n", cidx, d); 1653 1.1 jklos if (d->m) { 1654 1.1 jklos if (d->flags & TX_SW_DESC_MAPPED) { 1655 1.1 jklos bus_dmamap_unload(q->entry_tag, d->map); 1656 1.1 jklos bus_dmamap_destroy(q->entry_tag, d->map); 1657 1.1 jklos d->flags &= ~TX_SW_DESC_MAPPED; 1658 1.1 jklos } 1659 1.1 jklos if (m_get_priority(d->m) == cidx) { 1660 1.1 jklos m_vec[nbufs] = d->m; 1661 1.1 jklos d->m = NULL; 1662 1.1 jklos nbufs++; 1663 1.1 jklos } else { 1664 1.1 jklos printf("pri=%d cidx=%d\n", (int)m_get_priority(d->m), cidx); 1665 1.1 jklos } 1666 1.1 jklos } 1667 1.1 jklos ++d; 1668 1.1 jklos if (++cidx == q->size) { 1669 1.1 jklos cidx = 0; 1670 1.1 jklos d = q->sdesc; 1671 1.1 jklos } 1672 1.1 jklos } 1673 1.1 jklos q->cidx = cidx; 1674 1.1 jklos 1675 1.1 jklos return (nbufs); 1676 1.1 jklos } 1677 1.1 jklos 1678 1.1 jklos /** 1679 1.1 jklos * is_new_response - check if a response is newly written 1680 1.1 jklos * @r: the response descriptor 1681 1.1 jklos * @q: the response queue 1682 1.1 jklos * 1683 1.1 jklos * Returns true if a response descriptor contains a yet unprocessed 1684 1.1 jklos * response. 1685 1.1 jklos */ 1686 1.1 jklos static __inline int 1687 1.1 jklos is_new_response(const struct rsp_desc *r, 1688 1.1 jklos const struct sge_rspq *q) 1689 1.1 jklos { 1690 1.1 jklos return (r->intr_gen & F_RSPD_GEN2) == q->gen; 1691 1.1 jklos } 1692 1.1 jklos 1693 1.1 jklos #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) 1694 1.1 jklos #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ 1695 1.1 jklos V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ 1696 1.1 jklos V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ 1697 1.1 jklos V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) 1698 1.1 jklos 1699 1.1 jklos /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ 1700 1.1 jklos #define NOMEM_INTR_DELAY 2500 1701 1.1 jklos 1702 1.1 jklos /** 1703 1.1 jklos * write_ofld_wr - write an offload work request 1704 1.1 jklos * @adap: the adapter 1705 1.1 jklos * @m: the packet to send 1706 1.1 jklos * @q: the Tx queue 1707 1.1 jklos * @pidx: index of the first Tx descriptor to write 1708 1.1 jklos * @gen: the generation value to use 1709 1.1 jklos * @ndesc: number of descriptors the packet will occupy 1710 1.1 jklos * 1711 1.1 jklos * Write an offload work request to send the supplied packet. The packet 1712 1.1 jklos * data already carry the work request with most fields populated. 1713 1.1 jklos */ 1714 1.1 jklos static void 1715 1.1 jklos write_ofld_wr(adapter_t *adap, struct mbuf *m, 1716 1.1 jklos struct sge_txq *q, unsigned int pidx, 1717 1.1 jklos unsigned int gen, unsigned int ndesc, 1718 1.1 jklos bus_dma_segment_t *segs, unsigned int nsegs) 1719 1.1 jklos { 1720 1.1 jklos unsigned int sgl_flits, flits; 1721 1.1 jklos struct work_request_hdr *from; 1722 1.1 jklos struct sg_ent *sgp, sgl[TX_MAX_SEGS / 2 + 1]; 1723 1.1 jklos struct tx_desc *d = &q->desc[pidx]; 1724 1.1 jklos struct txq_state txqs; 1725 1.1 jklos 1726 1.1 jklos if (immediate(m)) { 1727 1.1 jklos q->sdesc[pidx].m = NULL; 1728 1.1 jklos write_imm(d, m, m->m_len, gen); 1729 1.1 jklos return; 1730 1.1 jklos } 1731 1.1 jklos 1732 1.1 jklos /* Only TX_DATA builds SGLs */ 1733 1.1 jklos 1734 1.1 jklos from = mtod(m, struct work_request_hdr *); 1735 1.1 jklos INT3; /// DEBUG this??? 1736 1.1 jklos flits = 3; // XXXXXXXXXXXXXX 1737 1.1 jklos 1738 1.1 jklos sgp = (ndesc == 1) ? (struct sg_ent *)&d->flit[flits] : sgl; 1739 1.1 jklos 1740 1.1 jklos make_sgl(sgp, segs, nsegs); 1741 1.1 jklos sgl_flits = sgl_len(nsegs); 1742 1.1 jklos 1743 1.1 jklos txqs.gen = q->gen; 1744 1.1 jklos txqs.pidx = q->pidx; 1745 1.1 jklos txqs.compl = (q->unacked & 8) << (S_WR_COMPL - 3); 1746 1.1 jklos write_wr_hdr_sgl(ndesc, d, &txqs, q, sgl, flits, sgl_flits, 1747 1.1 jklos from->wr_hi, from->wr_lo); 1748 1.1 jklos } 1749 1.1 jklos 1750 1.1 jklos /** 1751 1.1 jklos * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet 1752 1.1 jklos * @m: the packet 1753 1.1 jklos * 1754 1.1 jklos * Returns the number of Tx descriptors needed for the given offload 1755 1.1 jklos * packet. These packets are already fully constructed. 1756 1.1 jklos */ 1757 1.1 jklos static __inline unsigned int 1758 1.1 jklos calc_tx_descs_ofld(struct mbuf *m, unsigned int nsegs) 1759 1.1 jklos { 1760 1.1 jklos unsigned int flits, cnt = 0; 1761 1.1 jklos 1762 1.1 jklos 1763 1.1 jklos if (m->m_len <= WR_LEN) 1764 1.1 jklos return 1; /* packet fits as immediate data */ 1765 1.1 jklos 1766 1.1 jklos if (m->m_flags & M_IOVEC) 1767 1.1 jklos cnt = mtomv(m)->mv_count; 1768 1.1 jklos 1769 1.1 jklos INT3; // Debug this???? 1770 1.1 jklos flits = 3; // XXXXXXXXX 1771 1.1 jklos 1772 1.1 jklos return flits_to_desc(flits + sgl_len(cnt)); 1773 1.1 jklos } 1774 1.1 jklos 1775 1.1 jklos /** 1776 1.1 jklos * ofld_xmit - send a packet through an offload queue 1777 1.1 jklos * @adap: the adapter 1778 1.1 jklos * @q: the Tx offload queue 1779 1.1 jklos * @m: the packet 1780 1.1 jklos * 1781 1.1 jklos * Send an offload packet through an SGE offload queue. 