cz.c revision 1.18 1 /* $NetBSD: cz.c,v 1.18 2002/01/12 16:17:06 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Zembu Labs, Inc.
5 * All rights reserved.
6 *
7 * Authors: Jason R. Thorpe <thorpej (at) zembu.com>
8 * Bill Studenmund <wrstuden (at) zembu.com>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Zembu Labs, Inc.
21 * 4. Neither the name of Zembu Labs nor the names of its employees may
22 * be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39 *
40 * Some notes:
41 *
42 * - The Cyclades-Z has fully automatic hardware (and software!)
43 * flow control. We only utilize RTS/CTS flow control here,
44 * and it is implemented in a very simplistic manner. This
45 * may be an area of future work.
46 *
47 * - The PLX can map the either the board's RAM or host RAM
48 * into the MIPS's memory window. This would enable us to
49 * use less expensive (for us) memory reads/writes to host
50 * RAM, rather than time-consuming reads/writes to PCI
51 * memory space. However, the PLX can only map a 0-128M
52 * window, so we would have to ensure that the DMA address
53 * of the host RAM fits there. This is kind of a pain,
54 * so we just don't bother right now.
55 *
56 * - In a perfect world, we would use the autoconfiguration
57 * mechanism to attach the TTYs that we find. However,
58 * that leads to somewhat icky looking autoconfiguration
59 * messages (one for every TTY, up to 64 per board!). So
60 * we don't do it that way, but assign minors as if there
61 * were the max of 64 ports per board.
62 *
63 * - We don't bother with PPS support here. There are so many
64 * ports, each with a large amount of buffer space, that the
65 * normal mode of operation is to poll the boards regularly
66 * (generally, every 20ms or so). This makes this driver
67 * unsuitable for PPS, as the latency will be generally too
68 * high.
69 */
70 /*
71 * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72 * for FreeBSD 3.2.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: cz.c,v 1.18 2002/01/12 16:17:06 tsutsui Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/device.h>
82 #include <sys/malloc.h>
83 #include <sys/tty.h>
84 #include <sys/conf.h>
85 #include <sys/time.h>
86 #include <sys/kernel.h>
87 #include <sys/fcntl.h>
88 #include <sys/syslog.h>
89
90 #include <sys/callout.h>
91
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/pcidevs.h>
95 #include <dev/pci/czreg.h>
96
97 #include <dev/pci/plx9060reg.h>
98 #include <dev/pci/plx9060var.h>
99
100 #include <dev/microcode/cyclades-z/cyzfirm.h>
101
102 #define CZ_DRIVER_VERSION 0x20000411
103
104 #define CZ_POLL_MS 20
105
106 /* These are the interrupts we always use. */
107 #define CZ_INTERRUPTS \
108 (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
109 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
110 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
111 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
112
113 /*
114 * cztty_softc:
115 *
116 * Per-channel (TTY) state.
117 */
118 struct cztty_softc {
119 struct cz_softc *sc_parent;
120 struct tty *sc_tty;
121
122 struct callout sc_diag_ch;
123
124 int sc_channel; /* Also used to flag unattached chan */
125 #define CZTTY_CHANNEL_DEAD -1
126
127 bus_space_tag_t sc_chan_st; /* channel space tag */
128 bus_space_handle_t sc_chan_sh; /* channel space handle */
129 bus_space_handle_t sc_buf_sh; /* buffer space handle */
130
131 u_int sc_overflows,
132 sc_parity_errors,
133 sc_framing_errors,
134 sc_errors;
135
136 int sc_swflags;
137
138 u_int32_t sc_rs_control_dtr,
139 sc_chanctl_hw_flow,
140 sc_chanctl_comm_baud,
141 sc_chanctl_rs_control,
142 sc_chanctl_comm_data_l,
143 sc_chanctl_comm_parity;
144 };
145
146 /*
147 * cz_softc:
148 *
149 * Per-board state.
150 */
151 struct cz_softc {
152 struct device cz_dev; /* generic device info */
153 struct plx9060_config cz_plx; /* PLX 9060 config info */
154 bus_space_tag_t cz_win_st; /* window space tag */
155 bus_space_handle_t cz_win_sh; /* window space handle */
156 struct callout cz_callout; /* callout for polling-mode */
157
158 void *cz_ih; /* interrupt handle */
159
160 u_int32_t cz_mailbox0; /* our MAILBOX0 value */
161 int cz_nchannels; /* number of channels */
162 int cz_nopenchan; /* number of open channels */
163 struct cztty_softc *cz_ports; /* our array of ports */
164
165 bus_addr_t cz_fwctl; /* offset of firmware control */
166 };
167
168 int cz_match(struct device *, struct cfdata *, void *);
169 void cz_attach(struct device *, struct device *, void *);
170 int cz_wait_pci_doorbell(struct cz_softc *, const char *);
171
172 struct cfattach cz_ca = {
173 sizeof(struct cz_softc), cz_match, cz_attach
174 };
175
176 void cz_reset_board(struct cz_softc *);
177 int cz_load_firmware(struct cz_softc *);
178
179 int cz_intr(void *);
180 void cz_poll(void *);
181 int cztty_transmit(struct cztty_softc *, struct tty *);
182 int cztty_receive(struct cztty_softc *, struct tty *);
183
184 struct cztty_softc * cztty_getttysoftc(dev_t dev);
185 int cztty_findmajor(void);
186 int cztty_major;
187 int cztty_attached_ttys;
188 int cz_timeout_ticks;
189
190 cdev_decl(cztty);
191
192 void czttystart(struct tty *tp);
193 int czttyparam(struct tty *tp, struct termios *t);
194 void cztty_shutdown(struct cztty_softc *sc);
195 void cztty_modem(struct cztty_softc *sc, int onoff);
196 void cztty_break(struct cztty_softc *sc, int onoff);
197 void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
198 int cztty_to_tiocm(struct cztty_softc *sc);
199 void cztty_diag(void *arg);
200
201 extern struct cfdriver cz_cd;
202
203 /* Macros to clear/set/test flags. */
204 #define SET(t, f) (t) |= (f)
205 #define CLR(t, f) (t) &= ~(f)
206 #define ISSET(t, f) ((t) & (f))
207
208 /*
209 * Macros to read and write the PLX.
