cz.c revision 1.6 1 /* $NetBSD: cz.c,v 1.6 2000/05/24 22:26:35 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Zembu Labs, Inc.
5 * All rights reserved.
6 *
7 * Authors: Jason R. Thorpe <thorpej (at) zembu.com>
8 * Bill Studenmund <wrstuden (at) zembu.com>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Zembu Labs, Inc.
21 * 4. Neither the name of Zembu Labs nor the names of its employees may
22 * be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39 *
40 * Some notes:
41 *
42 * - The Cyclades-Z has fully automatic hardware (and software!)
43 * flow control. We only utilize RTS/CTS flow control here,
44 * and it is implemented in a very simplistic manner. This
45 * may be an area of future work.
46 *
47 * - The PLX can map the either the board's RAM or host RAM
48 * into the MIPS's memory window. This would enable us to
49 * use less expensive (for us) memory reads/writes to host
50 * RAM, rather than time-consuming reads/writes to PCI
51 * memory space. However, the PLX can only map a 0-128M
52 * window, so we would have to ensure that the DMA address
53 * of the host RAM fits there. This is kind of a pain,
54 * so we just don't bother right now.
55 *
56 * - In a perfect world, we would use the autoconfiguration
57 * mechanism to attach the TTYs that we find. However,
58 * that leads to somewhat icky looking autoconfiguration
59 * messages (one for every TTY, up to 64 per board!). So
60 * we don't do it that way, but assign minors as if there
61 * were the max of 64 ports per board.
62 *
63 * - We don't bother with PPS support here. There are so many
64 * ports, each with a large amount of buffer space, that the
65 * normal mode of operation is to poll the boards regularly
66 * (generally, every 20ms or so). This makes this driver
67 * unsuitable for PPS, as the latency will be generally too
68 * high.
69 */
70 /*
71 * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72 * for FreeBSD 3.2.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/tty.h>
81 #include <sys/conf.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/fcntl.h>
85 #include <sys/syslog.h>
86
87 #include <sys/callout.h>
88
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/czreg.h>
93
94 #include <dev/pci/plx9060reg.h>
95 #include <dev/pci/plx9060var.h>
96
97 #include <dev/microcode/cyclades-z/cyzfirm.h>
98
99 #define CZ_DRIVER_VERSION 0x20000411
100
101 #define CZ_POLL_MS 20
102
103 /* These are the interrupts we always use. */
104 #define CZ_INTERRUPTS \
105 (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
106 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
107 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
108 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
109
110 /*
111 * cztty_softc:
112 *
113 * Per-channel (TTY) state.
114 */
115 struct cztty_softc {
116 struct cz_softc *sc_parent;
117 struct tty *sc_tty;
118
119 struct callout sc_diag_ch;
120
121 int sc_channel; /* Also used to flag unattached chan */
122 #define CZTTY_CHANNEL_DEAD -1
123
124 bus_space_tag_t sc_chan_st; /* channel space tag */
125 bus_space_handle_t sc_chan_sh; /* channel space handle */
126 bus_space_handle_t sc_buf_sh; /* buffer space handle */
127
128 u_int sc_overflows,
129 sc_parity_errors,
130 sc_framing_errors,
131 sc_errors;
132
133 int sc_swflags;
134
135 u_int32_t sc_rs_control_dtr,
136 sc_chanctl_hw_flow,
137 sc_chanctl_comm_baud,
138 sc_chanctl_rs_control,
139 sc_chanctl_comm_data_l,
140 sc_chanctl_comm_parity;
141 };
142
143 /*
144 * cz_softc:
145 *
146 * Per-board state.
147 */
148 struct cz_softc {
149 struct device cz_dev; /* generic device info */
150 struct plx9060_config cz_plx; /* PLX 9060 config info */
151 bus_space_tag_t cz_win_st; /* window space tag */
152 bus_space_handle_t cz_win_sh; /* window space handle */
153 struct callout cz_callout; /* callout for polling-mode */
154
155 void *cz_ih; /* interrupt handle */
156
157 u_int32_t cz_mailbox0; /* our MAILBOX0 value */
158 int cz_nchannels; /* number of channels */
159 int cz_nopenchan; /* number of open channels */
160 struct cztty_softc *cz_ports; /* our array of ports */
161
162 bus_addr_t cz_fwctl; /* offset of firmware control */
163 };
164
165 int cz_match(struct device *, struct cfdata *, void *);
166 void cz_attach(struct device *, struct device *, void *);
167 int cz_wait_pci_doorbell(struct cz_softc *, const char *);
168
169 struct cfattach cz_ca = {
170 sizeof(struct cz_softc), cz_match, cz_attach
171 };
172
173 void cz_reset_board(struct cz_softc *);
174 int cz_load_firmware(struct cz_softc *);
175
176 int cz_intr(void *);
177 void cz_poll(void *);
178 int cztty_transmit(struct cztty_softc *, struct tty *);
179 int cztty_receive(struct cztty_softc *, struct tty *);
180
181 int cztty_findmajor(void);
182 int cztty_major;
183 int cz_timeout_ticks;
184
185 cdev_decl(cztty);
186
187 void czttystart(struct tty *tp);
188 int czttyparam(struct tty *tp, struct termios *t);
189 void cztty_shutdown(struct cztty_softc *sc);
190 void cztty_modem(struct cztty_softc *sc, int onoff);
191 void cztty_break(struct cztty_softc *sc, int onoff);
192 void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
193 int cztty_to_tiocm(struct cztty_softc *sc);
194 void cztty_diag(void *arg);
195
196 extern struct cfdriver cz_cd;
197
198 /* Macros to clear/set/test flags. */
199 #define SET(t, f) (t) |= (f)
200 #define CLR(t, f) (t) &= ~(f)
201 #define ISSET(t, f) ((t) & (f))
202
203 /*
204 * Macros to read and write the PLX.
