cz.c revision 1.13 1 /* $NetBSD: cz.c,v 1.13 2001/01/20 04:19:21 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Zembu Labs, Inc.
5 * All rights reserved.
6 *
7 * Authors: Jason R. Thorpe <thorpej (at) zembu.com>
8 * Bill Studenmund <wrstuden (at) zembu.com>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Zembu Labs, Inc.
21 * 4. Neither the name of Zembu Labs nor the names of its employees may
22 * be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39 *
40 * Some notes:
41 *
42 * - The Cyclades-Z has fully automatic hardware (and software!)
43 * flow control. We only utilize RTS/CTS flow control here,
44 * and it is implemented in a very simplistic manner. This
45 * may be an area of future work.
46 *
47 * - The PLX can map the either the board's RAM or host RAM
48 * into the MIPS's memory window. This would enable us to
49 * use less expensive (for us) memory reads/writes to host
50 * RAM, rather than time-consuming reads/writes to PCI
51 * memory space. However, the PLX can only map a 0-128M
52 * window, so we would have to ensure that the DMA address
53 * of the host RAM fits there. This is kind of a pain,
54 * so we just don't bother right now.
55 *
56 * - In a perfect world, we would use the autoconfiguration
57 * mechanism to attach the TTYs that we find. However,
58 * that leads to somewhat icky looking autoconfiguration
59 * messages (one for every TTY, up to 64 per board!). So
60 * we don't do it that way, but assign minors as if there
61 * were the max of 64 ports per board.
62 *
63 * - We don't bother with PPS support here. There are so many
64 * ports, each with a large amount of buffer space, that the
65 * normal mode of operation is to poll the boards regularly
66 * (generally, every 20ms or so). This makes this driver
67 * unsuitable for PPS, as the latency will be generally too
68 * high.
69 */
70 /*
71 * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72 * for FreeBSD 3.2.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/tty.h>
81 #include <sys/conf.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/fcntl.h>
85 #include <sys/syslog.h>
86
87 #include <sys/callout.h>
88
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/czreg.h>
93
94 #include <dev/pci/plx9060reg.h>
95 #include <dev/pci/plx9060var.h>
96
97 #include <dev/microcode/cyclades-z/cyzfirm.h>
98
99 #define CZ_DRIVER_VERSION 0x20000411
100
101 #define CZ_POLL_MS 20
102
103 /* These are the interrupts we always use. */
104 #define CZ_INTERRUPTS \
105 (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
106 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
107 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
108 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
109
110 /*
111 * cztty_softc:
112 *
113 * Per-channel (TTY) state.
114 */
115 struct cztty_softc {
116 struct cz_softc *sc_parent;
117 struct tty *sc_tty;
118
119 struct callout sc_diag_ch;
120
121 int sc_channel; /* Also used to flag unattached chan */
122 #define CZTTY_CHANNEL_DEAD -1
123
124 bus_space_tag_t sc_chan_st; /* channel space tag */
125 bus_space_handle_t sc_chan_sh; /* channel space handle */
126 bus_space_handle_t sc_buf_sh; /* buffer space handle */
127
128 u_int sc_overflows,
129 sc_parity_errors,
130 sc_framing_errors,
131 sc_errors;
132
133 int sc_swflags;
134
135 u_int32_t sc_rs_control_dtr,
136 sc_chanctl_hw_flow,
137 sc_chanctl_comm_baud,
138 sc_chanctl_rs_control,
139 sc_chanctl_comm_data_l,
140 sc_chanctl_comm_parity;
141 };
142
143 /*
144 * cz_softc:
145 *
146 * Per-board state.
147 */
148 struct cz_softc {
149 struct device cz_dev; /* generic device info */
150 struct plx9060_config cz_plx; /* PLX 9060 config info */
151 bus_space_tag_t cz_win_st; /* window space tag */
152 bus_space_handle_t cz_win_sh; /* window space handle */
153 struct callout cz_callout; /* callout for polling-mode */
154
155 void *cz_ih; /* interrupt handle */
156
157 u_int32_t cz_mailbox0; /* our MAILBOX0 value */
158 int cz_nchannels; /* number of channels */
159 int cz_nopenchan; /* number of open channels */
160 struct cztty_softc *cz_ports; /* our array of ports */
161
162 bus_addr_t cz_fwctl; /* offset of firmware control */
163 };
164
165 int cz_match(struct device *, struct cfdata *, void *);
166 void cz_attach(struct device *, struct device *, void *);
167 int cz_wait_pci_doorbell(struct cz_softc *, const char *);
168
169 struct cfattach cz_ca = {
170 sizeof(struct cz_softc), cz_match, cz_attach
171 };
172
173 void cz_reset_board(struct cz_softc *);
174 int cz_load_firmware(struct cz_softc *);
175
176 int cz_intr(void *);
177 void cz_poll(void *);
178 int cztty_transmit(struct cztty_softc *, struct tty *);
179 int cztty_receive(struct cztty_softc *, struct tty *);
180
181 struct cztty_softc * cztty_getttysoftc(dev_t dev);
182 int cztty_findmajor(void);
183 int cztty_major;
184 int cztty_attached_ttys;
185 int cz_timeout_ticks;
186
187 cdev_decl(cztty);
188
189 void czttystart(struct tty *tp);
190 int czttyparam(struct tty *tp, struct termios *t);
191 void cztty_shutdown(struct cztty_softc *sc);
192 void cztty_modem(struct cztty_softc *sc, int onoff);
193 void cztty_break(struct cztty_softc *sc, int onoff);
194 void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
195 int cztty_to_tiocm(struct cztty_softc *sc);
196 void cztty_diag(void *arg);
197
198 extern struct cfdriver cz_cd;
199
200 /* Macros to clear/set/test flags. */
201 #define SET(t, f) (t) |= (f)
202 #define CLR(t, f) (t) &= ~(f)
203 #define ISSET(t, f) ((t) & (f))
204
205 /*
206 * Macros to read and write the PLX.
