cz.c revision 1.16.4.1 1 /* $NetBSD: cz.c,v 1.16.4.1 2001/09/07 04:45:27 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Zembu Labs, Inc.
5 * All rights reserved.
6 *
7 * Authors: Jason R. Thorpe <thorpej (at) zembu.com>
8 * Bill Studenmund <wrstuden (at) zembu.com>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Zembu Labs, Inc.
21 * 4. Neither the name of Zembu Labs nor the names of its employees may
22 * be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39 *
40 * Some notes:
41 *
42 * - The Cyclades-Z has fully automatic hardware (and software!)
43 * flow control. We only utilize RTS/CTS flow control here,
44 * and it is implemented in a very simplistic manner. This
45 * may be an area of future work.
46 *
47 * - The PLX can map the either the board's RAM or host RAM
48 * into the MIPS's memory window. This would enable us to
49 * use less expensive (for us) memory reads/writes to host
50 * RAM, rather than time-consuming reads/writes to PCI
51 * memory space. However, the PLX can only map a 0-128M
52 * window, so we would have to ensure that the DMA address
53 * of the host RAM fits there. This is kind of a pain,
54 * so we just don't bother right now.
55 *
56 * - In a perfect world, we would use the autoconfiguration
57 * mechanism to attach the TTYs that we find. However,
58 * that leads to somewhat icky looking autoconfiguration
59 * messages (one for every TTY, up to 64 per board!). So
60 * we don't do it that way, but assign minors as if there
61 * were the max of 64 ports per board.
62 *
63 * - We don't bother with PPS support here. There are so many
64 * ports, each with a large amount of buffer space, that the
65 * normal mode of operation is to poll the boards regularly
66 * (generally, every 20ms or so). This makes this driver
67 * unsuitable for PPS, as the latency will be generally too
68 * high.
69 */
70 /*
71 * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72 * for FreeBSD 3.2.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/tty.h>
81 #include <sys/conf.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/fcntl.h>
85 #include <sys/syslog.h>
86 #include <sys/vnode.h>
87
88 #include <sys/callout.h>
89
90 #include <miscfs/specfs/specdev.h>
91
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/pcidevs.h>
95 #include <dev/pci/czreg.h>
96
97 #include <dev/pci/plx9060reg.h>
98 #include <dev/pci/plx9060var.h>
99
100 #include <dev/microcode/cyclades-z/cyzfirm.h>
101
102 #define CZ_DRIVER_VERSION 0x20000411
103
104 #define CZ_POLL_MS 20
105
106 /* These are the interrupts we always use. */
107 #define CZ_INTERRUPTS \
108 (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
109 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
110 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
111 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
112
113 /*
114 * cztty_softc:
115 *
116 * Per-channel (TTY) state.
117 */
118 struct cztty_softc {
119 struct cz_softc *sc_parent;
120 struct tty *sc_tty;
121
122 struct callout sc_diag_ch;
123
124 int sc_channel; /* Also used to flag unattached chan */
125 #define CZTTY_CHANNEL_DEAD -1
126
127 bus_space_tag_t sc_chan_st; /* channel space tag */
128 bus_space_handle_t sc_chan_sh; /* channel space handle */
129 bus_space_handle_t sc_buf_sh; /* buffer space handle */
130
131 u_int sc_overflows,
132 sc_parity_errors,
133 sc_framing_errors,
134 sc_errors;
135
136 int sc_swflags;
137
138 u_int32_t sc_rs_control_dtr,
139 sc_chanctl_hw_flow,
140 sc_chanctl_comm_baud,
141 sc_chanctl_rs_control,
142 sc_chanctl_comm_data_l,
143 sc_chanctl_comm_parity;
144 };
145
146 /*
147 * cz_softc:
148 *
149 * Per-board state.
150 */
151 struct cz_softc {
152 struct device cz_dev; /* generic device info */
153 struct plx9060_config cz_plx; /* PLX 9060 config info */
154 bus_space_tag_t cz_win_st; /* window space tag */
155 bus_space_handle_t cz_win_sh; /* window space handle */
156 struct callout cz_callout; /* callout for polling-mode */
157
158 void *cz_ih; /* interrupt handle */
159
160 u_int32_t cz_mailbox0; /* our MAILBOX0 value */
161 int cz_nchannels; /* number of channels */
162 int cz_nopenchan; /* number of open channels */
163 struct cztty_softc *cz_ports; /* our array of ports */
164
165 bus_addr_t cz_fwctl; /* offset of firmware control */
166 };
167
168 int cz_match(struct device *, struct cfdata *, void *);
169 void cz_attach(struct device *, struct device *, void *);
170 int cz_wait_pci_doorbell(struct cz_softc *, const char *);
171
172 struct cfattach cz_ca = {
173 sizeof(struct cz_softc), cz_match, cz_attach
174 };
175
176 void cz_reset_board(struct cz_softc *);
177 int cz_load_firmware(struct cz_softc *);
178
179 int cz_intr(void *);
180 void cz_poll(void *);
181 int cztty_transmit(struct cztty_softc *, struct tty *);
182 int cztty_receive(struct cztty_softc *, struct tty *);
183
184 struct cztty_softc * cztty_getttysoftc(dev_t dev);
185 int cztty_findmajor(void);
186 int cztty_major;
187 int cztty_attached_ttys;
188 int cz_timeout_ticks;
189
190 cdev_decl(cztty);
191
192 void czttystart(struct tty *tp);
193 int czttyparam(struct tty *tp, struct termios *t);
194 void cztty_shutdown(struct cztty_softc *sc);
195 void cztty_modem(struct cztty_softc *sc, int onoff);
196 void cztty_break(struct cztty_softc *sc, int onoff);
197 void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
198 int cztty_to_tiocm(struct cztty_softc *sc);
199 void cztty_diag(void *arg);
200
201 extern struct cfdriver cz_cd;
202
203 /* Macros to clear/set/test flags. */
204 #define SET(t, f) (t) |= (f)
205 #define CLR(t, f) (t) &= ~(f)
206 #define ISSET(t, f) ((t) & (f))
207
208 /*
209 * Macros to read and write the PLX.