205 */
206 #define CZ_PLX_READ(cz, reg) \
207 bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
208 #define CZ_PLX_WRITE(cz, reg, val) \
209 bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
210 (reg), (val))
211
212 /*
213 * Macros to read and write the FPGA. We must already be in the FPGA
214 * window for this.
215 */
216 #define CZ_FPGA_READ(cz, reg) \
217 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
218 #define CZ_FPGA_WRITE(cz, reg, val) \
219 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
220
221 /*
222 * Macros to read and write the firmware control structures in board RAM.
223 */
224 #define CZ_FWCTL_READ(cz, off) \
225 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
226 (cz)->cz_fwctl + (off))
227
228 #define CZ_FWCTL_WRITE(cz, off, val) \
229 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
230 (cz)->cz_fwctl + (off), (val))
231
232 /*
233 * Convenience macros for cztty routines. PLX window MUST be to RAM.
234 */
235 #define CZTTY_CHAN_READ(sc, off) \
236 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
237
238 #define CZTTY_CHAN_WRITE(sc, off, val) \
239 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
240 (off), (val))
241
242 #define CZTTY_BUF_READ(sc, off) \
243 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
244
245 #define CZTTY_BUF_WRITE(sc, off, val) \
246 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
247 (off), (val))
248
249 /*
250 * Convenience macros.
251 */
252 #define CZ_WIN_RAM(cz) \
253 do { \
254 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
255 delay(100); \
256 } while (0)
257
258 #define CZ_WIN_FPGA(cz) \
259 do { \
260 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
261 delay(100); \
262 } while (0)
263
264 /*****************************************************************************
265 * Cyclades-Z controller code starts here...
266 *****************************************************************************/
267
268 /*
269 * cz_match:
270 *
271 * Determine if the given PCI device is a Cyclades-Z board.
272 */
273 int
274 cz_match(struct device *parent,
275 struct cfdata *match,
276 void *aux)
277 {
278 struct pci_attach_args *pa = aux;
279
280 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
281 switch (PCI_PRODUCT(pa->pa_id)) {
282 case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
283 return (1);
284 }
285 }
286
287 return (0);
288 }
289
290 /*
291 * cz_attach:
292 *
293 * A Cyclades-Z board was found; attach it.
294 */
295 void
296 cz_attach(struct device *parent,
297 struct device *self,
298 void *aux)
299 {
300 struct cz_softc *cz = (void *) self;
301 struct pci_attach_args *pa = aux;
302 pci_intr_handle_t ih;
303 const char *intrstr = NULL;
304 struct cztty_softc *sc;
305 struct tty *tp;
306 int i;
307
308 printf(": Cyclades-Z multiport serial\n");
309
310 cz->cz_plx.plx_pc = pa->pa_pc;
311 cz->cz_plx.plx_tag = pa->pa_tag;
312
313 if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
314 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
315 &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
316 printf("%s: unable to map PLX registers\n",
317 cz->cz_dev.dv_xname);
318 return;
319 }
320 if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
321 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
322 &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
323 printf("%s: unable to map device window\n",
324 cz->cz_dev.dv_xname);
325 return;
326 }
327
328 cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
329 cz->cz_nopenchan = 0;
330
331 /*
332 * Make sure that the board is completely stopped.
333 */
334 CZ_WIN_FPGA(cz);
335 CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
336
337 /*
338 * Load the board's firmware.
339 */
340 if (cz_load_firmware(cz) != 0)
341 return;
342
343 /*
344 * Now that we're ready to roll, map and establish the interrupt
345 * handler.
346 */
347 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
348 pa->pa_intrline, &ih) != 0) {
349 /*
350 * The common case is for Cyclades-Z boards to run
351 * in polling mode, and thus not have an interrupt
352 * mapped for them. Don't bother reporting that
353 * the interrupt is not mappable, since this isn't
354 * really an error.
355 */
356 cz->cz_ih = NULL;
357 goto polling_mode;
358 } else {
359 intrstr = pci_intr_string(pa->pa_pc, ih);
360 cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
361 cz_intr, cz);
362 }
363 if (cz->cz_ih == NULL) {
364 printf("%s: unable to establish interrupt",
365 cz->cz_dev.dv_xname);
366 if (intrstr != NULL)
367 printf(" at %s", intrstr);
368 printf("\n");
369 /* We will fall-back on polling mode. */
370 } else
371 printf("%s: interrupting at %s\n",
372 cz->cz_dev.dv_xname, intrstr);
373
374 polling_mode:
375 if (cz->cz_ih == NULL) {
376 callout_init(&cz->cz_callout);
377 if (cz_timeout_ticks == 0)
378 cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
379 printf("%s: polling mode, %d ms interval (%d tick%s)\n",
380 cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
381 cz_timeout_ticks == 1 ? "" : "s");
382 }
383
384 if (cztty_major == 0)
385 cztty_major = cztty_findmajor();
386 /*
387 * Allocate sufficient pointers for the children and
388 * attach them. Set all ports to a reasonable initial
389 * configuration while we're at it:
390 *
391 * disabled
392 * 8N1
393 * default baud rate
394 * hardware flow control.