207 */
208 #define CZ_PLX_READ(cz, reg) \
209 bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
210 #define CZ_PLX_WRITE(cz, reg, val) \
211 bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
212 (reg), (val))
213
214 /*
215 * Macros to read and write the FPGA. We must already be in the FPGA
216 * window for this.
217 */
218 #define CZ_FPGA_READ(cz, reg) \
219 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
220 #define CZ_FPGA_WRITE(cz, reg, val) \
221 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
222
223 /*
224 * Macros to read and write the firmware control structures in board RAM.
225 */
226 #define CZ_FWCTL_READ(cz, off) \
227 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
228 (cz)->cz_fwctl + (off))
229
230 #define CZ_FWCTL_WRITE(cz, off, val) \
231 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
232 (cz)->cz_fwctl + (off), (val))
233
234 /*
235 * Convenience macros for cztty routines. PLX window MUST be to RAM.
236 */
237 #define CZTTY_CHAN_READ(sc, off) \
238 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
239
240 #define CZTTY_CHAN_WRITE(sc, off, val) \
241 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
242 (off), (val))
243
244 #define CZTTY_BUF_READ(sc, off) \
245 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
246
247 #define CZTTY_BUF_WRITE(sc, off, val) \
248 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
249 (off), (val))
250
251 /*
252 * Convenience macros.
253 */
254 #define CZ_WIN_RAM(cz) \
255 do { \
256 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
257 delay(100); \
258 } while (0)
259
260 #define CZ_WIN_FPGA(cz) \
261 do { \
262 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
263 delay(100); \
264 } while (0)
265
266 /*****************************************************************************
267 * Cyclades-Z controller code starts here...
268 *****************************************************************************/
269
270 /*
271 * cz_match:
272 *
273 * Determine if the given PCI device is a Cyclades-Z board.
274 */
275 int
276 cz_match(struct device *parent,
277 struct cfdata *match,
278 void *aux)
279 {
280 struct pci_attach_args *pa = aux;
281
282 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
283 switch (PCI_PRODUCT(pa->pa_id)) {
284 case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
285 return (1);
286 }
287 }
288
289 return (0);
290 }
291
292 /*
293 * cz_attach:
294 *
295 * A Cyclades-Z board was found; attach it.
296 */
297 void
298 cz_attach(struct device *parent,
299 struct device *self,
300 void *aux)
301 {
302 struct cz_softc *cz = (void *) self;
303 struct pci_attach_args *pa = aux;
304 pci_intr_handle_t ih;
305 const char *intrstr = NULL;
306 struct cztty_softc *sc;
307 struct tty *tp;
308 int i;
309
310 printf(": Cyclades-Z multiport serial\n");
311
312 cz->cz_plx.plx_pc = pa->pa_pc;
313 cz->cz_plx.plx_tag = pa->pa_tag;
314
315 if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
316 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
317 &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
318 printf("%s: unable to map PLX registers\n",
319 cz->cz_dev.dv_xname);
320 return;
321 }
322 if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
323 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
324 &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
325 printf("%s: unable to map device window\n",
326 cz->cz_dev.dv_xname);
327 return;
328 }
329
330 cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
331 cz->cz_nopenchan = 0;
332
333 /*
334 * Make sure that the board is completely stopped.
335 */
336 CZ_WIN_FPGA(cz);
337 CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
338
339 /*
340 * Load the board's firmware.
341 */
342 if (cz_load_firmware(cz) != 0)
343 return;
344
345 /*
346 * Now that we're ready to roll, map and establish the interrupt
347 * handler.
348 */
349 if (pci_intr_map(pa, &ih) != 0) {
350 /*
351 * The common case is for Cyclades-Z boards to run
352 * in polling mode, and thus not have an interrupt
353 * mapped for them. Don't bother reporting that
354 * the interrupt is not mappable, since this isn't
355 * really an error.
356 */
357 cz->cz_ih = NULL;
358 goto polling_mode;
359 } else {
360 intrstr = pci_intr_string(pa->pa_pc, ih);
361 cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
362 cz_intr, cz);
363 }
364 if (cz->cz_ih == NULL) {
365 printf("%s: unable to establish interrupt",
366 cz->cz_dev.dv_xname);
367 if (intrstr != NULL)
368 printf(" at %s", intrstr);
369 printf("\n");
370 /* We will fall-back on polling mode. */
371 } else
372 printf("%s: interrupting at %s\n",
373 cz->cz_dev.dv_xname, intrstr);
374
375 polling_mode:
376 if (cz->cz_ih == NULL) {
377 callout_init(&cz->cz_callout);
378 if (cz_timeout_ticks == 0)
379 cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
380 printf("%s: polling mode, %d ms interval (%d tick%s)\n",
381 cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
382 cz_timeout_ticks == 1 ? "" : "s");
383 }
384
385 if (cztty_major == 0)
386 cztty_major = cztty_findmajor();
387 /*
388 * Allocate sufficient pointers for the children and
389 * attach them. Set all ports to a reasonable initial
390 * configuration while we're at it:
391 *
392 * disabled
393 * 8N1
394 * default baud rate
395 * hardware flow control.