1782 1.1 jklos */ 1783 1.1 jklos static int 1784 1.1 jklos ofld_xmit(adapter_t *adap, struct sge_txq *q, struct mbuf *m) 1785 1.1 jklos { 1786 1.1 jklos int ret, nsegs; 1787 1.1 jklos unsigned int ndesc; 1788 1.1 jklos unsigned int pidx, gen; 1789 1.1 jklos struct mbuf *m_vec[TX_CLEAN_MAX_DESC]; 1790 1.1 jklos bus_dma_segment_t segs[TX_MAX_SEGS]; 1791 1.1 jklos int i, cleaned; 1792 1.1 jklos struct tx_sw_desc *stx = &q->sdesc[q->pidx]; 1793 1.1 jklos 1794 1.1 jklos mtx_lock(&q->lock); 1795 1.1 jklos if ((ret = busdma_map_mbufs(&m, q, stx, segs, &nsegs)) != 0) { 1796 1.1 jklos mtx_unlock(&q->lock); 1797 1.1 jklos return (ret); 1798 1.1 jklos } 1799 1.1 jklos ndesc = calc_tx_descs_ofld(m, nsegs); 1800 1.1 jklos again: cleaned = reclaim_completed_tx(q, TX_CLEAN_MAX_DESC, m_vec); 1801 1.1 jklos 1802 1.1 jklos ret = check_desc_avail(adap, q, m, ndesc, TXQ_OFLD); 1803 1.1 jklos if (__predict_false(ret)) { 1804 1.1 jklos if (ret == 1) { 1805 1.1 jklos m_set_priority(m, ndesc); /* save for restart */ 1806 1.1 jklos mtx_unlock(&q->lock); 1807 1.1 jklos return EINTR; 1808 1.1 jklos } 1809 1.1 jklos goto again; 1810 1.1 jklos } 1811 1.1 jklos 1812 1.1 jklos gen = q->gen; 1813 1.1 jklos q->in_use += ndesc; 1814 1.1 jklos pidx = q->pidx; 1815 1.1 jklos q->pidx += ndesc; 1816 1.1 jklos if (q->pidx >= q->size) { 1817 1.1 jklos q->pidx -= q->size; 1818 1.1 jklos q->gen ^= 1; 1819 1.1 jklos } 1820 1.1 jklos #ifdef T3_TRACE 1821 1.1 jklos T3_TRACE5(adap->tb[q->cntxt_id & 7], 1822 1.1 jklos "ofld_xmit: ndesc %u, pidx %u, len %u, main %u, frags %u", 1823 1.1 jklos ndesc, pidx, skb->len, skb->len - skb->data_len, 1824 1.1 jklos skb_shinfo(skb)->nr_frags); 1825 1.1 jklos #endif 1826 1.1 jklos mtx_unlock(&q->lock); 1827 1.1 jklos 1828 1.1 jklos write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs); 1829 1.1 jklos check_ring_tx_db(adap, q); 1830 1.1 jklos 1831 1.1 jklos for (i = 0; i < cleaned; i++) { 1832 1.1 jklos m_freem_vec(m_vec[i]); 1833 1.1 jklos } 1834 1.1 jklos return (0); 1835 1.1 jklos } 1836 1.1 jklos 1837 1.1 jklos /** 1838 1.1 jklos * restart_offloadq - restart a suspended offload queue 1839 1.8 andvar * @qs: the queue set containing the offload queue 1840 1.1 jklos * 1841 1.1 jklos * Resumes transmission on a suspended Tx offload queue. 1842 1.1 jklos */ 1843 1.1 jklos static void 1844 1.1 jklos restart_offloadq(struct work *wk, void *data) 1845 1.1 jklos { 1846 1.1 jklos 1847 1.1 jklos struct mbuf *m; 1848 1.1 jklos struct sge_qset *qs = data; 1849 1.1 jklos struct sge_txq *q = &qs->txq[TXQ_OFLD]; 1850 1.1 jklos adapter_t *adap = qs->port->adapter; 1851 1.1 jklos struct mbuf *m_vec[TX_CLEAN_MAX_DESC]; 1852 1.1 jklos bus_dma_segment_t segs[TX_MAX_SEGS]; 1853 1.1 jklos int nsegs, i, cleaned; 1854 1.1 jklos struct tx_sw_desc *stx = &q->sdesc[q->pidx]; 1855 1.1 jklos 1856 1.1 jklos mtx_lock(&q->lock); 1857 1.1 jklos again: cleaned = reclaim_completed_tx(q, TX_CLEAN_MAX_DESC, m_vec); 1858 1.1 jklos 1859 1.1 jklos while ((m = mbufq_peek(&q->sendq)) != NULL) { 1860 1.1 jklos unsigned int gen, pidx; 1861 1.1 jklos unsigned int ndesc = m_get_priority(m); 1862 1.1 jklos 1863 1.1 jklos if (__predict_false(q->size - q->in_use < ndesc)) { 1864 1.1 jklos setbit(&qs->txq_stopped, TXQ_OFLD); 1865 1.1 jklos smp_mb(); 1866 1.1 jklos 1867 1.1 jklos if (should_restart_tx(q) && 1868 1.1 jklos test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) 1869 1.1 jklos goto again; 1870 1.1 jklos q->stops++; 1871 1.1 jklos break; 1872 1.1 jklos } 1873 1.1 jklos 1874 1.1 jklos gen = q->gen; 1875 1.1 jklos q->in_use += ndesc; 1876 1.1 jklos pidx = q->pidx; 1877 1.1 jklos q->pidx += ndesc; 1878 1.1 jklos if (q->pidx >= q->size) { 1879 1.1 jklos q->pidx -= q->size; 1880 1.1 jklos q->gen ^= 1; 1881 1.1 jklos } 1882 1.1 jklos 1883 1.1 jklos (void)mbufq_dequeue(&q->sendq); 1884 1.1 jklos busdma_map_mbufs(&m, q, stx, segs, &nsegs); 1885 1.1 jklos mtx_unlock(&q->lock); 1886 1.1 jklos write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs); 1887 1.1 jklos mtx_lock(&q->lock); 1888 1.1 jklos } 1889 1.1 jklos mtx_unlock(&q->lock); 1890 1.1 jklos 1891 1.1 jklos #if USE_GTS 1892 1.1 jklos set_bit(TXQ_RUNNING, &q->flags); 1893 1.1 jklos set_bit(TXQ_LAST_PKT_DB, &q->flags); 1894 1.1 jklos #endif 1895 1.1 jklos t3_write_reg(adap, A_SG_KDOORBELL, 1896 1.1 jklos F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1897 1.1 jklos 1898 1.1 jklos for (i = 0; i < cleaned; i++) { 1899 1.1 jklos m_freem_vec(m_vec[i]); 1900 1.1 jklos } 1901 1.1 jklos } 1902 1.1 jklos 1903 1.1 jklos /** 1904 1.1 jklos * queue_set - return the queue set a packet should use 1905 1.1 jklos * @m: the packet 1906 1.1 jklos * 1907 1.1 jklos * Maps a packet to the SGE queue set it should use. The desired queue 1908 1.1 jklos * set is carried in bits 1-3 in the packet's priority. 1909 1.1 jklos */ 1910 1.1 jklos static __inline int 1911 1.1 jklos queue_set(const struct mbuf *m) 1912 1.1 jklos { 1913 1.1 jklos return m_get_priority(m) >> 1; 1914 1.1 jklos } 1915 1.1 jklos 1916 1.1 jklos /** 1917 1.1 jklos * is_ctrl_pkt - return whether an offload packet is a control packet 1918 1.1 jklos * @m: the packet 1919 1.1 jklos * 1920 1.1 jklos * Determines whether an offload packet should use an OFLD or a CTRL 1921 1.1 jklos * Tx queue. This is indicated by bit 0 in the packet's priority. 