395 */
396 CZ_WIN_RAM(cz);
397 cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
398 M_DEVBUF, M_WAITOK);
399 memset(cz->cz_ports, 0,
400 sizeof(struct cztty_softc) * cz->cz_nchannels);
401
402 for (i = 0; i < cz->cz_nchannels; i++) {
403 sc = &cz->cz_ports[i];
404
405 sc->sc_channel = i;
406 sc->sc_chan_st = cz->cz_win_st;
407 sc->sc_parent = cz;
408
409 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
410 cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
411 ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
412 printf("%s: unable to subregion channel %d control\n",
413 cz->cz_dev.dv_xname, i);
414 sc->sc_channel = CZTTY_CHANNEL_DEAD;
415 continue;
416 }
417 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
418 cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
419 ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
420 printf("%s: unable to subregion channel %d buffer\n",
421 cz->cz_dev.dv_xname, i);
422 sc->sc_channel = CZTTY_CHANNEL_DEAD;
423 continue;
424 }
425
426 callout_init(&sc->sc_diag_ch);
427
428 tp = ttymalloc();
429 tp->t_dev = makedev(cztty_major,
430 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i);
431 tp->t_oproc = czttystart;
432 tp->t_param = czttyparam;
433 tty_attach(tp);
434
435 sc->sc_tty = tp;
436
437 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
438 CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
439 CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
440 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
441 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
442 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
443 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
444 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
445 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
446 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
447 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
448 }
449 }
450
451 /*
452 * cz_reset_board:
453 *
454 * Reset the board via the PLX.
455 */
456 void
457 cz_reset_board(struct cz_softc *cz)
458 {
459 u_int32_t reg;
460
461 reg = CZ_PLX_READ(cz, PLX_CONTROL);
462 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
463 delay(1000);
464
465 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
466 delay(1000);
467
468 /* Now reload the PLX from its EEPROM. */
469 reg = CZ_PLX_READ(cz, PLX_CONTROL);
470 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
471 delay(1000);
472 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
473 }
474
475 /*
476 * cz_load_firmware:
477 *
478 * Load the ZFIRM firmware into the board's RAM and start it
479 * running.
480 */
481 int
482 cz_load_firmware(struct cz_softc *cz)
483 {
484 struct zfirm_header *zfh;
485 struct zfirm_config *zfc;
486 struct zfirm_block *zfb, *zblocks;
487 const u_int8_t *cp;
488 const char *board;
489 u_int32_t fid;
490 int i, j, nconfigs, nblocks, nbytes;
491
492 zfh = (struct zfirm_header *) cycladesz_firmware;
493
494 /* Find the config header. */
495 if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
496 printf("%s: bad ZFIRM config offset: 0x%x\n",
497 cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
498 return (EIO);
499 }
500 zfc = (struct zfirm_config *)(cycladesz_firmware +
501 le32toh(zfh->zfh_configoff));
502 nconfigs = le32toh(zfh->zfh_nconfig);
503
504 /* Locate the correct configuration for our board. */
505 for (i = 0; i < nconfigs; i++, zfc++) {
506 if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
507 le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
508 break;
509 }
510 if (i == nconfigs) {
511 printf("%s: unable to locate config header\n",
512 cz->cz_dev.dv_xname);
513 return (EIO);
514 }
515
516 nblocks = le32toh(zfc->zfc_nblocks);
517 zblocks = (struct zfirm_block *)(cycladesz_firmware +
518 le32toh(zfh->zfh_blockoff));
519
520 /*
521 * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
522 * necessary.
523 */
524 if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
525 #if 0
526 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
527 #endif
528 ) {
529 #ifdef CZ_DEBUG
530 printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
531 #endif
532 CZ_WIN_FPGA(cz);
533 for (i = 0; i < nblocks; i++) {
534 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
535 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
536 if (zfb->zfb_type == ZFB_TYPE_FPGA) {
537 nbytes = le32toh(zfb->zfb_size);
538 cp = &cycladesz_firmware[
539 le32toh(zfb->zfb_fileoff)];
540 for (j = 0; j < nbytes; j++, cp++) {
541 bus_space_write_1(cz->cz_win_st,
542 cz->cz_win_sh, 0, *cp);
543 /* FPGA needs 30-100us to settle. */
544 delay(10);
545 }
546 }
547 }
548 #ifdef CZ_DEBUG
549 printf("done\n");
550 #endif
551 }
552
553 /* Now load the firmware. */
554 CZ_WIN_RAM(cz);
555
556 for (i = 0; i < nblocks; i++) {
557 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
558 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
559 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
560 const u_int32_t *lp;
561 u_int32_t ro = le32toh(zfb->zfb_ramoff);
562 nbytes = le32toh(zfb->zfb_size);
563 lp = (const u_int32_t *)
564 &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
565 for (j = 0; j < nbytes; j += 4, lp++) {
566 bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
567 ro + j, *lp);
568 delay(10);
569 }
570 }
571 }
572
573 /* Now restart the MIPS. */
574 CZ_WIN_FPGA(cz);
575 CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
576
577 /* Wait for the MIPS to start, then report the results. */
578 CZ_WIN_RAM(cz);
579
580 #ifdef CZ_DEBUG
581 printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
582 #endif
583 for (i = 0; i < 100; i++) {
584 fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
585 ZFIRM_SIG_OFF);
586 if (fid == ZFIRM_SIG) {
587 /* MIPS has booted. */
588 break;
589 } else if (fid == ZFIRM_HLT) {
590 /*
591 * The MIPS has halted, usually due to a power
592 * shortage on the expansion module.
593 */
594 printf("%s: MIPS halted; possible power supply "
595 "problem\n", cz->cz_dev.dv_xname);
596 return (EIO);
597 } else {
598 #ifdef CZ_DEBUG
599 if ((i % 8) == 0)
600 printf(".");
601 #endif
602 delay(250000);
603 }
604 }
605 #ifdef CZ_DEBUG
606 printf("\n");
607 #endif
608 if (i == 100) {
609 CZ_WIN_FPGA(cz);
610 printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
611 cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
612 printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
613 cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
614 CZ_FPGA_READ(cz, FPGA_VERSION));
615 return (EIO);
616 }
617
618 /*
619 * Locate the firmware control structures.