396 */
397 CZ_WIN_RAM(cz);
398
399 if (cz->cz_nchannels == 0) {
400 /* No channels? No more work to do! */
401 return;
402 }
403
404 cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
405 M_DEVBUF, M_WAITOK);
406 cztty_attached_ttys += cz->cz_nchannels;
407 memset(cz->cz_ports, 0,
408 sizeof(struct cztty_softc) * cz->cz_nchannels);
409
410 for (i = 0; i < cz->cz_nchannels; i++) {
411 sc = &cz->cz_ports[i];
412
413 sc->sc_channel = i;
414 sc->sc_chan_st = cz->cz_win_st;
415 sc->sc_parent = cz;
416
417 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
418 cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
419 ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
420 printf("%s: unable to subregion channel %d control\n",
421 cz->cz_dev.dv_xname, i);
422 sc->sc_channel = CZTTY_CHANNEL_DEAD;
423 continue;
424 }
425 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
426 cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
427 ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
428 printf("%s: unable to subregion channel %d buffer\n",
429 cz->cz_dev.dv_xname, i);
430 sc->sc_channel = CZTTY_CHANNEL_DEAD;
431 continue;
432 }
433
434 callout_init(&sc->sc_diag_ch);
435
436 tp = ttymalloc();
437 tp->t_dev = makedev(cztty_major,
438 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i);
439 tp->t_oproc = czttystart;
440 tp->t_param = czttyparam;
441 tty_attach(tp);
442
443 sc->sc_tty = tp;
444
445 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
446 CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
447 CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
448 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
449 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
450 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
451 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
452 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
454 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
455 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
456 }
457 }
458
459 /*
460 * cz_reset_board:
461 *
462 * Reset the board via the PLX.
463 */
464 void
465 cz_reset_board(struct cz_softc *cz)
466 {
467 u_int32_t reg;
468
469 reg = CZ_PLX_READ(cz, PLX_CONTROL);
470 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
471 delay(1000);
472
473 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
474 delay(1000);
475
476 /* Now reload the PLX from its EEPROM. */
477 reg = CZ_PLX_READ(cz, PLX_CONTROL);
478 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
479 delay(1000);
480 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
481 }
482
483 /*
484 * cz_load_firmware:
485 *
486 * Load the ZFIRM firmware into the board's RAM and start it
487 * running.
488 */
489 int
490 cz_load_firmware(struct cz_softc *cz)
491 {
492 struct zfirm_header *zfh;
493 struct zfirm_config *zfc;
494 struct zfirm_block *zfb, *zblocks;
495 const u_int8_t *cp;
496 const char *board;
497 u_int32_t fid;
498 int i, j, nconfigs, nblocks, nbytes;
499
500 zfh = (struct zfirm_header *) cycladesz_firmware;
501
502 /* Find the config header. */
503 if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
504 printf("%s: bad ZFIRM config offset: 0x%x\n",
505 cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
506 return (EIO);
507 }
508 zfc = (struct zfirm_config *)(cycladesz_firmware +
509 le32toh(zfh->zfh_configoff));
510 nconfigs = le32toh(zfh->zfh_nconfig);
511
512 /* Locate the correct configuration for our board. */
513 for (i = 0; i < nconfigs; i++, zfc++) {
514 if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
515 le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
516 break;
517 }
518 if (i == nconfigs) {
519 printf("%s: unable to locate config header\n",
520 cz->cz_dev.dv_xname);
521 return (EIO);
522 }
523
524 nblocks = le32toh(zfc->zfc_nblocks);
525 zblocks = (struct zfirm_block *)(cycladesz_firmware +
526 le32toh(zfh->zfh_blockoff));
527
528 /*
529 * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
530 * necessary.
531 */
532 if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
533 #if 0
534 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
535 #endif
536 ) {
537 #ifdef CZ_DEBUG
538 printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
539 #endif
540 CZ_WIN_FPGA(cz);
541 for (i = 0; i < nblocks; i++) {
542 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
543 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
544 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FPGA) {
545 nbytes = le32toh(zfb->zfb_size);
546 cp = &cycladesz_firmware[
547 le32toh(zfb->zfb_fileoff)];
548 for (j = 0; j < nbytes; j++, cp++) {
549 bus_space_write_1(cz->cz_win_st,
550 cz->cz_win_sh, 0, *cp);
551 /* FPGA needs 30-100us to settle. */
552 delay(10);
553 }
554 }
555 }
556 #ifdef CZ_DEBUG
557 printf("done\n");
558 #endif
559 }
560
561 /* Now load the firmware. */
562 CZ_WIN_RAM(cz);
563
564 for (i = 0; i < nblocks; i++) {
565 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
566 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
567 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
568 const u_int32_t *lp;
569 u_int32_t ro = le32toh(zfb->zfb_ramoff);
570 nbytes = le32toh(zfb->zfb_size);
571 lp = (const u_int32_t *)
572 &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
573 for (j = 0; j < nbytes; j += 4, lp++) {
574 bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
575 ro + j, le32toh(*lp));
576 delay(10);
577 }
578 }
579 }
580
581 /* Now restart the MIPS. */
582 CZ_WIN_FPGA(cz);
583 CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
584
585 /* Wait for the MIPS to start, then report the results. */
586 CZ_WIN_RAM(cz);
587
588 #ifdef CZ_DEBUG
589 printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
590 #endif
591 for (i = 0; i < 100; i++) {
592 fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
593 ZFIRM_SIG_OFF);
594 if (fid == ZFIRM_SIG) {
595 /* MIPS has booted. */
596 break;
597 } else if (fid == ZFIRM_HLT) {
598 /*
599 * The MIPS has halted, usually due to a power
600 * shortage on the expansion module.
601 */
602 printf("%s: MIPS halted; possible power supply "
603 "problem\n", cz->cz_dev.dv_xname);
604 return (EIO);
605 } else {
606 #ifdef CZ_DEBUG
607 if ((i % 8) == 0)
608 printf(".");
609 #endif
610 delay(250000);
611 }
612 }
613 #ifdef CZ_DEBUG
614 printf("\n");
615 #endif
616 if (i == 100) {
617 CZ_WIN_FPGA(cz);
618 printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
619 cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
620 printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
621 cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
622 CZ_FPGA_READ(cz, FPGA_VERSION));
623 return (EIO);
624 }
625
626 /*
627 * Locate the firmware control structures.