210 */
211 #define CZ_PLX_READ(cz, reg) \
212 bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
213 #define CZ_PLX_WRITE(cz, reg, val) \
214 bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
215 (reg), (val))
216
217 /*
218 * Macros to read and write the FPGA. We must already be in the FPGA
219 * window for this.
220 */
221 #define CZ_FPGA_READ(cz, reg) \
222 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
223 #define CZ_FPGA_WRITE(cz, reg, val) \
224 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
225
226 /*
227 * Macros to read and write the firmware control structures in board RAM.
228 */
229 #define CZ_FWCTL_READ(cz, off) \
230 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
231 (cz)->cz_fwctl + (off))
232
233 #define CZ_FWCTL_WRITE(cz, off, val) \
234 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
235 (cz)->cz_fwctl + (off), (val))
236
237 /*
238 * Convenience macros for cztty routines. PLX window MUST be to RAM.
239 */
240 #define CZTTY_CHAN_READ(sc, off) \
241 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
242
243 #define CZTTY_CHAN_WRITE(sc, off, val) \
244 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
245 (off), (val))
246
247 #define CZTTY_BUF_READ(sc, off) \
248 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
249
250 #define CZTTY_BUF_WRITE(sc, off, val) \
251 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
252 (off), (val))
253
254 /*
255 * Convenience macros.
256 */
257 #define CZ_WIN_RAM(cz) \
258 do { \
259 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
260 delay(100); \
261 } while (0)
262
263 #define CZ_WIN_FPGA(cz) \
264 do { \
265 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
266 delay(100); \
267 } while (0)
268
269 /*****************************************************************************
270 * Cyclades-Z controller code starts here...
271 *****************************************************************************/
272
273 /*
274 * cz_match:
275 *
276 * Determine if the given PCI device is a Cyclades-Z board.
277 */
278 int
279 cz_match(struct device *parent,
280 struct cfdata *match,
281 void *aux)
282 {
283 struct pci_attach_args *pa = aux;
284
285 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
286 switch (PCI_PRODUCT(pa->pa_id)) {
287 case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
288 return (1);
289 }
290 }
291
292 return (0);
293 }
294
295 /*
296 * cz_attach:
297 *
298 * A Cyclades-Z board was found; attach it.
299 */
300 void
301 cz_attach(struct device *parent,
302 struct device *self,
303 void *aux)
304 {
305 struct cz_softc *cz = (void *) self;
306 struct pci_attach_args *pa = aux;
307 pci_intr_handle_t ih;
308 const char *intrstr = NULL;
309 struct cztty_softc *sc;
310 struct tty *tp;
311 int i;
312
313 printf(": Cyclades-Z multiport serial\n");
314
315 cz->cz_plx.plx_pc = pa->pa_pc;
316 cz->cz_plx.plx_tag = pa->pa_tag;
317
318 if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
319 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
320 &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
321 printf("%s: unable to map PLX registers\n",
322 cz->cz_dev.dv_xname);
323 return;
324 }
325 if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
326 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
327 &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
328 printf("%s: unable to map device window\n",
329 cz->cz_dev.dv_xname);
330 return;
331 }
332
333 cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
334 cz->cz_nopenchan = 0;
335
336 /*
337 * Make sure that the board is completely stopped.
338 */
339 CZ_WIN_FPGA(cz);
340 CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
341
342 /*
343 * Load the board's firmware.
344 */
345 if (cz_load_firmware(cz) != 0)
346 return;
347
348 /*
349 * Now that we're ready to roll, map and establish the interrupt
350 * handler.
351 */
352 if (pci_intr_map(pa, &ih) != 0) {
353 /*
354 * The common case is for Cyclades-Z boards to run
355 * in polling mode, and thus not have an interrupt
356 * mapped for them. Don't bother reporting that
357 * the interrupt is not mappable, since this isn't
358 * really an error.
359 */
360 cz->cz_ih = NULL;
361 goto polling_mode;
362 } else {
363 intrstr = pci_intr_string(pa->pa_pc, ih);
364 cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
365 cz_intr, cz);
366 }
367 if (cz->cz_ih == NULL) {
368 printf("%s: unable to establish interrupt",
369 cz->cz_dev.dv_xname);
370 if (intrstr != NULL)
371 printf(" at %s", intrstr);
372 printf("\n");
373 /* We will fall-back on polling mode. */
374 } else
375 printf("%s: interrupting at %s\n",
376 cz->cz_dev.dv_xname, intrstr);
377
378 polling_mode:
379 if (cz->cz_ih == NULL) {
380 callout_init(&cz->cz_callout);
381 if (cz_timeout_ticks == 0)
382 cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
383 printf("%s: polling mode, %d ms interval (%d tick%s)\n",
384 cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
385 cz_timeout_ticks == 1 ? "" : "s");
386 }
387
388 if (cztty_major == 0)
389 cztty_major = cztty_findmajor();
390 /*
391 * Allocate sufficient pointers for the children and
392 * attach them. Set all ports to a reasonable initial
393 * configuration while we're at it:
394 *
395 * disabled
396 * 8N1
397 * default baud rate
398 * hardware flow control.