620 */
621 cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
622 ZFIRM_CTRLADDR_OFF);
623 #ifdef CZ_DEBUG
624 printf("%s: FWCTL structure at offset 0x%08lx\n",
625 cz->cz_dev.dv_xname, cz->cz_fwctl);
626 #endif
627
628 CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
629 CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
630
631 cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
632
633 switch (cz->cz_mailbox0) {
634 case MAILBOX0_8Zo_V1:
635 board = "Cyclades-8Zo ver. 1";
636 break;
637
638 case MAILBOX0_8Zo_V2:
639 board = "Cyclades-8Zo ver. 2";
640 break;
641
642 case MAILBOX0_Ze_V1:
643 board = "Cyclades-Ze";
644 break;
645
646 default:
647 board = "unknown Cyclades Z-series";
648 break;
649 }
650
651 fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
652 printf("%s: %s, %d channels (ttyCZ%04d..ttyCZ%04d), "
653 "firmware %x.%x.%x\n",
654 cz->cz_dev.dv_xname, board, cz->cz_nchannels,
655 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS),
656 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + (cz->cz_nchannels - 1),
657 (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
658
659 return (0);
660 }
661
662 /*
663 * cz_poll:
664 *
665 * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
666 * ms.
667 */
668 void
669 cz_poll(void *arg)
670 {
671 int s = spltty();
672 struct cz_softc *cz = arg;
673
674 cz_intr(cz);
675 callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
676
677 splx(s);
678 }
679
680 /*
681 * cz_intr:
682 *
683 * Interrupt service routine.
684 *
685 * We either are receiving an interrupt directly from the board, or we are
686 * in polling mode and it's time to poll.
687 */
688 int
689 cz_intr(void *arg)
690 {
691 int rval = 0;
692 u_int command, channel, param;
693 struct cz_softc *cz = arg;
694 struct cztty_softc *sc;
695 struct tty *tp;
696
697 while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
698 rval = 1;
699 channel = CZ_FWCTL_READ(cz, BRDCTL_HCMD_CHANNEL);
700 param = CZ_FWCTL_READ(cz, BRDCTL_HCMD_PARAM);
701
702 /* now clear this interrupt, posslibly enabling another */
703 CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
704
705 sc = &cz->cz_ports[channel];
706
707 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
708 break;
709
710 tp = sc->sc_tty;
711
712 switch (command) {
713 case C_CM_TXFEMPTY: /* transmit cases */
714 case C_CM_TXBEMPTY:
715 case C_CM_TXLOWWM:
716 case C_CM_INTBACK:
717 if (!ISSET(tp->t_state, TS_ISOPEN)) {
718 #ifdef CZ_DEBUG
719 printf("%s: tx intr on closed channel %d\n",
720 cz->cz_dev.dv_xname, channel);
721 #endif
722 break;
723 }
724
725 if (cztty_transmit(sc, tp)) {
726 /*
727 * Do wakeup stuff here.
728 */
729 ttwakeup(tp);
730 wakeup(tp);
731 }
732 break;
733
734 case C_CM_RXNNDT: /* receive cases */
735 case C_CM_RXHIWM:
736 case C_CM_INTBACK2: /* from restart ?? */
737 #if 0
738 case C_CM_ICHAR:
739 #endif
740 if (!ISSET(tp->t_state, TS_ISOPEN)) {
741 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
742 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
743 break;
744 }
745
746 if (cztty_receive(sc, tp)) {
747 /*
748 * Do wakeup stuff here.
749 */
750 ttwakeup(tp);
751 wakeup(tp);
752 }
753 break;
754
755 case C_CM_MDCD:
756 if (!ISSET(tp->t_state, TS_ISOPEN))
757 break;
758
759 (void) (*linesw[tp->t_line].l_modem)(tp,
760 ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
761 CHNCTL_RS_STATUS)));
762 break;
763
764 case C_CM_MDSR:
765 case C_CM_MRI:
766 case C_CM_MCTS:
767 case C_CM_MRTS:
768 break;
769
770 case C_CM_IOCTLW:
771 break;
772
773 case C_CM_PR_ERROR:
774 sc->sc_parity_errors++;
775 goto error_common;
776
777 case C_CM_FR_ERROR:
778 sc->sc_framing_errors++;
779 goto error_common;
780
781 case C_CM_OVR_ERROR:
782 sc->sc_overflows++;
783 error_common:
784 if (sc->sc_errors++ == 0)
785 callout_reset(&sc->sc_diag_ch, 60 * hz,
786 cztty_diag, sc);
787 break;
788
789 case C_CM_RXBRK:
790 if (!ISSET(tp->t_state, TS_ISOPEN))
791 break;
792
793 /*
794 * A break is a \000 character with TTY_FE error
795 * flags set. So TTY_FE by itself works.
796 */
797 (*linesw[tp->t_line].l_rint)(TTY_FE, tp);
798 ttwakeup(tp);
799 wakeup(tp);
800 break;
801
802 default:
803 #ifdef CZ_DEBUG
804 printf("%s: channel %d: Unknown interrupt 0x%x\n",
805 cz->cz_dev.dv_xname, sc->sc_channel, command);
806 #endif
807 break;
808 }
809 }
810
811 return (rval);
812 }
813
814 /*
815 * cz_wait_pci_doorbell:
816 *
817 * Wait for the pci doorbell to be clear - wait for pending
818 * activity to drain.
