cz.c revision 1.8 1 /* $NetBSD: cz.c,v 1.8 2000/06/09 18:00:45 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Zembu Labs, Inc.
5 * All rights reserved.
6 *
7 * Authors: Jason R. Thorpe <thorpej (at) zembu.com>
8 * Bill Studenmund <wrstuden (at) zembu.com>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Zembu Labs, Inc.
21 * 4. Neither the name of Zembu Labs nor the names of its employees may
22 * be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
26 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
27 * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
28 * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cyclades-Z series multi-port serial adapter driver for NetBSD.
39 *
40 * Some notes:
41 *
42 * - The Cyclades-Z has fully automatic hardware (and software!)
43 * flow control. We only utilize RTS/CTS flow control here,
44 * and it is implemented in a very simplistic manner. This
45 * may be an area of future work.
46 *
47 * - The PLX can map the either the board's RAM or host RAM
48 * into the MIPS's memory window. This would enable us to
49 * use less expensive (for us) memory reads/writes to host
50 * RAM, rather than time-consuming reads/writes to PCI
51 * memory space. However, the PLX can only map a 0-128M
52 * window, so we would have to ensure that the DMA address
53 * of the host RAM fits there. This is kind of a pain,
54 * so we just don't bother right now.
55 *
56 * - In a perfect world, we would use the autoconfiguration
57 * mechanism to attach the TTYs that we find. However,
58 * that leads to somewhat icky looking autoconfiguration
59 * messages (one for every TTY, up to 64 per board!). So
60 * we don't do it that way, but assign minors as if there
61 * were the max of 64 ports per board.
62 *
63 * - We don't bother with PPS support here. There are so many
64 * ports, each with a large amount of buffer space, that the
65 * normal mode of operation is to poll the boards regularly
66 * (generally, every 20ms or so). This makes this driver
67 * unsuitable for PPS, as the latency will be generally too
68 * high.
69 */
70 /*
71 * This driver inspired by the FreeBSD driver written by Brian J. McGovern
72 * for FreeBSD 3.2.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/device.h>
79 #include <sys/malloc.h>
80 #include <sys/tty.h>
81 #include <sys/conf.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/fcntl.h>
85 #include <sys/syslog.h>
86
87 #include <sys/callout.h>
88
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcidevs.h>
92 #include <dev/pci/czreg.h>
93
94 #include <dev/pci/plx9060reg.h>
95 #include <dev/pci/plx9060var.h>
96
97 #include <dev/microcode/cyclades-z/cyzfirm.h>
98
99 #define CZ_DRIVER_VERSION 0x20000411
100
101 #define CZ_POLL_MS 20
102
103 /* These are the interrupts we always use. */
104 #define CZ_INTERRUPTS \
105 (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \
106 C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \
107 C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \
108 C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK)
109
110 /*
111 * cztty_softc:
112 *
113 * Per-channel (TTY) state.
114 */
115 struct cztty_softc {
116 struct cz_softc *sc_parent;
117 struct tty *sc_tty;
118
119 struct callout sc_diag_ch;
120
121 int sc_channel; /* Also used to flag unattached chan */
122 #define CZTTY_CHANNEL_DEAD -1
123
124 bus_space_tag_t sc_chan_st; /* channel space tag */
125 bus_space_handle_t sc_chan_sh; /* channel space handle */
126 bus_space_handle_t sc_buf_sh; /* buffer space handle */
127
128 u_int sc_overflows,
129 sc_parity_errors,
130 sc_framing_errors,
131 sc_errors;
132
133 int sc_swflags;
134
135 u_int32_t sc_rs_control_dtr,
136 sc_chanctl_hw_flow,
137 sc_chanctl_comm_baud,
138 sc_chanctl_rs_control,
139 sc_chanctl_comm_data_l,
140 sc_chanctl_comm_parity;
141 };
142
143 /*
144 * cz_softc:
145 *
146 * Per-board state.