399 */
400 CZ_WIN_RAM(cz);
401
402 if (cz->cz_nchannels == 0) {
403 /* No channels? No more work to do! */
404 return;
405 }
406
407 cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
408 M_DEVBUF, M_WAITOK);
409 cztty_attached_ttys += cz->cz_nchannels;
410 memset(cz->cz_ports, 0,
411 sizeof(struct cztty_softc) * cz->cz_nchannels);
412
413 for (i = 0; i < cz->cz_nchannels; i++) {
414 sc = &cz->cz_ports[i];
415
416 sc->sc_channel = i;
417 sc->sc_chan_st = cz->cz_win_st;
418 sc->sc_parent = cz;
419
420 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
421 cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
422 ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
423 printf("%s: unable to subregion channel %d control\n",
424 cz->cz_dev.dv_xname, i);
425 sc->sc_channel = CZTTY_CHANNEL_DEAD;
426 continue;
427 }
428 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
429 cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
430 ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
431 printf("%s: unable to subregion channel %d buffer\n",
432 cz->cz_dev.dv_xname, i);
433 sc->sc_channel = CZTTY_CHANNEL_DEAD;
434 continue;
435 }
436
437 callout_init(&sc->sc_diag_ch);
438
439 tp = ttymalloc();
440 tp->t_oproc = czttystart;
441 tp->t_param = czttyparam;
442 tty_attach(tp);
443
444 sc->sc_tty = tp;
445
446 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
447 CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
448 CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
449 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
450 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
451 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
452 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
454 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
455 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
456 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
457 }
458 }
459
460 /*
461 * cz_reset_board:
462 *
463 * Reset the board via the PLX.
464 */
465 void
466 cz_reset_board(struct cz_softc *cz)
467 {
468 u_int32_t reg;
469
470 reg = CZ_PLX_READ(cz, PLX_CONTROL);
471 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
472 delay(1000);
473
474 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
475 delay(1000);
476
477 /* Now reload the PLX from its EEPROM. */
478 reg = CZ_PLX_READ(cz, PLX_CONTROL);
479 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
480 delay(1000);
481 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
482 }
483
484 /*
485 * cz_load_firmware:
486 *
487 * Load the ZFIRM firmware into the board's RAM and start it
488 * running.
489 */
490 int
491 cz_load_firmware(struct cz_softc *cz)
492 {
493 struct zfirm_header *zfh;
494 struct zfirm_config *zfc;
495 struct zfirm_block *zfb, *zblocks;
496 const u_int8_t *cp;
497 const char *board;
498 u_int32_t fid;
499 int i, j, nconfigs, nblocks, nbytes;
500
501 zfh = (struct zfirm_header *) cycladesz_firmware;
502
503 /* Find the config header. */
504 if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
505 printf("%s: bad ZFIRM config offset: 0x%x\n",
506 cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
507 return (EIO);
508 }
509 zfc = (struct zfirm_config *)(cycladesz_firmware +
510 le32toh(zfh->zfh_configoff));
511 nconfigs = le32toh(zfh->zfh_nconfig);
512
513 /* Locate the correct configuration for our board. */
514 for (i = 0; i < nconfigs; i++, zfc++) {
515 if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
516 le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
517 break;
518 }
519 if (i == nconfigs) {
520 printf("%s: unable to locate config header\n",
521 cz->cz_dev.dv_xname);
522 return (EIO);
523 }
524
525 nblocks = le32toh(zfc->zfc_nblocks);
526 zblocks = (struct zfirm_block *)(cycladesz_firmware +
527 le32toh(zfh->zfh_blockoff));
528
529 /*
530 * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
531 * necessary.
532 */
533 if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
534 #if 0
535 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
536 #endif
537 ) {
538 #ifdef CZ_DEBUG
539 printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
540 #endif
541 CZ_WIN_FPGA(cz);
542 for (i = 0; i < nblocks; i++) {
543 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
544 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
545 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FPGA) {
546 nbytes = le32toh(zfb->zfb_size);
547 cp = &cycladesz_firmware[
548 le32toh(zfb->zfb_fileoff)];
549 for (j = 0; j < nbytes; j++, cp++) {
550 bus_space_write_1(cz->cz_win_st,
551 cz->cz_win_sh, 0, *cp);
552 /* FPGA needs 30-100us to settle. */
553 delay(10);
554 }
555 }
556 }
557 #ifdef CZ_DEBUG
558 printf("done\n");
559 #endif
560 }
561
562 /* Now load the firmware. */
563 CZ_WIN_RAM(cz);
564
565 for (i = 0; i < nblocks; i++) {
566 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
567 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
568 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
569 const u_int32_t *lp;
570 u_int32_t ro = le32toh(zfb->zfb_ramoff);
571 nbytes = le32toh(zfb->zfb_size);
572 lp = (const u_int32_t *)
573 &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
574 for (j = 0; j < nbytes; j += 4, lp++) {
575 bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
576 ro + j, le32toh(*lp));
577 delay(10);
578 }
579 }
580 }
581
582 /* Now restart the MIPS. */
583 CZ_WIN_FPGA(cz);
584 CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
585
586 /* Wait for the MIPS to start, then report the results. */
587 CZ_WIN_RAM(cz);
588
589 #ifdef CZ_DEBUG
590 printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
591 #endif
592 for (i = 0; i < 100; i++) {
593 fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
594 ZFIRM_SIG_OFF);
595 if (fid == ZFIRM_SIG) {
596 /* MIPS has booted. */
597 break;
598 } else if (fid == ZFIRM_HLT) {
599 /*
600 * The MIPS has halted, usually due to a power
601 * shortage on the expansion module.
602 */
603 printf("%s: MIPS halted; possible power supply "
604 "problem\n", cz->cz_dev.dv_xname);
605 return (EIO);
606 } else {
607 #ifdef CZ_DEBUG
608 if ((i % 8) == 0)
609 printf(".");
610 #endif
611 delay(250000);
612 }
613 }
614 #ifdef CZ_DEBUG
615 printf("\n");
616 #endif
617 if (i == 100) {
618 CZ_WIN_FPGA(cz);
619 printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
620 cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
621 printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
622 cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
623 CZ_FPGA_READ(cz, FPGA_VERSION));
624 return (EIO);
625 }
626
627 /*
628 * Locate the firmware control structures.