210 */
211 #define CZ_PLX_READ(cz, reg) \
212 bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
213 #define CZ_PLX_WRITE(cz, reg, val) \
214 bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
215 (reg), (val))
216
217 /*
218 * Macros to read and write the FPGA. We must already be in the FPGA
219 * window for this.
220 */
221 #define CZ_FPGA_READ(cz, reg) \
222 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
223 #define CZ_FPGA_WRITE(cz, reg, val) \
224 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
225
226 /*
227 * Macros to read and write the firmware control structures in board RAM.
228 */
229 #define CZ_FWCTL_READ(cz, off) \
230 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
231 (cz)->cz_fwctl + (off))
232
233 #define CZ_FWCTL_WRITE(cz, off, val) \
234 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
235 (cz)->cz_fwctl + (off), (val))
236
237 /*
238 * Convenience macros for cztty routines. PLX window MUST be to RAM.
239 */
240 #define CZTTY_CHAN_READ(sc, off) \
241 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
242
243 #define CZTTY_CHAN_WRITE(sc, off, val) \
244 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
245 (off), (val))
246
247 #define CZTTY_BUF_READ(sc, off) \
248 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
249
250 #define CZTTY_BUF_WRITE(sc, off, val) \
251 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
252 (off), (val))
253
254 /*
255 * Convenience macros.
256 */
257 #define CZ_WIN_RAM(cz) \
258 do { \
259 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
260 delay(100); \
261 } while (0)
262
263 #define CZ_WIN_FPGA(cz) \
264 do { \
265 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
266 delay(100); \
267 } while (0)
268
269 /*****************************************************************************
270 * Cyclades-Z controller code starts here...
271 *****************************************************************************/
272
273 /*
274 * cz_match:
275 *
276 * Determine if the given PCI device is a Cyclades-Z board.
277 */
278 int
279 cz_match(struct device *parent,
280 struct cfdata *match,
281 void *aux)
282 {
283 struct pci_attach_args *pa = aux;
284
285 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
286 switch (PCI_PRODUCT(pa->pa_id)) {
287 case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
288 return (1);
289 }
290 }
291
292 return (0);
293 }
294
295 /*
296 * cz_attach:
297 *
298 * A Cyclades-Z board was found; attach it.
299 */
300 void
301 cz_attach(struct device *parent,
302 struct device *self,
303 void *aux)
304 {
305 struct cz_softc *cz = (void *) self;
306 struct pci_attach_args *pa = aux;
307 pci_intr_handle_t ih;
308 const char *intrstr = NULL;
309 struct cztty_softc *sc;
310 struct tty *tp;
311 int i;
312
313 printf(": Cyclades-Z multiport serial\n");
314
315 cz->cz_plx.plx_pc = pa->pa_pc;
316 cz->cz_plx.plx_tag = pa->pa_tag;
317
318 if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
319 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
320 &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
321 printf("%s: unable to map PLX registers\n",
322 cz->cz_dev.dv_xname);
323 return;
324 }
325 if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
326 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
327 &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
328 printf("%s: unable to map device window\n",
329 cz->cz_dev.dv_xname);
330 return;
331 }
332
333 cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
334 cz->cz_nopenchan = 0;
335
336 /*
337 * Make sure that the board is completely stopped.
338 */
339 CZ_WIN_FPGA(cz);
340 CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
341
342 /*
343 * Load the board's firmware.
344 */
345 if (cz_load_firmware(cz) != 0)
346 return;
347
348 /*
349 * Now that we're ready to roll, map and establish the interrupt
350 * handler.
351 */
352 if (pci_intr_map(pa, &ih) != 0) {
353 /*
354 * The common case is for Cyclades-Z boards to run
355 * in polling mode, and thus not have an interrupt
356 * mapped for them. Don't bother reporting that
357 * the interrupt is not mappable, since this isn't
358 * really an error.
359 */
360 cz->cz_ih = NULL;
361 goto polling_mode;
362 } else {
363 intrstr = pci_intr_string(pa->pa_pc, ih);
364 cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
365 cz_intr, cz);
366 }
367 if (cz->cz_ih == NULL) {
368 printf("%s: unable to establish interrupt",
369 cz->cz_dev.dv_xname);
370 if (intrstr != NULL)
371 printf(" at %s", intrstr);
372 printf("\n");
373 /* We will fall-back on polling mode. */
374 } else
375 printf("%s: interrupting at %s\n",
376 cz->cz_dev.dv_xname, intrstr);
377
378 polling_mode:
379 if (cz->cz_ih == NULL) {
380 callout_init(&cz->cz_callout);
381 if (cz_timeout_ticks == 0)
382 cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
383 printf("%s: polling mode, %d ms interval (%d tick%s)\n",
384 cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
385 cz_timeout_ticks == 1 ? "" : "s");
386 }
387
388 if (cztty_major == 0)
389 cztty_major = cztty_findmajor();
390 /*
391 * Allocate sufficient pointers for the children and
392 * attach them. Set all ports to a reasonable initial
393 * configuration while we're at it:
394 *
395 * disabled
396 * 8N1
397 * default baud rate
398 * hardware flow control.
