cz.c revision 1.12 1 /* $NetBSD: cz.c,v 1.12 2000/12/28 22:59:11 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Zembu Labs, Inc.
5 * All rights reserved.
6 *
7 * Authors: Jason R. Thorpe <thorpej (at) zembu.com>
8 * Bill Studenmund <wrstuden (at) zembu.com>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Zembu Labs, Inc.
21 * 4. Neither the name of Zembu Labs nor the names of its employees may
22 * be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39 *
40 * Some notes:
41 *
42 * - The Cyclades-Z has fully automatic hardware (and software!)
43 * flow control. We only utilize RTS/CTS flow control here,
44 * and it is implemented in a very simplistic manner. This
45 * may be an area of future work.
46 *
47 * - The PLX can map the either the board's RAM or host RAM
48 * into the MIPS's memory window. This would enable us to
49 * use less expensive (for us) memory reads/writes to host
50 * RAM, rather than time-consuming reads/writes to PCI
51 * memory space. However, the PLX can only map a 0-128M
52 * window, so we would have to ensure that the DMA address
53 * of the host RAM fits there. This is kind of a pain,
54 * so we just don't bother right now.
55 *
56 * - In a perfect world, we would use the autoconfiguration
57 * mechanism to attach the TTYs that we find. However,
58 * that leads to somewhat icky looking autoconfiguration
59 * messages (one for every TTY, up to 64 per board!). So
60 * we don't do it that way, but assign minors as if there
61 * were the max of 64 ports per board.
62 *
63 * - We don't bother with PPS support here. There are so many
64 * ports, each with a large amount of buffer space, that the
65 * normal mode of operation is to poll the boards regularly
66 * (generally, every 20ms or so). This makes this driver
67 * unsuitable for PPS, as the latency will be generally too
68 * high.
69 */
70 /*
71 * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72 * for FreeBSD 3.2.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/tty.h>
81 #include <sys/conf.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/fcntl.h>
85 #include <sys/syslog.h>
86
87 #include <sys/callout.h>
88
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/czreg.h>
93
94 #include <dev/pci/plx9060reg.h>
95 #include <dev/pci/plx9060var.h>
96
97 #include <dev/microcode/cyclades-z/cyzfirm.h>
98
99 #define CZ_DRIVER_VERSION 0x20000411
100
101 #define CZ_POLL_MS 20
102
103 /* These are the interrupts we always use. */
104 #define CZ_INTERRUPTS \
105 (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
106 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
107 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
108 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
109
110 /*
111 * cztty_softc:
112 *
113 * Per-channel (TTY) state.
114 */
115 struct cztty_softc {
116 struct cz_softc *sc_parent;
117 struct tty *sc_tty;
118
119 struct callout sc_diag_ch;
120
121 int sc_channel; /* Also used to flag unattached chan */
122 #define CZTTY_CHANNEL_DEAD -1
123
124 bus_space_tag_t sc_chan_st; /* channel space tag */
125 bus_space_handle_t sc_chan_sh; /* channel space handle */
126 bus_space_handle_t sc_buf_sh; /* buffer space handle */
127
128 u_int sc_overflows,
129 sc_parity_errors,
130 sc_framing_errors,
131 sc_errors;
132
133 int sc_swflags;
134
135 u_int32_t sc_rs_control_dtr,
136 sc_chanctl_hw_flow,
137 sc_chanctl_comm_baud,
138 sc_chanctl_rs_control,
139 sc_chanctl_comm_data_l,
140 sc_chanctl_comm_parity;
141 };
142
143 /*
144 * cz_softc:
145 *
146 * Per-board state.
147 */
148 struct cz_softc {
149 struct device cz_dev; /* generic device info */
150 struct plx9060_config cz_plx; /* PLX 9060 config info */
151 bus_space_tag_t cz_win_st; /* window space tag */
152 bus_space_handle_t cz_win_sh; /* window space handle */
153 struct callout cz_callout; /* callout for polling-mode */
154
155 void *cz_ih; /* interrupt handle */
156
157 u_int32_t cz_mailbox0; /* our MAILBOX0 value */
158 int cz_nchannels; /* number of channels */
159 int cz_nopenchan; /* number of open channels */
160 struct cztty_softc *cz_ports; /* our array of ports */
161
162 bus_addr_t cz_fwctl; /* offset of firmware control */
163 };
164
165 int cz_match(struct device *, struct cfdata *, void *);
166 void cz_attach(struct device *, struct device *, void *);
167 int cz_wait_pci_doorbell(struct cz_softc *, const char *);
168
169 struct cfattach cz_ca = {
170 sizeof(struct cz_softc), cz_match, cz_attach
171 };
172
173 void cz_reset_board(struct cz_softc *);
174 int cz_load_firmware(struct cz_softc *);
175
176 int cz_intr(void *);
177 void cz_poll(void *);
178 int cztty_transmit(struct cztty_softc *, struct tty *);
179 int cztty_receive(struct cztty_softc *, struct tty *);
180
181 struct cztty_softc * cztty_getttysoftc(dev_t dev);
182 int cztty_findmajor(void);
183 int cztty_major;
184 int cztty_attached_ttys;
185 int cz_timeout_ticks;
186
187 cdev_decl(cztty);
188
189 void czttystart(struct tty *tp);
190 int czttyparam(struct tty *tp, struct termios *t);
191 void cztty_shutdown(struct cztty_softc *sc);
192 void cztty_modem(struct cztty_softc *sc, int onoff);
193 void cztty_break(struct cztty_softc *sc, int onoff);
194 void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
195 int cztty_to_tiocm(struct cztty_softc *sc);
196 void cztty_diag(void *arg);
197
198 extern struct cfdriver cz_cd;
199
200 /* Macros to clear/set/test flags. */
201 #define SET(t, f) (t) |= (f)
202 #define CLR(t, f) (t) &= ~(f)
203 #define ISSET(t, f) ((t) & (f))
204
205 /*
206 * Macros to read and write the PLX.