629 */
630 cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
631 ZFIRM_CTRLADDR_OFF);
632 #ifdef CZ_DEBUG
633 printf("%s: FWCTL structure at offset 0x%08lx\n",
634 cz->cz_dev.dv_xname, cz->cz_fwctl);
635 #endif
636
637 CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
638 CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
639
640 cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
641
642 switch (cz->cz_mailbox0) {
643 case MAILBOX0_8Zo_V1:
644 board = "Cyclades-8Zo ver. 1";
645 break;
646
647 case MAILBOX0_8Zo_V2:
648 board = "Cyclades-8Zo ver. 2";
649 break;
650
651 case MAILBOX0_Ze_V1:
652 board = "Cyclades-Ze";
653 break;
654
655 default:
656 board = "unknown Cyclades Z-series";
657 break;
658 }
659
660 fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
661 printf("%s: %s, ", cz->cz_dev.dv_xname, board);
662 if (cz->cz_nchannels == 0)
663 printf("no channels attached, ");
664 else
665 printf("%d channels (ttyCZ%04d..ttyCZ%04d), ",
666 cz->cz_nchannels, cztty_attached_ttys,
667 cztty_attached_ttys + (cz->cz_nchannels - 1));
668 printf("firmware %x.%x.%x\n",
669 (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
670
671 return (0);
672 }
673
674 /*
675 * cz_poll:
676 *
677 * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
678 * ms.
679 */
680 void
681 cz_poll(void *arg)
682 {
683 int s = spltty();
684 struct cz_softc *cz = arg;
685
686 cz_intr(cz);
687 callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
688
689 splx(s);
690 }
691
692 /*
693 * cz_intr:
694 *
695 * Interrupt service routine.
696 *
697 * We either are receiving an interrupt directly from the board, or we are
698 * in polling mode and it's time to poll.
699 */
700 int
701 cz_intr(void *arg)
702 {
703 int rval = 0;
704 u_int command, channel, param;
705 struct cz_softc *cz = arg;
706 struct cztty_softc *sc;
707 struct tty *tp;
708
709 while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
710 rval = 1;
711 channel = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_CHANNEL);
712 param = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_PARAM);
713
714 /* now clear this interrupt, posslibly enabling another */
715 CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
716
717 if (cz->cz_ports == NULL) {
718 #ifdef CZ_DEBUG
719 printf("%s: interrupt on channel %d, but no channels\n",
720 cz->cz_dev.dv_xname, channel);
721 #endif
722 continue;
723 }
724
725 sc = &cz->cz_ports[channel];
726
727 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
728 break;
729
730 tp = sc->sc_tty;
731
732 switch (command) {
733 case C_CM_TXFEMPTY: /* transmit cases */
734 case C_CM_TXBEMPTY:
735 case C_CM_TXLOWWM:
736 case C_CM_INTBACK:
737 if (!ISSET(tp->t_state, TS_ISOPEN)) {
738 #ifdef CZ_DEBUG
739 printf("%s: tx intr on closed channel %d\n",
740 cz->cz_dev.dv_xname, channel);
741 #endif
742 break;
743 }
744
745 if (cztty_transmit(sc, tp)) {
746 /*
747 * Do wakeup stuff here.
748 */
749 ttwakeup(tp);
750 wakeup(tp);
751 }
752 break;
753
754 case C_CM_RXNNDT: /* receive cases */
755 case C_CM_RXHIWM:
756 case C_CM_INTBACK2: /* from restart ?? */
757 #if 0
758 case C_CM_ICHAR:
759 #endif
760 if (!ISSET(tp->t_state, TS_ISOPEN)) {
761 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
762 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
763 break;
764 }
765
766 if (cztty_receive(sc, tp)) {
767 /*
768 * Do wakeup stuff here.
769 */
770 ttwakeup(tp);
771 wakeup(tp);
772 }
773 break;
774
775 case C_CM_MDCD:
776 if (!ISSET(tp->t_state, TS_ISOPEN))
777 break;
778
779 (void) (*tp->t_linesw->l_modem)(tp,
780 ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
781 CHNCTL_RS_STATUS)));
782 break;
783
784 case C_CM_MDSR:
785 case C_CM_MRI:
786 case C_CM_MCTS:
787 case C_CM_MRTS:
788 break;
789
790 case C_CM_IOCTLW:
791 break;
792
793 case C_CM_PR_ERROR:
794 sc->sc_parity_errors++;
795 goto error_common;
796
797 case C_CM_FR_ERROR:
798 sc->sc_framing_errors++;
799 goto error_common;
800
801 case C_CM_OVR_ERROR:
802 sc->sc_overflows++;
803 error_common:
804 if (sc->sc_errors++ == 0)
805 callout_reset(&sc->sc_diag_ch, 60 * hz,
806 cztty_diag, sc);
807 break;
808
809 case C_CM_RXBRK:
810 if (!ISSET(tp->t_state, TS_ISOPEN))
811 break;
812
813 /*
814 * A break is a \000 character with TTY_FE error
815 * flags set. So TTY_FE by itself works.
816 */
817 (*tp->t_linesw->l_rint)(TTY_FE, tp);
818 ttwakeup(tp);
819 wakeup(tp);
820 break;
821
822 default:
823 #ifdef CZ_DEBUG
824 printf("%s: channel %d: Unknown interrupt 0x%x\n",
825 cz->cz_dev.dv_xname, sc->sc_channel, command);
826 #endif
827 break;
828 }
829 }
830
831 return (rval);
832 }
833
834 /*
835 * cz_wait_pci_doorbell:
836 *
837 * Wait for the pci doorbell to be clear - wait for pending
838 * activity to drain.
839 */
840 int
841 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
842 {
843 int error;
844
845 while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
846 error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
847 if ((error != 0) && (error != EWOULDBLOCK))
848 return (error);
849 }
850 return (0);
851 }
852
853 /*****************************************************************************
854 * Cyclades-Z TTY code starts here...