399 */
400 CZ_WIN_RAM(cz);
401
402 if (cz->cz_nchannels == 0) {
403 /* No channels? No more work to do! */
404 return;
405 }
406
407 cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
408 M_DEVBUF, M_WAITOK|M_ZERO);
409 cztty_attached_ttys += cz->cz_nchannels;
410
411 for (i = 0; i < cz->cz_nchannels; i++) {
412 sc = &cz->cz_ports[i];
413
414 sc->sc_channel = i;
415 sc->sc_chan_st = cz->cz_win_st;
416 sc->sc_parent = cz;
417
418 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
419 cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
420 ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
421 printf("%s: unable to subregion channel %d control\n",
422 cz->cz_dev.dv_xname, i);
423 sc->sc_channel = CZTTY_CHANNEL_DEAD;
424 continue;
425 }
426 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
427 cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
428 ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
429 printf("%s: unable to subregion channel %d buffer\n",
430 cz->cz_dev.dv_xname, i);
431 sc->sc_channel = CZTTY_CHANNEL_DEAD;
432 continue;
433 }
434
435 callout_init(&sc->sc_diag_ch);
436
437 tp = ttymalloc();
438 tp->t_dev = makedev(cztty_major,
439 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i);
440 tp->t_oproc = czttystart;
441 tp->t_param = czttyparam;
442 tty_attach(tp);
443
444 sc->sc_tty = tp;
445
446 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
447 CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
448 CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
449 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
450 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
451 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
452 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
453 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
454 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
455 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
456 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
457 }
458 }
459
460 /*
461 * cz_reset_board:
462 *
463 * Reset the board via the PLX.
464 */
465 void
466 cz_reset_board(struct cz_softc *cz)
467 {
468 u_int32_t reg;
469
470 reg = CZ_PLX_READ(cz, PLX_CONTROL);
471 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
472 delay(1000);
473
474 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
475 delay(1000);
476
477 /* Now reload the PLX from its EEPROM. */
478 reg = CZ_PLX_READ(cz, PLX_CONTROL);
479 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
480 delay(1000);
481 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
482 }
483
484 /*
485 * cz_load_firmware:
486 *
487 * Load the ZFIRM firmware into the board's RAM and start it
488 * running.
489 */
490 int
491 cz_load_firmware(struct cz_softc *cz)
492 {
493 struct zfirm_header *zfh;
494 struct zfirm_config *zfc;
495 struct zfirm_block *zfb, *zblocks;
496 const u_int8_t *cp;
497 const char *board;
498 u_int32_t fid;
499 int i, j, nconfigs, nblocks, nbytes;
500
501 zfh = (struct zfirm_header *) cycladesz_firmware;
502
503 /* Find the config header. */
504 if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
505 printf("%s: bad ZFIRM config offset: 0x%x\n",
506 cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
507 return (EIO);
508 }
509 zfc = (struct zfirm_config *)(cycladesz_firmware +
510 le32toh(zfh->zfh_configoff));
511 nconfigs = le32toh(zfh->zfh_nconfig);
512
513 /* Locate the correct configuration for our board. */
514 for (i = 0; i < nconfigs; i++, zfc++) {
515 if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
516 le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
517 break;
518 }
519 if (i == nconfigs) {
520 printf("%s: unable to locate config header\n",
521 cz->cz_dev.dv_xname);
522 return (EIO);
523 }
524
525 nblocks = le32toh(zfc->zfc_nblocks);
526 zblocks = (struct zfirm_block *)(cycladesz_firmware +
527 le32toh(zfh->zfh_blockoff));
528
529 /*
530 * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
531 * necessary.
532 */
533 if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
534 #if 0
535 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
536 #endif
537 ) {
538 #ifdef CZ_DEBUG
539 printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
540 #endif
541 CZ_WIN_FPGA(cz);
542 for (i = 0; i < nblocks; i++) {
543 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
544 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
545 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FPGA) {
546 nbytes = le32toh(zfb->zfb_size);
547 cp = &cycladesz_firmware[
548 le32toh(zfb->zfb_fileoff)];
549 for (j = 0; j < nbytes; j++, cp++) {
550 bus_space_write_1(cz->cz_win_st,
551 cz->cz_win_sh, 0, *cp);
552 /* FPGA needs 30-100us to settle. */
553 delay(10);
554 }
555 }
556 }
557 #ifdef CZ_DEBUG
558 printf("done\n");
559 #endif
560 }
561
562 /* Now load the firmware. */
563 CZ_WIN_RAM(cz);
564
565 for (i = 0; i < nblocks; i++) {
566 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
567 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
568 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
569 const u_int32_t *lp;
570 u_int32_t ro = le32toh(zfb->zfb_ramoff);
571 nbytes = le32toh(zfb->zfb_size);
572 lp = (const u_int32_t *)
573 &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
574 for (j = 0; j < nbytes; j += 4, lp++) {
575 bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
576 ro + j, le32toh(*lp));
577 delay(10);
578 }
579 }
580 }
581
582 /* Now restart the MIPS. */
583 CZ_WIN_FPGA(cz);
584 CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
585
586 /* Wait for the MIPS to start, then report the results. */
587 CZ_WIN_RAM(cz);
588
589 #ifdef CZ_DEBUG
590 printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
591 #endif
592 for (i = 0; i < 100; i++) {
593 fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
594 ZFIRM_SIG_OFF);
595 if (fid == ZFIRM_SIG) {
596 /* MIPS has booted. */
597 break;
598 } else if (fid == ZFIRM_HLT) {
599 /*
600 * The MIPS has halted, usually due to a power
601 * shortage on the expansion module.