1922 1.1 jklos */ 1923 1.1 jklos static __inline int 1924 1.1 jklos is_ctrl_pkt(const struct mbuf *m) 1925 1.1 jklos { 1926 1.1 jklos return m_get_priority(m) & 1; 1927 1.1 jklos } 1928 1.1 jklos 1929 1.1 jklos /** 1930 1.1 jklos * t3_offload_tx - send an offload packet 1931 1.1 jklos * @tdev: the offload device to send to 1932 1.1 jklos * @m: the packet 1933 1.1 jklos * 1934 1.1 jklos * Sends an offload packet. We use the packet priority to select the 1935 1.1 jklos * appropriate Tx queue as follows: bit 0 indicates whether the packet 1936 1.1 jklos * should be sent as regular or control, bits 1-3 select the queue set. 1937 1.1 jklos */ 1938 1.1 jklos int 1939 1.1 jklos t3_offload_tx(struct toedev *tdev, struct mbuf *m) 1940 1.1 jklos { 1941 1.1 jklos adapter_t *adap = tdev2adap(tdev); 1942 1.1 jklos struct sge_qset *qs = &adap->sge.qs[queue_set(m)]; 1943 1.1 jklos 1944 1.1 jklos if (__predict_false(is_ctrl_pkt(m))) 1945 1.1 jklos return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], m); 1946 1.1 jklos 1947 1.1 jklos return ofld_xmit(adap, &qs->txq[TXQ_OFLD], m); 1948 1.1 jklos } 1949 1.1 jklos 1950 1.1 jklos static void 1951 1.1 jklos restart_tx(struct sge_qset *qs) 1952 1.1 jklos { 1953 1.1 jklos if (isset(&qs->txq_stopped, TXQ_OFLD) && 1954 1.1 jklos should_restart_tx(&qs->txq[TXQ_OFLD]) && 1955 1.1 jklos test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { 1956 1.1 jklos qs->txq[TXQ_OFLD].restarts++; 1957 1.1 jklos workqueue_enqueue(qs->txq[TXQ_OFLD].qresume_task.wq, &qs->txq[TXQ_OFLD].qresume_task.w, NULL); 1958 1.1 jklos } 1959 1.1 jklos if (isset(&qs->txq_stopped, TXQ_CTRL) && 1960 1.1 jklos should_restart_tx(&qs->txq[TXQ_CTRL]) && 1961 1.1 jklos test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { 1962 1.1 jklos qs->txq[TXQ_CTRL].restarts++; 1963 1.1 jklos workqueue_enqueue(qs->txq[TXQ_CTRL].qresume_task.wq, &qs->txq[TXQ_CTRL].qresume_task.w, NULL); 1964 1.1 jklos } 1965 1.1 jklos } 1966 1.1 jklos 1967 1.1 jklos /** 1968 1.1 jklos * t3_sge_alloc_qset - initialize an SGE queue set 1969 1.1 jklos * @sc: the controller softc 1970 1.1 jklos * @id: the queue set id 1971 1.1 jklos * @nports: how many Ethernet ports will be using this queue set 1972 1.1 jklos * @irq_vec_idx: the IRQ vector index for response queue interrupts 1973 1.1 jklos * @p: configuration parameters for this queue set 1974 1.1 jklos * @ntxq: number of Tx queues for the queue set 1975 1.1 jklos * @pi: port info for queue set 1976 1.1 jklos * 1977 1.1 jklos * Allocate resources and initialize an SGE queue set. A queue set 1978 1.1 jklos * comprises a response queue, two Rx free-buffer queues, and up to 3 1979 1.1 jklos * Tx queues. The Tx queues are assigned roles in the order Ethernet 1980 1.1 jklos * queue, offload queue, and control queue. 1981 1.1 jklos */ 1982 1.1 jklos int 1983 1.1 jklos t3_sge_alloc_qset(adapter_t *sc, u_int id, int nports, int irq_vec_idx, 1984 1.1 jklos const struct qset_params *p, int ntxq, struct port_info *pi) 1985 1.1 jklos { 1986 1.1 jklos struct sge_qset *q = &sc->sge.qs[id]; 1987 1.1 jklos int i, ret = 0; 1988 1.1 jklos 1989 1.1 jklos init_qset_cntxt(q, id); 1990 1.1 jklos 1991 1.1 jklos if ((ret = alloc_ring(sc, p->fl_size, sizeof(struct rx_desc), 1992 1.1 jklos sizeof(struct rx_sw_desc), &q->fl[0].phys_addr, 1993 1.1 jklos &q->fl[0].desc, &q->fl[0].sdesc, 1994 1.1 jklos &q->fl[0].desc_tag, &q->fl[0].desc_map, 1995 1.1 jklos sc->rx_dmat, &q->fl[0].entry_tag)) != 0) { 1996 1.1 jklos goto err; 1997 1.1 jklos } 1998 1.1 jklos 1999 1.1 jklos if ((ret = alloc_ring(sc, p->jumbo_size, sizeof(struct rx_desc), 2000 1.1 jklos sizeof(struct rx_sw_desc), &q->fl[1].phys_addr, 2001 1.1 jklos &q->fl[1].desc, &q->fl[1].sdesc, 2002 1.1 jklos &q->fl[1].desc_tag, &q->fl[1].desc_map, 2003 1.1 jklos sc->rx_jumbo_dmat, &q->fl[1].entry_tag)) != 0) { 2004 1.1 jklos goto err; 2005 1.1 jklos } 2006 1.1 jklos 2007 1.1 jklos if ((ret = alloc_ring(sc, p->rspq_size, sizeof(struct rsp_desc), 0, 2008 1.1 jklos &q->rspq.phys_addr, &q->rspq.desc, NULL, 2009 1.1 jklos &q->rspq.desc_tag, &q->rspq.desc_map, 2010 1.1 jklos NULL, NULL)) != 0) { 2011 1.1 jklos goto err; 2012 1.1 jklos } 2013 1.1 jklos 2014 1.1 jklos for (i = 0; i < ntxq; ++i) { 2015 1.1 jklos /* 2016 1.1 jklos * The control queue always uses immediate data so does not 2017 1.1 jklos * need to keep track of any mbufs. 2018 1.1 jklos * XXX Placeholder for future TOE support. 