147 */
148 struct cz_softc {
149 struct device cz_dev; /* generic device info */
150 struct plx9060_config cz_plx; /* PLX 9060 config info */
151 bus_space_tag_t cz_win_st; /* window space tag */
152 bus_space_handle_t cz_win_sh; /* window space handle */
153 struct callout cz_callout; /* callout for polling-mode */
154
155 void *cz_ih; /* interrupt handle */
156
157 u_int32_t cz_mailbox0; /* our MAILBOX0 value */
158 int cz_nchannels; /* number of channels */
159 int cz_nopenchan; /* number of open channels */
160 struct cztty_softc *cz_ports; /* our array of ports */
161
162 bus_addr_t cz_fwctl; /* offset of firmware control */
163 };
164
165 int cz_match(struct device *, struct cfdata *, void *);
166 void cz_attach(struct device *, struct device *, void *);
167 int cz_wait_pci_doorbell(struct cz_softc *, const char *);
168
169 struct cfattach cz_ca = {
170 sizeof(struct cz_softc), cz_match, cz_attach
171 };
172
173 void cz_reset_board(struct cz_softc *);
174 int cz_load_firmware(struct cz_softc *);
175
176 int cz_intr(void *);
177 void cz_poll(void *);
178 int cztty_transmit(struct cztty_softc *, struct tty *);
179 int cztty_receive(struct cztty_softc *, struct tty *);
180
181 struct cztty_softc * cztty_getttysoftc(dev_t dev);
182 int cztty_findmajor(void);
183 int cztty_major;
184 int cztty_attached_ttys;
185 int cz_timeout_ticks;
186
187 cdev_decl(cztty);
188
189 void czttystart(struct tty *tp);
190 int czttyparam(struct tty *tp, struct termios *t);
191 void cztty_shutdown(struct cztty_softc *sc);
192 void cztty_modem(struct cztty_softc *sc, int onoff);
193 void cztty_break(struct cztty_softc *sc, int onoff);
194 void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits);
195 int cztty_to_tiocm(struct cztty_softc *sc);
196 void cztty_diag(void *arg);
197
198 extern struct cfdriver cz_cd;
199
200 /* Macros to clear/set/test flags. */
201 #define SET(t, f) (t) |= (f)
202 #define CLR(t, f) (t) &= ~(f)
203 #define ISSET(t, f) ((t) & (f))
204
205 /*
206 * Macros to read and write the PLX.
207 */
208 #define CZ_PLX_READ(cz, reg) \
209 bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg))
210 #define CZ_PLX_WRITE(cz, reg, val) \
211 bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \
212 (reg), (val))
213
214 /*
215 * Macros to read and write the FPGA. We must already be in the FPGA
216 * window for this.
217 */
218 #define CZ_FPGA_READ(cz, reg) \
219 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg))
220 #define CZ_FPGA_WRITE(cz, reg, val) \
221 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val))
222
223 /*
224 * Macros to read and write the firmware control structures in board RAM.
225 */
226 #define CZ_FWCTL_READ(cz, off) \
227 bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \
228 (cz)->cz_fwctl + (off))
229
230 #define CZ_FWCTL_WRITE(cz, off, val) \
231 bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \
232 (cz)->cz_fwctl + (off), (val))
233
234 /*
235 * Convenience macros for cztty routines. PLX window MUST be to RAM.
236 */
237 #define CZTTY_CHAN_READ(sc, off) \
238 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off))
239
240 #define CZTTY_CHAN_WRITE(sc, off, val) \
241 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \
242 (off), (val))
243
244 #define CZTTY_BUF_READ(sc, off) \
245 bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off))
246
247 #define CZTTY_BUF_WRITE(sc, off, val) \
248 bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \
249 (off), (val))
250
251 /*
252 * Convenience macros.
253 */
254 #define CZ_WIN_RAM(cz) \
255 do { \
256 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \
257 delay(100); \
258 } while (0)
259
260 #define CZ_WIN_FPGA(cz) \
261 do { \
262 CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \
263 delay(100); \
264 } while (0)
265
266 /*****************************************************************************
267 * Cyclades-Z controller code starts here...
268 *****************************************************************************/
269
270 /*
271 * cz_match:
272 *
273 * Determine if the given PCI device is a Cyclades-Z board.