602 */
603 printf("%s: MIPS halted; possible power supply "
604 "problem\n", cz->cz_dev.dv_xname);
605 return (EIO);
606 } else {
607 #ifdef CZ_DEBUG
608 if ((i % 8) == 0)
609 printf(".");
610 #endif
611 delay(250000);
612 }
613 }
614 #ifdef CZ_DEBUG
615 printf("\n");
616 #endif
617 if (i == 100) {
618 CZ_WIN_FPGA(cz);
619 printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
620 cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
621 printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
622 cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
623 CZ_FPGA_READ(cz, FPGA_VERSION));
624 return (EIO);
625 }
626
627 /*
628 * Locate the firmware control structures.
629 */
630 cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
631 ZFIRM_CTRLADDR_OFF);
632 #ifdef CZ_DEBUG
633 printf("%s: FWCTL structure at offset 0x%08lx\n",
634 cz->cz_dev.dv_xname, cz->cz_fwctl);
635 #endif
636
637 CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
638 CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
639
640 cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
641
642 switch (cz->cz_mailbox0) {
643 case MAILBOX0_8Zo_V1:
644 board = "Cyclades-8Zo ver. 1";
645 break;
646
647 case MAILBOX0_8Zo_V2:
648 board = "Cyclades-8Zo ver. 2";
649 break;
650
651 case MAILBOX0_Ze_V1:
652 board = "Cyclades-Ze";
653 break;
654
655 default:
656 board = "unknown Cyclades Z-series";
657 break;
658 }
659
660 fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
661 printf("%s: %s, ", cz->cz_dev.dv_xname, board);
662 if (cz->cz_nchannels == 0)
663 printf("no channels attached, ");
664 else
665 printf("%d channels (ttyCZ%04d..ttyCZ%04d), ",
666 cz->cz_nchannels, cztty_attached_ttys,
667 cztty_attached_ttys + (cz->cz_nchannels - 1));
668 printf("firmware %x.%x.%x\n",
669 (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
670
671 return (0);
672 }
673
674 /*
675 * cz_poll:
676 *
677 * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
678 * ms.
679 */
680 void
681 cz_poll(void *arg)
682 {
683 int s = spltty();
684 struct cz_softc *cz = arg;
685
686 cz_intr(cz);
687 callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
688
689 splx(s);
690 }
691
692 /*
693 * cz_intr:
694 *
695 * Interrupt service routine.
696 *
697 * We either are receiving an interrupt directly from the board, or we are
698 * in polling mode and it's time to poll.
699 */
700 int
701 cz_intr(void *arg)
702 {
703 int rval = 0;
704 u_int command, channel, param;
705 struct cz_softc *cz = arg;
706 struct cztty_softc *sc;
707 struct tty *tp;
708
709 while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
710 rval = 1;
711 channel = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_CHANNEL);
712 param = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_PARAM);
713
714 /* now clear this interrupt, posslibly enabling another */
715 CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
716
717 if (cz->cz_ports == NULL) {
718 #ifdef CZ_DEBUG
719 printf("%s: interrupt on channel %d, but no channels\n",
720 cz->cz_dev.dv_xname, channel);
721 #endif
722 continue;
723 }
724
725 sc = &cz->cz_ports[channel];
726
727 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
728 break;
729
730 tp = sc->sc_tty;
731
732 switch (command) {
733 case C_CM_TXFEMPTY: /* transmit cases */
734 case C_CM_TXBEMPTY:
735 case C_CM_TXLOWWM:
736 case C_CM_INTBACK:
737 if (!ISSET(tp->t_state, TS_ISOPEN)) {
738 #ifdef CZ_DEBUG
739 printf("%s: tx intr on closed channel %d\n",
740 cz->cz_dev.dv_xname, channel);
741 #endif
742 break;
743 }
744
745 if (cztty_transmit(sc, tp)) {
746 /*
747 * Do wakeup stuff here.
748 */
749 ttwakeup(tp);
750 wakeup(tp);
751 }
752 break;
753
754 case C_CM_RXNNDT: /* receive cases */
755 case C_CM_RXHIWM:
756 case C_CM_INTBACK2: /* from restart ?? */
757 #if 0
758 case C_CM_ICHAR:
759 #endif
760 if (!ISSET(tp->t_state, TS_ISOPEN)) {
761 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
762 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
763 break;
764 }
765
766 if (cztty_receive(sc, tp)) {
767 /*
768 * Do wakeup stuff here.
769 */
770 ttwakeup(tp);
771 wakeup(tp);
772 }
773 break;
774
775 case C_CM_MDCD:
776 if (!ISSET(tp->t_state, TS_ISOPEN))
777 break;
778
779 (void) (*tp->t_linesw->l_modem)(tp,
780 ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
781 CHNCTL_RS_STATUS)));
782 break;
783
784 case C_CM_MDSR:
785 case C_CM_MRI:
786 case C_CM_MCTS:
787 case C_CM_MRTS:
788 break;
789
790 case C_CM_IOCTLW:
791 break;
792
793 case C_CM_PR_ERROR:
794 sc->sc_parity_errors++;
795 goto error_common;
796
797 case C_CM_FR_ERROR:
798 sc->sc_framing_errors++;
799 goto error_common;
800
801 case C_CM_OVR_ERROR:
802 sc->sc_overflows++;
803 error_common:
804 if (sc->sc_errors++ == 0)
805 callout_reset(&sc->sc_diag_ch, 60 * hz,
806 cztty_diag, sc);
807 break;
808
809 case C_CM_RXBRK:
810 if (!ISSET(tp->t_state, TS_ISOPEN))
811 break;
812
813 /*
814 * A break is a \000 character with TTY_FE error
815 * flags set. So TTY_FE by itself works.
816 */
817 (*tp->t_linesw->l_rint)(TTY_FE, tp);
818 ttwakeup(tp);
819 wakeup(tp);
820 break;
821
822 default:
823 #ifdef CZ_DEBUG
824 printf("%s: channel %d: Unknown interrupt 0x%x\n",
825 cz->cz_dev.dv_xname, sc->sc_channel, command);
826 #endif
827 break;
828 }
829 }
830
831 return (rval);
832 }
833
834 /*
835 * cz_wait_pci_doorbell:
836 *
837 * Wait for the pci doorbell to be clear - wait for pending
838 * activity to drain.