207 */
208 #define CZ_PLX_READ(cz, reg) \
209 bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
210 #define CZ_PLX_WRITE(cz, reg, val) \
211 bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
212 (reg), (val))
213
214 /*
215 * Macros to read and write the FPGA. We must already be in the FPGA
216 * window for this.
217 */
218 #define CZ_FPGA_READ(cz, reg) \
219 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
220 #define CZ_FPGA_WRITE(cz, reg, val) \
221 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
222
223 /*
224 * Macros to read and write the firmware control structures in board RAM.
225 */
226 #define CZ_FWCTL_READ(cz, off) \
227 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
228 (cz)->cz_fwctl + (off))
229
230 #define CZ_FWCTL_WRITE(cz, off, val) \
231 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
232 (cz)->cz_fwctl + (off), (val))
233
234 /*
235 * Convenience macros for cztty routines. PLX window MUST be to RAM.
236 */
237 #define CZTTY_CHAN_READ(sc, off) \
238 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
239
240 #define CZTTY_CHAN_WRITE(sc, off, val) \
241 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
242 (off), (val))
243
244 #define CZTTY_BUF_READ(sc, off) \
245 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
246
247 #define CZTTY_BUF_WRITE(sc, off, val) \
248 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
249 (off), (val))
250
251 /*
252 * Convenience macros.
253 */
254 #define CZ_WIN_RAM(cz) \
255 do { \
256 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
257 delay(100); \
258 } while (0)
259
260 #define CZ_WIN_FPGA(cz) \
261 do { \
262 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
263 delay(100); \
264 } while (0)
265
266 /*****************************************************************************
267 * Cyclades-Z controller code starts here...
268 *****************************************************************************/
269
270 /*
271 * cz_match:
272 *
273 * Determine if the given PCI device is a Cyclades-Z board.
274 */
275 int
276 cz_match(struct device *parent,
277 struct cfdata *match,
278 void *aux)
279 {
280 struct pci_attach_args *pa = aux;
281
282 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
283 switch (PCI_PRODUCT(pa->pa_id)) {
284 case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
285 return (1);
286 }
287 }
288
289 return (0);
290 }
291
292 /*
293 * cz_attach:
294 *
295 * A Cyclades-Z board was found; attach it.
296 */
297 void
298 cz_attach(struct device *parent,
299 struct device *self,
300 void *aux)
301 {
302 struct cz_softc *cz = (void *) self;
303 struct pci_attach_args *pa = aux;
304 pci_intr_handle_t ih;
305 const char *intrstr = NULL;
306 struct cztty_softc *sc;
307 struct tty *tp;
308 int i;
309
310 printf(": Cyclades-Z multiport serial\n");
311
312 cz->cz_plx.plx_pc = pa->pa_pc;
313 cz->cz_plx.plx_tag = pa->pa_tag;
314
315 if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
316 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
317 &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
318 printf("%s: unable to map PLX registers\n",
319 cz->cz_dev.dv_xname);
320 return;
321 }
322 if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
323 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
324 &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
325 printf("%s: unable to map device window\n",
326 cz->cz_dev.dv_xname);
327 return;
328 }
329
330 cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
331 cz->cz_nopenchan = 0;
332
333 /*
334 * Make sure that the board is completely stopped.
335 */
336 CZ_WIN_FPGA(cz);
337 CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
338
339 /*
340 * Load the board's firmware.
341 */
342 if (cz_load_firmware(cz) != 0)
343 return;
344
345 /*
346 * Now that we're ready to roll, map and establish the interrupt
347 * handler.
348 */
349 if (pci_intr_map(pa, &ih) != 0) {
350 /*
351 * The common case is for Cyclades-Z boards to run
352 * in polling mode, and thus not have an interrupt
353 * mapped for them. Don't bother reporting that
354 * the interrupt is not mappable, since this isn't
355 * really an error.
356 */
357 cz->cz_ih = NULL;
358 goto polling_mode;
359 } else {
360 intrstr = pci_intr_string(pa->pa_pc, ih);
361 cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
362 cz_intr, cz);
363 }
364 if (cz->cz_ih == NULL) {
365 printf("%s: unable to establish interrupt",
366 cz->cz_dev.dv_xname);
367 if (intrstr != NULL)
368 printf(" at %s", intrstr);
369 printf("\n");
370 /* We will fall-back on polling mode. */
371 } else
372 printf("%s: interrupting at %s\n",
373 cz->cz_dev.dv_xname, intrstr);
374
375 polling_mode:
376 if (cz->cz_ih == NULL) {
377 callout_init(&cz->cz_callout);
378 if (cz_timeout_ticks == 0)
379 cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
380 printf("%s: polling mode, %d ms interval (%d tick%s)\n",
381 cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
382 cz_timeout_ticks == 1 ? "" : "s");
383 }
384
385 if (cztty_major == 0)
386 cztty_major = cztty_findmajor();
387 /*
388 * Allocate sufficient pointers for the children and
389 * attach them. Set all ports to a reasonable initial
390 * configuration while we're at it:
391 *
392 * disabled
393 * 8N1
394 * default baud rate
395 * hardware flow control.