628 */
629 cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
630 ZFIRM_CTRLADDR_OFF);
631 #ifdef CZ_DEBUG
632 printf("%s: FWCTL structure at offset 0x%08lx\n",
633 cz->cz_dev.dv_xname, cz->cz_fwctl);
634 #endif
635
636 CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
637 CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
638
639 cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
640
641 switch (cz->cz_mailbox0) {
642 case MAILBOX0_8Zo_V1:
643 board = "Cyclades-8Zo ver. 1";
644 break;
645
646 case MAILBOX0_8Zo_V2:
647 board = "Cyclades-8Zo ver. 2";
648 break;
649
650 case MAILBOX0_Ze_V1:
651 board = "Cyclades-Ze";
652 break;
653
654 default:
655 board = "unknown Cyclades Z-series";
656 break;
657 }
658
659 fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
660 printf("%s: %s, ", cz->cz_dev.dv_xname, board);
661 if (cz->cz_nchannels == 0)
662 printf("no channels attached, ");
663 else
664 printf("%d channels (ttyCZ%04d..ttyCZ%04d), ",
665 cz->cz_nchannels, cztty_attached_ttys,
666 cztty_attached_ttys + (cz->cz_nchannels - 1));
667 printf("firmware %x.%x.%x\n",
668 (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
669
670 return (0);
671 }
672
673 /*
674 * cz_poll:
675 *
676 * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
677 * ms.
678 */
679 void
680 cz_poll(void *arg)
681 {
682 int s = spltty();
683 struct cz_softc *cz = arg;
684
685 cz_intr(cz);
686 callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
687
688 splx(s);
689 }
690
691 /*
692 * cz_intr:
693 *
694 * Interrupt service routine.
695 *
696 * We either are receiving an interrupt directly from the board, or we are
697 * in polling mode and it's time to poll.
698 */
699 int
700 cz_intr(void *arg)
701 {
702 int rval = 0;
703 u_int command, channel, param;
704 struct cz_softc *cz = arg;
705 struct cztty_softc *sc;
706 struct tty *tp;
707
708 while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
709 rval = 1;
710 channel = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_CHANNEL);
711 param = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_PARAM);
712
713 /* now clear this interrupt, posslibly enabling another */
714 CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
715
716 if (cz->cz_ports == NULL) {
717 #ifdef CZ_DEBUG
718 printf("%s: interrupt on channel %d, but no channels\n",
719 cz->cz_dev.dv_xname, channel);
720 #endif
721 continue;
722 }
723
724 sc = &cz->cz_ports[channel];
725
726 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
727 break;
728
729 tp = sc->sc_tty;
730
731 switch (command) {
732 case C_CM_TXFEMPTY: /* transmit cases */
733 case C_CM_TXBEMPTY:
734 case C_CM_TXLOWWM:
735 case C_CM_INTBACK:
736 if (!ISSET(tp->t_state, TS_ISOPEN)) {
737 #ifdef CZ_DEBUG
738 printf("%s: tx intr on closed channel %d\n",
739 cz->cz_dev.dv_xname, channel);
740 #endif
741 break;
742 }
743
744 if (cztty_transmit(sc, tp)) {
745 /*
746 * Do wakeup stuff here.
747 */
748 ttwakeup(tp);
749 wakeup(tp);
750 }
751 break;
752
753 case C_CM_RXNNDT: /* receive cases */
754 case C_CM_RXHIWM:
755 case C_CM_INTBACK2: /* from restart ?? */
756 #if 0
757 case C_CM_ICHAR:
758 #endif
759 if (!ISSET(tp->t_state, TS_ISOPEN)) {
760 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
761 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
762 break;
763 }
764
765 if (cztty_receive(sc, tp)) {
766 /*
767 * Do wakeup stuff here.
768 */
769 ttwakeup(tp);
770 wakeup(tp);
771 }
772 break;
773
774 case C_CM_MDCD:
775 if (!ISSET(tp->t_state, TS_ISOPEN))
776 break;
777
778 (void) (*tp->t_linesw->l_modem)(tp,
779 ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
780 CHNCTL_RS_STATUS)));
781 break;
782
783 case C_CM_MDSR:
784 case C_CM_MRI:
785 case C_CM_MCTS:
786 case C_CM_MRTS:
787 break;
788
789 case C_CM_IOCTLW:
790 break;
791
792 case C_CM_PR_ERROR:
793 sc->sc_parity_errors++;
794 goto error_common;
795
796 case C_CM_FR_ERROR:
797 sc->sc_framing_errors++;
798 goto error_common;
799
800 case C_CM_OVR_ERROR:
801 sc->sc_overflows++;
802 error_common:
803 if (sc->sc_errors++ == 0)
804 callout_reset(&sc->sc_diag_ch, 60 * hz,
805 cztty_diag, sc);
806 break;
807
808 case C_CM_RXBRK:
809 if (!ISSET(tp->t_state, TS_ISOPEN))
810 break;
811
812 /*
813 * A break is a \000 character with TTY_FE error
814 * flags set. So TTY_FE by itself works.
815 */
816 (*tp->t_linesw->l_rint)(TTY_FE, tp);
817 ttwakeup(tp);
818 wakeup(tp);
819 break;
820
821 default:
822 #ifdef CZ_DEBUG
823 printf("%s: channel %d: Unknown interrupt 0x%x\n",
824 cz->cz_dev.dv_xname, sc->sc_channel, command);
825 #endif
826 break;
827 }
828 }
829
830 return (rval);
831 }
832
833 /*
834 * cz_wait_pci_doorbell:
835 *
836 * Wait for the pci doorbell to be clear - wait for pending
837 * activity to drain.