2019 1.1 jklos */ 2020 1.1 jklos size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); 2021 1.1 jklos 2022 1.1 jklos if ((ret = alloc_ring(sc, p->txq_size[i], 2023 1.1 jklos sizeof(struct tx_desc), sz, 2024 1.1 jklos &q->txq[i].phys_addr, &q->txq[i].desc, 2025 1.1 jklos &q->txq[i].sdesc, &q->txq[i].desc_tag, 2026 1.1 jklos &q->txq[i].desc_map, 2027 1.1 jklos sc->tx_dmat, &q->txq[i].entry_tag)) != 0) { 2028 1.1 jklos goto err; 2029 1.1 jklos } 2030 1.1 jklos mbufq_init(&q->txq[i].sendq); 2031 1.1 jklos q->txq[i].gen = 1; 2032 1.1 jklos q->txq[i].size = p->txq_size[i]; 2033 1.1 jklos snprintf(q->txq[i].lockbuf, TXQ_NAME_LEN, "t3 txq lock %d:%d:%d", 2034 1.1 jklos 0, irq_vec_idx, i); 2035 1.1 jklos MTX_INIT(&q->txq[i].lock, q->txq[i].lockbuf, NULL, MTX_DEF); 2036 1.1 jklos } 2037 1.1 jklos 2038 1.1 jklos q->txq[TXQ_ETH].port = pi; 2039 1.1 jklos 2040 1.1 jklos q->txq[TXQ_OFLD].qresume_task.name = "restart_offloadq"; 2041 1.1 jklos q->txq[TXQ_OFLD].qresume_task.func = restart_offloadq; 2042 1.1 jklos q->txq[TXQ_OFLD].qresume_task.context = q; 2043 1.1 jklos kthread_create(PRI_NONE, 0, NULL, cxgb_make_task, &q->txq[TXQ_OFLD].qresume_task, NULL, "cxgb_make_task"); 2044 1.1 jklos 2045 1.1 jklos q->txq[TXQ_CTRL].qresume_task.name = "restart_ctrlq"; 2046 1.1 jklos q->txq[TXQ_CTRL].qresume_task.func = restart_ctrlq; 2047 1.1 jklos q->txq[TXQ_CTRL].qresume_task.context = q; 2048 1.1 jklos kthread_create(PRI_NONE, 0, NULL, cxgb_make_task, &q->txq[TXQ_CTRL].qresume_task, NULL, "cxgb_make_task"); 2049 1.1 jklos 2050 1.1 jklos q->txq[TXQ_ETH].qreclaim_task.name = "sge_txq_reclaim_handler"; 2051 1.1 jklos q->txq[TXQ_ETH].qreclaim_task.func = sge_txq_reclaim_handler; 2052 1.1 jklos q->txq[TXQ_ETH].qreclaim_task.context = &q->txq[TXQ_ETH]; 2053 1.1 jklos kthread_create(PRI_NONE, 0, NULL, cxgb_make_task, &q->txq[TXQ_ETH].qreclaim_task, NULL, "cxgb_make_task"); 2054 1.1 jklos 2055 1.1 jklos q->txq[TXQ_OFLD].qreclaim_task.name = "sge_txq_reclaim_handler"; 2056 1.1 jklos q->txq[TXQ_OFLD].qreclaim_task.func = sge_txq_reclaim_handler; 2057 1.1 jklos q->txq[TXQ_OFLD].qreclaim_task.context = &q->txq[TXQ_OFLD]; 2058 1.1 jklos kthread_create(PRI_NONE, 0, NULL, cxgb_make_task, &q->txq[TXQ_OFLD].qreclaim_task, NULL, "cxgb_make_task"); 2059 1.1 jklos 2060 1.1 jklos q->fl[0].gen = q->fl[1].gen = 1; 2061 1.1 jklos q->fl[0].size = p->fl_size; 2062 1.1 jklos q->fl[1].size = p->jumbo_size; 2063 1.1 jklos 2064 1.1 jklos q->rspq.gen = 1; 2065 1.1 jklos q->rspq.cidx = 0; 2066 1.1 jklos q->rspq.size = p->rspq_size; 2067 1.1 jklos 2068 1.1 jklos q->txq[TXQ_ETH].stop_thres = nports * 2069 1.1 jklos flits_to_desc(sgl_len(TX_MAX_SEGS + 1) + 3); 2070 1.1 jklos 2071 1.1 jklos q->fl[0].buf_size = MCLBYTES; 2072 1.1 jklos q->fl[1].buf_size = MJUMPAGESIZE; 2073 1.1 jklos 2074 1.1 jklos q->lro.enabled = lro_default; 2075 1.1 jklos 2076 1.1 jklos mtx_lock(&sc->sge.reg_lock); 2077 1.1 jklos ret = -t3_sge_init_rspcntxt(sc, q->rspq.cntxt_id, irq_vec_idx, 2078 1.1 jklos q->rspq.phys_addr, q->rspq.size, 2079 1.1 jklos q->fl[0].buf_size, 1, 0); 2080 1.1 jklos if (ret) { 2081 1.1 jklos printf("error %d from t3_sge_init_rspcntxt\n", ret); 2082 1.1 jklos goto err_unlock; 2083 1.1 jklos } 2084 1.1 jklos 2085 1.1 jklos for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 2086 1.1 jklos ret = -t3_sge_init_flcntxt(sc, q->fl[i].cntxt_id, 0, 2087 1.1 jklos q->fl[i].phys_addr, q->fl[i].size, 2088 1.1 jklos q->fl[i].buf_size, p->cong_thres, 1, 2089 1.1 jklos 0); 2090 1.1 jklos if (ret) { 2091 1.1 jklos printf("error %d from t3_sge_init_flcntxt for index i=%d\n", ret, i); 2092 1.1 jklos goto err_unlock; 2093 1.1 jklos } 2094 1.1 jklos } 2095 1.1 jklos 2096 1.1 jklos ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_ETH].cntxt_id, USE_GTS, 2097 1.1 jklos SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, 2098 1.1 jklos q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 2099 1.1 jklos 1, 0); 2100 1.1 jklos if (ret) { 2101 1.1 jklos printf("error %d from t3_sge_init_ecntxt\n", ret); 2102 1.1 jklos goto err_unlock; 2103 1.1 jklos } 2104 1.1 jklos 2105 1.1 jklos if (ntxq > 1) { 2106 1.1 jklos ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_OFLD].cntxt_id, 2107 1.1 jklos USE_GTS, SGE_CNTXT_OFLD, id, 2108 1.1 jklos q->txq[TXQ_OFLD].phys_addr, 2109 1.1 jklos q->txq[TXQ_OFLD].size, 0, 1, 0); 2110 1.1 jklos if (ret) { 2111 1.1 jklos printf("error %d from t3_sge_init_ecntxt\n", ret); 2112 1.1 jklos goto err_unlock; 2113 1.1 jklos } 2114 1.1 jklos } 2115 1.1 jklos 2116 1.1 jklos if (ntxq > 2) { 2117 1.1 jklos ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_CTRL].cntxt_id, 0, 2118 1.1 jklos SGE_CNTXT_CTRL, id, 2119 1.1 jklos q->txq[TXQ_CTRL].phys_addr, 2120 1.1 jklos q->txq[TXQ_CTRL].size, 2121 1.1 jklos q->txq[TXQ_CTRL].token, 1, 0); 2122 1.1 jklos if (ret) { 2123 1.1 jklos printf("error %d from t3_sge_init_ecntxt\n", ret); 2124 1.1 jklos goto err_unlock; 2125 1.1 jklos } 2126 1.1 jklos } 2127 1.1 jklos 2128 1.1 jklos snprintf(q->rspq.lockbuf, RSPQ_NAME_LEN, "t3 rspq lock %d:%d", 2129 1.1 jklos 0, irq_vec_idx); 2130 1.1 jklos MTX_INIT(&q->rspq.lock, q->rspq.lockbuf, NULL, MTX_DEF); 2131 1.1 jklos 2132 1.1 jklos mtx_unlock(&sc->sge.reg_lock); 2133 1.1 jklos t3_update_qset_coalesce(q, p); 2134 1.1 jklos q->port = pi; 2135 1.1 jklos 2136 1.1 jklos refill_fl(sc, &q->fl[0], q->fl[0].size); 2137 1.1 jklos refill_fl(sc, &q->fl[1], q->fl[1].size); 2138 1.1 jklos refill_rspq(sc, &q->rspq, q->rspq.size - 1); 2139 1.1 jklos 2140 1.1 jklos t3_write_reg(sc, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | 2141 1.1 jklos V_NEWTIMER(q->rspq.holdoff_tmr)); 2142 1.1 jklos 2143 1.1 jklos return (0); 2144 