cz.c revision 1.11 1 /* $NetBSD: cz.c,v 1.11 2000/11/02 00:01:45 eeh Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Zembu Labs, Inc.
5 * All rights reserved.
6 *
7 * Authors: Jason R. Thorpe <thorpej (at) zembu.com>
8 * Bill Studenmund <wrstuden (at) zembu.com>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Zembu Labs, Inc.
21 * 4. Neither the name of Zembu Labs nor the names of its employees may
22 * be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39 *
40 * Some notes:
41 *
42 * - The Cyclades-Z has fully automatic hardware (and software!)
43 * flow control. We only utilize RTS/CTS flow control here,
44 * and it is implemented in a very simplistic manner. This
45 * may be an area of future work.
46 *
47 * - The PLX can map the either the board's RAM or host RAM
48 * into the MIPS's memory window. This would enable us to
49 * use less expensive (for us) memory reads/writes to host
50 * RAM, rather than time-consuming reads/writes to PCI
51 * memory space. However, the PLX can only map a 0-128M
52 * window, so we would have to ensure that the DMA address
53 * of the host RAM fits there. This is kind of a pain,
54 * so we just don't bother right now.
55 *
56 * - In a perfect world, we would use the autoconfiguration
57 * mechanism to attach the TTYs that we find. However,
58 * that leads to somewhat icky looking autoconfiguration
59 * messages (one for every TTY, up to 64 per board!). So
60 * we don't do it that way, but assign minors as if there
61 * were the max of 64 ports per board.
62 *
63 * - We don't bother with PPS support here. There are so many
64 * ports, each with a large amount of buffer space, that the
65 * normal mode of operation is to poll the boards regularly
66 * (generally, every 20ms or so). This makes this driver
67 * unsuitable for PPS, as the latency will be generally too
68 * high.
69 */
70 /*
71 * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72 * for FreeBSD 3.2.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/tty.h>
81 #include <sys/conf.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/fcntl.h>
85 #include <sys/syslog.h>
86
87 #include <sys/callout.h>
88
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/czreg.h>
93
94 #include <dev/pci/plx9060reg.h>
95 #include <dev/pci/plx9060var.h>
96
97 #include <dev/microcode/cyclades-z/cyzfirm.h>
98
99 #define CZ_DRIVER_VERSION 0x20000411
100
101 #define CZ_POLL_MS 20
102
103 /* These are the interrupts we always use. */
104 #define CZ_INTERRUPTS \
105 (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
106 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
107 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
108 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
109
110 /*
111 * cztty_softc:
112 *
113 * Per-channel (TTY) state.
114 */
115 struct cztty_softc {
116 struct cz_softc *sc_parent;
117 struct tty *sc_tty;
118
119 struct callout sc_diag_ch;
120
121 int sc_channel; /* Also used to flag unattached chan */
122 #define CZTTY_CHANNEL_DEAD -1
123
124 bus_space_tag_t sc_chan_st; /* channel space tag */
125 bus_space_handle_t sc_chan_sh; /* channel space handle */
126 bus_space_handle_t sc_buf_sh; /* buffer space handle */
127
128 u_int sc_overflows,
129 sc_parity_errors,
130 sc_framing_errors,
131 sc_errors;
132
133 int sc_swflags;
134
135 u_int32_t sc_rs_control_dtr,
136 sc_chanctl_hw_flow,
137 sc_chanctl_comm_baud,
138 sc_chanctl_rs_control,
139 sc_chanctl_comm_data_l,
140 sc_chanctl_comm_parity;
141 };
142
143 /*
144 * cz_softc:
145 *
146 * Per-board state.
147 */
148 struct cz_softc {
149 struct device cz_dev; /* generic device info */
150 struct plx9060_config cz_plx; /* PLX 9060 config info */
151 bus_space_tag_t cz_win_st; /* window space tag */
152 bus_space_handle_t cz_win_sh; /* window space handle */
153 struct callout cz_callout; /* callout for polling-mode */
154
155 void *cz_ih; /* interrupt handle */
156
157 u_int32_t cz_mailbox0; /* our MAILBOX0 value */
158 int cz_nchannels; /* number of channels */
159 int cz_nopenchan; /* number of open channels */
160 struct cztty_softc *cz_ports; /* our array of ports */
161
162 bus_addr_t cz_fwctl; /* offset of firmware control */
163 };
164
165 int cz_match(struct device *, struct cfdata *, void *);
166 void cz_attach(struct device *, struct device *, void *);
167 int cz_wait_pci_doorbell(struct cz_softc *, const char *);
168
169 struct cfattach cz_ca = {
170 sizeof(struct cz_softc), cz_match, cz_attach
171 };
172
173 void cz_reset_board(struct cz_softc *);
174 int cz_load_firmware(struct cz_softc *);
175
176 int cz_intr(void *);
177 void cz_poll(void *);
178 int cztty_transmit(struct cztty_softc *, struct tty *);
179 int cztty_receive(struct cztty_softc *, struct tty *);
180
181 struct cztty_softc * cztty_getttysoftc(dev_t dev);
182 int cztty_findmajor(void);
183 int cztty_major;
184 int cztty_attached_ttys;
185 int cz_timeout_ticks;
186
187 cdev_decl(cztty);
188
189 void czttystart(struct tty *tp);
190 int czttyparam(struct tty *tp, struct termios *t);
191 void cztty_shutdown(struct cztty_softc *sc);
192 void cztty_modem(struct cztty_softc *sc, int onoff);
193 void cztty_break(struct cztty_softc *sc, int onoff);
194 void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
195 int cztty_to_tiocm(struct cztty_softc *sc);
196 void cztty_diag(void *arg);
197
198 extern struct cfdriver cz_cd;
199
200 /* Macros to clear/set/test flags. */
201 #define SET(t, f) (t) |= (f)
202 #define CLR(t, f) (t) &= ~(f)
203 #define ISSET(t, f) ((t) & (f))
204
205 /*
206 * Macros to read and write the PLX.