838 */
839 int
840 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
841 {
842 int error;
843
844 while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
845 error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
846 if ((error != 0) && (error != EWOULDBLOCK))
847 return (error);
848 }
849 return (0);
850 }
851
852 /*****************************************************************************
853 * Cyclades-Z TTY code starts here...
854 *****************************************************************************/
855
856 #define CZTTYCHAN_MASK 0x0003f
857 #define CZTTYBOARD_MASK (0x7ffff & ~CZTTYCHAN_MASK)
858 #define CZTTYBOARD_SHIFT 6
859 #define CZTTYDIALOUT_MASK 0x80000
860
861 #define CZTTY_CHAN(dev) (minor((dev)) & CZTTYCHAN_MASK)
862 #define CZTTY_BOARD(dev) ((minor((dev)) & CZTTYBOARD_MASK) >> \
863 CZTTYBOARD_SHIFT)
864 #define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
865 #define CZTTY_CZ(sc) ((sc)->sc_parent)
866
867 #define CZ_SOFTC(dev) \
868 ((struct cz_softc *)(CZTTY_BOARD(dev) < cz_cd.cd_ndevs ? \
869 cz_cd.cd_devs[CZTTY_BOARD(dev)] : NULL))
870
871 #define CZTTY_SOFTC(dev) cztty_getttysoftc(dev)
872
873 struct cztty_softc *
874 cztty_getttysoftc(dev_t dev)
875 {
876 int i, j, k, u = minor(dev) & ~CZTTYDIALOUT_MASK;
877 struct cz_softc *cz;
878
879 for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) {
880 k = j;
881 cz = cz_cd.cd_devs[i];
882 if (cz == NULL)
883 continue;
884 if (cz->cz_ports == NULL)
885 continue;
886 j += cz->cz_nchannels;
887 if (j > u)
888 break;
889 }
890
891 if (i >= cz_cd.cd_ndevs) {
892 return (NULL);
893 } else
894 return (&cz->cz_ports[u - k]);
895 }
896
897 int
898 cztty_findmajor(void)
899 {
900 int maj;
901
902 for (maj = 0; maj < nchrdev; maj++) {
903 if (cdevsw[maj].d_open == czttyopen)
904 break;
905 }
906
907 return (maj == nchrdev) ? 0 : maj;
908 }
909
910 /*
911 * czttytty:
912 *
913 * Return a pointer to our tty.
914 */
915 struct tty *
916 czttytty(dev_t dev)
917 {
918 struct cztty_softc *sc = CZTTY_SOFTC(dev);
919
920 #ifdef DIAGNOSTIC
921 if (sc == NULL)
922 panic("czttytty");
923 #endif
924
925 return (sc->sc_tty);
926 }
927
928 /*
929 * cztty_shutdown:
930 *
931 * Shut down a port.
932 */
933 void
934 cztty_shutdown(struct cztty_softc *sc)
935 {
936 struct cz_softc *cz = CZTTY_CZ(sc);
937 struct tty *tp = sc->sc_tty;
938 int s;
939
940 s = spltty();
941
942 /* Clear any break condition set with TIOCSBRK. */
943 cztty_break(sc, 0);
944
945 /*
946 * Hang up if necessary. Wait a bit, so the other side has time to
947 * notice even if we immediately open the port again.
948 */
949 if (ISSET(tp->t_cflag, HUPCL)) {
950 cztty_modem(sc, 0);
951 (void) tsleep(tp, TTIPRI, ttclos, hz);
952 }
953
954 /* Disable the channel. */
955 cz_wait_pci_doorbell(cz, "czdis");
956 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
957 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
958 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
959
960 if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
961 #ifdef CZ_DEBUG
962 printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
963 #endif
964 callout_stop(&cz->cz_callout);
965 }
966
967 splx(s);
968 }
969
970 /*
971 * czttyopen:
972 *
973 * Open a Cyclades-Z serial port.
974 */
975 int
976 czttyopen(dev_t dev, int flags, int mode, struct proc *p)
977 {
978 struct cztty_softc *sc = CZTTY_SOFTC(dev);
979 struct cz_softc *cz;
980 struct tty *tp;
981 int s, error;
982
983 if (sc == NULL)
984 return (ENXIO);
985
986 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
987 return (ENXIO);
988
989 cz = CZTTY_CZ(sc);
990 tp = sc->sc_tty;
991
992 if (ISSET(tp->t_state, TS_ISOPEN) &&
993 ISSET(tp->t_state, TS_XCLUDE) &&
994 p->p_ucred->cr_uid != 0)
995 return (EBUSY);
996
997 s = spltty();
998
999 /*
1000 * Do the following iff this is a first open.
1001 */
1002 if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
1003 struct termios t;
1004
1005 tp->t_dev = dev;
1006
1007 /* If we're turning things on, enable interrupts */
1008 if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
1009 #ifdef CZ_DEBUG
1010 printf("%s: Enabling polling.\n",
1011 cz->cz_dev.dv_xname);
1012 #endif
1013 callout_reset(&cz->cz_callout, cz_timeout_ticks,
1014 cz_poll, cz);
1015 }
1016
1017 /*
1018 * Enable the channel. Don't actually ring the
1019 * doorbell here; czttyparam() will do it for us.
1020 */
1021 cz_wait_pci_doorbell(cz, "czopen");
1022
1023 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
1024
1025 /*
1026 * Initialize the termios status to the defaults. Add in the
1027 * sticky bits from TIOCSFLAGS.
1028 */
1029 t.c_ispeed = 0;
1030 t.c_ospeed = TTYDEF_SPEED;
1031 t.c_cflag = TTYDEF_CFLAG;
1032 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
1033 SET(t.c_cflag, CLOCAL);
1034 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
1035 SET(t.c_cflag, CRTSCTS);
1036
1037 /*
1038 * Reset the input and output rings. Do this before
1039 * we call czttyparam(), as that function enables
1040 * the channel.