855 *****************************************************************************/
856
857 #define CZTTYDIALOUT_MASK 0x80000
858
859 #define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
860 #define CZTTY_CZ(sc) ((sc)->sc_parent)
861
862 #define CZTTY_SOFTC(dev) cztty_getttysoftc(dev)
863
864 struct cztty_softc *
865 cztty_getttysoftc(dev_t dev)
866 {
867 int i, j, k, u = minor(dev) & ~CZTTYDIALOUT_MASK;
868 struct cz_softc *cz;
869
870 for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) {
871 k = j;
872 cz = device_lookup(&cz_cd, i);
873 if (cz == NULL)
874 continue;
875 if (cz->cz_ports == NULL)
876 continue;
877 j += cz->cz_nchannels;
878 if (j > u)
879 break;
880 }
881
882 if (i >= cz_cd.cd_ndevs)
883 return (NULL);
884 else
885 return (&cz->cz_ports[u - k]);
886 }
887
888 int
889 cztty_findmajor(void)
890 {
891 int maj;
892
893 for (maj = 0; maj < nchrdev; maj++) {
894 if (cdevsw[maj].d_open == czttyopen)
895 break;
896 }
897
898 return (maj == nchrdev) ? 0 : maj;
899 }
900
901 /*
902 * czttytty:
903 *
904 * Return a pointer to our tty.
905 */
906 struct tty *
907 czttytty(struct vnode *devvp)
908 {
909 struct cztty_softc *sc = devvp->v_devcookie;
910
911 #ifdef DIAGNOSTIC
912 if (sc == NULL)
913 panic("czttytty");
914 #endif
915
916 return (sc->sc_tty);
917 }
918
919 /*
920 * cztty_shutdown:
921 *
922 * Shut down a port.
923 */
924 void
925 cztty_shutdown(struct cztty_softc *sc)
926 {
927 struct cz_softc *cz = CZTTY_CZ(sc);
928 struct tty *tp = sc->sc_tty;
929 int s;
930
931 s = spltty();
932
933 /* Clear any break condition set with TIOCSBRK. */
934 cztty_break(sc, 0);
935
936 /*
937 * Hang up if necessary. Wait a bit, so the other side has time to
938 * notice even if we immediately open the port again.
939 */
940 if (ISSET(tp->t_cflag, HUPCL)) {
941 cztty_modem(sc, 0);
942 (void) tsleep(tp, TTIPRI, ttclos, hz);
943 }
944
945 /* Disable the channel. */
946 cz_wait_pci_doorbell(cz, "czdis");
947 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
948 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
949 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
950
951 if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
952 #ifdef CZ_DEBUG
953 printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
954 #endif
955 callout_stop(&cz->cz_callout);
956 }
957
958 splx(s);
959 }
960
961 /*
962 * czttyopen:
963 *
964 * Open a Cyclades-Z serial port.
965 */
966 int
967 czttyopen(struct vnode *devvp, int flags, int mode, struct proc *p)
968 {
969 struct cztty_softc *sc = CZTTY_SOFTC(devvp->v_rdev);
970 struct cz_softc *cz;
971 struct tty *tp;
972 int s, error;
973
974 if (sc == NULL)
975 return (ENXIO);
976
977 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
978 return (ENXIO);
979
980 devvp->v_devcookie = sc;
981
982 cz = CZTTY_CZ(sc);
983 tp = sc->sc_tty;
984
985 if (ISSET(tp->t_state, TS_ISOPEN) &&
986 ISSET(tp->t_state, TS_XCLUDE) &&
987 p->p_ucred->cr_uid != 0)
988 return (EBUSY);
989
990 s = spltty();
991
992 /*
993 * Do the following iff this is a first open.
994 */
995 if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
996 struct termios t;
997
998 tp->t_devvp = devvp;
999
1000 /* If we're turning things on, enable interrupts */
1001 if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
1002 #ifdef CZ_DEBUG
1003 printf("%s: Enabling polling.\n",
1004 cz->cz_dev.dv_xname);
1005 #endif
1006 callout_reset(&cz->cz_callout, cz_timeout_ticks,
1007 cz_poll, cz);
1008 }
1009
1010 /*
1011 * Enable the channel. Don't actually ring the
1012 * doorbell here; czttyparam() will do it for us.
1013 */
1014 cz_wait_pci_doorbell(cz, "czopen");
1015
1016 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
1017
1018 /*
1019 * Initialize the termios status to the defaults. Add in the
1020 * sticky bits from TIOCSFLAGS.
1021 */
1022 t.c_ispeed = 0;
1023 t.c_ospeed = TTYDEF_SPEED;
1024 t.c_cflag = TTYDEF_CFLAG;
1025 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
1026 SET(t.c_cflag, CLOCAL);
1027 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
1028 SET(t.c_cflag, CRTSCTS);
1029
1030 /*
1031 * Reset the input and output rings. Do this before
1032 * we call czttyparam(), as that function enables
1033 * the channel.
1034 */
1035 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1036 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1037 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1038 CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1039
1040 /* Make sure czttyparam() will see changes. */
1041 tp->t_ospeed = 0;
1042 (void) czttyparam(tp, &t);
1043 tp->t_iflag = TTYDEF_IFLAG;
1044 tp->t_oflag = TTYDEF_OFLAG;
1045 tp->t_lflag = TTYDEF_LFLAG;
1046 ttychars(tp);
1047 ttsetwater(tp);
1048
1049 /*
1050 * Turn on DTR. We must always do this, even if carrier is not
1051 * present, because otherwise we'd have to use TIOCSDTR
1052 * immediately after setting CLOCAL, which applications do not
1053 * expect. We always assert DTR while the device is open
1054 * unless explicitly requested to deassert it.