207 */
208 #define CZ_PLX_READ(cz, reg) \
209 bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
210 #define CZ_PLX_WRITE(cz, reg, val) \
211 bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
212 (reg), (val))
213
214 /*
215 * Macros to read and write the FPGA. We must already be in the FPGA
216 * window for this.
217 */
218 #define CZ_FPGA_READ(cz, reg) \
219 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
220 #define CZ_FPGA_WRITE(cz, reg, val) \
221 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
222
223 /*
224 * Macros to read and write the firmware control structures in board RAM.
225 */
226 #define CZ_FWCTL_READ(cz, off) \
227 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
228 (cz)->cz_fwctl + (off))
229
230 #define CZ_FWCTL_WRITE(cz, off, val) \
231 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
232 (cz)->cz_fwctl + (off), (val))
233
234 /*
235 * Convenience macros for cztty routines. PLX window MUST be to RAM.
236 */
237 #define CZTTY_CHAN_READ(sc, off) \
238 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
239
240 #define CZTTY_CHAN_WRITE(sc, off, val) \
241 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
242 (off), (val))
243
244 #define CZTTY_BUF_READ(sc, off) \
245 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
246
247 #define CZTTY_BUF_WRITE(sc, off, val) \
248 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
249 (off), (val))
250
251 /*
252 * Convenience macros.
253 */
254 #define CZ_WIN_RAM(cz) \
255 do { \
256 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
257 delay(100); \
258 } while (0)
259
260 #define CZ_WIN_FPGA(cz) \
261 do { \
262 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
263 delay(100); \
264 } while (0)
265
266 /*****************************************************************************
267 * Cyclades-Z controller code starts here...
268 *****************************************************************************/
269
270 /*
271 * cz_match:
272 *
273 * Determine if the given PCI device is a Cyclades-Z board.
274 */
275 int
276 cz_match(struct device *parent,
277 struct cfdata *match,
278 void *aux)
279 {
280 struct pci_attach_args *pa = aux;
281
282 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
283 switch (PCI_PRODUCT(pa->pa_id)) {
284 case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
285 return (1);
286 }
287 }
288
289 return (0);
290 }
291
292 /*
293 * cz_attach:
294 *
295 * A Cyclades-Z board was found; attach it.
296 */
297 void
298 cz_attach(struct device *parent,
299 struct device *self,
300 void *aux)
301 {
302 struct cz_softc *cz = (void *) self;
303 struct pci_attach_args *pa = aux;
304 pci_intr_handle_t ih;
305 const char *intrstr = NULL;
306 struct cztty_softc *sc;
307 struct tty *tp;
308 int i;
309
310 printf(": Cyclades-Z multiport serial\n");
311
312 cz->cz_plx.plx_pc = pa->pa_pc;
313 cz->cz_plx.plx_tag = pa->pa_tag;
314
315 if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
316 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
317 &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
318 printf("%s: unable to map PLX registers\n",
319 cz->cz_dev.dv_xname);
320 return;
321 }
322 if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
323 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
324 &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
325 printf("%s: unable to map device window\n",
326 cz->cz_dev.dv_xname);
327 return;
328 }
329
330 cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
331 cz->cz_nopenchan = 0;
332
333 /*
334 * Make sure that the board is completely stopped.
335 */
336 CZ_WIN_FPGA(cz);
337 CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
338
339 /*
340 * Load the board's firmware.
341 */
342 if (cz_load_firmware(cz) != 0)
343 return;
344
345 /*
346 * Now that we're ready to roll, map and establish the interrupt
347 * handler.
348 */
349 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
350 pa->pa_intrline, &ih) != 0) {
351 /*
352 * The common case is for Cyclades-Z boards to run
353 * in polling mode, and thus not have an interrupt
354 * mapped for them. Don't bother reporting that
355 * the interrupt is not mappable, since this isn't
356 * really an error.
357 */
358 cz->cz_ih = NULL;
359 goto polling_mode;
360 } else {
361 intrstr = pci_intr_string(pa->pa_pc, ih);
362 cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
363 cz_intr, cz);
364 }
365 if (cz->cz_ih == NULL) {
366 printf("%s: unable to establish interrupt",
367 cz->cz_dev.dv_xname);
368 if (intrstr != NULL)
369 printf(" at %s", intrstr);
370 printf("\n");
371 /* We will fall-back on polling mode. */
372 } else
373 printf("%s: interrupting at %s\n",
374 cz->cz_dev.dv_xname, intrstr);
375
376 polling_mode:
377 if (cz->cz_ih == NULL) {
378 callout_init(&cz->cz_callout);
379 if (cz_timeout_ticks == 0)
380 cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
381 printf("%s: polling mode, %d ms interval (%d tick%s)\n",
382 cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
383 cz_timeout_ticks == 1 ? "" : "s");
384 }
385
386 if (cztty_major == 0)
387 cztty_major = cztty_findmajor();
388 /*
389 * Allocate sufficient pointers for the children and
390 * attach them. Set all ports to a reasonable initial
391 * configuration while we're at it:
392 *
393 * disabled
394 * 8N1
395 * default baud rate
396 * hardware flow control.