1041 */
1042 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1043 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1044 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1045 CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1046
1047 /* Make sure czttyparam() will see changes. */
1048 tp->t_ospeed = 0;
1049 (void) czttyparam(tp, &t);
1050 tp->t_iflag = TTYDEF_IFLAG;
1051 tp->t_oflag = TTYDEF_OFLAG;
1052 tp->t_lflag = TTYDEF_LFLAG;
1053 ttychars(tp);
1054 ttsetwater(tp);
1055
1056 /*
1057 * Turn on DTR. We must always do this, even if carrier is not
1058 * present, because otherwise we'd have to use TIOCSDTR
1059 * immediately after setting CLOCAL, which applications do not
1060 * expect. We always assert DTR while the device is open
1061 * unless explicitly requested to deassert it.
1062 */
1063 cztty_modem(sc, 1);
1064 }
1065
1066 splx(s);
1067
1068 error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
1069 if (error)
1070 goto bad;
1071
1072 error = (*tp->t_linesw->l_open)(dev, tp);
1073 if (error)
1074 goto bad;
1075
1076 return (0);
1077
1078 bad:
1079 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1080 /*
1081 * We failed to open the device, and nobody else had it opened.
1082 * Clean up the state as appropriate.
1083 */
1084 cztty_shutdown(sc);
1085 }
1086
1087 return (error);
1088 }
1089
1090 /*
1091 * czttyclose:
1092 *
1093 * Close a Cyclades-Z serial port.
1094 */
1095 int
1096 czttyclose(dev_t dev, int flags, int mode, struct proc *p)
1097 {
1098 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1099 struct tty *tp = sc->sc_tty;
1100
1101 /* XXX This is for cons.c. */
1102 if (!ISSET(tp->t_state, TS_ISOPEN))
1103 return (0);
1104
1105 (*tp->t_linesw->l_close)(tp, flags);
1106 ttyclose(tp);
1107
1108 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1109 /*
1110 * Although we got a last close, the device may still be in
1111 * use; e.g. if this was the dialout node, and there are still
1112 * processes waiting for carrier on the non-dialout node.
1113 */
1114 cztty_shutdown(sc);
1115 }
1116
1117 return (0);
1118 }
1119
1120 /*
1121 * czttyread:
1122 *
1123 * Read from a Cyclades-Z serial port.
1124 */
1125 int
1126 czttyread(dev_t dev, struct uio *uio, int flags)
1127 {
1128 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1129 struct tty *tp = sc->sc_tty;
1130
1131 return ((*tp->t_linesw->l_read)(tp, uio, flags));
1132 }
1133
1134 /*
1135 * czttywrite:
1136 *
1137 * Write to a Cyclades-Z serial port.
1138 */
1139 int
1140 czttywrite(dev_t dev, struct uio *uio, int flags)
1141 {
1142 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1143 struct tty *tp = sc->sc_tty;
1144
1145 return ((*tp->t_linesw->l_write)(tp, uio, flags));
1146 }
1147
1148 /*
1149 * czttyioctl:
1150 *
1151 * Perform a control operation on a Cyclades-Z serial port.
1152 */
1153 int
1154 czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1155 {
1156 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1157 struct tty *tp = sc->sc_tty;
1158 int s, error;
1159
1160 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
1161 if (error >= 0)
1162 return (error);
1163
1164 error = ttioctl(tp, cmd, data, flag, p);
1165 if (error >= 0)
1166 return (error);
1167
1168 error = 0;
1169
1170 s = spltty();
1171
1172 switch (cmd) {
1173 case TIOCSBRK:
1174 cztty_break(sc, 1);
1175 break;
1176
1177 case TIOCCBRK:
1178 cztty_break(sc, 0);
1179 break;
1180
1181 case TIOCGFLAGS:
1182 *(int *)data = sc->sc_swflags;
1183 break;
1184
1185 case TIOCSFLAGS:
1186 error = suser(p->p_ucred, &p->p_acflag);
1187 if (error)
1188 break;
1189 sc->sc_swflags = *(int *)data;
1190 break;
1191
1192 case TIOCSDTR:
1193 cztty_modem(sc, 1);
1194 break;
1195
1196 case TIOCCDTR:
1197 cztty_modem(sc, 0);
1198 break;
1199
1200 case TIOCMSET:
1201 case TIOCMBIS:
1202 case TIOCMBIC:
1203 tiocm_to_cztty(sc, cmd, *(int *)data);
1204 break;
1205
1206 case TIOCMGET:
1207 *(int *)data = cztty_to_tiocm(sc);
1208 break;
1209
1210 default:
1211 error = ENOTTY;
1212 break;
1213 }
1214
1215 splx(s);
1216
1217 return (error);
1218 }
1219
1220 /*
1221 * cztty_break:
1222 *
1223 * Set or clear BREAK on a port.
1224 */
1225 void
1226 cztty_break(struct cztty_softc *sc, int onoff)
1227 {
1228 struct cz_softc *cz = CZTTY_CZ(sc);
1229
1230 cz_wait_pci_doorbell(cz, "czbreak");
1231
1232 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1233 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1234 onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1235 }
1236
1237 /*
1238 * cztty_modem:
1239 *
1240 * Set or clear DTR on a port.
1241 */
1242 void
1243 cztty_modem(struct cztty_softc *sc, int onoff)
1244 {
1245 struct cz_softc *cz = CZTTY_CZ(sc);
1246
1247 if (sc->sc_rs_control_dtr == 0)
1248 return;
1249
1250 cz_wait_pci_doorbell(cz, "czmod");
1251
1252 if (onoff)
1253 sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1254 else
1255 sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1256 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1257
1258 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1259 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1260 }
1261
1262 /*
1263 * tiocm_to_cztty:
1264 *
1265 * Process TIOCM* ioctls.