1055 */
1056 cztty_modem(sc, 1);
1057 }
1058
1059 splx(s);
1060
1061 error = ttyopen(tp, CZTTY_DIALOUT(devvp->v_rdev),
1062 ISSET(flags, O_NONBLOCK));
1063 if (error)
1064 goto bad;
1065
1066 error = (*tp->t_linesw->l_open)(devvp, tp);
1067 if (error)
1068 goto bad;
1069
1070 return (0);
1071
1072 bad:
1073 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1074 /*
1075 * We failed to open the device, and nobody else had it opened.
1076 * Clean up the state as appropriate.
1077 */
1078 cztty_shutdown(sc);
1079 }
1080
1081 return (error);
1082 }
1083
1084 /*
1085 * czttyclose:
1086 *
1087 * Close a Cyclades-Z serial port.
1088 */
1089 int
1090 czttyclose(struct vnode *devvp, int flags, int mode, struct proc *p)
1091 {
1092 struct cztty_softc *sc = devvp->v_devcookie;
1093 struct tty *tp = sc->sc_tty;
1094
1095 /* XXX This is for cons.c. */
1096 if (!ISSET(tp->t_state, TS_ISOPEN))
1097 return (0);
1098
1099 (*tp->t_linesw->l_close)(tp, flags);
1100 ttyclose(tp);
1101
1102 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1103 /*
1104 * Although we got a last close, the device may still be in
1105 * use; e.g. if this was the dialout node, and there are still
1106 * processes waiting for carrier on the non-dialout node.
1107 */
1108 cztty_shutdown(sc);
1109 }
1110
1111 return (0);
1112 }
1113
1114 /*
1115 * czttyread:
1116 *
1117 * Read from a Cyclades-Z serial port.
1118 */
1119 int
1120 czttyread(struct vnode *devvp, struct uio *uio, int flags)
1121 {
1122 struct cztty_softc *sc = devvp->v_devcookie;
1123 struct tty *tp = sc->sc_tty;
1124
1125 return ((*tp->t_linesw->l_read)(tp, uio, flags));
1126 }
1127
1128 /*
1129 * czttywrite:
1130 *
1131 * Write to a Cyclades-Z serial port.
1132 */
1133 int
1134 czttywrite(struct vnode *devvp, struct uio *uio, int flags)
1135 {
1136 struct cztty_softc *sc = devvp->v_devcookie;
1137 struct tty *tp = sc->sc_tty;
1138
1139 return ((*tp->t_linesw->l_write)(tp, uio, flags));
1140 }
1141
1142 /*
1143 * czttypoll:
1144 *
1145 * Poll a Cyclades-Z serial port.
1146 */
1147 int
1148 czttypoll(devvp, events, p)
1149 struct vnode *devvp;
1150 int events;
1151 struct proc *p;
1152 {
1153 struct cztty_softc *sc = devvp->v_devcookie;
1154 struct tty *tp = sc->sc_tty;
1155
1156 return ((*tp->t_linesw->l_poll)(tp, events, p));
1157 }
1158
1159 /*
1160 * czttyioctl:
1161 *
1162 * Perform a control operation on a Cyclades-Z serial port.
1163 */
1164 int
1165 czttyioctl(struct vnode *devvp, u_long cmd, caddr_t data, int flag,
1166 struct proc *p)
1167 {
1168 struct cztty_softc *sc = devvp->v_devcookie;
1169 struct tty *tp = sc->sc_tty;
1170 int s, error;
1171
1172 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
1173 if (error >= 0)
1174 return (error);
1175
1176 error = ttioctl(tp, cmd, data, flag, p);
1177 if (error >= 0)
1178 return (error);
1179
1180 error = 0;
1181
1182 s = spltty();
1183
1184 switch (cmd) {
1185 case TIOCSBRK:
1186 cztty_break(sc, 1);
1187 break;
1188
1189 case TIOCCBRK:
1190 cztty_break(sc, 0);
1191 break;
1192
1193 case TIOCGFLAGS:
1194 *(int *)data = sc->sc_swflags;
1195 break;
1196
1197 case TIOCSFLAGS:
1198 error = suser(p->p_ucred, &p->p_acflag);
1199 if (error)
1200 break;
1201 sc->sc_swflags = *(int *)data;
1202 break;
1203
1204 case TIOCSDTR:
1205 cztty_modem(sc, 1);
1206 break;
1207
1208 case TIOCCDTR:
1209 cztty_modem(sc, 0);
1210 break;
1211
1212 case TIOCMSET:
1213 case TIOCMBIS:
1214 case TIOCMBIC:
1215 tiocm_to_cztty(sc, cmd, *(int *)data);
1216 break;
1217
1218 case TIOCMGET:
1219 *(int *)data = cztty_to_tiocm(sc);
1220 break;
1221
1222 default:
1223 error = ENOTTY;
1224 break;
1225 }
1226
1227 splx(s);
1228
1229 return (error);
1230 }
1231
1232 /*
1233 * cztty_break:
1234 *
1235 * Set or clear BREAK on a port.
1236 */
1237 void
1238 cztty_break(struct cztty_softc *sc, int onoff)
1239 {
1240 struct cz_softc *cz = CZTTY_CZ(sc);
1241
1242 cz_wait_pci_doorbell(cz, "czbreak");
1243
1244 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1245 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1246 onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1247 }
1248
1249 /*
1250 * cztty_modem:
1251 *
1252 * Set or clear DTR on a port.
1253 */
1254 void
1255 cztty_modem(struct cztty_softc *sc, int onoff)
1256 {
1257 struct cz_softc *cz = CZTTY_CZ(sc);
1258
1259 if (sc->sc_rs_control_dtr == 0)
1260 return;
1261
1262 cz_wait_pci_doorbell(cz, "czmod");
1263
1264 if (onoff)
1265 sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1266 else
1267 sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1268 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1269
1270 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1271 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1272 }
1273
1274 /*
1275 * tiocm_to_cztty:
1276 *
1277 * Process TIOCM* ioctls.