397 */
398 CZ_WIN_RAM(cz);
399
400 if (cz->cz_nchannels == 0) {
401 /* No channels? No more work to do! */
402 return;
403 }
404
405 cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
406 M_DEVBUF, M_WAITOK);
407 cztty_attached_ttys += cz->cz_nchannels;
408 memset(cz->cz_ports, 0,
409 sizeof(struct cztty_softc) * cz->cz_nchannels);
410
411 for (i = 0; i < cz->cz_nchannels; i++) {
412 sc = &cz->cz_ports[i];
413
414 sc->sc_channel = i;
415 sc->sc_chan_st = cz->cz_win_st;
416 sc->sc_parent = cz;
417
418 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
419 cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
420 ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
421 printf("%s: unable to subregion channel %d control\n",
422 cz->cz_dev.dv_xname, i);
423 sc->sc_channel = CZTTY_CHANNEL_DEAD;
424 continue;
425 }
426 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
427 cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
428 ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
429 printf("%s: unable to subregion channel %d buffer\n",
430 cz->cz_dev.dv_xname, i);
431 sc->sc_channel = CZTTY_CHANNEL_DEAD;
432 continue;
433 }
434
435 callout_init(&sc->sc_diag_ch);
436
437 tp = ttymalloc();
438 tp->t_dev = makedev(cztty_major,
439 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i);
440 tp->t_oproc = czttystart;
441 tp->t_param = czttyparam;
442 tty_attach(tp);
443
444 sc->sc_tty = tp;
445
446 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
447 CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
448 CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
449 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
450 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
451 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
452 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
454 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
455 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
456 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
457 }
458 }
459
460 /*
461 * cz_reset_board:
462 *
463 * Reset the board via the PLX.
464 */
465 void
466 cz_reset_board(struct cz_softc *cz)
467 {
468 u_int32_t reg;
469
470 reg = CZ_PLX_READ(cz, PLX_CONTROL);
471 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
472 delay(1000);
473
474 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
475 delay(1000);
476
477 /* Now reload the PLX from its EEPROM. */
478 reg = CZ_PLX_READ(cz, PLX_CONTROL);
479 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
480 delay(1000);
481 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
482 }
483
484 /*
485 * cz_load_firmware:
486 *
487 * Load the ZFIRM firmware into the board's RAM and start it
488 * running.
489 */
490 int
491 cz_load_firmware(struct cz_softc *cz)
492 {
493 struct zfirm_header *zfh;
494 struct zfirm_config *zfc;
495 struct zfirm_block *zfb, *zblocks;
496 const u_int8_t *cp;
497 const char *board;
498 u_int32_t fid;
499 int i, j, nconfigs, nblocks, nbytes;
500
501 zfh = (struct zfirm_header *) cycladesz_firmware;
502
503 /* Find the config header. */
504 if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
505 printf("%s: bad ZFIRM config offset: 0x%x\n",
506 cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
507 return (EIO);
508 }
509 zfc = (struct zfirm_config *)(cycladesz_firmware +
510 le32toh(zfh->zfh_configoff));
511 nconfigs = le32toh(zfh->zfh_nconfig);
512
513 /* Locate the correct configuration for our board. */
514 for (i = 0; i < nconfigs; i++, zfc++) {
515 if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
516 le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
517 break;
518 }
519 if (i == nconfigs) {
520 printf("%s: unable to locate config header\n",
521 cz->cz_dev.dv_xname);
522 return (EIO);
523 }
524
525 nblocks = le32toh(zfc->zfc_nblocks);
526 zblocks = (struct zfirm_block *)(cycladesz_firmware +
527 le32toh(zfh->zfh_blockoff));
528
529 /*
530 * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
531 * necessary.
532 */
533 if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
534 #if 0
535 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
536 #endif
537 ) {
538 #ifdef CZ_DEBUG
539 printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
540 #endif
541 CZ_WIN_FPGA(cz);
542 for (i = 0; i < nblocks; i++) {
543 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
544 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
545 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FPGA) {
546 nbytes = le32toh(zfb->zfb_size);
547 cp = &cycladesz_firmware[
548 le32toh(zfb->zfb_fileoff)];
549 for (j = 0; j < nbytes; j++, cp++) {
550 bus_space_write_1(cz->cz_win_st,
551 cz->cz_win_sh, 0, *cp);
552 /* FPGA needs 30-100us to settle. */
553 delay(10);
554 }
555 }
556 }
557 #ifdef CZ_DEBUG
558 printf("done\n");
559 #endif
560 }
561
562 /* Now load the firmware. */
563 CZ_WIN_RAM(cz);
564
565 for (i = 0; i < nblocks; i++) {
566 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
567 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
568 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
569 const u_int32_t *lp;
570 u_int32_t ro = le32toh(zfb->zfb_ramoff);
571 nbytes = le32toh(zfb->zfb_size);
572 lp = (const u_int32_t *)
573 &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
574 for (j = 0; j < nbytes; j += 4, lp++) {
575 bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
576 ro + j, le32toh(*lp));
577 delay(10);
578 }
579 }
580 }
581
582 /* Now restart the MIPS. */
583 CZ_WIN_FPGA(cz);
584 CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
585
586 /* Wait for the MIPS to start, then report the results. */
587 CZ_WIN_RAM(cz);
588
589 #ifdef CZ_DEBUG
590 printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
591 #endif
592 for (i = 0; i < 100; i++) {
593 fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
594 ZFIRM_SIG_OFF);
595 if (fid == ZFIRM_SIG) {
596 /* MIPS has booted. */
597 break;
598 } else if (fid == ZFIRM_HLT) {
599 /*
600 * The MIPS has halted, usually due to a power
601 * shortage on the expansion module.
602 */
603 printf("%s: MIPS halted; possible power supply "
604 "problem\n", cz->cz_dev.dv_xname);
605 return (EIO);
606 } else {
607 #ifdef CZ_DEBUG
608 if ((i % 8) == 0)
609 printf(".");
610 #endif
611 delay(250000);
612 }
613 }
614 #ifdef CZ_DEBUG
615 printf("\n");
616 #endif
617 if (i == 100) {
618 CZ_WIN_FPGA(cz);
619 printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
620 cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
621 printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
622 cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
623 CZ_FPGA_READ(cz, FPGA_VERSION));
624 return (EIO);
625 }
626
627 /*
628 * Locate the firmware control structures.