396 */
397 CZ_WIN_RAM(cz);
398
399 if (cz->cz_nchannels == 0) {
400 /* No channels? No more work to do! */
401 return;
402 }
403
404 cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
405 M_DEVBUF, M_WAITOK);
406 cztty_attached_ttys += cz->cz_nchannels;
407 memset(cz->cz_ports, 0,
408 sizeof(struct cztty_softc) * cz->cz_nchannels);
409
410 for (i = 0; i < cz->cz_nchannels; i++) {
411 sc = &cz->cz_ports[i];
412
413 sc->sc_channel = i;
414 sc->sc_chan_st = cz->cz_win_st;
415 sc->sc_parent = cz;
416
417 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
418 cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
419 ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
420 printf("%s: unable to subregion channel %d control\n",
421 cz->cz_dev.dv_xname, i);
422 sc->sc_channel = CZTTY_CHANNEL_DEAD;
423 continue;
424 }
425 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
426 cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
427 ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
428 printf("%s: unable to subregion channel %d buffer\n",
429 cz->cz_dev.dv_xname, i);
430 sc->sc_channel = CZTTY_CHANNEL_DEAD;
431 continue;
432 }
433
434 callout_init(&sc->sc_diag_ch);
435
436 tp = ttymalloc();
437 tp->t_dev = makedev(cztty_major,
438 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i);
439 tp->t_oproc = czttystart;
440 tp->t_param = czttyparam;
441 tty_attach(tp);
442
443 sc->sc_tty = tp;
444
445 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
446 CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
447 CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
448 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
449 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
450 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
451 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
452 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
454 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
455 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
456 }
457 }
458
459 /*
460 * cz_reset_board:
461 *
462 * Reset the board via the PLX.
463 */
464 void
465 cz_reset_board(struct cz_softc *cz)
466 {
467 u_int32_t reg;
468
469 reg = CZ_PLX_READ(cz, PLX_CONTROL);
470 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
471 delay(1000);
472
473 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
474 delay(1000);
475
476 /* Now reload the PLX from its EEPROM. */
477 reg = CZ_PLX_READ(cz, PLX_CONTROL);
478 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
479 delay(1000);
480 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
481 }
482
483 /*
484 * cz_load_firmware:
485 *
486 * Load the ZFIRM firmware into the board's RAM and start it
487 * running.
488 */
489 int
490 cz_load_firmware(struct cz_softc *cz)
491 {
492 struct zfirm_header *zfh;
493 struct zfirm_config *zfc;
494 struct zfirm_block *zfb, *zblocks;
495 const u_int8_t *cp;
496 const char *board;
497 u_int32_t fid;
498 int i, j, nconfigs, nblocks, nbytes;
499
500 zfh = (struct zfirm_header *) cycladesz_firmware;
501
502 /* Find the config header. */
503 if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
504 printf("%s: bad ZFIRM config offset: 0x%x\n",
505 cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
506 return (EIO);
507 }
508 zfc = (struct zfirm_config *)(cycladesz_firmware +
509 le32toh(zfh->zfh_configoff));
510 nconfigs = le32toh(zfh->zfh_nconfig);
511
512 /* Locate the correct configuration for our board. */
513 for (i = 0; i < nconfigs; i++, zfc++) {
514 if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
515 le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
516 break;
517 }
518 if (i == nconfigs) {
519 printf("%s: unable to locate config header\n",
520 cz->cz_dev.dv_xname);
521 return (EIO);
522 }
523
524 nblocks = le32toh(zfc->zfc_nblocks);
525 zblocks = (struct zfirm_block *)(cycladesz_firmware +
526 le32toh(zfh->zfh_blockoff));
527
528 /*
529 * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
530 * necessary.
531 */
532 if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
533 #if 0
534 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
535 #endif
536 ) {
537 #ifdef CZ_DEBUG
538 printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
539 #endif
540 CZ_WIN_FPGA(cz);
541 for (i = 0; i < nblocks; i++) {
542 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
543 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
544 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FPGA) {
545 nbytes = le32toh(zfb->zfb_size);
546 cp = &cycladesz_firmware[
547 le32toh(zfb->zfb_fileoff)];
548 for (j = 0; j < nbytes; j++, cp++) {
549 bus_space_write_1(cz->cz_win_st,
550 cz->cz_win_sh, 0, *cp);
551 /* FPGA needs 30-100us to settle. */
552 delay(10);
553 }
554 }
555 }
556 #ifdef CZ_DEBUG
557 printf("done\n");
558 #endif
559 }
560
561 /* Now load the firmware. */
562 CZ_WIN_RAM(cz);
563
564 for (i = 0; i < nblocks; i++) {
565 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
566 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
567 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
568 const u_int32_t *lp;
569 u_int32_t ro = le32toh(zfb->zfb_ramoff);
570 nbytes = le32toh(zfb->zfb_size);
571 lp = (const u_int32_t *)
572 &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
573 for (j = 0; j < nbytes; j += 4, lp++) {
574 bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
575 ro + j, le32toh(*lp));
576 delay(10);
577 }
578 }
579 }
580
581 /* Now restart the MIPS. */
582 CZ_WIN_FPGA(cz);
583 CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
584
585 /* Wait for the MIPS to start, then report the results. */
586 CZ_WIN_RAM(cz);
587
588 #ifdef CZ_DEBUG
589 printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
590 #endif
591 for (i = 0; i < 100; i++) {
592 fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
593 ZFIRM_SIG_OFF);
594 if (fid == ZFIRM_SIG) {
595 /* MIPS has booted. */
596 break;
597 } else if (fid == ZFIRM_HLT) {
598 /*
599 * The MIPS has halted, usually due to a power
600 * shortage on the expansion module.
601 */
602 printf("%s: MIPS halted; possible power supply "
603 "problem\n", cz->cz_dev.dv_xname);
604 return (EIO);
605 } else {
606 #ifdef CZ_DEBUG
607 if ((i % 8) == 0)
608 printf(".");
609 #endif
610 delay(250000);
611 }
612 }
613 #ifdef CZ_DEBUG
614 printf("\n");
615 #endif
616 if (i == 100) {
617 CZ_WIN_FPGA(cz);
618 printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
619 cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
620 printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
621 cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
622 CZ_FPGA_READ(cz, FPGA_VERSION));
623 return (EIO);
624 }
625
626 /*
627 * Locate the firmware control structures.