274 */
275 int
276 cz_match(struct device *parent,
277 struct cfdata *match,
278 void *aux)
279 {
280 struct pci_attach_args *pa = aux;
281
282 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES) {
283 switch (PCI_PRODUCT(pa->pa_id)) {
284 case PCI_PRODUCT_CYCLADES_CYCLOMZ_2:
285 return (1);
286 }
287 }
288
289 return (0);
290 }
291
292 /*
293 * cz_attach:
294 *
295 * A Cyclades-Z board was found; attach it.
296 */
297 void
298 cz_attach(struct device *parent,
299 struct device *self,
300 void *aux)
301 {
302 struct cz_softc *cz = (void *) self;
303 struct pci_attach_args *pa = aux;
304 pci_intr_handle_t ih;
305 const char *intrstr = NULL;
306 struct cztty_softc *sc;
307 struct tty *tp;
308 int i;
309
310 printf(": Cyclades-Z multiport serial\n");
311
312 cz->cz_plx.plx_pc = pa->pa_pc;
313 cz->cz_plx.plx_tag = pa->pa_tag;
314
315 if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR,
316 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
317 &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL) != 0) {
318 printf("%s: unable to map PLX registers\n",
319 cz->cz_dev.dv_xname);
320 return;
321 }
322 if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0,
323 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
324 &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL) != 0) {
325 printf("%s: unable to map device window\n",
326 cz->cz_dev.dv_xname);
327 return;
328 }
329
330 cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0);
331 cz->cz_nopenchan = 0;
332
333 /*
334 * Make sure that the board is completely stopped.
335 */
336 CZ_WIN_FPGA(cz);
337 CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0);
338
339 /*
340 * Load the board's firmware.
341 */
342 if (cz_load_firmware(cz) != 0)
343 return;
344
345 /*
346 * Now that we're ready to roll, map and establish the interrupt
347 * handler.
348 */
349 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
350 pa->pa_intrline, &ih) != 0) {
351 /*
352 * The common case is for Cyclades-Z boards to run
353 * in polling mode, and thus not have an interrupt
354 * mapped for them. Don't bother reporting that
355 * the interrupt is not mappable, since this isn't
356 * really an error.
357 */
358 cz->cz_ih = NULL;
359 goto polling_mode;
360 } else {
361 intrstr = pci_intr_string(pa->pa_pc, ih);
362 cz->cz_ih = pci_intr_establish(pa->pa_pc, ih, IPL_TTY,
363 cz_intr, cz);
364 }
365 if (cz->cz_ih == NULL) {
366 printf("%s: unable to establish interrupt",
367 cz->cz_dev.dv_xname);
368 if (intrstr != NULL)
369 printf(" at %s", intrstr);
370 printf("\n");
371 /* We will fall-back on polling mode. */
372 } else
373 printf("%s: interrupting at %s\n",
374 cz->cz_dev.dv_xname, intrstr);
375
376 polling_mode:
377 if (cz->cz_ih == NULL) {
378 callout_init(&cz->cz_callout);
379 if (cz_timeout_ticks == 0)
380 cz_timeout_ticks = max(1, hz * CZ_POLL_MS / 1000);
381 printf("%s: polling mode, %d ms interval (%d tick%s)\n",
382 cz->cz_dev.dv_xname, CZ_POLL_MS, cz_timeout_ticks,
383 cz_timeout_ticks == 1 ? "" : "s");
384 }
385
386 if (cztty_major == 0)
387 cztty_major = cztty_findmajor();
388 /*
389 * Allocate sufficient pointers for the children and
390 * attach them. Set all ports to a reasonable initial
391 * configuration while we're at it:
392 *
393 * disabled
394 * 8N1
395 * default baud rate
396 * hardware flow control.