629 */
630 cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
631 ZFIRM_CTRLADDR_OFF);
632 #ifdef CZ_DEBUG
633 printf("%s: FWCTL structure at offset 0x%08lx\n",
634 cz->cz_dev.dv_xname, cz->cz_fwctl);
635 #endif
636
637 CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
638 CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
639
640 cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
641
642 switch (cz->cz_mailbox0) {
643 case MAILBOX0_8Zo_V1:
644 board = "Cyclades-8Zo ver. 1";
645 break;
646
647 case MAILBOX0_8Zo_V2:
648 board = "Cyclades-8Zo ver. 2";
649 break;
650
651 case MAILBOX0_Ze_V1:
652 board = "Cyclades-Ze";
653 break;
654
655 default:
656 board = "unknown Cyclades Z-series";
657 break;
658 }
659
660 fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
661 printf("%s: %s, ", cz->cz_dev.dv_xname, board);
662 if (cz->cz_nchannels == 0)
663 printf("no channels attached, ");
664 else
665 printf("%d channels (ttyCZ%04d..ttyCZ%04d), ",
666 cz->cz_nchannels, cztty_attached_ttys,
667 cztty_attached_ttys + (cz->cz_nchannels - 1));
668 printf("firmware %x.%x.%x\n",
669 (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
670
671 return (0);
672 }
673
674 /*
675 * cz_poll:
676 *
677 * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
678 * ms.
679 */
680 void
681 cz_poll(void *arg)
682 {
683 int s = spltty();
684 struct cz_softc *cz = arg;
685
686 cz_intr(cz);
687 callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
688
689 splx(s);
690 }
691
692 /*
693 * cz_intr:
694 *
695 * Interrupt service routine.
696 *
697 * We either are receiving an interrupt directly from the board, or we are
698 * in polling mode and it's time to poll.
699 */
700 int
701 cz_intr(void *arg)
702 {
703 int rval = 0;
704 u_int command, channel, param;
705 struct cz_softc *cz = arg;
706 struct cztty_softc *sc;
707 struct tty *tp;
708
709 while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
710 rval = 1;
711 channel = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_CHANNEL);
712 param = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_PARAM);
713
714 /* now clear this interrupt, posslibly enabling another */
715 CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
716
717 if (cz->cz_ports == NULL) {
718 #ifdef CZ_DEBUG
719 printf("%s: interrupt on channel %d, but no channels\n",
720 cz->cz_dev.dv_xname, channel);
721 #endif
722 continue;
723 }
724
725 sc = &cz->cz_ports[channel];
726
727 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
728 break;
729
730 tp = sc->sc_tty;
731
732 switch (command) {
733 case C_CM_TXFEMPTY: /* transmit cases */
734 case C_CM_TXBEMPTY:
735 case C_CM_TXLOWWM:
736 case C_CM_INTBACK:
737 if (!ISSET(tp->t_state, TS_ISOPEN)) {
738 #ifdef CZ_DEBUG
739 printf("%s: tx intr on closed channel %d\n",
740 cz->cz_dev.dv_xname, channel);
741 #endif
742 break;
743 }
744
745 if (cztty_transmit(sc, tp)) {
746 /*
747 * Do wakeup stuff here.
748 */
749 ttwakeup(tp);
750 wakeup(tp);
751 }
752 break;
753
754 case C_CM_RXNNDT: /* receive cases */
755 case C_CM_RXHIWM:
756 case C_CM_INTBACK2: /* from restart ?? */
757 #if 0
758 case C_CM_ICHAR:
759 #endif
760 if (!ISSET(tp->t_state, TS_ISOPEN)) {
761 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
762 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
763 break;
764 }
765
766 if (cztty_receive(sc, tp)) {
767 /*
768 * Do wakeup stuff here.
769 */
770 ttwakeup(tp);
771 wakeup(tp);
772 }
773 break;
774
775 case C_CM_MDCD:
776 if (!ISSET(tp->t_state, TS_ISOPEN))
777 break;
778
779 (void) (*tp->t_linesw->l_modem)(tp,
780 ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
781 CHNCTL_RS_STATUS)));
782 break;
783
784 case C_CM_MDSR:
785 case C_CM_MRI:
786 case C_CM_MCTS:
787 case C_CM_MRTS:
788 break;
789
790 case C_CM_IOCTLW:
791 break;
792
793 case C_CM_PR_ERROR:
794 sc->sc_parity_errors++;
795 goto error_common;
796
797 case C_CM_FR_ERROR:
798 sc->sc_framing_errors++;
799 goto error_common;
800
801 case C_CM_OVR_ERROR:
802 sc->sc_overflows++;
803 error_common:
804 if (sc->sc_errors++ == 0)
805 callout_reset(&sc->sc_diag_ch, 60 * hz,
806 cztty_diag, sc);
807 break;
808
809 case C_CM_RXBRK:
810 if (!ISSET(tp->t_state, TS_ISOPEN))
811 break;
812
813 /*
814 * A break is a \000 character with TTY_FE error
815 * flags set. So TTY_FE by itself works.
816 */
817 (*tp->t_linesw->l_rint)(TTY_FE, tp);
818 ttwakeup(tp);
819 wakeup(tp);
820 break;
821
822 default:
823 #ifdef CZ_DEBUG
824 printf("%s: channel %d: Unknown interrupt 0x%x\n",
825 cz->cz_dev.dv_xname, sc->sc_channel, command);
826 #endif
827 break;
828 }
829 }
830
831 return (rval);
832 }
833
834 /*
835 * cz_wait_pci_doorbell:
836 *
837 * Wait for the pci doorbell to be clear - wait for pending
838 * activity to drain.