819 */
820 int
821 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
822 {
823 int error;
824
825 while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
826 error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
827 if ((error != 0) && (error != EWOULDBLOCK))
828 return (error);
829 }
830 return (0);
831 }
832
833 /*****************************************************************************
834 * Cyclades-Z TTY code starts here...
835 *****************************************************************************/
836
837 #define CZTTYCHAN_MASK 0x0003f
838 #define CZTTYBOARD_MASK (0x7ffff & ~CZTTYCHAN_MASK)
839 #define CZTTYBOARD_SHIFT 6
840 #define CZTTYDIALOUT_MASK 0x80000
841
842 #define CZTTY_CHAN(dev) (minor((dev)) & CZTTYCHAN_MASK)
843 #define CZTTY_BOARD(dev) ((minor((dev)) & CZTTYBOARD_MASK) >> \
844 CZTTYBOARD_SHIFT)
845 #define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
846 #define CZTTY_CZ(sc) ((sc)->sc_parent)
847
848 #define CZ_SOFTC(dev) \
849 ((struct cz_softc *)(CZTTY_BOARD(dev) < cz_cd.cd_ndevs ? \
850 cz_cd.cd_devs[CZTTY_BOARD(dev)] : NULL))
851
852 #define CZTTY_SOFTC(dev) \
853 ((CZ_SOFTC(dev) != NULL && \
854 CZTTY_CHAN(dev) < CZ_SOFTC(dev)->cz_nchannels) ? \
855 &CZ_SOFTC(dev)->cz_ports[CZTTY_CHAN(dev)] : NULL)
856
857 int
858 cztty_findmajor(void)
859 {
860 int maj;
861
862 for (maj = 0; maj < nchrdev; maj++) {
863 if (cdevsw[maj].d_open == czttyopen)
864 break;
865 }
866
867 return (maj == nchrdev) ? 0 : maj;
868 }
869
870 /*
871 * czttytty:
872 *
873 * Return a pointer to our tty.
874 */
875 struct tty *
876 czttytty(dev_t dev)
877 {
878 struct cztty_softc *sc = CZTTY_SOFTC(dev);
879
880 #ifdef DIAGNOSTIC
881 if (sc == NULL)
882 panic("czttytty");
883 #endif
884
885 return (sc->sc_tty);
886 }
887
888 /*
889 * cztty_shutdown:
890 *
891 * Shut down a port.
892 */
893 void
894 cztty_shutdown(struct cztty_softc *sc)
895 {
896 struct cz_softc *cz = CZTTY_CZ(sc);
897 struct tty *tp = sc->sc_tty;
898 int s;
899
900 s = spltty();
901
902 /* Clear any break condition set with TIOCSBRK. */
903 cztty_break(sc, 0);
904
905 /*
906 * Hang up if necessary. Wait a bit, so the other side has time to
907 * notice even if we immediately open the port again.
908 */
909 if (ISSET(tp->t_cflag, HUPCL)) {
910 cztty_modem(sc, 0);
911 (void) tsleep(tp, TTIPRI, ttclos, hz);
912 }
913
914 /* Disable the channel. */
915 cz_wait_pci_doorbell(cz, "czdis");
916 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
917 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
918 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
919
920 if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
921 #ifdef CZ_DEBUG
922 printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
923 #endif
924 callout_stop(&cz->cz_callout);
925 }
926
927 splx(s);
928 }
929
930 /*
931 * czttyopen:
932 *
933 * Open a Cyclades-Z serial port.
934 */
935 int
936 czttyopen(dev_t dev, int flags, int mode, struct proc *p)
937 {
938 struct cztty_softc *sc = CZTTY_SOFTC(dev);
939 struct cz_softc *cz;
940 struct tty *tp;
941 int s, error;
942
943 if (sc == NULL)
944 return (ENXIO);
945
946 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
947 return (ENXIO);
948
949 cz = CZTTY_CZ(sc);
950 tp = sc->sc_tty;
951
952 if (ISSET(tp->t_state, TS_ISOPEN) &&
953 ISSET(tp->t_state, TS_XCLUDE) &&
954 p->p_ucred->cr_uid != 0)
955 return (EBUSY);
956
957 s = spltty();
958
959 /*
960 * Do the following iff this is a first open.
961 */
962 if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
963 struct termios t;
964
965 tp->t_dev = dev;
966
967 /* If we're turning things on, enable interrupts */
968 if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
969 #ifdef CZ_DEBUG
970 printf("%s: Enabling polling.\n",
971 cz->cz_dev.dv_xname);
972 #endif
973 callout_reset(&cz->cz_callout, cz_timeout_ticks,
974 cz_poll, cz);
975 }
976
977 /*
978 * Enable the channel. Don't actually ring the
979 * doorbell here; czttyparam() will do it for us.
980 */
981 cz_wait_pci_doorbell(cz, "czopen");
982
983 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
984
985 /*
986 * Initialize the termios status to the defaults. Add in the
987 * sticky bits from TIOCSFLAGS.
988 */
989 t.c_ispeed = 0;
990 t.c_ospeed = TTYDEF_SPEED;
991 t.c_cflag = TTYDEF_CFLAG;
992 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
993 SET(t.c_cflag, CLOCAL);
994 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
995 SET(t.c_cflag, CRTSCTS);
996
997 /*
998 * Reset the input and output rings. Do this before
999 * we call czttyparam(), as that function enables
1000 * the channel.