628 */
629 cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
630 ZFIRM_CTRLADDR_OFF);
631 #ifdef CZ_DEBUG
632 printf("%s: FWCTL structure at offset 0x%08lx\n",
633 cz->cz_dev.dv_xname, cz->cz_fwctl);
634 #endif
635
636 CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
637 CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
638
639 cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
640
641 switch (cz->cz_mailbox0) {
642 case MAILBOX0_8Zo_V1:
643 board = "Cyclades-8Zo ver. 1";
644 break;
645
646 case MAILBOX0_8Zo_V2:
647 board = "Cyclades-8Zo ver. 2";
648 break;
649
650 case MAILBOX0_Ze_V1:
651 board = "Cyclades-Ze";
652 break;
653
654 default:
655 board = "unknown Cyclades Z-series";
656 break;
657 }
658
659 fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
660 printf("%s: %s, ", cz->cz_dev.dv_xname, board);
661 if (cz->cz_nchannels == 0)
662 printf("no channels attached, ");
663 else
664 printf("%d channels (ttyCZ%04d..ttyCZ%04d), ",
665 cz->cz_nchannels, cztty_attached_ttys,
666 cztty_attached_ttys + (cz->cz_nchannels - 1));
667 printf("firmware %x.%x.%x\n",
668 (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
669
670 return (0);
671 }
672
673 /*
674 * cz_poll:
675 *
676 * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
677 * ms.
678 */
679 void
680 cz_poll(void *arg)
681 {
682 int s = spltty();
683 struct cz_softc *cz = arg;
684
685 cz_intr(cz);
686 callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
687
688 splx(s);
689 }
690
691 /*
692 * cz_intr:
693 *
694 * Interrupt service routine.
695 *
696 * We either are receiving an interrupt directly from the board, or we are
697 * in polling mode and it's time to poll.
698 */
699 int
700 cz_intr(void *arg)
701 {
702 int rval = 0;
703 u_int command, channel, param;
704 struct cz_softc *cz = arg;
705 struct cztty_softc *sc;
706 struct tty *tp;
707
708 while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
709 rval = 1;
710 channel = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_CHANNEL);
711 param = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_PARAM);
712
713 /* now clear this interrupt, posslibly enabling another */
714 CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
715
716 if (cz->cz_ports == NULL) {
717 #ifdef CZ_DEBUG
718 printf("%s: interrupt on channel %d, but no channels\n",
719 cz->cz_dev.dv_xname, channel);
720 #endif
721 continue;
722 }
723
724 sc = &cz->cz_ports[channel];
725
726 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
727 break;
728
729 tp = sc->sc_tty;
730
731 switch (command) {
732 case C_CM_TXFEMPTY: /* transmit cases */
733 case C_CM_TXBEMPTY:
734 case C_CM_TXLOWWM:
735 case C_CM_INTBACK:
736 if (!ISSET(tp->t_state, TS_ISOPEN)) {
737 #ifdef CZ_DEBUG
738 printf("%s: tx intr on closed channel %d\n",
739 cz->cz_dev.dv_xname, channel);
740 #endif
741 break;
742 }
743
744 if (cztty_transmit(sc, tp)) {
745 /*
746 * Do wakeup stuff here.
747 */
748 ttwakeup(tp);
749 wakeup(tp);
750 }
751 break;
752
753 case C_CM_RXNNDT: /* receive cases */
754 case C_CM_RXHIWM:
755 case C_CM_INTBACK2: /* from restart ?? */
756 #if 0
757 case C_CM_ICHAR:
758 #endif
759 if (!ISSET(tp->t_state, TS_ISOPEN)) {
760 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
761 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
762 break;
763 }
764
765 if (cztty_receive(sc, tp)) {
766 /*
767 * Do wakeup stuff here.
768 */
769 ttwakeup(tp);
770 wakeup(tp);
771 }
772 break;
773
774 case C_CM_MDCD:
775 if (!ISSET(tp->t_state, TS_ISOPEN))
776 break;
777
778 (void) (*tp->t_linesw->l_modem)(tp,
779 ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
780 CHNCTL_RS_STATUS)));
781 break;
782
783 case C_CM_MDSR:
784 case C_CM_MRI:
785 case C_CM_MCTS:
786 case C_CM_MRTS:
787 break;
788
789 case C_CM_IOCTLW:
790 break;
791
792 case C_CM_PR_ERROR:
793 sc->sc_parity_errors++;
794 goto error_common;
795
796 case C_CM_FR_ERROR:
797 sc->sc_framing_errors++;
798 goto error_common;
799
800 case C_CM_OVR_ERROR:
801 sc->sc_overflows++;
802 error_common:
803 if (sc->sc_errors++ == 0)
804 callout_reset(&sc->sc_diag_ch, 60 * hz,
805 cztty_diag, sc);
806 break;
807
808 case C_CM_RXBRK:
809 if (!ISSET(tp->t_state, TS_ISOPEN))
810 break;
811
812 /*
813 * A break is a \000 character with TTY_FE error
814 * flags set. So TTY_FE by itself works.
815 */
816 (*tp->t_linesw->l_rint)(TTY_FE, tp);
817 ttwakeup(tp);
818 wakeup(tp);
819 break;
820
821 default:
822 #ifdef CZ_DEBUG
823 printf("%s: channel %d: Unknown interrupt 0x%x\n",
824 cz->cz_dev.dv_xname, sc->sc_channel, command);
825 #endif
826 break;
827 }
828 }
829
830 return (rval);
831 }
832
833 /*
834 * cz_wait_pci_doorbell:
835 *
836 * Wait for the pci doorbell to be clear - wait for pending
837 * activity to drain.