839 */
840 int
841 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
842 {
843 int error;
844
845 while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
846 error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
847 if ((error != 0) && (error != EWOULDBLOCK))
848 return (error);
849 }
850 return (0);
851 }
852
853 /*****************************************************************************
854 * Cyclades-Z TTY code starts here...
855 *****************************************************************************/
856
857 #define CZTTYDIALOUT_MASK 0x80000
858
859 #define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
860 #define CZTTY_CZ(sc) ((sc)->sc_parent)
861
862 #define CZTTY_SOFTC(dev) cztty_getttysoftc(dev)
863
864 struct cztty_softc *
865 cztty_getttysoftc(dev_t dev)
866 {
867 int i, j, k, u = minor(dev) & ~CZTTYDIALOUT_MASK;
868 struct cz_softc *cz;
869
870 for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) {
871 k = j;
872 cz = device_lookup(&cz_cd, i);
873 if (cz == NULL)
874 continue;
875 if (cz->cz_ports == NULL)
876 continue;
877 j += cz->cz_nchannels;
878 if (j > u)
879 break;
880 }
881
882 if (i >= cz_cd.cd_ndevs)
883 return (NULL);
884 else
885 return (&cz->cz_ports[u - k]);
886 }
887
888 int
889 cztty_findmajor(void)
890 {
891 int maj;
892
893 for (maj = 0; maj < nchrdev; maj++) {
894 if (cdevsw[maj].d_open == czttyopen)
895 break;
896 }
897
898 return (maj == nchrdev) ? 0 : maj;
899 }
900
901 /*
902 * czttytty:
903 *
904 * Return a pointer to our tty.
905 */
906 struct tty *
907 czttytty(dev_t dev)
908 {
909 struct cztty_softc *sc = CZTTY_SOFTC(dev);
910
911 #ifdef DIAGNOSTIC
912 if (sc == NULL)
913 panic("czttytty");
914 #endif
915
916 return (sc->sc_tty);
917 }
918
919 /*
920 * cztty_shutdown:
921 *
922 * Shut down a port.
923 */
924 void
925 cztty_shutdown(struct cztty_softc *sc)
926 {
927 struct cz_softc *cz = CZTTY_CZ(sc);
928 struct tty *tp = sc->sc_tty;
929 int s;
930
931 s = spltty();
932
933 /* Clear any break condition set with TIOCSBRK. */
934 cztty_break(sc, 0);
935
936 /*
937 * Hang up if necessary. Wait a bit, so the other side has time to
938 * notice even if we immediately open the port again.
939 */
940 if (ISSET(tp->t_cflag, HUPCL)) {
941 cztty_modem(sc, 0);
942 (void) tsleep(tp, TTIPRI, ttclos, hz);
943 }
944
945 /* Disable the channel. */
946 cz_wait_pci_doorbell(cz, "czdis");
947 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
948 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
949 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
950
951 if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
952 #ifdef CZ_DEBUG
953 printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
954 #endif
955 callout_stop(&cz->cz_callout);
956 }
957
958 splx(s);
959 }
960
961 /*
962 * czttyopen:
963 *
964 * Open a Cyclades-Z serial port.
965 */
966 int
967 czttyopen(dev_t dev, int flags, int mode, struct proc *p)
968 {
969 struct cztty_softc *sc = CZTTY_SOFTC(dev);
970 struct cz_softc *cz;
971 struct tty *tp;
972 int s, error;
973
974 if (sc == NULL)
975 return (ENXIO);
976
977 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
978 return (ENXIO);
979
980 cz = CZTTY_CZ(sc);
981 tp = sc->sc_tty;
982
983 if (ISSET(tp->t_state, TS_ISOPEN) &&
984 ISSET(tp->t_state, TS_XCLUDE) &&
985 p->p_ucred->cr_uid != 0)
986 return (EBUSY);
987
988 s = spltty();
989
990 /*
991 * Do the following iff this is a first open.
992 */
993 if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
994 struct termios t;
995
996 tp->t_dev = dev;
997
998 /* If we're turning things on, enable interrupts */
999 if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
1000 #ifdef CZ_DEBUG
1001 printf("%s: Enabling polling.\n",
1002 cz->cz_dev.dv_xname);
1003 #endif
1004 callout_reset(&cz->cz_callout, cz_timeout_ticks,
1005 cz_poll, cz);
1006 }
1007
1008 /*
1009 * Enable the channel. Don't actually ring the
1010 * doorbell here; czttyparam() will do it for us.
1011 */
1012 cz_wait_pci_doorbell(cz, "czopen");
1013
1014 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
1015
1016 /*
1017 * Initialize the termios status to the defaults. Add in the
1018 * sticky bits from TIOCSFLAGS.
1019 */
1020 t.c_ispeed = 0;
1021 t.c_ospeed = TTYDEF_SPEED;
1022 t.c_cflag = TTYDEF_CFLAG;
1023 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
1024 SET(t.c_cflag, CLOCAL);
1025 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
1026 SET(t.c_cflag, CRTSCTS);
1027
1028 /*
1029 * Reset the input and output rings. Do this before
1030 * we call czttyparam(), as that function enables
1031 * the channel.