1266 */
1267 void
1268 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1269 {
1270 struct cz_softc *cz = CZTTY_CZ(sc);
1271 u_int32_t czttybits;
1272
1273 czttybits = 0;
1274 if (ISSET(ttybits, TIOCM_DTR))
1275 SET(czttybits, C_RS_DTR);
1276 if (ISSET(ttybits, TIOCM_RTS))
1277 SET(czttybits, C_RS_RTS);
1278
1279 cz_wait_pci_doorbell(cz, "cztiocm");
1280
1281 switch (how) {
1282 case TIOCMBIC:
1283 CLR(sc->sc_chanctl_rs_control, czttybits);
1284 break;
1285
1286 case TIOCMBIS:
1287 SET(sc->sc_chanctl_rs_control, czttybits);
1288 break;
1289
1290 case TIOCMSET:
1291 CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1292 SET(sc->sc_chanctl_rs_control, czttybits);
1293 break;
1294 }
1295
1296 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1297
1298 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1299 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1300 }
1301
1302 /*
1303 * cztty_to_tiocm:
1304 *
1305 * Process the TIOCMGET ioctl.
1306 */
1307 int
1308 cztty_to_tiocm(struct cztty_softc *sc)
1309 {
1310 struct cz_softc *cz = CZTTY_CZ(sc);
1311 u_int32_t rs_status, op_mode;
1312 int ttybits = 0;
1313
1314 cz_wait_pci_doorbell(cz, "cztty");
1315
1316 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1317 op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1318
1319 if (ISSET(rs_status, C_RS_RTS))
1320 SET(ttybits, TIOCM_RTS);
1321 if (ISSET(rs_status, C_RS_CTS))
1322 SET(ttybits, TIOCM_CTS);
1323 if (ISSET(rs_status, C_RS_DCD))
1324 SET(ttybits, TIOCM_CAR);
1325 if (ISSET(rs_status, C_RS_DTR))
1326 SET(ttybits, TIOCM_DTR);
1327 if (ISSET(rs_status, C_RS_RI))
1328 SET(ttybits, TIOCM_RNG);
1329 if (ISSET(rs_status, C_RS_DSR))
1330 SET(ttybits, TIOCM_DSR);
1331
1332 if (ISSET(op_mode, C_CH_ENABLE))
1333 SET(ttybits, TIOCM_LE);
1334
1335 return (ttybits);
1336 }
1337
1338 /*
1339 * czttyparam:
1340 *
1341 * Set Cyclades-Z serial port parameters from termios.
1342 *
1343 * XXX Should just copy the whole termios after making
1344 * XXX sure all the changes could be done.
1345 */
1346 int
1347 czttyparam(struct tty *tp, struct termios *t)
1348 {
1349 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1350 struct cz_softc *cz = CZTTY_CZ(sc);
1351 u_int32_t rs_status;
1352 int ospeed, cflag;
1353
1354 ospeed = t->c_ospeed;
1355 cflag = t->c_cflag;
1356
1357 /* Check requested parameters. */
1358 if (ospeed < 0)
1359 return (EINVAL);
1360 if (t->c_ispeed && t->c_ispeed != ospeed)
1361 return (EINVAL);
1362
1363 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1364 SET(cflag, CLOCAL);
1365 CLR(cflag, HUPCL);
1366 }
1367
1368 /*
1369 * If there were no changes, don't do anything. This avoids dropping
1370 * input and improves performance when all we did was frob things like
1371 * VMIN and VTIME.
1372 */
1373 if (tp->t_ospeed == ospeed &&
1374 tp->t_cflag == cflag)
1375 return (0);
1376
1377 /* Data bits. */
1378 sc->sc_chanctl_comm_data_l = 0;
1379 switch (t->c_cflag & CSIZE) {
1380 case CS5:
1381 sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1382 break;
1383
1384 case CS6:
1385 sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1386 break;
1387
1388 case CS7:
1389 sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1390 break;
1391
1392 case CS8:
1393 sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1394 break;
1395 }
1396
1397 /* Stop bits. */
1398 if (t->c_cflag & CSTOPB) {
1399 if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1400 sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1401 else
1402 sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1403 } else
1404 sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1405
1406 /* Parity. */
1407 if (t->c_cflag & PARENB) {
1408 if (t->c_cflag & PARODD)
1409 sc->sc_chanctl_comm_parity = C_PR_ODD;
1410 else
1411 sc->sc_chanctl_comm_parity = C_PR_EVEN;
1412 } else
1413 sc->sc_chanctl_comm_parity = C_PR_NONE;
1414
1415 /*
1416 * Initialize flow control pins depending on the current flow control
1417 * mode.
1418 */
1419 if (ISSET(t->c_cflag, CRTSCTS)) {
1420 sc->sc_rs_control_dtr = C_RS_DTR;
1421 sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1422 } else if (ISSET(t->c_cflag, MDMBUF)) {
1423 sc->sc_rs_control_dtr = 0;
1424 sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1425 } else {
1426 /*
1427 * If no flow control, then always set RTS. This will make
1428 * the other side happy if it mistakenly thinks we're doing
1429 * RTS/CTS flow control.
1430 */
1431 sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1432 sc->sc_chanctl_hw_flow = 0;
1433 if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1434 SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1435 else
1436 CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1437 }
1438
1439 /* Baud rate. */
1440 sc->sc_chanctl_comm_baud = ospeed;
1441
1442 /* Copy to tty. */
1443 tp->t_ispeed = 0;
1444 tp->t_ospeed = t->c_ospeed;
1445 tp->t_cflag = t->c_cflag;
1446
1447 /*
1448 * Now load the channel control structure.