838 */
839 int
840 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
841 {
842 int error;
843
844 while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
845 error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
846 if ((error != 0) && (error != EWOULDBLOCK))
847 return (error);
848 }
849 return (0);
850 }
851
852 /*****************************************************************************
853 * Cyclades-Z TTY code starts here...
854 *****************************************************************************/
855
856 #define CZTTYCHAN_MASK 0x0003f
857 #define CZTTYBOARD_MASK (0x7ffff & ~CZTTYCHAN_MASK)
858 #define CZTTYBOARD_SHIFT 6
859 #define CZTTYDIALOUT_MASK 0x80000
860
861 #define CZTTY_CHAN(dev) (minor((dev)) & CZTTYCHAN_MASK)
862 #define CZTTY_BOARD(dev) ((minor((dev)) & CZTTYBOARD_MASK) >> \
863 CZTTYBOARD_SHIFT)
864 #define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
865 #define CZTTY_CZ(sc) ((sc)->sc_parent)
866
867 #define CZ_SOFTC(dev) \
868 ((struct cz_softc *)(CZTTY_BOARD(dev) < cz_cd.cd_ndevs ? \
869 cz_cd.cd_devs[CZTTY_BOARD(dev)] : NULL))
870
871 #define CZTTY_SOFTC(dev) cztty_getttysoftc(dev)
872
873 struct cztty_softc *
874 cztty_getttysoftc(dev_t dev)
875 {
876 int i, j, k, u = minor(dev) & ~CZTTYDIALOUT_MASK;
877 struct cz_softc *cz;
878
879 for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) {
880 k = j;
881 cz = cz_cd.cd_devs[i];
882 if (cz->cz_ports == NULL)
883 continue;
884 j += cz->cz_nchannels;
885 if (j > u)
886 break;
887 }
888
889 if (i >= cz_cd.cd_ndevs) {
890 return (NULL);
891 } else
892 return (&cz->cz_ports[u - k]);
893 }
894
895 int
896 cztty_findmajor(void)
897 {
898 int maj;
899
900 for (maj = 0; maj < nchrdev; maj++) {
901 if (cdevsw[maj].d_open == czttyopen)
902 break;
903 }
904
905 return (maj == nchrdev) ? 0 : maj;
906 }
907
908 /*
909 * czttytty:
910 *
911 * Return a pointer to our tty.
912 */
913 struct tty *
914 czttytty(dev_t dev)
915 {
916 struct cztty_softc *sc = CZTTY_SOFTC(dev);
917
918 #ifdef DIAGNOSTIC
919 if (sc == NULL)
920 panic("czttytty");
921 #endif
922
923 return (sc->sc_tty);
924 }
925
926 /*
927 * cztty_shutdown:
928 *
929 * Shut down a port.
930 */
931 void
932 cztty_shutdown(struct cztty_softc *sc)
933 {
934 struct cz_softc *cz = CZTTY_CZ(sc);
935 struct tty *tp = sc->sc_tty;
936 int s;
937
938 s = spltty();
939
940 /* Clear any break condition set with TIOCSBRK. */
941 cztty_break(sc, 0);
942
943 /*
944 * Hang up if necessary. Wait a bit, so the other side has time to
945 * notice even if we immediately open the port again.
946 */
947 if (ISSET(tp->t_cflag, HUPCL)) {
948 cztty_modem(sc, 0);
949 (void) tsleep(tp, TTIPRI, ttclos, hz);
950 }
951
952 /* Disable the channel. */
953 cz_wait_pci_doorbell(cz, "czdis");
954 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
955 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
956 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
957
958 if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
959 #ifdef CZ_DEBUG
960 printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
961 #endif
962 callout_stop(&cz->cz_callout);
963 }
964
965 splx(s);
966 }
967
968 /*
969 * czttyopen:
970 *
971 * Open a Cyclades-Z serial port.
972 */
973 int
974 czttyopen(dev_t dev, int flags, int mode, struct proc *p)
975 {
976 struct cztty_softc *sc = CZTTY_SOFTC(dev);
977 struct cz_softc *cz;
978 struct tty *tp;
979 int s, error;
980
981 if (sc == NULL)
982 return (ENXIO);
983
984 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
985 return (ENXIO);
986
987 cz = CZTTY_CZ(sc);
988 tp = sc->sc_tty;
989
990 if (ISSET(tp->t_state, TS_ISOPEN) &&
991 ISSET(tp->t_state, TS_XCLUDE) &&
992 p->p_ucred->cr_uid != 0)
993 return (EBUSY);
994
995 s = spltty();
996
997 /*
998 * Do the following iff this is a first open.
999 */
1000 if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
1001 struct termios t;
1002
1003 tp->t_dev = dev;
1004
1005 /* If we're turning things on, enable interrupts */
1006 if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
1007 #ifdef CZ_DEBUG
1008 printf("%s: Enabling polling.\n",
1009 cz->cz_dev.dv_xname);
1010 #endif
1011 callout_reset(&cz->cz_callout, cz_timeout_ticks,
1012 cz_poll, cz);
1013 }
1014
1015 /*
1016 * Enable the channel. Don't actually ring the
1017 * doorbell here; czttyparam() will do it for us.
1018 */
1019 cz_wait_pci_doorbell(cz, "czopen");
1020
1021 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
1022
1023 /*
1024 * Initialize the termios status to the defaults. Add in the
1025 * sticky bits from TIOCSFLAGS.
1026 */
1027 t.c_ispeed = 0;
1028 t.c_ospeed = TTYDEF_SPEED;
1029 t.c_cflag = TTYDEF_CFLAG;
1030 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
1031 SET(t.c_cflag, CLOCAL);
1032 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
1033 SET(t.c_cflag, CRTSCTS);
1034
1035 /*
1036 * Reset the input and output rings. Do this before
1037 * we call czttyparam(), as that function enables
1038 * the channel.