1.1 jklos 2145 1.1 jklos err_unlock: 2146 1.1 jklos mtx_unlock(&sc->sge.reg_lock); 2147 1.1 jklos err: 2148 1.1 jklos t3_free_qset(sc, q); 2149 1.1 jklos 2150 1.1 jklos return (ret); 2151 1.1 jklos } 2152 1.1 jklos 2153 1.1 jklos void 2154 1.1 jklos t3_rx_eth(struct adapter *adap, struct sge_rspq *rq, struct mbuf *m, int ethpad) 2155 1.1 jklos { 2156 1.1 jklos struct cpl_rx_pkt *cpl = (struct cpl_rx_pkt *)(mtod(m, uint8_t *) + ethpad); 2157 1.1 jklos struct port_info *pi = &adap->port[adap->rxpkt_map[cpl->iff]]; 2158 1.1 jklos struct ifnet *ifp = pi->ifp; 2159 1.1 jklos 2160 1.1 jklos DPRINTF("rx_eth m=%p m->m_data=%p p->iff=%d\n", m, mtod(m, uint8_t *), cpl->iff); 2161 1.1 jklos 2162 1.1 jklos /* 2163 1.1 jklos * XXX need to add VLAN support for 6.x 2164 1.1 jklos */ 2165 1.1 jklos #ifdef VLAN_SUPPORTED 2166 1.5 knakahar if (cpl->vlan_valid) { 2167 1.5 knakahar vlan_set_tag(ntohs(cpl->vlan)); 2168 1.1 jklos } 2169 1.1 jklos #endif 2170 1.1 jklos 2171 1.4 ozaki m_set_rcvif(m, ifp); 2172 1.1 jklos m_explode(m); 2173 1.1 jklos /* 2174 1.1 jklos * adjust after conversion to mbuf chain 2175 1.1 jklos */ 2176 1.1 jklos m_adj(m, sizeof(*cpl) + ethpad); 2177 1.1 jklos 2178 1.3 ozaki if_percpuq_enqueue(ifp->if_percpuq, m); 2179 1.1 jklos } 2180 1.1 jklos 2181 1.1 jklos /** 2182 1.1 jklos * get_packet - return the next ingress packet buffer from a free list 2183 1.1 jklos * @adap: the adapter that received the packet 2184 1.1 jklos * @drop_thres: # of remaining buffers before we start dropping packets 2185 1.1 jklos * @qs: the qset that the SGE free list holding the packet belongs to 2186 1.1 jklos * @mh: the mbuf header, contains a pointer to the head and tail of the mbuf chain 2187 1.1 jklos * @r: response descriptor 2188 1.1 jklos * 2189 1.1 jklos * Get the next packet from a free list and complete setup of the 2190 1.1 jklos * sk_buff. If the packet is small we make a copy and recycle the 2191 1.1 jklos * original buffer, otherwise we use the original buffer itself. If a 2192 1.1 jklos * positive drop threshold is supplied packets are dropped and their 2193 1.1 jklos * buffers recycled if (a) the number of remaining buffers is under the 2194 1.1 jklos * threshold and the packet is too big to copy, or (b) the packet should 2195 1.1 jklos * be copied but there is no memory for the copy. 2196 1.1 jklos */ 2197 1.1 jklos #ifdef DISABLE_MBUF_IOVEC 2198 1.1 jklos 2199 1.1 jklos static int 2200 1.1 jklos get_packet(adapter_t *adap, unsigned int drop_thres, struct sge_qset *qs, 2201 1.1 jklos struct t3_mbuf_hdr *mh, struct rsp_desc *r, struct mbuf *m) 2202 1.1 jklos { 2203 1.1 jklos 2204 1.1 jklos unsigned int len_cq = ntohl(r->len_cq); 2205 1.1 jklos struct sge_fl *fl = (len_cq & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2206 1.1 jklos struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2207 1.1 jklos uint32_t len = G_RSPD_LEN(len_cq); 2208 1.1 jklos uint32_t flags = ntohl(r->flags); 2209 1.1 jklos uint8_t sopeop = G_RSPD_SOP_EOP(flags); 2210 1.1 jklos int ret = 0; 2211 1.1 jklos 2212 1.1 jklos prefetch(sd->cl); 2213 1.1 jklos 2214 1.1 jklos fl->credits--; 2215 1.1 jklos bus_dmamap_sync(fl->entry_tag, sd->map, 0, len, BUS_DMASYNC_POSTREAD); 2216 1.1 jklos bus_dmamap_unload(fl->entry_tag, sd->map); 2217 1.1 jklos 2218 1.1 jklos m->m_len = len; 2219 1.1 jklos m_cljset(m, sd->cl, fl->type); 2220 1.1 jklos 2221 1.1 jklos switch(sopeop) { 2222 1.1 jklos case RSPQ_SOP_EOP: 2223 1.1 jklos DBG(DBG_RX, ("get_packet: SOP-EOP m %p\n", m)); 2224 1.1 jklos mh->mh_head = mh->mh_tail = m; 2225 1.1 jklos m->m_pkthdr.len = len; 2226 1.1 jklos m->m_flags |= M_PKTHDR; 2227 1.1 jklos ret = 1; 2228 1.1 jklos break; 2229 1.1 jklos case RSPQ_NSOP_NEOP: 2230 1.1 jklos DBG(DBG_RX, ("get_packet: NO_SOP-NO_EOP m %p\n", m)); 2231 1.1 jklos m->m_flags &= ~M_PKTHDR; 2232 1.1 jklos if (mh->mh_tail == NULL) { 2233 1.1 jklos if (cxgb_debug) 2234 1.1 jklos printf("discarding intermediate descriptor entry\n"); 2235 1.1 jklos m_freem(m); 2236 1.1 jklos break; 2237 1.1 jklos } 2238 1.1 jklos mh->mh_tail->m_next = m; 2239 1.1 jklos mh->mh_tail = m; 2240 1.1 jklos mh->mh_head->m_pkthdr.len += len; 2241 1.1 jklos ret = 0; 2242 1.1 jklos break; 2243 1.1 jklos case RSPQ_SOP: 2244 1.1 jklos DBG(DBG_RX, ("get_packet: SOP m %p\n", m)); 2245 1.1 jklos m->m_pkthdr.len = len; 2246 1.1 jklos mh->mh_head = mh->mh_tail = m; 2247 1.1 jklos m->m_flags |= M_PKTHDR; 2248 1.1 jklos ret = 0; 2249 1.1 jklos break; 2250 1.1 jklos case RSPQ_EOP: 2251 1.1 jklos DBG(DBG_RX, ("get_packet: EOP m %p\n", m)); 2252 1.1 jklos m->m_flags &= ~M_PKTHDR; 2253 1.1 jklos mh->mh_head->m_pkthdr.len += len; 2254 1.1 jklos mh->mh_tail->m_next = m; 2255 1.1 jklos mh->mh_tail = m; 2256 1.1 jklos ret = 1; 2257 1.1 jklos break; 2258 1.1 jklos } 2259 1.1 jklos if (++fl->cidx == fl->size) 2260 1.1 jklos fl->cidx = 0; 2261 1.1 jklos 2262 1.1 jklos return (ret); 2263 1.1 jklos } 2264 1.1 jklos 2265 1.1 jklos #else 2266 1.1 jklos static int 2267 1.1 jklos get_packet(adapter_t *adap, unsigned int drop_thres, struct sge_qset *qs, 2268 1.1 jklos struct mbuf *m, struct rsp_desc *r) 2269 1.1 