397 */
398 CZ_WIN_RAM(cz);
399 cz->cz_ports = malloc(sizeof(struct cztty_softc) * cz->cz_nchannels,
400 M_DEVBUF, M_WAITOK);
401 cztty_attached_ttys += cz->cz_nchannels;
402 memset(cz->cz_ports, 0,
403 sizeof(struct cztty_softc) * cz->cz_nchannels);
404
405 for (i = 0; i < cz->cz_nchannels; i++) {
406 sc = &cz->cz_ports[i];
407
408 sc->sc_channel = i;
409 sc->sc_chan_st = cz->cz_win_st;
410 sc->sc_parent = cz;
411
412 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
413 cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0),
414 ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) {
415 printf("%s: unable to subregion channel %d control\n",
416 cz->cz_dev.dv_xname, i);
417 sc->sc_channel = CZTTY_CHANNEL_DEAD;
418 continue;
419 }
420 if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh,
421 cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0),
422 ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) {
423 printf("%s: unable to subregion channel %d buffer\n",
424 cz->cz_dev.dv_xname, i);
425 sc->sc_channel = CZTTY_CHANNEL_DEAD;
426 continue;
427 }
428
429 callout_init(&sc->sc_diag_ch);
430
431 tp = ttymalloc();
432 tp->t_dev = makedev(cztty_major,
433 (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i);
434 tp->t_oproc = czttystart;
435 tp->t_param = czttyparam;
436 tty_attach(tp);
437
438 sc->sc_tty = tp;
439
440 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
441 CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS);
442 CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0);
443 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11);
444 CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13);
445 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED);
446 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE);
447 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP);
448 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0);
449 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS);
450 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0);
451 }
452 }
453
454 /*
455 * cz_reset_board:
456 *
457 * Reset the board via the PLX.
458 */
459 void
460 cz_reset_board(struct cz_softc *cz)
461 {
462 u_int32_t reg;
463
464 reg = CZ_PLX_READ(cz, PLX_CONTROL);
465 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR);
466 delay(1000);
467
468 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
469 delay(1000);
470
471 /* Now reload the PLX from its EEPROM. */
472 reg = CZ_PLX_READ(cz, PLX_CONTROL);
473 CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG);
474 delay(1000);
475 CZ_PLX_WRITE(cz, PLX_CONTROL, reg);
476 }
477
478 /*
479 * cz_load_firmware:
480 *
481 * Load the ZFIRM firmware into the board's RAM and start it
482 * running.
483 */
484 int
485 cz_load_firmware(struct cz_softc *cz)
486 {
487 struct zfirm_header *zfh;
488 struct zfirm_config *zfc;
489 struct zfirm_block *zfb, *zblocks;
490 const u_int8_t *cp;
491 const char *board;
492 u_int32_t fid;
493 int i, j, nconfigs, nblocks, nbytes;
494
495 zfh = (struct zfirm_header *) cycladesz_firmware;
496
497 /* Find the config header. */
498 if (le32toh(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) {
499 printf("%s: bad ZFIRM config offset: 0x%x\n",
500 cz->cz_dev.dv_xname, le32toh(zfh->zfh_configoff));
501 return (EIO);
502 }
503 zfc = (struct zfirm_config *)(cycladesz_firmware +
504 le32toh(zfh->zfh_configoff));
505 nconfigs = le32toh(zfh->zfh_nconfig);
506
507 /* Locate the correct configuration for our board. */
508 for (i = 0; i < nconfigs; i++, zfc++) {
509 if (le32toh(zfc->zfc_mailbox) == cz->cz_mailbox0 &&
510 le32toh(zfc->zfc_function) == ZFC_FUNCTION_NORMAL)
511 break;
512 }
513 if (i == nconfigs) {
514 printf("%s: unable to locate config header\n",
515 cz->cz_dev.dv_xname);
516 return (EIO);
517 }
518
519 nblocks = le32toh(zfc->zfc_nblocks);
520 zblocks = (struct zfirm_block *)(cycladesz_firmware +
521 le32toh(zfh->zfh_blockoff));
522
523 /*
524 * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if
525 * necessary.