1032 */
1033 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1034 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1035 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1036 CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1037
1038 /* Make sure czttyparam() will see changes. */
1039 tp->t_ospeed = 0;
1040 (void) czttyparam(tp, &t);
1041 tp->t_iflag = TTYDEF_IFLAG;
1042 tp->t_oflag = TTYDEF_OFLAG;
1043 tp->t_lflag = TTYDEF_LFLAG;
1044 ttychars(tp);
1045 ttsetwater(tp);
1046
1047 /*
1048 * Turn on DTR. We must always do this, even if carrier is not
1049 * present, because otherwise we'd have to use TIOCSDTR
1050 * immediately after setting CLOCAL, which applications do not
1051 * expect. We always assert DTR while the device is open
1052 * unless explicitly requested to deassert it.
1053 */
1054 cztty_modem(sc, 1);
1055 }
1056
1057 splx(s);
1058
1059 error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
1060 if (error)
1061 goto bad;
1062
1063 error = (*tp->t_linesw->l_open)(dev, tp);
1064 if (error)
1065 goto bad;
1066
1067 return (0);
1068
1069 bad:
1070 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1071 /*
1072 * We failed to open the device, and nobody else had it opened.
1073 * Clean up the state as appropriate.
1074 */
1075 cztty_shutdown(sc);
1076 }
1077
1078 return (error);
1079 }
1080
1081 /*
1082 * czttyclose:
1083 *
1084 * Close a Cyclades-Z serial port.
1085 */
1086 int
1087 czttyclose(dev_t dev, int flags, int mode, struct proc *p)
1088 {
1089 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1090 struct tty *tp = sc->sc_tty;
1091
1092 /* XXX This is for cons.c. */
1093 if (!ISSET(tp->t_state, TS_ISOPEN))
1094 return (0);
1095
1096 (*tp->t_linesw->l_close)(tp, flags);
1097 ttyclose(tp);
1098
1099 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1100 /*
1101 * Although we got a last close, the device may still be in
1102 * use; e.g. if this was the dialout node, and there are still
1103 * processes waiting for carrier on the non-dialout node.
1104 */
1105 cztty_shutdown(sc);
1106 }
1107
1108 return (0);
1109 }
1110
1111 /*
1112 * czttyread:
1113 *
1114 * Read from a Cyclades-Z serial port.
1115 */
1116 int
1117 czttyread(dev_t dev, struct uio *uio, int flags)
1118 {
1119 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1120 struct tty *tp = sc->sc_tty;
1121
1122 return ((*tp->t_linesw->l_read)(tp, uio, flags));
1123 }
1124
1125 /*
1126 * czttywrite:
1127 *
1128 * Write to a Cyclades-Z serial port.
1129 */
1130 int
1131 czttywrite(dev_t dev, struct uio *uio, int flags)
1132 {
1133 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1134 struct tty *tp = sc->sc_tty;
1135
1136 return ((*tp->t_linesw->l_write)(tp, uio, flags));
1137 }
1138
1139 /*
1140 * czttypoll:
1141 *
1142 * Poll a Cyclades-Z serial port.
1143 */
1144 int
1145 czttypoll(dev, events, p)
1146 dev_t dev;
1147 int events;
1148 struct proc *p;
1149 {
1150 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1151 struct tty *tp = sc->sc_tty;
1152
1153 return ((*tp->t_linesw->l_poll)(tp, events, p));
1154 }
1155
1156 /*
1157 * czttyioctl:
1158 *
1159 * Perform a control operation on a Cyclades-Z serial port.
1160 */
1161 int
1162 czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1163 {
1164 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1165 struct tty *tp = sc->sc_tty;
1166 int s, error;
1167
1168 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
1169 if (error >= 0)
1170 return (error);
1171
1172 error = ttioctl(tp, cmd, data, flag, p);
1173 if (error >= 0)
1174 return (error);
1175
1176 error = 0;
1177
1178 s = spltty();
1179
1180 switch (cmd) {
1181 case TIOCSBRK:
1182 cztty_break(sc, 1);
1183 break;
1184
1185 case TIOCCBRK:
1186 cztty_break(sc, 0);
1187 break;
1188
1189 case TIOCGFLAGS:
1190 *(int *)data = sc->sc_swflags;
1191 break;
1192
1193 case TIOCSFLAGS:
1194 error = suser(p->p_ucred, &p->p_acflag);
1195 if (error)
1196 break;
1197 sc->sc_swflags = *(int *)data;
1198 break;
1199
1200 case TIOCSDTR:
1201 cztty_modem(sc, 1);
1202 break;
1203
1204 case TIOCCDTR:
1205 cztty_modem(sc, 0);
1206 break;
1207
1208 case TIOCMSET:
1209 case TIOCMBIS:
1210 case TIOCMBIC:
1211 tiocm_to_cztty(sc, cmd, *(int *)data);
1212 break;
1213
1214 case TIOCMGET:
1215 *(int *)data = cztty_to_tiocm(sc);
1216 break;
1217
1218 default:
1219 error = ENOTTY;
1220 break;
1221 }
1222
1223 splx(s);
1224
1225 return (error);
1226 }
1227
1228 /*
1229 * cztty_break:
1230 *
1231 * Set or clear BREAK on a port.
1232 */
1233 void
1234 cztty_break(struct cztty_softc *sc, int onoff)
1235 {
1236 struct cz_softc *cz = CZTTY_CZ(sc);
1237
1238 cz_wait_pci_doorbell(cz, "czbreak");
1239
1240 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1241 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1242 onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1243 }
1244
1245 /*
1246 * cztty_modem:
1247 *
1248 * Set or clear DTR on a port.
1249 */
1250 void
1251 cztty_modem(struct cztty_softc *sc, int onoff)
1252 {
1253 struct cz_softc *cz = CZTTY_CZ(sc);
1254
1255 if (sc->sc_rs_control_dtr == 0)
1256 return;
1257
1258 cz_wait_pci_doorbell(cz, "czmod");
1259
1260 if (onoff)
1261 sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1262 else
1263 sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1264 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1265
1266 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1267 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1268 }
1269
1270 /*
1271 * tiocm_to_cztty:
1272 *
1273 * Process TIOCM* ioctls.