jklos { 2270 1.1 jklos 2271 1.1 jklos unsigned int len_cq = ntohl(r->len_cq); 2272 1.1 jklos struct sge_fl *fl = (len_cq & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2273 1.1 jklos struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2274 1.1 jklos uint32_t len = G_RSPD_LEN(len_cq); 2275 1.1 jklos uint32_t flags = ntohl(r->flags); 2276 1.1 jklos uint8_t sopeop = G_RSPD_SOP_EOP(flags); 2277 1.1 jklos void *cl; 2278 1.1 jklos int ret = 0; 2279 1.1 jklos 2280 1.1 jklos prefetch(sd->cl); 2281 1.1 jklos 2282 1.1 jklos fl->credits--; 2283 1.1 jklos bus_dmamap_sync(fl->entry_tag, sd->map, 0, len, BUS_DMASYNC_POSTREAD); 2284 1.1 jklos 2285 1.1 jklos if (recycle_enable && len <= SGE_RX_COPY_THRES && sopeop == RSPQ_SOP_EOP) { 2286 1.1 jklos cl = mtod(m, void *); 2287 1.1 jklos memcpy(cl, sd->cl, len); 2288 1.1 jklos recycle_rx_buf(adap, fl, fl->cidx); 2289 1.1 jklos } else { 2290 1.1 jklos cl = sd->cl; 2291 1.1 jklos bus_dmamap_unload(fl->entry_tag, sd->map); 2292 1.1 jklos } 2293 1.1 jklos switch(sopeop) { 2294 1.1 jklos case RSPQ_SOP_EOP: 2295 1.1 jklos DBG(DBG_RX, ("get_packet: SOP-EOP m %p\n", m)); 2296 1.1 jklos m->m_len = m->m_pkthdr.len = len; 2297 1.1 jklos if (cl == sd->cl) 2298 1.1 jklos m_cljset(m, cl, fl->type); 2299 1.1 jklos ret = 1; 2300 1.1 jklos goto done; 2301 1.1 jklos break; 2302 1.1 jklos case RSPQ_NSOP_NEOP: 2303 1.1 jklos DBG(DBG_RX, ("get_packet: NO_SOP-NO_EOP m %p\n", m)); 2304 1.1 jklos ret = 0; 2305 1.1 jklos break; 2306 1.1 jklos case RSPQ_SOP: 2307 1.1 jklos DBG(DBG_RX, ("get_packet: SOP m %p\n", m)); 2308 1.1 jklos m_iovinit(m); 2309 1.1 jklos ret = 0; 2310 1.1 jklos break; 2311 1.1 jklos case RSPQ_EOP: 2312 1.1 jklos DBG(DBG_RX, ("get_packet: EOP m %p\n", m)); 2313 1.1 jklos ret = 1; 2314 1.1 jklos break; 2315 1.1 jklos } 2316 1.1 jklos m_iovappend(m, cl, fl->buf_size, len, 0); 2317 1.1 jklos 2318 1.1 jklos done: 2319 1.1 jklos if (++fl->cidx == fl->size) 2320 1.1 jklos fl->cidx = 0; 2321 1.1 jklos 2322 1.1 jklos return (ret); 2323 1.1 jklos } 2324 1.1 jklos #endif 2325 1.1 jklos /** 2326 1.1 jklos * handle_rsp_cntrl_info - handles control information in a response 2327 1.1 jklos * @qs: the queue set corresponding to the response 2328 1.1 jklos * @flags: the response control flags 2329 1.1 jklos * 2330 1.1 jklos * Handles the control information of an SGE response, such as GTS 2331 1.1 jklos * indications and completion credits for the queue set's Tx queues. 2332 1.1 jklos * HW coalesces credits, we don't do any extra SW coalescing. 2333 1.1 jklos */ 2334 1.1 jklos static __inline void 2335 1.1 jklos handle_rsp_cntrl_info(struct sge_qset *qs, uint32_t flags) 2336 1.1 jklos { 2337 1.1 jklos unsigned int credits; 2338 1.1 jklos 2339 1.1 jklos #if USE_GTS 2340 1.1 jklos if (flags & F_RSPD_TXQ0_GTS) 2341 1.1 jklos clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); 2342 1.1 jklos #endif 2343 1.1 jklos credits = G_RSPD_TXQ0_CR(flags); 2344 1.1 jklos if (credits) { 2345 1.1 jklos qs->txq[TXQ_ETH].processed += credits; 2346 1.1 jklos if (desc_reclaimable(&qs->txq[TXQ_ETH]) > TX_START_MAX_DESC) 2347 1.1 jklos workqueue_enqueue(qs->port->timer_reclaim_task.wq, 2348 1.1 jklos &qs->port->timer_reclaim_task.w, NULL); 2349 1.1 jklos } 2350 1.1 jklos 2351 1.1 jklos credits = G_RSPD_TXQ2_CR(flags); 2352 1.1 jklos if (credits) 2353 1.1 jklos qs->txq[TXQ_CTRL].processed += credits; 2354 1.1 jklos 2355 1.1 jklos # if USE_GTS 2356 1.1 jklos if (flags & F_RSPD_TXQ1_GTS) 2357 1.1 jklos clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); 2358 1.1 jklos # endif 2359 1.1 jklos credits = G_RSPD_TXQ1_CR(flags); 2360 1.1 jklos if (credits) 2361 1.1 jklos qs->txq[TXQ_OFLD].processed += credits; 2362 1.1 jklos } 2363 1.1 jklos 2364 1.1 jklos static void 2365 1.1 jklos check_ring_db(adapter_t *adap, struct sge_qset *qs, 2366 1.1 jklos unsigned int sleeping) 2367 1.1 jklos { 2368 1.1 jklos ; 2369 1.1 jklos } 2370 1.1 jklos 2371 1.1 jklos /** 2372 1.1 jklos * process_responses - process responses from an SGE response queue 2373 1.1 jklos * @adap: the adapter 2374 1.1 jklos * @qs: the queue set to which the response queue belongs 2375 1.1 jklos * @budget: how many responses can be processed in this round 2376 1.1 jklos * 2377 1.1 jklos * Process responses from an SGE response queue up to the supplied budget. 2378 1.1 jklos * Responses include received packets as well as credits and other events 2379 1.1 jklos * for the queues that belong to the response queue's queue set. 2380 1.1 jklos * A negative budget is effectively unlimited. 2381 1.1 jklos * 2382 1.1 jklos * Additionally choose the interrupt holdoff time for the next interrupt 2383 1.1 jklos * on this queue. If the system is under memory shortage use a fairly 2384 1.1 jklos * long delay to help recovery. 