1001 */
1002 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1003 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1004 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1005 CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1006
1007 /* Make sure czttyparam() will see changes. */
1008 tp->t_ospeed = 0;
1009 (void) czttyparam(tp, &t);
1010 tp->t_iflag = TTYDEF_IFLAG;
1011 tp->t_oflag = TTYDEF_OFLAG;
1012 tp->t_lflag = TTYDEF_LFLAG;
1013 ttychars(tp);
1014 ttsetwater(tp);
1015
1016 /*
1017 * Turn on DTR. We must always do this, even if carrier is not
1018 * present, because otherwise we'd have to use TIOCSDTR
1019 * immediately after setting CLOCAL, which applications do not
1020 * expect. We always assert DTR while the device is open
1021 * unless explicitly requested to deassert it.
1022 */
1023 cztty_modem(sc, 1);
1024 }
1025
1026 splx(s);
1027
1028 error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
1029 if (error)
1030 goto bad;
1031
1032 error = (*linesw[tp->t_line].l_open)(dev, tp);
1033 if (error)
1034 goto bad;
1035
1036 return (0);
1037
1038 bad:
1039 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1040 /*
1041 * We failed to open the device, and nobody else had it opened.
1042 * Clean up the state as appropriate.
1043 */
1044 cztty_shutdown(sc);
1045 }
1046
1047 return (error);
1048 }
1049
1050 /*
1051 * czttyclose:
1052 *
1053 * Close a Cyclades-Z serial port.
1054 */
1055 int
1056 czttyclose(dev_t dev, int flags, int mode, struct proc *p)
1057 {
1058 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1059 struct tty *tp = sc->sc_tty;
1060
1061 /* XXX This is for cons.c. */
1062 if (!ISSET(tp->t_state, TS_ISOPEN))
1063 return (0);
1064
1065 (*linesw[tp->t_line].l_close)(tp, flags);
1066 ttyclose(tp);
1067
1068 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1069 /*
1070 * Although we got a last close, the device may still be in
1071 * use; e.g. if this was the dialout node, and there are still
1072 * processes waiting for carrier on the non-dialout node.
1073 */
1074 cztty_shutdown(sc);
1075 }
1076
1077 return (0);
1078 }
1079
1080 /*
1081 * czttyread:
1082 *
1083 * Read from a Cyclades-Z serial port.
1084 */
1085 int
1086 czttyread(dev_t dev, struct uio *uio, int flags)
1087 {
1088 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1089 struct tty *tp = sc->sc_tty;
1090
1091 return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
1092 }
1093
1094 /*
1095 * czttywrite:
1096 *
1097 * Write to a Cyclades-Z serial port.
1098 */
1099 int
1100 czttywrite(dev_t dev, struct uio *uio, int flags)
1101 {
1102 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1103 struct tty *tp = sc->sc_tty;
1104
1105 return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
1106 }
1107
1108 /*
1109 * czttyioctl:
1110 *
1111 * Perform a control operation on a Cyclades-Z serial port.
1112 */
1113 int
1114 czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1115 {
1116 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1117 struct tty *tp = sc->sc_tty;
1118 int s, error;
1119
1120 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
1121 if (error >= 0)
1122 return (error);
1123
1124 error = ttioctl(tp, cmd, data, flag, p);
1125 if (error >= 0)
1126 return (error);
1127
1128 error = 0;
1129
1130 s = spltty();
1131
1132 switch (cmd) {
1133 case TIOCSBRK:
1134 cztty_break(sc, 1);
1135 break;
1136
1137 case TIOCCBRK:
1138 cztty_break(sc, 0);
1139 break;
1140
1141 case TIOCGFLAGS:
1142 *(int *)data = sc->sc_swflags;
1143 break;
1144
1145 case TIOCSFLAGS:
1146 error = suser(p->p_ucred, &p->p_acflag);
1147 if (error)
1148 break;
1149 sc->sc_swflags = *(int *)data;
1150 break;
1151
1152 case TIOCSDTR:
1153 cztty_modem(sc, 1);
1154 break;
1155
1156 case TIOCCDTR:
1157 cztty_modem(sc, 0);
1158 break;
1159
1160 case TIOCMSET:
1161 case TIOCMBIS:
1162 case TIOCMBIC:
1163 tiocm_to_cztty(sc, cmd, *(int *)data);
1164 break;
1165
1166 case TIOCMGET:
1167 *(int *)data = cztty_to_tiocm(sc);
1168 break;
1169
1170 default:
1171 error = ENOTTY;
1172 break;
1173 }
1174
1175 splx(s);
1176
1177 return (error);
1178 }
1179
1180 /*
1181 * cztty_break:
1182 *
1183 * Set or clear BREAK on a port.
1184 */
1185 void
1186 cztty_break(struct cztty_softc *sc, int onoff)
1187 {
1188 struct cz_softc *cz = CZTTY_CZ(sc);
1189
1190 cz_wait_pci_doorbell(cz, "czbreak");
1191
1192 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1193 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1194 onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1195 }
1196
1197 /*
1198 * cztty_modem:
1199 *
1200 * Set or clear DTR on a port.
1201 */
1202 void
1203 cztty_modem(struct cztty_softc *sc, int onoff)
1204 {
1205 struct cz_softc *cz = CZTTY_CZ(sc);
1206
1207 if (sc->sc_rs_control_dtr == 0)
1208 return;
1209
1210 cz_wait_pci_doorbell(cz, "czmod");
1211
1212 if (onoff)
1213 sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1214 else
1215 sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1216 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1217
1218 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1219 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1220 }
1221
1222 /*
1223 * tiocm_to_cztty:
1224 *
1225 * Process TIOCM* ioctls.