1274 */
1275 void
1276 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1277 {
1278 struct cz_softc *cz = CZTTY_CZ(sc);
1279 u_int32_t czttybits;
1280
1281 czttybits = 0;
1282 if (ISSET(ttybits, TIOCM_DTR))
1283 SET(czttybits, C_RS_DTR);
1284 if (ISSET(ttybits, TIOCM_RTS))
1285 SET(czttybits, C_RS_RTS);
1286
1287 cz_wait_pci_doorbell(cz, "cztiocm");
1288
1289 switch (how) {
1290 case TIOCMBIC:
1291 CLR(sc->sc_chanctl_rs_control, czttybits);
1292 break;
1293
1294 case TIOCMBIS:
1295 SET(sc->sc_chanctl_rs_control, czttybits);
1296 break;
1297
1298 case TIOCMSET:
1299 CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1300 SET(sc->sc_chanctl_rs_control, czttybits);
1301 break;
1302 }
1303
1304 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1305
1306 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1307 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1308 }
1309
1310 /*
1311 * cztty_to_tiocm:
1312 *
1313 * Process the TIOCMGET ioctl.
1314 */
1315 int
1316 cztty_to_tiocm(struct cztty_softc *sc)
1317 {
1318 struct cz_softc *cz = CZTTY_CZ(sc);
1319 u_int32_t rs_status, op_mode;
1320 int ttybits = 0;
1321
1322 cz_wait_pci_doorbell(cz, "cztty");
1323
1324 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1325 op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1326
1327 if (ISSET(rs_status, C_RS_RTS))
1328 SET(ttybits, TIOCM_RTS);
1329 if (ISSET(rs_status, C_RS_CTS))
1330 SET(ttybits, TIOCM_CTS);
1331 if (ISSET(rs_status, C_RS_DCD))
1332 SET(ttybits, TIOCM_CAR);
1333 if (ISSET(rs_status, C_RS_DTR))
1334 SET(ttybits, TIOCM_DTR);
1335 if (ISSET(rs_status, C_RS_RI))
1336 SET(ttybits, TIOCM_RNG);
1337 if (ISSET(rs_status, C_RS_DSR))
1338 SET(ttybits, TIOCM_DSR);
1339
1340 if (ISSET(op_mode, C_CH_ENABLE))
1341 SET(ttybits, TIOCM_LE);
1342
1343 return (ttybits);
1344 }
1345
1346 /*
1347 * czttyparam:
1348 *
1349 * Set Cyclades-Z serial port parameters from termios.
1350 *
1351 * XXX Should just copy the whole termios after making
1352 * XXX sure all the changes could be done.
1353 */
1354 int
1355 czttyparam(struct tty *tp, struct termios *t)
1356 {
1357 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1358 struct cz_softc *cz = CZTTY_CZ(sc);
1359 u_int32_t rs_status;
1360 int ospeed, cflag;
1361
1362 ospeed = t->c_ospeed;
1363 cflag = t->c_cflag;
1364
1365 /* Check requested parameters. */
1366 if (ospeed < 0)
1367 return (EINVAL);
1368 if (t->c_ispeed && t->c_ispeed != ospeed)
1369 return (EINVAL);
1370
1371 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1372 SET(cflag, CLOCAL);
1373 CLR(cflag, HUPCL);
1374 }
1375
1376 /*
1377 * If there were no changes, don't do anything. This avoids dropping
1378 * input and improves performance when all we did was frob things like
1379 * VMIN and VTIME.
1380 */
1381 if (tp->t_ospeed == ospeed &&
1382 tp->t_cflag == cflag)
1383 return (0);
1384
1385 /* Data bits. */
1386 sc->sc_chanctl_comm_data_l = 0;
1387 switch (t->c_cflag & CSIZE) {
1388 case CS5:
1389 sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1390 break;
1391
1392 case CS6:
1393 sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1394 break;
1395
1396 case CS7:
1397 sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1398 break;
1399
1400 case CS8:
1401 sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1402 break;
1403 }
1404
1405 /* Stop bits. */
1406 if (t->c_cflag & CSTOPB) {
1407 if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1408 sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1409 else
1410 sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1411 } else
1412 sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1413
1414 /* Parity. */
1415 if (t->c_cflag & PARENB) {
1416 if (t->c_cflag & PARODD)
1417 sc->sc_chanctl_comm_parity = C_PR_ODD;
1418 else
1419 sc->sc_chanctl_comm_parity = C_PR_EVEN;
1420 } else
1421 sc->sc_chanctl_comm_parity = C_PR_NONE;
1422
1423 /*
1424 * Initialize flow control pins depending on the current flow control
1425 * mode.
1426 */
1427 if (ISSET(t->c_cflag, CRTSCTS)) {
1428 sc->sc_rs_control_dtr = C_RS_DTR;
1429 sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1430 } else if (ISSET(t->c_cflag, MDMBUF)) {
1431 sc->sc_rs_control_dtr = 0;
1432 sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1433 } else {
1434 /*
1435 * If no flow control, then always set RTS. This will make
1436 * the other side happy if it mistakenly thinks we're doing
1437 * RTS/CTS flow control.
1438 */
1439 sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1440 sc->sc_chanctl_hw_flow = 0;
1441 if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1442 SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1443 else
1444 CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1445 }
1446
1447 /* Baud rate. */
1448 sc->sc_chanctl_comm_baud = ospeed;
1449
1450 /* Copy to tty. */
1451 tp->t_ispeed = 0;
1452 tp->t_ospeed = t->c_ospeed;
1453 tp->t_cflag = t->c_cflag;
1454
1455 /*
1456 * Now load the channel control structure.