1278 */
1279 void
1280 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1281 {
1282 struct cz_softc *cz = CZTTY_CZ(sc);
1283 u_int32_t czttybits;
1284
1285 czttybits = 0;
1286 if (ISSET(ttybits, TIOCM_DTR))
1287 SET(czttybits, C_RS_DTR);
1288 if (ISSET(ttybits, TIOCM_RTS))
1289 SET(czttybits, C_RS_RTS);
1290
1291 cz_wait_pci_doorbell(cz, "cztiocm");
1292
1293 switch (how) {
1294 case TIOCMBIC:
1295 CLR(sc->sc_chanctl_rs_control, czttybits);
1296 break;
1297
1298 case TIOCMBIS:
1299 SET(sc->sc_chanctl_rs_control, czttybits);
1300 break;
1301
1302 case TIOCMSET:
1303 CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1304 SET(sc->sc_chanctl_rs_control, czttybits);
1305 break;
1306 }
1307
1308 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1309
1310 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1311 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1312 }
1313
1314 /*
1315 * cztty_to_tiocm:
1316 *
1317 * Process the TIOCMGET ioctl.
1318 */
1319 int
1320 cztty_to_tiocm(struct cztty_softc *sc)
1321 {
1322 struct cz_softc *cz = CZTTY_CZ(sc);
1323 u_int32_t rs_status, op_mode;
1324 int ttybits = 0;
1325
1326 cz_wait_pci_doorbell(cz, "cztty");
1327
1328 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1329 op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1330
1331 if (ISSET(rs_status, C_RS_RTS))
1332 SET(ttybits, TIOCM_RTS);
1333 if (ISSET(rs_status, C_RS_CTS))
1334 SET(ttybits, TIOCM_CTS);
1335 if (ISSET(rs_status, C_RS_DCD))
1336 SET(ttybits, TIOCM_CAR);
1337 if (ISSET(rs_status, C_RS_DTR))
1338 SET(ttybits, TIOCM_DTR);
1339 if (ISSET(rs_status, C_RS_RI))
1340 SET(ttybits, TIOCM_RNG);
1341 if (ISSET(rs_status, C_RS_DSR))
1342 SET(ttybits, TIOCM_DSR);
1343
1344 if (ISSET(op_mode, C_CH_ENABLE))
1345 SET(ttybits, TIOCM_LE);
1346
1347 return (ttybits);
1348 }
1349
1350 /*
1351 * czttyparam:
1352 *
1353 * Set Cyclades-Z serial port parameters from termios.
1354 *
1355 * XXX Should just copy the whole termios after making
1356 * XXX sure all the changes could be done.
1357 */
1358 int
1359 czttyparam(struct tty *tp, struct termios *t)
1360 {
1361 struct cztty_softc *sc = tp->t_devvp->v_devcookie;
1362 struct cz_softc *cz = CZTTY_CZ(sc);
1363 u_int32_t rs_status;
1364 int ospeed, cflag;
1365
1366 ospeed = t->c_ospeed;
1367 cflag = t->c_cflag;
1368
1369 /* Check requested parameters. */
1370 if (ospeed < 0)
1371 return (EINVAL);
1372 if (t->c_ispeed && t->c_ispeed != ospeed)
1373 return (EINVAL);
1374
1375 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1376 SET(cflag, CLOCAL);
1377 CLR(cflag, HUPCL);
1378 }
1379
1380 /*
1381 * If there were no changes, don't do anything. This avoids dropping
1382 * input and improves performance when all we did was frob things like
1383 * VMIN and VTIME.
1384 */
1385 if (tp->t_ospeed == ospeed &&
1386 tp->t_cflag == cflag)
1387 return (0);
1388
1389 /* Data bits. */
1390 sc->sc_chanctl_comm_data_l = 0;
1391 switch (t->c_cflag & CSIZE) {
1392 case CS5:
1393 sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1394 break;
1395
1396 case CS6:
1397 sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1398 break;
1399
1400 case CS7:
1401 sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1402 break;
1403
1404 case CS8:
1405 sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1406 break;
1407 }
1408
1409 /* Stop bits. */
1410 if (t->c_cflag & CSTOPB) {
1411 if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1412 sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1413 else
1414 sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1415 } else
1416 sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1417
1418 /* Parity. */
1419 if (t->c_cflag & PARENB) {
1420 if (t->c_cflag & PARODD)
1421 sc->sc_chanctl_comm_parity = C_PR_ODD;
1422 else
1423 sc->sc_chanctl_comm_parity = C_PR_EVEN;
1424 } else
1425 sc->sc_chanctl_comm_parity = C_PR_NONE;
1426
1427 /*
1428 * Initialize flow control pins depending on the current flow control
1429 * mode.
1430 */
1431 if (ISSET(t->c_cflag, CRTSCTS)) {
1432 sc->sc_rs_control_dtr = C_RS_DTR;
1433 sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1434 } else if (ISSET(t->c_cflag, MDMBUF)) {
1435 sc->sc_rs_control_dtr = 0;
1436 sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1437 } else {
1438 /*
1439 * If no flow control, then always set RTS. This will make
1440 * the other side happy if it mistakenly thinks we're doing
1441 * RTS/CTS flow control.
1442 */
1443 sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1444 sc->sc_chanctl_hw_flow = 0;
1445 if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1446 SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1447 else
1448 CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1449 }
1450
1451 /* Baud rate. */
1452 sc->sc_chanctl_comm_baud = ospeed;
1453
1454 /* Copy to tty. */
1455 tp->t_ispeed = 0;
1456 tp->t_ospeed = t->c_ospeed;
1457 tp->t_cflag = t->c_cflag;
1458
1459 /*
1460 * Now load the channel control structure.