1226 */
1227 void
1228 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1229 {
1230 struct cz_softc *cz = CZTTY_CZ(sc);
1231 u_int32_t czttybits;
1232
1233 czttybits = 0;
1234 if (ISSET(ttybits, TIOCM_DTR))
1235 SET(czttybits, C_RS_DTR);
1236 if (ISSET(ttybits, TIOCM_RTS))
1237 SET(czttybits, C_RS_RTS);
1238
1239 cz_wait_pci_doorbell(cz, "cztiocm");
1240
1241 switch (how) {
1242 case TIOCMBIC:
1243 CLR(sc->sc_chanctl_rs_control, czttybits);
1244 break;
1245
1246 case TIOCMBIS:
1247 SET(sc->sc_chanctl_rs_control, czttybits);
1248 break;
1249
1250 case TIOCMSET:
1251 CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1252 SET(sc->sc_chanctl_rs_control, czttybits);
1253 break;
1254 }
1255
1256 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1257
1258 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1259 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1260 }
1261
1262 /*
1263 * cztty_to_tiocm:
1264 *
1265 * Process the TIOCMGET ioctl.
1266 */
1267 int
1268 cztty_to_tiocm(struct cztty_softc *sc)
1269 {
1270 struct cz_softc *cz = CZTTY_CZ(sc);
1271 u_int32_t rs_status, op_mode;
1272 int ttybits = 0;
1273
1274 cz_wait_pci_doorbell(cz, "cztty");
1275
1276 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1277 op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1278
1279 if (ISSET(rs_status, C_RS_RTS))
1280 SET(ttybits, TIOCM_RTS);
1281 if (ISSET(rs_status, C_RS_CTS))
1282 SET(ttybits, TIOCM_CTS);
1283 if (ISSET(rs_status, C_RS_DCD))
1284 SET(ttybits, TIOCM_CAR);
1285 if (ISSET(rs_status, C_RS_DTR))
1286 SET(ttybits, TIOCM_DTR);
1287 if (ISSET(rs_status, C_RS_RI))
1288 SET(ttybits, TIOCM_RNG);
1289 if (ISSET(rs_status, C_RS_DSR))
1290 SET(ttybits, TIOCM_DSR);
1291
1292 if (ISSET(op_mode, C_CH_ENABLE))
1293 SET(ttybits, TIOCM_LE);
1294
1295 return (ttybits);
1296 }
1297
1298 /*
1299 * czttyparam:
1300 *
1301 * Set Cyclades-Z serial port parameters from termios.
1302 *
1303 * XXX Should just copy the whole termios after making
1304 * XXX sure all the changes could be done.
1305 */
1306 int
1307 czttyparam(struct tty *tp, struct termios *t)
1308 {
1309 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1310 struct cz_softc *cz = CZTTY_CZ(sc);
1311 u_int32_t rs_status;
1312 int ospeed, cflag;
1313
1314 ospeed = t->c_ospeed;
1315 cflag = t->c_cflag;
1316
1317 /* Check requested parameters. */
1318 if (ospeed < 0)
1319 return (EINVAL);
1320 if (t->c_ispeed && t->c_ispeed != ospeed)
1321 return (EINVAL);
1322
1323 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1324 SET(cflag, CLOCAL);
1325 CLR(cflag, HUPCL);
1326 }
1327
1328 /*
1329 * If there were no changes, don't do anything. This avoids dropping
1330 * input and improves performance when all we did was frob things like
1331 * VMIN and VTIME.
1332 */
1333 if (tp->t_ospeed == ospeed &&
1334 tp->t_cflag == cflag)
1335 return (0);
1336
1337 /* Data bits. */
1338 sc->sc_chanctl_comm_data_l = 0;
1339 switch (t->c_cflag & CSIZE) {
1340 case CS5:
1341 sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1342 break;
1343
1344 case CS6:
1345 sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1346 break;
1347
1348 case CS7:
1349 sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1350 break;
1351
1352 case CS8:
1353 sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1354 break;
1355 }
1356
1357 /* Stop bits. */
1358 if (t->c_cflag & CSTOPB) {
1359 if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1360 sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1361 else
1362 sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1363 } else
1364 sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1365
1366 /* Parity. */
1367 if (t->c_cflag & PARENB) {
1368 if (t->c_cflag & PARODD)
1369 sc->sc_chanctl_comm_parity = C_PR_ODD;
1370 else
1371 sc->sc_chanctl_comm_parity = C_PR_EVEN;
1372 } else
1373 sc->sc_chanctl_comm_parity = C_PR_NONE;
1374
1375 /*
1376 * Initialize flow control pins depending on the current flow control
1377 * mode.
1378 */
1379 if (ISSET(t->c_cflag, CRTSCTS)) {
1380 sc->sc_rs_control_dtr = C_RS_DTR;
1381 sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1382 } else if (ISSET(t->c_cflag, MDMBUF)) {
1383 sc->sc_rs_control_dtr = 0;
1384 sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1385 } else {
1386 /*
1387 * If no flow control, then always set RTS. This will make
1388 * the other side happy if it mistakenly thinks we're doing
1389 * RTS/CTS flow control.
1390 */
1391 sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1392 sc->sc_chanctl_hw_flow = 0;
1393 if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1394 SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1395 else
1396 CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1397 }
1398
1399 /* Baud rate. */
1400 sc->sc_chanctl_comm_baud = ospeed;
1401
1402 /* Copy to tty. */
1403 tp->t_ispeed = 0;
1404 tp->t_ospeed = t->c_ospeed;
1405 tp->t_cflag = t->c_cflag;
1406
1407 /*
1408 * Now load the channel control structure.