1457 */
1458
1459 cz_wait_pci_doorbell(cz, "czparam");
1460
1461 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1462 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1463 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1464 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1465 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1466
1467 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1468 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1469
1470 cz_wait_pci_doorbell(cz, "czparam");
1471
1472 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1473 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1474
1475 cz_wait_pci_doorbell(cz, "czparam");
1476
1477 /*
1478 * Update the tty layer's idea of the carrier bit, in case we changed
1479 * CLOCAL. We don't hang up here; we only do that by explicit
1480 * request.
1481 */
1482 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1483 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1484
1485 return (0);
1486 }
1487
1488 /*
1489 * czttystart:
1490 *
1491 * Start or restart transmission.
1492 */
1493 void
1494 czttystart(struct tty *tp)
1495 {
1496 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1497 int s;
1498
1499 s = spltty();
1500 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1501 goto out;
1502
1503 if (tp->t_outq.c_cc <= tp->t_lowat) {
1504 if (ISSET(tp->t_state, TS_ASLEEP)) {
1505 CLR(tp->t_state, TS_ASLEEP);
1506 wakeup(&tp->t_outq);
1507 }
1508 selwakeup(&tp->t_wsel);
1509 if (tp->t_outq.c_cc == 0)
1510 goto out;
1511 }
1512
1513 cztty_transmit(sc, tp);
1514 out:
1515 splx(s);
1516 }
1517
1518 /*
1519 * czttystop:
1520 *
1521 * Stop output, e.g., for ^S or output flush.
1522 */
1523 void
1524 czttystop(struct tty *tp, int flag)
1525 {
1526
1527 /*
1528 * XXX We don't do anything here, yet. Mostly, I don't know
1529 * XXX exactly how this should be implemented on this device.
1530 * XXX We've given a big chunk of data to the MIPS already,
1531 * XXX and I don't know how we request the MIPS to stop sending
1532 * XXX the data. So, punt for now. --thorpej
1533 */
1534 }
1535
1536 /*
1537 * cztty_diag:
1538 *
1539 * Issue a scheduled diagnostic message.
1540 */
1541 void
1542 cztty_diag(void *arg)
1543 {
1544 struct cztty_softc *sc = arg;
1545 struct cz_softc *cz = CZTTY_CZ(sc);
1546 u_int overflows, parity_errors, framing_errors;
1547 int s;
1548
1549 s = spltty();
1550
1551 overflows = sc->sc_overflows;
1552 sc->sc_overflows = 0;
1553
1554 parity_errors = sc->sc_parity_errors;
1555 sc->sc_parity_errors = 0;
1556
1557 framing_errors = sc->sc_framing_errors;
1558 sc->sc_framing_errors = 0;
1559
1560 sc->sc_errors = 0;
1561
1562 splx(s);
1563
1564 log(LOG_WARNING,
1565 "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1566 cz->cz_dev.dv_xname, sc->sc_channel,
1567 overflows, overflows == 1 ? "" : "s",
1568 parity_errors,
1569 framing_errors, framing_errors == 1 ? "" : "s");
1570 }
1571
1572 /*
1573 * tx and rx ring buffer size macros:
1574 *
1575 * The transmitter and receiver both use ring buffers. For each one, there
1576 * is a get (consumer) and a put (producer) offset. The get value is the
1577 * next byte to be read from the ring, and the put is the next one to be
1578 * put into the ring. get == put means the ring is empty.
1579 *
1580 * For each ring, the firmware controls one of (get, put) and this driver
1581 * controls the other. For transmission, this driver updates put to point
1582 * past the valid data, and the firmware moves get as bytes are sent. Likewise
1583 * for receive, the driver controls put, and this driver controls get.
1584 */
1585 #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1586 #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1587
1588 /*
1589 * cztty_transmit()
1590 *
1591 * Look at the tty for this port and start sending.
1592 */
1593 int
1594 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1595 {
1596 struct cz_softc *cz = CZTTY_CZ(sc);
1597 u_int move, get, put, size, address;
1598 #ifdef HOSTRAMCODE
1599 int error, done = 0;
1600 #else
1601 int done = 0;
1602 #endif
1603
1604 size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1605 get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1606 put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1607 address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1608
1609 while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1610 #ifdef HOSTRAMCODE
1611 if (0) {
1612 move = min(tp->t_outq.c_cc, move);
1613 error = q_to_b(&tp->t_outq, 0, move);
1614 if (error != move) {
1615 printf("%s: channel %d: error moving to "
1616 "transmit buf\n", cz->cz_dev.dv_xname,
1617 sc->sc_channel);
1618 move = error;
1619 }
1620 } else {
1621 #endif
1622 move = min(ndqb(&tp->t_outq, 0), move);
1623 bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1624 address + put, tp->t_outq.c_cf, move);
1625 ndflush(&tp->t_outq, move);
1626 #ifdef HOSTRAMCODE
1627 }
1628 #endif
1629
1630 put = ((put + move) % size);
1631 done = 1;
1632 }
1633 if (done) {
1634 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1635 }
1636 return (done);
1637 }
1638
1639 int
1640 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1641 {
1642 struct cz_softc *cz = CZTTY_CZ(sc);
1643 u_int get, put, size, address;
1644 int done = 0, ch;
1645
1646 size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1647 get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1648 put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1649 address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1650
1651 while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1652 #ifdef HOSTRAMCODE
1653 if (hostram)
1654 ch = ((char *)fifoaddr)[get];
1655 } else {
1656 #endif
1657 ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1658 address + get);
1659 #ifdef HOSTRAMCODE
1660 }
1661 #endif
1662 (*tp->t_linesw->l_rint)(ch, tp);
1663 get = (get + 1) % size;
1664 done = 1;
1665 }
1666 if (done) {
1667 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1668 }
1669 return (done);
1670 }
1671