839 */
840 int
841 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
842 {
843 int error;
844
845 while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
846 error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
847 if ((error != 0) && (error != EWOULDBLOCK))
848 return (error);
849 }
850 return (0);
851 }
852
853 /*****************************************************************************
854 * Cyclades-Z TTY code starts here...
855 *****************************************************************************/
856
857 #define CZTTYCHAN_MASK 0x0003f
858 #define CZTTYBOARD_MASK (0x7ffff & ~CZTTYCHAN_MASK)
859 #define CZTTYBOARD_SHIFT 6
860 #define CZTTYDIALOUT_MASK 0x80000
861
862 #define CZTTY_CHAN(dev) (minor((dev)) & CZTTYCHAN_MASK)
863 #define CZTTY_BOARD(dev) ((minor((dev)) & CZTTYBOARD_MASK) >> \
864 CZTTYBOARD_SHIFT)
865 #define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
866 #define CZTTY_CZ(sc) ((sc)->sc_parent)
867
868 #define CZ_SOFTC(dev) \
869 ((struct cz_softc *)(CZTTY_BOARD(dev) < cz_cd.cd_ndevs ? \
870 cz_cd.cd_devs[CZTTY_BOARD(dev)] : NULL))
871
872 #define CZTTY_SOFTC(dev) cztty_getttysoftc(dev)
873
874 struct cztty_softc *
875 cztty_getttysoftc(dev_t dev)
876 {
877 int i, j, k, u = minor(dev) & ~CZTTYDIALOUT_MASK;
878 struct cz_softc *cz;
879
880 for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) {
881 k = j;
882 cz = cz_cd.cd_devs[i];
883 if (cz->cz_ports == NULL)
884 continue;
885 j += cz->cz_nchannels;
886 if (j > u)
887 break;
888 }
889
890 if (i >= cz_cd.cd_ndevs) {
891 return (NULL);
892 } else
893 return (&cz->cz_ports[u - k]);
894 }
895
896 int
897 cztty_findmajor(void)
898 {
899 int maj;
900
901 for (maj = 0; maj < nchrdev; maj++) {
902 if (cdevsw[maj].d_open == czttyopen)
903 break;
904 }
905
906 return (maj == nchrdev) ? 0 : maj;
907 }
908
909 /*
910 * czttytty:
911 *
912 * Return a pointer to our tty.
913 */
914 struct tty *
915 czttytty(dev_t dev)
916 {
917 struct cztty_softc *sc = CZTTY_SOFTC(dev);
918
919 #ifdef DIAGNOSTIC
920 if (sc == NULL)
921 panic("czttytty");
922 #endif
923
924 return (sc->sc_tty);
925 }
926
927 /*
928 * cztty_shutdown:
929 *
930 * Shut down a port.
931 */
932 void
933 cztty_shutdown(struct cztty_softc *sc)
934 {
935 struct cz_softc *cz = CZTTY_CZ(sc);
936 struct tty *tp = sc->sc_tty;
937 int s;
938
939 s = spltty();
940
941 /* Clear any break condition set with TIOCSBRK. */
942 cztty_break(sc, 0);
943
944 /*
945 * Hang up if necessary. Wait a bit, so the other side has time to
946 * notice even if we immediately open the port again.
947 */
948 if (ISSET(tp->t_cflag, HUPCL)) {
949 cztty_modem(sc, 0);
950 (void) tsleep(tp, TTIPRI, ttclos, hz);
951 }
952
953 /* Disable the channel. */
954 cz_wait_pci_doorbell(cz, "czdis");
955 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
956 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
957 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
958
959 if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
960 #ifdef CZ_DEBUG
961 printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
962 #endif
963 callout_stop(&cz->cz_callout);
964 }
965
966 splx(s);
967 }
968
969 /*
970 * czttyopen:
971 *
972 * Open a Cyclades-Z serial port.
973 */
974 int
975 czttyopen(dev_t dev, int flags, int mode, struct proc *p)
976 {
977 struct cztty_softc *sc = CZTTY_SOFTC(dev);
978 struct cz_softc *cz;
979 struct tty *tp;
980 int s, error;
981
982 if (sc == NULL)
983 return (ENXIO);
984
985 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
986 return (ENXIO);
987
988 cz = CZTTY_CZ(sc);
989 tp = sc->sc_tty;
990
991 if (ISSET(tp->t_state, TS_ISOPEN) &&
992 ISSET(tp->t_state, TS_XCLUDE) &&
993 p->p_ucred->cr_uid != 0)
994 return (EBUSY);
995
996 s = spltty();
997
998 /*
999 * Do the following iff this is a first open.
1000 */
1001 if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
1002 struct termios t;
1003
1004 tp->t_dev = dev;
1005
1006 /* If we're turning things on, enable interrupts */
1007 if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
1008 #ifdef CZ_DEBUG
1009 printf("%s: Enabling polling.\n",
1010 cz->cz_dev.dv_xname);
1011 #endif
1012 callout_reset(&cz->cz_callout, cz_timeout_ticks,
1013 cz_poll, cz);
1014 }
1015
1016 /*
1017 * Enable the channel. Don't actually ring the
1018 * doorbell here; czttyparam() will do it for us.
1019 */
1020 cz_wait_pci_doorbell(cz, "czopen");
1021
1022 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
1023
1024 /*
1025 * Initialize the termios status to the defaults. Add in the
1026 * sticky bits from TIOCSFLAGS.
1027 */
1028 t.c_ispeed = 0;
1029 t.c_ospeed = TTYDEF_SPEED;
1030 t.c_cflag = TTYDEF_CFLAG;
1031 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
1032 SET(t.c_cflag, CLOCAL);
1033 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
1034 SET(t.c_cflag, CRTSCTS);
1035
1036 /*
1037 * Reset the input and output rings. Do this before
1038 * we call czttyparam(), as that function enables
1039 * the channel.