1449 */
1450
1451 cz_wait_pci_doorbell(cz, "czparam");
1452
1453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1454 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1455 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1456 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1457 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1458
1459 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1460 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1461
1462 cz_wait_pci_doorbell(cz, "czparam");
1463
1464 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1465 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1466
1467 cz_wait_pci_doorbell(cz, "czparam");
1468
1469 /*
1470 * Update the tty layer's idea of the carrier bit, in case we changed
1471 * CLOCAL. We don't hang up here; we only do that by explicit
1472 * request.
1473 */
1474 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1475 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1476
1477 return (0);
1478 }
1479
1480 /*
1481 * czttystart:
1482 *
1483 * Start or restart transmission.
1484 */
1485 void
1486 czttystart(struct tty *tp)
1487 {
1488 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1489 int s;
1490
1491 s = spltty();
1492 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1493 goto out;
1494
1495 if (tp->t_outq.c_cc <= tp->t_lowat) {
1496 if (ISSET(tp->t_state, TS_ASLEEP)) {
1497 CLR(tp->t_state, TS_ASLEEP);
1498 wakeup(&tp->t_outq);
1499 }
1500 selwakeup(&tp->t_wsel);
1501 if (tp->t_outq.c_cc == 0)
1502 goto out;
1503 }
1504
1505 cztty_transmit(sc, tp);
1506 out:
1507 splx(s);
1508 }
1509
1510 /*
1511 * czttystop:
1512 *
1513 * Stop output, e.g., for ^S or output flush.
1514 */
1515 void
1516 czttystop(struct tty *tp, int flag)
1517 {
1518
1519 /*
1520 * XXX We don't do anything here, yet. Mostly, I don't know
1521 * XXX exactly how this should be implemented on this device.
1522 * XXX We've given a big chunk of data to the MIPS already,
1523 * XXX and I don't know how we request the MIPS to stop sending
1524 * XXX the data. So, punt for now. --thorpej
1525 */
1526 }
1527
1528 /*
1529 * cztty_diag:
1530 *
1531 * Issue a scheduled diagnostic message.
1532 */
1533 void
1534 cztty_diag(void *arg)
1535 {
1536 struct cztty_softc *sc = arg;
1537 struct cz_softc *cz = CZTTY_CZ(sc);
1538 u_int overflows, parity_errors, framing_errors;
1539 int s;
1540
1541 s = spltty();
1542
1543 overflows = sc->sc_overflows;
1544 sc->sc_overflows = 0;
1545
1546 parity_errors = sc->sc_parity_errors;
1547 sc->sc_parity_errors = 0;
1548
1549 framing_errors = sc->sc_framing_errors;
1550 sc->sc_framing_errors = 0;
1551
1552 sc->sc_errors = 0;
1553
1554 splx(s);
1555
1556 log(LOG_WARNING,
1557 "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1558 cz->cz_dev.dv_xname, sc->sc_channel,
1559 overflows, overflows == 1 ? "" : "s",
1560 parity_errors,
1561 framing_errors, framing_errors == 1 ? "" : "s");
1562 }
1563
1564 /*
1565 * tx and rx ring buffer size macros:
1566 *
1567 * The transmitter and receiver both use ring buffers. For each one, there
1568 * is a get (consumer) and a put (producer) offset. The get value is the
1569 * next byte to be read from the ring, and the put is the next one to be
1570 * put into the ring. get == put means the ring is empty.
1571 *
1572 * For each ring, the firmware controls one of (get, put) and this driver
1573 * controls the other. For transmission, this driver updates put to point
1574 * past the valid data, and the firmware moves get as bytes are sent. Likewise
1575 * for receive, the driver controls put, and this driver controls get.
1576 */
1577 #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1578 #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1579
1580 /*
1581 * cztty_transmit()
1582 *
1583 * Look at the tty for this port and start sending.
1584 */
1585 int
1586 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1587 {
1588 struct cz_softc *cz = CZTTY_CZ(sc);
1589 u_int move, get, put, size, address;
1590 #ifdef HOSTRAMCODE
1591 int error, done = 0;
1592 #else
1593 int done = 0;
1594 #endif
1595
1596 size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1597 get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1598 put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1599 address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1600
1601 while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1602 #ifdef HOSTRAMCODE
1603 if (0) {
1604 move = min(tp->t_outq.c_cc, move);
1605 error = q_to_b(&tp->t_outq, 0, move);
1606 if (error != move) {
1607 printf("%s: channel %d: error moving to "
1608 "transmit buf\n", cz->cz_dev.dv_xname,
1609 sc->sc_channel);
1610 move = error;
1611 }
1612 } else {
1613 #endif
1614 move = min(ndqb(&tp->t_outq, 0), move);
1615 bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1616 address + put, tp->t_outq.c_cf, move);
1617 ndflush(&tp->t_outq, move);
1618 #ifdef HOSTRAMCODE
1619 }
1620 #endif
1621
1622 put = ((put + move) % size);
1623 done = 1;
1624 }
1625 if (done) {
1626 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1627 }
1628 return (done);
1629 }
1630
1631 int
1632 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1633 {
1634 struct cz_softc *cz = CZTTY_CZ(sc);
1635 u_int get, put, size, address;
1636 int done = 0, ch;
1637
1638 size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1639 get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1640 put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1641 address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1642
1643 while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1644 #ifdef HOSTRAMCODE
1645 if (hostram)
1646 ch = ((char *)fifoaddr)[get];
1647 } else {
1648 #endif
1649 ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1650 address + get);
1651 #ifdef HOSTRAMCODE
1652 }
1653 #endif
1654 (*tp->t_linesw->l_rint)(ch, tp);
1655 get = (get + 1) % size;
1656 done = 1;
1657 }
1658 if (done) {
1659 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1660 }
1661 return (done);
1662 }
1663