1461 */
1462
1463 cz_wait_pci_doorbell(cz, "czparam");
1464
1465 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1466 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1467 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1468 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1469 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1470
1471 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1472 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1473
1474 cz_wait_pci_doorbell(cz, "czparam");
1475
1476 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1477 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1478
1479 cz_wait_pci_doorbell(cz, "czparam");
1480
1481 /*
1482 * Update the tty layer's idea of the carrier bit, in case we changed
1483 * CLOCAL. We don't hang up here; we only do that by explicit
1484 * request.
1485 */
1486 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1487 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1488
1489 return (0);
1490 }
1491
1492 /*
1493 * czttystart:
1494 *
1495 * Start or restart transmission.
1496 */
1497 void
1498 czttystart(struct tty *tp)
1499 {
1500 struct cztty_softc *sc = tp->t_devvp->v_devcookie;
1501 int s;
1502
1503 s = spltty();
1504 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1505 goto out;
1506
1507 if (tp->t_outq.c_cc <= tp->t_lowat) {
1508 if (ISSET(tp->t_state, TS_ASLEEP)) {
1509 CLR(tp->t_state, TS_ASLEEP);
1510 wakeup(&tp->t_outq);
1511 }
1512 selwakeup(&tp->t_wsel);
1513 if (tp->t_outq.c_cc == 0)
1514 goto out;
1515 }
1516
1517 cztty_transmit(sc, tp);
1518 out:
1519 splx(s);
1520 }
1521
1522 /*
1523 * czttystop:
1524 *
1525 * Stop output, e.g., for ^S or output flush.
1526 */
1527 void
1528 czttystop(struct tty *tp, int flag)
1529 {
1530
1531 /*
1532 * XXX We don't do anything here, yet. Mostly, I don't know
1533 * XXX exactly how this should be implemented on this device.
1534 * XXX We've given a big chunk of data to the MIPS already,
1535 * XXX and I don't know how we request the MIPS to stop sending
1536 * XXX the data. So, punt for now. --thorpej
1537 */
1538 }
1539
1540 /*
1541 * cztty_diag:
1542 *
1543 * Issue a scheduled diagnostic message.
1544 */
1545 void
1546 cztty_diag(void *arg)
1547 {
1548 struct cztty_softc *sc = arg;
1549 struct cz_softc *cz = CZTTY_CZ(sc);
1550 u_int overflows, parity_errors, framing_errors;
1551 int s;
1552
1553 s = spltty();
1554
1555 overflows = sc->sc_overflows;
1556 sc->sc_overflows = 0;
1557
1558 parity_errors = sc->sc_parity_errors;
1559 sc->sc_parity_errors = 0;
1560
1561 framing_errors = sc->sc_framing_errors;
1562 sc->sc_framing_errors = 0;
1563
1564 sc->sc_errors = 0;
1565
1566 splx(s);
1567
1568 log(LOG_WARNING,
1569 "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1570 cz->cz_dev.dv_xname, sc->sc_channel,
1571 overflows, overflows == 1 ? "" : "s",
1572 parity_errors,
1573 framing_errors, framing_errors == 1 ? "" : "s");
1574 }
1575
1576 /*
1577 * tx and rx ring buffer size macros:
1578 *
1579 * The transmitter and receiver both use ring buffers. For each one, there
1580 * is a get (consumer) and a put (producer) offset. The get value is the
1581 * next byte to be read from the ring, and the put is the next one to be
1582 * put into the ring. get == put means the ring is empty.
1583 *
1584 * For each ring, the firmware controls one of (get, put) and this driver
1585 * controls the other. For transmission, this driver updates put to point
1586 * past the valid data, and the firmware moves get as bytes are sent. Likewise
1587 * for receive, the driver controls put, and this driver controls get.
1588 */
1589 #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1590 #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1591
1592 /*
1593 * cztty_transmit()
1594 *
1595 * Look at the tty for this port and start sending.
1596 */
1597 int
1598 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1599 {
1600 struct cz_softc *cz = CZTTY_CZ(sc);
1601 u_int move, get, put, size, address;
1602 #ifdef HOSTRAMCODE
1603 int error, done = 0;
1604 #else
1605 int done = 0;
1606 #endif
1607
1608 size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1609 get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1610 put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1611 address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1612
1613 while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1614 #ifdef HOSTRAMCODE
1615 if (0) {
1616 move = min(tp->t_outq.c_cc, move);
1617 error = q_to_b(&tp->t_outq, 0, move);
1618 if (error != move) {
1619 printf("%s: channel %d: error moving to "
1620 "transmit buf\n", cz->cz_dev.dv_xname,
1621 sc->sc_channel);
1622 move = error;
1623 }
1624 } else {
1625 #endif
1626 move = min(ndqb(&tp->t_outq, 0), move);
1627 bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1628 address + put, tp->t_outq.c_cf, move);
1629 ndflush(&tp->t_outq, move);
1630 #ifdef HOSTRAMCODE
1631 }
1632 #endif
1633
1634 put = ((put + move) % size);
1635 done = 1;
1636 }
1637 if (done) {
1638 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1639 }
1640 return (done);
1641 }
1642
1643 int
1644 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1645 {
1646 struct cz_softc *cz = CZTTY_CZ(sc);
1647 u_int get, put, size, address;
1648 int done = 0, ch;
1649
1650 size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1651 get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1652 put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1653 address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1654
1655 while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1656 #ifdef HOSTRAMCODE
1657 if (hostram)
1658 ch = ((char *)fifoaddr)[get];
1659 } else {
1660 #endif
1661 ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1662 address + get);
1663 #ifdef HOSTRAMCODE
1664 }
1665 #endif
1666 (*tp->t_linesw->l_rint)(ch, tp);
1667 get = (get + 1) % size;
1668 done = 1;
1669 }
1670 if (done) {
1671 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1672 }
1673 return (done);
1674 }
1675