2385 1.1 jklos */ 2386 1.1 jklos static int 2387 1.1 jklos process_responses(adapter_t *adap, struct sge_qset *qs, int budget) 2388 1.1 jklos { 2389 1.1 jklos struct sge_rspq *rspq = &qs->rspq; 2390 1.1 jklos struct rsp_desc *r = &rspq->desc[rspq->cidx]; 2391 1.1 jklos int budget_left = budget; 2392 1.1 jklos unsigned int sleeping = 0; 2393 1.1 jklos int lro = qs->lro.enabled; 2394 1.1 jklos #ifdef DEBUG 2395 1.1 jklos static int last_holdoff = 0; 2396 1.1 jklos if (cxgb_debug && rspq->holdoff_tmr != last_holdoff) { 2397 1.1 jklos printf("next_holdoff=%d\n", rspq->holdoff_tmr); 2398 1.1 jklos last_holdoff = rspq->holdoff_tmr; 2399 1.1 jklos } 2400 1.1 jklos #endif 2401 1.1 jklos rspq->next_holdoff = rspq->holdoff_tmr; 2402 1.1 jklos 2403 1.1 jklos while (__predict_true(budget_left && is_new_response(r, rspq))) { 2404 1.1 jklos int eth, eop = 0, ethpad = 0; 2405 1.1 jklos uint32_t flags = ntohl(r->flags); 2406 1.1 jklos uint32_t rss_csum = *(const uint32_t *)r; 2407 1.1 jklos uint32_t rss_hash = r->rss_hdr.rss_hash_val; 2408 1.1 jklos 2409 1.1 jklos eth = (r->rss_hdr.opcode == CPL_RX_PKT); 2410 1.1 jklos 2411 1.1 jklos if (__predict_false(flags & F_RSPD_ASYNC_NOTIF)) { 2412 1.1 jklos /* XXX */ 2413 1.1 jklos } else if (flags & F_RSPD_IMM_DATA_VALID) { 2414 1.1 jklos #ifdef DISABLE_MBUF_IOVEC 2415 1.1 jklos if (cxgb_debug) 2416 1.1 jklos printf("IMM DATA VALID opcode=0x%x rspq->cidx=%d\n", r->rss_hdr.opcode, rspq->cidx); 2417 1.1 jklos 2418 1.1 jklos if(get_imm_packet(adap, r, &rspq->rspq_mh) == 0) { 2419 1.1 jklos rspq->next_holdoff = NOMEM_INTR_DELAY; 2420 1.1 jklos budget_left--; 2421 1.1 jklos break; 2422 1.1 jklos } else { 2423 1.1 jklos eop = 1; 2424 1.1 jklos } 2425 1.1 jklos #else 2426 1.1 jklos struct mbuf *m = NULL; 2427 1.1 jklos 2428 1.1 jklos if (rspq->rspq_mbuf == NULL) 2429 1.1 jklos rspq->rspq_mbuf = m_gethdr(M_DONTWAIT, MT_DATA); 2430 1.1 jklos else 2431 1.1 jklos m = m_gethdr(M_DONTWAIT, MT_DATA); 2432 1.1 jklos 2433 1.1 jklos /* 2434 1.1 jklos * XXX revisit me 2435 1.1 jklos */ 2436 1.1 jklos if (rspq->rspq_mbuf == NULL && m == NULL) { 2437 1.1 jklos rspq->next_holdoff = NOMEM_INTR_DELAY; 2438 1.1 jklos budget_left--; 2439 1.1 jklos break; 2440 1.1 jklos } 2441 1.1 jklos if (get_imm_packet(adap, r, rspq->rspq_mbuf, m, flags)) 2442 1.1 jklos goto skip; 2443 1.1 jklos eop = 1; 2444 1.1 jklos #endif 2445 1.1 jklos rspq->imm_data++; 2446 1.1 jklos } else if (r->len_cq) { 2447 1.1 jklos int drop_thresh = eth ? SGE_RX_DROP_THRES : 0; 2448 1.1 jklos 2449 1.1 jklos #ifdef DISABLE_MBUF_IOVEC 2450 1.1 jklos struct mbuf *m; 2451 1.1 jklos m = m_gethdr(M_NOWAIT, MT_DATA); 2452 1.1 jklos 2453 1.1 jklos if (m == NULL) { 2454 1.1 jklos log(LOG_WARNING, "failed to get mbuf for packet\n"); 2455 1.1 jklos break; 2456 1.1 jklos } 2457 1.1 jklos 2458 1.1 jklos eop = get_packet(adap, drop_thresh, qs, &rspq->rspq_mh, r, m); 2459 1.1 jklos #else 2460 1.1 jklos if (rspq->rspq_mbuf == NULL) 2461 1.1 jklos rspq->rspq_mbuf = m_gethdr(M_DONTWAIT, MT_DATA); 2462 1.1 jklos if (rspq->rspq_mbuf == NULL) { 2463 1.1 jklos log(LOG_WARNING, "failed to get mbuf for packet\n"); 2464 1.1 jklos break; 2465 1.1 jklos } 2466 1.1 jklos eop = get_packet(adap, drop_thresh, qs, rspq->rspq_mbuf, r); 2467 1.1 jklos #endif 2468 1.1 jklos ethpad = 2; 2469 1.1 jklos } else { 2470 1.1 jklos DPRINTF("pure response\n"); 2471 1.1 jklos rspq->pure_rsps++; 2472 1.1 jklos } 2473 1.1 jklos 2474 1.1 jklos if (flags & RSPD_CTRL_MASK) { 2475 1.1 jklos sleeping |= flags & RSPD_GTS_MASK; 2476 1.1 jklos handle_rsp_cntrl_info(qs, flags); 2477 1.1 jklos } 2478 1.1 jklos #ifndef DISABLE_MBUF_IOVEC 2479 1.1 jklos skip: 2480 1.1 jklos #endif 2481 1.1 jklos r++; 2482 1.1 jklos if (__predict_false(++rspq->cidx == rspq->size)) { 2483 1.1 jklos rspq->cidx = 0; 2484 1.1 jklos rspq->gen ^= 1; 2485 1.1 jklos r = rspq->desc; 2486 1.1 jklos } 2487 1.1 jklos 2488 1.1 jklos prefetch(r); 2489 1.1 jklos if (++rspq->credits >= (rspq->size / 4)) { 2490 1.1 jklos refill_rspq(adap, rspq, rspq->credits); 2491 1.1 jklos rspq->credits = 0; 2492 1.1 jklos } 2493 1.1 jklos 2494 1.1 jklos if (eop) { 2495 1.1 jklos prefetch(mtod(rspq->rspq_mh.mh_head, uint8_t *)); 2496 1.1 jklos prefetch(mtod(rspq->rspq_mh.mh_head, uint8_t *) + L1_CACHE_BYTES); 2497 1.1 jklos 2498 1.1 jklos if (eth) { 2499 1.1 jklos t3_rx_eth_lro(adap, rspq, rspq->rspq_mh.mh_head, ethpad, 2500 1.1 jklos rss_hash, rss_csum, lro); 2501 1.1 jklos 2502 1.1 jklos rspq->rspq_mh.mh_head = NULL; 2503 1.1 jklos } else { 2504 1.1 jklos rspq->rspq_mh.mh_head->m_pkthdr.csum_data = rss_csum; 2505 1.1 jklos /* 2506 1.1 jklos * XXX size mismatch 2507 1.1 jklos */ 2508 1.1 jklos m_set_priority(rspq->rspq_mh.mh_head, rss_hash); 2509 1.1 jklos } 2510 1.1 jklos __refill_fl(adap, &qs->fl[0]); 2511 1.1 jklos __refill_fl(adap, &qs->fl[1]); 2512 1.1 jklos 2513 1.1 jklos } 2514 1.1 jklos --budget_left; 2515 1.1 jklos } 2516 1.1 jklos 2517 1.1 jklos t3_lro_flush(adap, qs, &qs->lro); 2518 1.1 jklos 2519 1.1 jklos if (sleeping) 2520 1.1 jklos check_ring_db(adap, qs, sleeping); 2521 1.1 jklos 2522 1.1 jklos smp_mb(); /* commit Tx queue processed updates */ 2523 1.1 jklos if (__predict_false(qs->txq_stopped != 0)) 2524 1.1 jklos restart_tx(qs); 2525 1.1 jklos 2526 1.1 jklos budget -= budget_left; 2527 1.1 jklos return (budget); 2528 1.1 jklos } 2529 1.1 jklos 2530 1.1 jklos /* 2531 1.1 jklos * A helper function that processes responses and issues GTS. 2532 1.1 jklos */ 2533 