1040 */
1041 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1042 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1043 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1044 CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1045
1046 /* Make sure czttyparam() will see changes. */
1047 tp->t_ospeed = 0;
1048 (void) czttyparam(tp, &t);
1049 tp->t_iflag = TTYDEF_IFLAG;
1050 tp->t_oflag = TTYDEF_OFLAG;
1051 tp->t_lflag = TTYDEF_LFLAG;
1052 ttychars(tp);
1053 ttsetwater(tp);
1054
1055 /*
1056 * Turn on DTR. We must always do this, even if carrier is not
1057 * present, because otherwise we'd have to use TIOCSDTR
1058 * immediately after setting CLOCAL, which applications do not
1059 * expect. We always assert DTR while the device is open
1060 * unless explicitly requested to deassert it.
1061 */
1062 cztty_modem(sc, 1);
1063 }
1064
1065 splx(s);
1066
1067 error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
1068 if (error)
1069 goto bad;
1070
1071 error = (*tp->t_linesw->l_open)(dev, tp);
1072 if (error)
1073 goto bad;
1074
1075 return (0);
1076
1077 bad:
1078 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1079 /*
1080 * We failed to open the device, and nobody else had it opened.
1081 * Clean up the state as appropriate.
1082 */
1083 cztty_shutdown(sc);
1084 }
1085
1086 return (error);
1087 }
1088
1089 /*
1090 * czttyclose:
1091 *
1092 * Close a Cyclades-Z serial port.
1093 */
1094 int
1095 czttyclose(dev_t dev, int flags, int mode, struct proc *p)
1096 {
1097 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1098 struct tty *tp = sc->sc_tty;
1099
1100 /* XXX This is for cons.c. */
1101 if (!ISSET(tp->t_state, TS_ISOPEN))
1102 return (0);
1103
1104 (*tp->t_linesw->l_close)(tp, flags);
1105 ttyclose(tp);
1106
1107 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1108 /*
1109 * Although we got a last close, the device may still be in
1110 * use; e.g. if this was the dialout node, and there are still
1111 * processes waiting for carrier on the non-dialout node.
1112 */
1113 cztty_shutdown(sc);
1114 }
1115
1116 return (0);
1117 }
1118
1119 /*
1120 * czttyread:
1121 *
1122 * Read from a Cyclades-Z serial port.
1123 */
1124 int
1125 czttyread(dev_t dev, struct uio *uio, int flags)
1126 {
1127 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1128 struct tty *tp = sc->sc_tty;
1129
1130 return ((*tp->t_linesw->l_read)(tp, uio, flags));
1131 }
1132
1133 /*
1134 * czttywrite:
1135 *
1136 * Write to a Cyclades-Z serial port.
1137 */
1138 int
1139 czttywrite(dev_t dev, struct uio *uio, int flags)
1140 {
1141 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1142 struct tty *tp = sc->sc_tty;
1143
1144 return ((*tp->t_linesw->l_write)(tp, uio, flags));
1145 }
1146
1147 /*
1148 * czttyioctl:
1149 *
1150 * Perform a control operation on a Cyclades-Z serial port.
1151 */
1152 int
1153 czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1154 {
1155 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1156 struct tty *tp = sc->sc_tty;
1157 int s, error;
1158
1159 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
1160 if (error >= 0)
1161 return (error);
1162
1163 error = ttioctl(tp, cmd, data, flag, p);
1164 if (error >= 0)
1165 return (error);
1166
1167 error = 0;
1168
1169 s = spltty();
1170
1171 switch (cmd) {
1172 case TIOCSBRK:
1173 cztty_break(sc, 1);
1174 break;
1175
1176 case TIOCCBRK:
1177 cztty_break(sc, 0);
1178 break;
1179
1180 case TIOCGFLAGS:
1181 *(int *)data = sc->sc_swflags;
1182 break;
1183
1184 case TIOCSFLAGS:
1185 error = suser(p->p_ucred, &p->p_acflag);
1186 if (error)
1187 break;
1188 sc->sc_swflags = *(int *)data;
1189 break;
1190
1191 case TIOCSDTR:
1192 cztty_modem(sc, 1);
1193 break;
1194
1195 case TIOCCDTR:
1196 cztty_modem(sc, 0);
1197 break;
1198
1199 case TIOCMSET:
1200 case TIOCMBIS:
1201 case TIOCMBIC:
1202 tiocm_to_cztty(sc, cmd, *(int *)data);
1203 break;
1204
1205 case TIOCMGET:
1206 *(int *)data = cztty_to_tiocm(sc);
1207 break;
1208
1209 default:
1210 error = ENOTTY;
1211 break;
1212 }
1213
1214 splx(s);
1215
1216 return (error);
1217 }
1218
1219 /*
1220 * cztty_break:
1221 *
1222 * Set or clear BREAK on a port.
1223 */
1224 void
1225 cztty_break(struct cztty_softc *sc, int onoff)
1226 {
1227 struct cz_softc *cz = CZTTY_CZ(sc);
1228
1229 cz_wait_pci_doorbell(cz, "czbreak");
1230
1231 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1232 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1233 onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1234 }
1235
1236 /*
1237 * cztty_modem:
1238 *
1239 * Set or clear DTR on a port.
1240 */
1241 void
1242 cztty_modem(struct cztty_softc *sc, int onoff)
1243 {
1244 struct cz_softc *cz = CZTTY_CZ(sc);
1245
1246 if (sc->sc_rs_control_dtr == 0)
1247 return;
1248
1249 cz_wait_pci_doorbell(cz, "czmod");
1250
1251 if (onoff)
1252 sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1253 else
1254 sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1255 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1256
1257 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1258 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1259 }
1260
1261 /*
1262 * tiocm_to_cztty:
1263 *
1264 * Process TIOCM* ioctls.