526 */
527 if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1
528 #if 0
529 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0)
530 #endif
531 ) {
532 #ifdef CZ_DEBUG
533 printf("%s: Loading FPGA...", cz->cz_dev.dv_xname);
534 #endif
535 CZ_WIN_FPGA(cz);
536 for (i = 0; i < nblocks; i++) {
537 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
538 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
539 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FPGA) {
540 nbytes = le32toh(zfb->zfb_size);
541 cp = &cycladesz_firmware[
542 le32toh(zfb->zfb_fileoff)];
543 for (j = 0; j < nbytes; j++, cp++) {
544 bus_space_write_1(cz->cz_win_st,
545 cz->cz_win_sh, 0, *cp);
546 /* FPGA needs 30-100us to settle. */
547 delay(10);
548 }
549 }
550 }
551 #ifdef CZ_DEBUG
552 printf("done\n");
553 #endif
554 }
555
556 /* Now load the firmware. */
557 CZ_WIN_RAM(cz);
558
559 for (i = 0; i < nblocks; i++) {
560 /* zfb = zblocks + le32toh(zfc->zfc_blocklist[i]) ?? */
561 zfb = &zblocks[le32toh(zfc->zfc_blocklist[i])];
562 if (le32toh(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) {
563 const u_int32_t *lp;
564 u_int32_t ro = le32toh(zfb->zfb_ramoff);
565 nbytes = le32toh(zfb->zfb_size);
566 lp = (const u_int32_t *)
567 &cycladesz_firmware[le32toh(zfb->zfb_fileoff)];
568 for (j = 0; j < nbytes; j += 4, lp++) {
569 bus_space_write_4(cz->cz_win_st, cz->cz_win_sh,
570 ro + j, le32toh(*lp));
571 delay(10);
572 }
573 }
574 }
575
576 /* Now restart the MIPS. */
577 CZ_WIN_FPGA(cz);
578 CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0);
579
580 /* Wait for the MIPS to start, then report the results. */
581 CZ_WIN_RAM(cz);
582
583 #ifdef CZ_DEBUG
584 printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname);
585 #endif
586 for (i = 0; i < 100; i++) {
587 fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
588 ZFIRM_SIG_OFF);
589 if (fid == ZFIRM_SIG) {
590 /* MIPS has booted. */
591 break;
592 } else if (fid == ZFIRM_HLT) {
593 /*
594 * The MIPS has halted, usually due to a power
595 * shortage on the expansion module.
596 */
597 printf("%s: MIPS halted; possible power supply "
598 "problem\n", cz->cz_dev.dv_xname);
599 return (EIO);
600 } else {
601 #ifdef CZ_DEBUG
602 if ((i % 8) == 0)
603 printf(".");
604 #endif
605 delay(250000);
606 }
607 }
608 #ifdef CZ_DEBUG
609 printf("\n");
610 #endif
611 if (i == 100) {
612 CZ_WIN_FPGA(cz);
613 printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n",
614 cz->cz_dev.dv_xname, ZFIRM_SIG, fid);
615 printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n",
616 cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID),
617 CZ_FPGA_READ(cz, FPGA_VERSION));
618 return (EIO);
619 }
620
621 /*
622 * Locate the firmware control structures.
623 */
624 cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh,
625 ZFIRM_CTRLADDR_OFF);
626 #ifdef CZ_DEBUG
627 printf("%s: FWCTL structure at offset 0x%08lx\n",
628 cz->cz_dev.dv_xname, cz->cz_fwctl);
629 #endif
630
631 CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD);
632 CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION);
633
634 cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL);
635
636 switch (cz->cz_mailbox0) {
637 case MAILBOX0_8Zo_V1:
638 board = "Cyclades-8Zo ver. 1";
639 break;
640
641 case MAILBOX0_8Zo_V2:
642 board = "Cyclades-8Zo ver. 2";
643 break;
644
645 case MAILBOX0_Ze_V1:
646 board = "Cyclades-Ze";
647 break;
648
649 default:
650 board = "unknown Cyclades Z-series";
651 break;
652 }
653
654 fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION);
655 printf("%s: %s, %d channels (ttyCZ%04d..ttyCZ%04d), "
656 "firmware %x.%x.%x\n",
657 cz->cz_dev.dv_xname, board, cz->cz_nchannels,
658 cztty_attached_ttys, cztty_attached_ttys + (cz->cz_nchannels - 1),
659 (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf);
660
661 return (0);
662 }
663
664 /*
665 * cz_poll:
666 *
667 * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS
668 * ms.
669 */
670 void
671 cz_poll(void *arg)
672 {
673 int s = spltty();
674 struct cz_softc *cz = arg;
675
676 cz_intr(cz);
677 callout_reset(&cz->cz_callout, cz_timeout_ticks, cz_poll, cz);
678
679 splx(s);
680 }
681
682 /*
683 * cz_intr:
684 *
685 * Interrupt service routine.