1039 */
1040 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1041 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1042 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1043 CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1044
1045 /* Make sure czttyparam() will see changes. */
1046 tp->t_ospeed = 0;
1047 (void) czttyparam(tp, &t);
1048 tp->t_iflag = TTYDEF_IFLAG;
1049 tp->t_oflag = TTYDEF_OFLAG;
1050 tp->t_lflag = TTYDEF_LFLAG;
1051 ttychars(tp);
1052 ttsetwater(tp);
1053
1054 /*
1055 * Turn on DTR. We must always do this, even if carrier is not
1056 * present, because otherwise we'd have to use TIOCSDTR
1057 * immediately after setting CLOCAL, which applications do not
1058 * expect. We always assert DTR while the device is open
1059 * unless explicitly requested to deassert it.
1060 */
1061 cztty_modem(sc, 1);
1062 }
1063
1064 splx(s);
1065
1066 error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
1067 if (error)
1068 goto bad;
1069
1070 error = (*tp->t_linesw->l_open)(dev, tp);
1071 if (error)
1072 goto bad;
1073
1074 return (0);
1075
1076 bad:
1077 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1078 /*
1079 * We failed to open the device, and nobody else had it opened.
1080 * Clean up the state as appropriate.
1081 */
1082 cztty_shutdown(sc);
1083 }
1084
1085 return (error);
1086 }
1087
1088 /*
1089 * czttyclose:
1090 *
1091 * Close a Cyclades-Z serial port.
1092 */
1093 int
1094 czttyclose(dev_t dev, int flags, int mode, struct proc *p)
1095 {
1096 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1097 struct tty *tp = sc->sc_tty;
1098
1099 /* XXX This is for cons.c. */
1100 if (!ISSET(tp->t_state, TS_ISOPEN))
1101 return (0);
1102
1103 (*tp->t_linesw->l_close)(tp, flags);
1104 ttyclose(tp);
1105
1106 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1107 /*
1108 * Although we got a last close, the device may still be in
1109 * use; e.g. if this was the dialout node, and there are still
1110 * processes waiting for carrier on the non-dialout node.
1111 */
1112 cztty_shutdown(sc);
1113 }
1114
1115 return (0);
1116 }
1117
1118 /*
1119 * czttyread:
1120 *
1121 * Read from a Cyclades-Z serial port.
1122 */
1123 int
1124 czttyread(dev_t dev, struct uio *uio, int flags)
1125 {
1126 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1127 struct tty *tp = sc->sc_tty;
1128
1129 return ((*tp->t_linesw->l_read)(tp, uio, flags));
1130 }
1131
1132 /*
1133 * czttywrite:
1134 *
1135 * Write to a Cyclades-Z serial port.
1136 */
1137 int
1138 czttywrite(dev_t dev, struct uio *uio, int flags)
1139 {
1140 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1141 struct tty *tp = sc->sc_tty;
1142
1143 return ((*tp->t_linesw->l_write)(tp, uio, flags));
1144 }
1145
1146 /*
1147 * czttyioctl:
1148 *
1149 * Perform a control operation on a Cyclades-Z serial port.
1150 */
1151 int
1152 czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1153 {
1154 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1155 struct tty *tp = sc->sc_tty;
1156 int s, error;
1157
1158 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
1159 if (error >= 0)
1160 return (error);
1161
1162 error = ttioctl(tp, cmd, data, flag, p);
1163 if (error >= 0)
1164 return (error);
1165
1166 error = 0;
1167
1168 s = spltty();
1169
1170 switch (cmd) {
1171 case TIOCSBRK:
1172 cztty_break(sc, 1);
1173 break;
1174
1175 case TIOCCBRK:
1176 cztty_break(sc, 0);
1177 break;
1178
1179 case TIOCGFLAGS:
1180 *(int *)data = sc->sc_swflags;
1181 break;
1182
1183 case TIOCSFLAGS:
1184 error = suser(p->p_ucred, &p->p_acflag);
1185 if (error)
1186 break;
1187 sc->sc_swflags = *(int *)data;
1188 break;
1189
1190 case TIOCSDTR:
1191 cztty_modem(sc, 1);
1192 break;
1193
1194 case TIOCCDTR:
1195 cztty_modem(sc, 0);
1196 break;
1197
1198 case TIOCMSET:
1199 case TIOCMBIS:
1200 case TIOCMBIC:
1201 tiocm_to_cztty(sc, cmd, *(int *)data);
1202 break;
1203
1204 case TIOCMGET:
1205 *(int *)data = cztty_to_tiocm(sc);
1206 break;
1207
1208 default:
1209 error = ENOTTY;
1210 break;
1211 }
1212
1213 splx(s);
1214
1215 return (error);
1216 }
1217
1218 /*
1219 * cztty_break:
1220 *
1221 * Set or clear BREAK on a port.
1222 */
1223 void
1224 cztty_break(struct cztty_softc *sc, int onoff)
1225 {
1226 struct cz_softc *cz = CZTTY_CZ(sc);
1227
1228 cz_wait_pci_doorbell(cz, "czbreak");
1229
1230 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1231 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1232 onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1233 }
1234
1235 /*
1236 * cztty_modem:
1237 *
1238 * Set or clear DTR on a port.
1239 */
1240 void
1241 cztty_modem(struct cztty_softc *sc, int onoff)
1242 {
1243 struct cz_softc *cz = CZTTY_CZ(sc);
1244
1245 if (sc->sc_rs_control_dtr == 0)
1246 return;
1247
1248 cz_wait_pci_doorbell(cz, "czmod");
1249
1250 if (onoff)
1251 sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1252 else
1253 sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1254 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1255
1256 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1257 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1258 }
1259
1260 /*
1261 * tiocm_to_cztty:
1262 *
1263 * Process TIOCM* ioctls.