1409 */
1410
1411 cz_wait_pci_doorbell(cz, "czparam");
1412
1413 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1414 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1415 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1416 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1417 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1418
1419 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1420 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1421
1422 cz_wait_pci_doorbell(cz, "czparam");
1423
1424 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1425 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1426
1427 cz_wait_pci_doorbell(cz, "czparam");
1428
1429 /*
1430 * Update the tty layer's idea of the carrier bit, in case we changed
1431 * CLOCAL. We don't hang up here; we only do that by explicit
1432 * request.
1433 */
1434 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1435 (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1436
1437 return (0);
1438 }
1439
1440 /*
1441 * czttystart:
1442 *
1443 * Start or restart transmission.
1444 */
1445 void
1446 czttystart(struct tty *tp)
1447 {
1448 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1449 int s;
1450
1451 s = spltty();
1452 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1453 goto out;
1454
1455 if (tp->t_outq.c_cc <= tp->t_lowat) {
1456 if (ISSET(tp->t_state, TS_ASLEEP)) {
1457 CLR(tp->t_state, TS_ASLEEP);
1458 wakeup(&tp->t_outq);
1459 }
1460 selwakeup(&tp->t_wsel);
1461 if (tp->t_outq.c_cc == 0)
1462 goto out;
1463 }
1464
1465 cztty_transmit(sc, tp);
1466 out:
1467 splx(s);
1468 }
1469
1470 /*
1471 * czttystop:
1472 *
1473 * Stop output, e.g., for ^S or output flush.
1474 */
1475 void
1476 czttystop(struct tty *tp, int flag)
1477 {
1478
1479 /*
1480 * XXX We don't do anything here, yet. Mostly, I don't know
1481 * XXX exactly how this should be implemented on this device.
1482 * XXX We've given a big chunk of data to the MIPS already,
1483 * XXX and I don't know how we request the MIPS to stop sending
1484 * XXX the data. So, punt for now. --thorpej
1485 */
1486 }
1487
1488 /*
1489 * cztty_diag:
1490 *
1491 * Issue a scheduled diagnostic message.
1492 */
1493 void
1494 cztty_diag(void *arg)
1495 {
1496 struct cztty_softc *sc = arg;
1497 struct cz_softc *cz = CZTTY_CZ(sc);
1498 u_int overflows, parity_errors, framing_errors;
1499 int s;
1500
1501 s = spltty();
1502
1503 overflows = sc->sc_overflows;
1504 sc->sc_overflows = 0;
1505
1506 parity_errors = sc->sc_parity_errors;
1507 sc->sc_parity_errors = 0;
1508
1509 framing_errors = sc->sc_framing_errors;
1510 sc->sc_framing_errors = 0;
1511
1512 sc->sc_errors = 0;
1513
1514 splx(s);
1515
1516 log(LOG_WARNING,
1517 "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1518 cz->cz_dev.dv_xname, sc->sc_channel,
1519 overflows, overflows == 1 ? "" : "s",
1520 parity_errors,
1521 framing_errors, framing_errors == 1 ? "" : "s");
1522 }
1523
1524 /*
1525 * tx and rx ring buffer size macros:
1526 *
1527 * The transmitter and receiver both use ring buffers. For each one, there
1528 * is a get (consumer) and a put (producer) offset. The get value is the
1529 * next byte to be read from the ring, and the put is the next one to be
1530 * put into the ring. get == put means the ring is empty.
1531 *
1532 * For each ring, the firmware controls one of (get, put) and this driver
1533 * controls the other. For transmission, this driver updates put to point
1534 * past the valid data, and the firmware moves get as bytes are sent. Likewise
1535 * for receive, the driver controls put, and this driver controls get.
1536 */
1537 #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1538 #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1539
1540 /*
1541 * cztty_transmit()
1542 *
1543 * Look at the tty for this port and start sending.
1544 */
1545 int
1546 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1547 {
1548 struct cz_softc *cz = CZTTY_CZ(sc);
1549 u_int move, get, put, size, address;
1550 #ifdef HOSTRAMCODE
1551 int error, done = 0;
1552 #else
1553 int done = 0;
1554 #endif
1555
1556 size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1557 get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1558 put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1559 address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1560
1561 while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1562 #ifdef HOSTRAMCODE
1563 if (0) {
1564 move = min(tp->t_outq.c_cc, move);
1565 error = q_to_b(&tp->t_outq, 0, move);
1566 if (error != move) {
1567 printf("%s: channel %d: error moving to "
1568 "transmit buf\n", cz->cz_dev.dv_xname,
1569 sc->sc_channel);
1570 move = error;
1571 }
1572 } else {
1573 #endif
1574 move = min(ndqb(&tp->t_outq, 0), move);
1575 bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1576 address + put, tp->t_outq.c_cf, move);
1577 ndflush(&tp->t_outq, move);
1578 #ifdef HOSTRAMCODE
1579 }
1580 #endif
1581
1582 put = ((put + move) % size);
1583 done = 1;
1584 }
1585 if (done) {
1586 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1587 }
1588 return (done);
1589 }
1590
1591 int
1592 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1593 {
1594 struct cz_softc *cz = CZTTY_CZ(sc);
1595 u_int get, put, size, address;
1596 int done = 0, ch;
1597
1598 size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1599 get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1600 put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1601 address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1602
1603 while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1604 #ifdef HOSTRAMCODE
1605 if (hostram)
1606 ch = ((char *)fifoaddr)[get];
1607 } else {
1608 #endif
1609 ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1610 address + get);
1611 #ifdef HOSTRAMCODE
1612 }
1613 #endif
1614 (*linesw[tp->t_line].l_rint)(ch, tp);
1615 get = (get + 1) % size;
1616 done = 1;
1617 }
1618 if (done) {
1619 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1620 }
1621 return (done);
1622 }
1623