686 *
687 * We either are receiving an interrupt directly from the board, or we are
688 * in polling mode and it's time to poll.
689 */
690 int
691 cz_intr(void *arg)
692 {
693 int rval = 0;
694 u_int command, channel, param;
695 struct cz_softc *cz = arg;
696 struct cztty_softc *sc;
697 struct tty *tp;
698
699 while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) {
700 rval = 1;
701 channel = CZ_FWCTL_READ(cz, BRDCTL_HCMD_CHANNEL);
702 param = CZ_FWCTL_READ(cz, BRDCTL_HCMD_PARAM);
703
704 /* now clear this interrupt, posslibly enabling another */
705 CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command);
706
707 sc = &cz->cz_ports[channel];
708
709 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
710 break;
711
712 tp = sc->sc_tty;
713
714 switch (command) {
715 case C_CM_TXFEMPTY: /* transmit cases */
716 case C_CM_TXBEMPTY:
717 case C_CM_TXLOWWM:
718 case C_CM_INTBACK:
719 if (!ISSET(tp->t_state, TS_ISOPEN)) {
720 #ifdef CZ_DEBUG
721 printf("%s: tx intr on closed channel %d\n",
722 cz->cz_dev.dv_xname, channel);
723 #endif
724 break;
725 }
726
727 if (cztty_transmit(sc, tp)) {
728 /*
729 * Do wakeup stuff here.
730 */
731 ttwakeup(tp);
732 wakeup(tp);
733 }
734 break;
735
736 case C_CM_RXNNDT: /* receive cases */
737 case C_CM_RXHIWM:
738 case C_CM_INTBACK2: /* from restart ?? */
739 #if 0
740 case C_CM_ICHAR:
741 #endif
742 if (!ISSET(tp->t_state, TS_ISOPEN)) {
743 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
744 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
745 break;
746 }
747
748 if (cztty_receive(sc, tp)) {
749 /*
750 * Do wakeup stuff here.
751 */
752 ttwakeup(tp);
753 wakeup(tp);
754 }
755 break;
756
757 case C_CM_MDCD:
758 if (!ISSET(tp->t_state, TS_ISOPEN))
759 break;
760
761 (void) (*linesw[tp->t_line].l_modem)(tp,
762 ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc,
763 CHNCTL_RS_STATUS)));
764 break;
765
766 case C_CM_MDSR:
767 case C_CM_MRI:
768 case C_CM_MCTS:
769 case C_CM_MRTS:
770 break;
771
772 case C_CM_IOCTLW:
773 break;
774
775 case C_CM_PR_ERROR:
776 sc->sc_parity_errors++;
777 goto error_common;
778
779 case C_CM_FR_ERROR:
780 sc->sc_framing_errors++;
781 goto error_common;
782
783 case C_CM_OVR_ERROR:
784 sc->sc_overflows++;
785 error_common:
786 if (sc->sc_errors++ == 0)
787 callout_reset(&sc->sc_diag_ch, 60 * hz,
788 cztty_diag, sc);
789 break;
790
791 case C_CM_RXBRK:
792 if (!ISSET(tp->t_state, TS_ISOPEN))
793 break;
794
795 /*
796 * A break is a \000 character with TTY_FE error
797 * flags set. So TTY_FE by itself works.
798 */
799 (*linesw[tp->t_line].l_rint)(TTY_FE, tp);
800 ttwakeup(tp);
801 wakeup(tp);
802 break;
803
804 default:
805 #ifdef CZ_DEBUG
806 printf("%s: channel %d: Unknown interrupt 0x%x\n",
807 cz->cz_dev.dv_xname, sc->sc_channel, command);
808 #endif
809 break;
810 }
811 }
812
813 return (rval);
814 }
815
816 /*
817 * cz_wait_pci_doorbell:
818 *
819 * Wait for the pci doorbell to be clear - wait for pending
820 * activity to drain.