1.1 jklos static __inline int 2534 1.1 jklos process_responses_gts(adapter_t *adap, struct sge_rspq *rq) 2535 1.1 jklos { 2536 1.1 jklos int work; 2537 1.1 jklos static int last_holdoff = 0; 2538 1.1 jklos 2539 1.1 jklos work = process_responses(adap, rspq_to_qset(rq), -1); 2540 1.1 jklos 2541 1.1 jklos if (cxgb_debug && (rq->next_holdoff != last_holdoff)) { 2542 1.1 jklos printf("next_holdoff=%d\n", rq->next_holdoff); 2543 1.1 jklos last_holdoff = rq->next_holdoff; 2544 1.1 jklos } 2545 1.1 jklos if (work) 2546 1.1 jklos t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | 2547 1.1 jklos V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); 2548 1.1 jklos return work; 2549 1.1 jklos } 2550 1.1 jklos 2551 1.1 jklos 2552 1.1 jklos /* 2553 1.1 jklos * Interrupt handler for legacy INTx interrupts for T3B-based cards. 2554 1.1 jklos * Handles data events from SGE response queues as well as error and other 2555 1.1 jklos * async events as they all use the same interrupt pin. We use one SGE 2556 1.1 jklos * response queue per port in this mode and protect all response queues with 2557 1.1 jklos * queue 0's lock. 2558 1.1 jklos */ 2559 1.1 jklos int 2560 1.1 jklos t3b_intr(void *data) 2561 1.1 jklos { 2562 1.1 jklos uint32_t i, map; 2563 1.1 jklos adapter_t *adap = data; 2564 1.1 jklos struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2565 1.1 jklos 2566 1.1 jklos t3_write_reg(adap, A_PL_CLI, 0); 2567 1.1 jklos map = t3_read_reg(adap, A_SG_DATA_INTR); 2568 1.1 jklos 2569 1.1 jklos if (!map) 2570 1.1 jklos return (FALSE); 2571 1.1 jklos 2572 1.1 jklos if (__predict_false(map & F_ERRINTR)) 2573 1.1 jklos workqueue_enqueue(adap->slow_intr_task.wq, &adap->slow_intr_task.w, NULL); 2574 1.1 jklos 2575 1.1 jklos mtx_lock(&q0->lock); 2576 1.1 jklos for_each_port(adap, i) 2577 1.1 jklos if (map & (1 << i)) 2578 1.1 jklos process_responses_gts(adap, &adap->sge.qs[i].rspq); 2579 1.1 jklos mtx_unlock(&q0->lock); 2580 1.1 jklos 2581 1.1 jklos return (TRUE); 2582 1.1 jklos } 2583 1.1 jklos 2584 1.1 jklos /* 2585 1.1 jklos * The MSI interrupt handler. This needs to handle data events from SGE 2586 1.1 jklos * response queues as well as error and other async events as they all use 2587 1.1 jklos * the same MSI vector. We use one SGE response queue per port in this mode 2588 1.1 jklos * and protect all response queues with queue 0's lock. 2589 1.1 jklos */ 2590 1.1 jklos int 2591 1.1 jklos t3_intr_msi(void *data) 2592 1.1 jklos { 2593 1.1 jklos adapter_t *adap = data; 2594 1.1 jklos struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2595 1.1 jklos int i, new_packets = 0; 2596 1.1 jklos 2597 1.1 jklos mtx_lock(&q0->lock); 2598 1.1 jklos 2599 1.1 jklos for_each_port(adap, i) 2600 1.1 jklos if (process_responses_gts(adap, &adap->sge.qs[i].rspq)) 2601 1.1 jklos new_packets = 1; 2602 1.1 jklos mtx_unlock(&q0->lock); 2603 1.1 jklos if (new_packets == 0) 2604 1.1 jklos workqueue_enqueue(adap->slow_intr_task.wq, &adap->slow_intr_task.w, NULL); 2605 1.1 jklos 2606 1.1 jklos return (TRUE); 2607 1.1 jklos } 2608 1.1 jklos 2609 1.1 jklos int 2610 1.1 jklos t3_intr_msix(void *data) 2611 1.1 jklos { 2612 1.1 jklos struct sge_qset *qs = data; 2613 1.1 jklos adapter_t *adap = qs->port->adapter; 2614 1.1 jklos struct sge_rspq *rspq = &qs->rspq; 2615 1.1 jklos 2616 1.1 jklos mtx_lock(&rspq->lock); 2617 1.1 jklos if (process_responses_gts(adap, rspq) == 0) 2618 1.1 jklos rspq->unhandled_irqs++; 2619 1.1 jklos mtx_unlock(&rspq->lock); 2620 1.1 jklos 2621 1.1 jklos return (TRUE); 2622 1.1 jklos } 2623 1.1 jklos 2624 1.1 jklos /** 2625 1.1 jklos * t3_get_desc - dump an SGE descriptor for debugging purposes 2626 1.1 jklos * @qs: the queue set 2627 1.1 jklos * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx) 2628 1.1 jklos * @idx: the descriptor index in the queue 2629 1.1 jklos * @data: where to dump the descriptor contents 2630 1.1 jklos * 2631 1.1 jklos * Dumps the contents of a HW descriptor of an SGE queue. Returns the 2632 1.1 jklos * size of the descriptor. 2633 1.1 jklos */ 2634 1.1 jklos int 2635 1.1 jklos t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx, 2636 1.1 jklos unsigned char *data) 2637 1.1 jklos { 2638 1.1 jklos if (qnum >= 6) 2639 1.1 jklos return (EINVAL); 2640 1.1 jklos 2641 1.1 jklos if (qnum < 3) { 2642 1.1 jklos if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size) 2643 1.1 jklos return -EINVAL; 2644 1.1 jklos memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc)); 2645 1.1 jklos return sizeof(struct tx_desc); 2646 1.1 jklos } 2647 1.1 jklos 2648 1.1 jklos if (qnum == 3) { 2649 1.1 jklos if (!qs->rspq.desc || idx >= qs->rspq.size) 2650 1.1 jklos return (EINVAL); 2651 1.1 jklos memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc)); 2652 1.1 jklos return sizeof(struct rsp_desc); 2653 1.1 jklos } 2654 1.1 jklos 2655 1.1 jklos qnum -= 4; 2656 1.1 jklos if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size) 2657 1.1 jklos return (EINVAL); 2658 1.1 jklos memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc)); 2659 1.1 jklos return sizeof(struct rx_desc); 2660 1.1 jklos } 2661