1264 */
1265 void
1266 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1267 {
1268 struct cz_softc *cz = CZTTY_CZ(sc);
1269 u_int32_t czttybits;
1270
1271 czttybits = 0;
1272 if (ISSET(ttybits, TIOCM_DTR))
1273 SET(czttybits, C_RS_DTR);
1274 if (ISSET(ttybits, TIOCM_RTS))
1275 SET(czttybits, C_RS_RTS);
1276
1277 cz_wait_pci_doorbell(cz, "cztiocm");
1278
1279 switch (how) {
1280 case TIOCMBIC:
1281 CLR(sc->sc_chanctl_rs_control, czttybits);
1282 break;
1283
1284 case TIOCMBIS:
1285 SET(sc->sc_chanctl_rs_control, czttybits);
1286 break;
1287
1288 case TIOCMSET:
1289 CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1290 SET(sc->sc_chanctl_rs_control, czttybits);
1291 break;
1292 }
1293
1294 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1295
1296 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1297 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1298 }
1299
1300 /*
1301 * cztty_to_tiocm:
1302 *
1303 * Process the TIOCMGET ioctl.
1304 */
1305 int
1306 cztty_to_tiocm(struct cztty_softc *sc)
1307 {
1308 struct cz_softc *cz = CZTTY_CZ(sc);
1309 u_int32_t rs_status, op_mode;
1310 int ttybits = 0;
1311
1312 cz_wait_pci_doorbell(cz, "cztty");
1313
1314 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1315 op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1316
1317 if (ISSET(rs_status, C_RS_RTS))
1318 SET(ttybits, TIOCM_RTS);
1319 if (ISSET(rs_status, C_RS_CTS))
1320 SET(ttybits, TIOCM_CTS);
1321 if (ISSET(rs_status, C_RS_DCD))
1322 SET(ttybits, TIOCM_CAR);
1323 if (ISSET(rs_status, C_RS_DTR))
1324 SET(ttybits, TIOCM_DTR);
1325 if (ISSET(rs_status, C_RS_RI))
1326 SET(ttybits, TIOCM_RNG);
1327 if (ISSET(rs_status, C_RS_DSR))
1328 SET(ttybits, TIOCM_DSR);
1329
1330 if (ISSET(op_mode, C_CH_ENABLE))
1331 SET(ttybits, TIOCM_LE);
1332
1333 return (ttybits);
1334 }
1335
1336 /*
1337 * czttyparam:
1338 *
1339 * Set Cyclades-Z serial port parameters from termios.
1340 *
1341 * XXX Should just copy the whole termios after making
1342 * XXX sure all the changes could be done.
1343 */
1344 int
1345 czttyparam(struct tty *tp, struct termios *t)
1346 {
1347 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1348 struct cz_softc *cz = CZTTY_CZ(sc);
1349 u_int32_t rs_status;
1350 int ospeed, cflag;
1351
1352 ospeed = t->c_ospeed;
1353 cflag = t->c_cflag;
1354
1355 /* Check requested parameters. */
1356 if (ospeed < 0)
1357 return (EINVAL);
1358 if (t->c_ispeed && t->c_ispeed != ospeed)
1359 return (EINVAL);
1360
1361 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1362 SET(cflag, CLOCAL);
1363 CLR(cflag, HUPCL);
1364 }
1365
1366 /*
1367 * If there were no changes, don't do anything. This avoids dropping
1368 * input and improves performance when all we did was frob things like
1369 * VMIN and VTIME.
1370 */
1371 if (tp->t_ospeed == ospeed &&
1372 tp->t_cflag == cflag)
1373 return (0);
1374
1375 /* Data bits. */
1376 sc->sc_chanctl_comm_data_l = 0;
1377 switch (t->c_cflag & CSIZE) {
1378 case CS5:
1379 sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1380 break;
1381
1382 case CS6:
1383 sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1384 break;
1385
1386 case CS7:
1387 sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1388 break;
1389
1390 case CS8:
1391 sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1392 break;
1393 }
1394
1395 /* Stop bits. */
1396 if (t->c_cflag & CSTOPB) {
1397 if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1398 sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1399 else
1400 sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1401 } else
1402 sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1403
1404 /* Parity. */
1405 if (t->c_cflag & PARENB) {
1406 if (t->c_cflag & PARODD)
1407 sc->sc_chanctl_comm_parity = C_PR_ODD;
1408 else
1409 sc->sc_chanctl_comm_parity = C_PR_EVEN;
1410 } else
1411 sc->sc_chanctl_comm_parity = C_PR_NONE;
1412
1413 /*
1414 * Initialize flow control pins depending on the current flow control
1415 * mode.
1416 */
1417 if (ISSET(t->c_cflag, CRTSCTS)) {
1418 sc->sc_rs_control_dtr = C_RS_DTR;
1419 sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1420 } else if (ISSET(t->c_cflag, MDMBUF)) {
1421 sc->sc_rs_control_dtr = 0;
1422 sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1423 } else {
1424 /*
1425 * If no flow control, then always set RTS. This will make
1426 * the other side happy if it mistakenly thinks we're doing
1427 * RTS/CTS flow control.
1428 */
1429 sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1430 sc->sc_chanctl_hw_flow = 0;
1431 if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1432 SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1433 else
1434 CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1435 }
1436
1437 /* Baud rate. */
1438 sc->sc_chanctl_comm_baud = ospeed;
1439
1440 /* Copy to tty. */
1441 tp->t_ispeed = 0;
1442 tp->t_ospeed = t->c_ospeed;
1443 tp->t_cflag = t->c_cflag;
1444
1445 /*
1446 * Now load the channel control structure.