1265 */
1266 void
1267 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1268 {
1269 struct cz_softc *cz = CZTTY_CZ(sc);
1270 u_int32_t czttybits;
1271
1272 czttybits = 0;
1273 if (ISSET(ttybits, TIOCM_DTR))
1274 SET(czttybits, C_RS_DTR);
1275 if (ISSET(ttybits, TIOCM_RTS))
1276 SET(czttybits, C_RS_RTS);
1277
1278 cz_wait_pci_doorbell(cz, "cztiocm");
1279
1280 switch (how) {
1281 case TIOCMBIC:
1282 CLR(sc->sc_chanctl_rs_control, czttybits);
1283 break;
1284
1285 case TIOCMBIS:
1286 SET(sc->sc_chanctl_rs_control, czttybits);
1287 break;
1288
1289 case TIOCMSET:
1290 CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1291 SET(sc->sc_chanctl_rs_control, czttybits);
1292 break;
1293 }
1294
1295 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1296
1297 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1298 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1299 }
1300
1301 /*
1302 * cztty_to_tiocm:
1303 *
1304 * Process the TIOCMGET ioctl.
1305 */
1306 int
1307 cztty_to_tiocm(struct cztty_softc *sc)
1308 {
1309 struct cz_softc *cz = CZTTY_CZ(sc);
1310 u_int32_t rs_status, op_mode;
1311 int ttybits = 0;
1312
1313 cz_wait_pci_doorbell(cz, "cztty");
1314
1315 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1316 op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1317
1318 if (ISSET(rs_status, C_RS_RTS))
1319 SET(ttybits, TIOCM_RTS);
1320 if (ISSET(rs_status, C_RS_CTS))
1321 SET(ttybits, TIOCM_CTS);
1322 if (ISSET(rs_status, C_RS_DCD))
1323 SET(ttybits, TIOCM_CAR);
1324 if (ISSET(rs_status, C_RS_DTR))
1325 SET(ttybits, TIOCM_DTR);
1326 if (ISSET(rs_status, C_RS_RI))
1327 SET(ttybits, TIOCM_RNG);
1328 if (ISSET(rs_status, C_RS_DSR))
1329 SET(ttybits, TIOCM_DSR);
1330
1331 if (ISSET(op_mode, C_CH_ENABLE))
1332 SET(ttybits, TIOCM_LE);
1333
1334 return (ttybits);
1335 }
1336
1337 /*
1338 * czttyparam:
1339 *
1340 * Set Cyclades-Z serial port parameters from termios.
1341 *
1342 * XXX Should just copy the whole termios after making
1343 * XXX sure all the changes could be done.
1344 */
1345 int
1346 czttyparam(struct tty *tp, struct termios *t)
1347 {
1348 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1349 struct cz_softc *cz = CZTTY_CZ(sc);
1350 u_int32_t rs_status;
1351 int ospeed, cflag;
1352
1353 ospeed = t->c_ospeed;
1354 cflag = t->c_cflag;
1355
1356 /* Check requested parameters. */
1357 if (ospeed < 0)
1358 return (EINVAL);
1359 if (t->c_ispeed && t->c_ispeed != ospeed)
1360 return (EINVAL);
1361
1362 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1363 SET(cflag, CLOCAL);
1364 CLR(cflag, HUPCL);
1365 }
1366
1367 /*
1368 * If there were no changes, don't do anything. This avoids dropping
1369 * input and improves performance when all we did was frob things like
1370 * VMIN and VTIME.
1371 */
1372 if (tp->t_ospeed == ospeed &&
1373 tp->t_cflag == cflag)
1374 return (0);
1375
1376 /* Data bits. */
1377 sc->sc_chanctl_comm_data_l = 0;
1378 switch (t->c_cflag & CSIZE) {
1379 case CS5:
1380 sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1381 break;
1382
1383 case CS6:
1384 sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1385 break;
1386
1387 case CS7:
1388 sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1389 break;
1390
1391 case CS8:
1392 sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1393 break;
1394 }
1395
1396 /* Stop bits. */
1397 if (t->c_cflag & CSTOPB) {
1398 if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1399 sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1400 else
1401 sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1402 } else
1403 sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1404
1405 /* Parity. */
1406 if (t->c_cflag & PARENB) {
1407 if (t->c_cflag & PARODD)
1408 sc->sc_chanctl_comm_parity = C_PR_ODD;
1409 else
1410 sc->sc_chanctl_comm_parity = C_PR_EVEN;
1411 } else
1412 sc->sc_chanctl_comm_parity = C_PR_NONE;
1413
1414 /*
1415 * Initialize flow control pins depending on the current flow control
1416 * mode.
1417 */
1418 if (ISSET(t->c_cflag, CRTSCTS)) {
1419 sc->sc_rs_control_dtr = C_RS_DTR;
1420 sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1421 } else if (ISSET(t->c_cflag, MDMBUF)) {
1422 sc->sc_rs_control_dtr = 0;
1423 sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1424 } else {
1425 /*
1426 * If no flow control, then always set RTS. This will make
1427 * the other side happy if it mistakenly thinks we're doing
1428 * RTS/CTS flow control.
1429 */
1430 sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1431 sc->sc_chanctl_hw_flow = 0;
1432 if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1433 SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1434 else
1435 CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1436 }
1437
1438 /* Baud rate. */
1439 sc->sc_chanctl_comm_baud = ospeed;
1440
1441 /* Copy to tty. */
1442 tp->t_ispeed = 0;
1443 tp->t_ospeed = t->c_ospeed;
1444 tp->t_cflag = t->c_cflag;
1445
1446 /*
1447 * Now load the channel control structure.
1448 */
1449
1450 cz_wait_pci_doorbell(cz, "czparam");
1451
1452 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1454 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1455 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1456 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1457
1458 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1459 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1460
1461 cz_wait_pci_doorbell(cz, "czparam");
1462
1463 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1464 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1465
1466 cz_wait_pci_doorbell(cz, "czparam");
1467
1468 /*
1469 * Update the tty layer's idea of the carrier bit, in case we changed
1470 * CLOCAL. We don't hang up here; we only do that by explicit
1471 * request.
1472 */
1473 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1474 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1475
1476 return (0);
1477 }
1478
1479 /*
1480 * czttystart:
1481 *
1482 * Start or restart transmission.
1483 */
1484 void
1485 czttystart(struct tty *tp)
1486 {
1487 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1488 int s;
1489
1490 s = spltty();
1491 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1492 goto out;
1493
1494 if (tp->t_outq.c_cc <= tp->t_lowat) {
1495 if (ISSET(tp->t_state, TS_ASLEEP)) {
1496 CLR(tp->t_state, TS_ASLEEP);
1497 wakeup(&tp->t_outq);
1498 }
1499 selwakeup(&tp->t_wsel);
1500 if (tp->t_outq.c_cc == 0)
1501 goto out;
1502 }
1503
1504 cztty_transmit(sc, tp);
1505 out:
1506 splx(s);
1507 }
1508
1509 /*
1510 * czttystop:
1511 *
1512 * Stop output, e.g., for ^S or output flush.
1513 */
1514 void
1515 czttystop(struct tty *tp, int flag)
1516 {
1517
1518 /*
1519 * XXX We don't do anything here, yet. Mostly, I don't know
1520 * XXX exactly how this should be implemented on this device.
1521 * XXX We've given a big chunk of data to the MIPS already,
1522 * XXX and I don't know how we request the MIPS to stop sending
1523 * XXX the data. So, punt for now. --thorpej
1524 */
1525 }
1526
1527 /*
1528 * cztty_diag:
1529 *
1530 * Issue a scheduled diagnostic message.
1531 */
1532 void
1533 cztty_diag(void *arg)
1534 {
1535 struct cztty_softc *sc = arg;
1536 struct cz_softc *cz = CZTTY_CZ(sc);
1537 u_int overflows, parity_errors, framing_errors;
1538 int s;
1539
1540 s = spltty();
1541
1542 overflows = sc->sc_overflows;
1543 sc->sc_overflows = 0;
1544
1545 parity_errors = sc->sc_parity_errors;
1546 sc->sc_parity_errors = 0;
1547
1548 framing_errors = sc->sc_framing_errors;
1549 sc->sc_framing_errors = 0;
1550
1551 sc->sc_errors = 0;
1552
1553 splx(s);
1554
1555 log(LOG_WARNING,
1556 "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1557 cz->cz_dev.dv_xname, sc->sc_channel,
1558 overflows, overflows == 1 ? "" : "s",
1559 parity_errors,
1560 framing_errors, framing_errors == 1 ? "" : "s");
1561 }
1562
1563 /*
1564 * tx and rx ring buffer size macros:
1565 *
1566 * The transmitter and receiver both use ring buffers. For each one, there
1567 * is a get (consumer) and a put (producer) offset. The get value is the
1568 * next byte to be read from the ring, and the put is the next one to be
1569 * put into the ring. get == put means the ring is empty.
1570 *
1571 * For each ring, the firmware controls one of (get, put) and this driver
1572 * controls the other. For transmission, this driver updates put to point
1573 * past the valid data, and the firmware moves get as bytes are sent. Likewise
1574 * for receive, the driver controls put, and this driver controls get.
1575 */
1576 #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1577 #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1578
1579 /*
1580 * cztty_transmit()
1581 *
1582 * Look at the tty for this port and start sending.
1583 */
1584 int
1585 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1586 {
1587 struct cz_softc *cz = CZTTY_CZ(sc);
1588 u_int move, get, put, size, address;
1589 #ifdef HOSTRAMCODE
1590 int error, done = 0;
1591 #else
1592 int done = 0;
1593 #endif
1594
1595 size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1596 get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1597 put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1598 address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1599
1600 while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1601 #ifdef HOSTRAMCODE
1602 if (0) {
1603 move = min(tp->t_outq.c_cc, move);
1604 error = q_to_b(&tp->t_outq, 0, move);
1605 if (error != move) {
1606 printf("%s: channel %d: error moving to "
1607 "transmit buf\n", cz->cz_dev.dv_xname,
1608 sc->sc_channel);
1609 move = error;
1610 }
1611 } else {
1612 #endif
1613 move = min(ndqb(&tp->t_outq, 0), move);
1614 bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1615 address + put, tp->t_outq.c_cf, move);
1616 ndflush(&tp->t_outq, move);
1617 #ifdef HOSTRAMCODE
1618 }
1619 #endif
1620
1621 put = ((put + move) % size);
1622 done = 1;
1623 }
1624 if (done) {
1625 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1626 }
1627 return (done);
1628 }
1629
1630 int
1631 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1632 {
1633 struct cz_softc *cz = CZTTY_CZ(sc);
1634 u_int get, put, size, address;
1635 int done = 0, ch;
1636
1637 size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1638 get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1639 put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1640 address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1641
1642 while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1643 #ifdef HOSTRAMCODE
1644 if (hostram)
1645 ch = ((char *)fifoaddr)[get];
1646 } else {
1647 #endif
1648 ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1649 address + get);
1650 #ifdef HOSTRAMCODE
1651 }
1652 #endif
1653 (*tp->t_linesw->l_rint)(ch, tp);
1654 get = (get + 1) % size;
1655 done = 1;
1656 }
1657 if (done) {
1658 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1659 }
1660 return (done);
1661 }
1662