1447 */
1448
1449 cz_wait_pci_doorbell(cz, "czparam");
1450
1451 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1452 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1454 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1455 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1456
1457 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1458 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1459
1460 cz_wait_pci_doorbell(cz, "czparam");
1461
1462 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1463 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1464
1465 cz_wait_pci_doorbell(cz, "czparam");
1466
1467 /*
1468 * Update the tty layer's idea of the carrier bit, in case we changed
1469 * CLOCAL. We don't hang up here; we only do that by explicit
1470 * request.
1471 */
1472 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1473 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1474
1475 return (0);
1476 }
1477
1478 /*
1479 * czttystart:
1480 *
1481 * Start or restart transmission.
1482 */
1483 void
1484 czttystart(struct tty *tp)
1485 {
1486 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1487 int s;
1488
1489 s = spltty();
1490 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1491 goto out;
1492
1493 if (tp->t_outq.c_cc <= tp->t_lowat) {
1494 if (ISSET(tp->t_state, TS_ASLEEP)) {
1495 CLR(tp->t_state, TS_ASLEEP);
1496 wakeup(&tp->t_outq);
1497 }
1498 selwakeup(&tp->t_wsel);
1499 if (tp->t_outq.c_cc == 0)
1500 goto out;
1501 }
1502
1503 cztty_transmit(sc, tp);
1504 out:
1505 splx(s);
1506 }
1507
1508 /*
1509 * czttystop:
1510 *
1511 * Stop output, e.g., for ^S or output flush.
1512 */
1513 void
1514 czttystop(struct tty *tp, int flag)
1515 {
1516
1517 /*
1518 * XXX We don't do anything here, yet. Mostly, I don't know
1519 * XXX exactly how this should be implemented on this device.
1520 * XXX We've given a big chunk of data to the MIPS already,
1521 * XXX and I don't know how we request the MIPS to stop sending
1522 * XXX the data. So, punt for now. --thorpej
1523 */
1524 }
1525
1526 /*
1527 * cztty_diag:
1528 *
1529 * Issue a scheduled diagnostic message.
1530 */
1531 void
1532 cztty_diag(void *arg)
1533 {
1534 struct cztty_softc *sc = arg;
1535 struct cz_softc *cz = CZTTY_CZ(sc);
1536 u_int overflows, parity_errors, framing_errors;
1537 int s;
1538
1539 s = spltty();
1540
1541 overflows = sc->sc_overflows;
1542 sc->sc_overflows = 0;
1543
1544 parity_errors = sc->sc_parity_errors;
1545 sc->sc_parity_errors = 0;
1546
1547 framing_errors = sc->sc_framing_errors;
1548 sc->sc_framing_errors = 0;
1549
1550 sc->sc_errors = 0;
1551
1552 splx(s);
1553
1554 log(LOG_WARNING,
1555 "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1556 cz->cz_dev.dv_xname, sc->sc_channel,
1557 overflows, overflows == 1 ? "" : "s",
1558 parity_errors,
1559 framing_errors, framing_errors == 1 ? "" : "s");
1560 }
1561
1562 /*
1563 * tx and rx ring buffer size macros:
1564 *
1565 * The transmitter and receiver both use ring buffers. For each one, there
1566 * is a get (consumer) and a put (producer) offset. The get value is the
1567 * next byte to be read from the ring, and the put is the next one to be
1568 * put into the ring. get == put means the ring is empty.
1569 *
1570 * For each ring, the firmware controls one of (get, put) and this driver
1571 * controls the other. For transmission, this driver updates put to point
1572 * past the valid data, and the firmware moves get as bytes are sent. Likewise
1573 * for receive, the driver controls put, and this driver controls get.
1574 */
1575 #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1576 #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1577
1578 /*
1579 * cztty_transmit()
1580 *
1581 * Look at the tty for this port and start sending.
1582 */
1583 int
1584 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1585 {
1586 struct cz_softc *cz = CZTTY_CZ(sc);
1587 u_int move, get, put, size, address;
1588 #ifdef HOSTRAMCODE
1589 int error, done = 0;
1590 #else
1591 int done = 0;
1592 #endif
1593
1594 size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1595 get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1596 put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1597 address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1598
1599 while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1600 #ifdef HOSTRAMCODE
1601 if (0) {
1602 move = min(tp->t_outq.c_cc, move);
1603 error = q_to_b(&tp->t_outq, 0, move);
1604 if (error != move) {
1605 printf("%s: channel %d: error moving to "
1606 "transmit buf\n", cz->cz_dev.dv_xname,
1607 sc->sc_channel);
1608 move = error;
1609 }
1610 } else {
1611 #endif
1612 move = min(ndqb(&tp->t_outq, 0), move);
1613 bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1614 address + put, tp->t_outq.c_cf, move);
1615 ndflush(&tp->t_outq, move);
1616 #ifdef HOSTRAMCODE
1617 }
1618 #endif
1619
1620 put = ((put + move) % size);
1621 done = 1;
1622 }
1623 if (done) {
1624 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1625 }
1626 return (done);
1627 }
1628
1629 int
1630 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1631 {
1632 struct cz_softc *cz = CZTTY_CZ(sc);
1633 u_int get, put, size, address;
1634 int done = 0, ch;
1635
1636 size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1637 get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1638 put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1639 address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1640
1641 while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1642 #ifdef HOSTRAMCODE
1643 if (hostram)
1644 ch = ((char *)fifoaddr)[get];
1645 } else {
1646 #endif
1647 ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1648 address + get);
1649 #ifdef HOSTRAMCODE
1650 }
1651 #endif
1652 (*tp->t_linesw->l_rint)(ch, tp);
1653 get = (get + 1) % size;
1654 done = 1;
1655 }
1656 if (done) {
1657 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1658 }
1659 return (done);
1660 }
1661