821 */
822 int
823 cz_wait_pci_doorbell(struct cz_softc *cz, const char *wstring)
824 {
825 int error;
826
827 while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) {
828 error = tsleep(cz, TTIPRI | PCATCH, wstring, max(1, hz/100));
829 if ((error != 0) && (error != EWOULDBLOCK))
830 return (error);
831 }
832 return (0);
833 }
834
835 /*****************************************************************************
836 * Cyclades-Z TTY code starts here...
837 *****************************************************************************/
838
839 #define CZTTYCHAN_MASK 0x0003f
840 #define CZTTYBOARD_MASK (0x7ffff & ~CZTTYCHAN_MASK)
841 #define CZTTYBOARD_SHIFT 6
842 #define CZTTYDIALOUT_MASK 0x80000
843
844 #define CZTTY_CHAN(dev) (minor((dev)) & CZTTYCHAN_MASK)
845 #define CZTTY_BOARD(dev) ((minor((dev)) & CZTTYBOARD_MASK) >> \
846 CZTTYBOARD_SHIFT)
847 #define CZTTY_DIALOUT(dev) (minor((dev)) & CZTTYDIALOUT_MASK)
848 #define CZTTY_CZ(sc) ((sc)->sc_parent)
849
850 #define CZ_SOFTC(dev) \
851 ((struct cz_softc *)(CZTTY_BOARD(dev) < cz_cd.cd_ndevs ? \
852 cz_cd.cd_devs[CZTTY_BOARD(dev)] : NULL))
853
854 #define CZTTY_SOFTC(dev) cztty_getttysoftc(dev)
855
856 struct cztty_softc *
857 cztty_getttysoftc(dev_t dev)
858 {
859 int i, j, k, u = minor(dev) & ~CZTTYDIALOUT_MASK;
860 struct cz_softc *cz;
861
862 for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) {
863 k = j;
864 cz = cz_cd.cd_devs[i];
865 j += cz->cz_nchannels;
866 if (j > u)
867 break;
868 }
869
870 if (i >= cz_cd.cd_ndevs) {
871 return (NULL);
872 } else
873 return (&cz->cz_ports[u - k]);
874 }
875
876 int
877 cztty_findmajor(void)
878 {
879 int maj;
880
881 for (maj = 0; maj < nchrdev; maj++) {
882 if (cdevsw[maj].d_open == czttyopen)
883 break;
884 }
885
886 return (maj == nchrdev) ? 0 : maj;
887 }
888
889 /*
890 * czttytty:
891 *
892 * Return a pointer to our tty.
893 */
894 struct tty *
895 czttytty(dev_t dev)
896 {
897 struct cztty_softc *sc = CZTTY_SOFTC(dev);
898
899 #ifdef DIAGNOSTIC
900 if (sc == NULL)
901 panic("czttytty");
902 #endif
903
904 return (sc->sc_tty);
905 }
906
907 /*
908 * cztty_shutdown:
909 *
910 * Shut down a port.
911 */
912 void
913 cztty_shutdown(struct cztty_softc *sc)
914 {
915 struct cz_softc *cz = CZTTY_CZ(sc);
916 struct tty *tp = sc->sc_tty;
917 int s;
918
919 s = spltty();
920
921 /* Clear any break condition set with TIOCSBRK. */
922 cztty_break(sc, 0);
923
924 /*
925 * Hang up if necessary. Wait a bit, so the other side has time to
926 * notice even if we immediately open the port again.
927 */
928 if (ISSET(tp->t_cflag, HUPCL)) {
929 cztty_modem(sc, 0);
930 (void) tsleep(tp, TTIPRI, ttclos, hz);
931 }
932
933 /* Disable the channel. */
934 cz_wait_pci_doorbell(cz, "czdis");
935 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE);
936 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
937 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL);
938
939 if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) {
940 #ifdef CZ_DEBUG
941 printf("%s: Disabling polling\n", cz->cz_dev.dv_xname);
942 #endif
943 callout_stop(&cz->cz_callout);
944 }
945
946 splx(s);
947 }
948
949 /*
950 * czttyopen:
951 *
952 * Open a Cyclades-Z serial port.
953 */
954 int
955 czttyopen(dev_t dev, int flags, int mode, struct proc *p)
956 {
957 struct cztty_softc *sc = CZTTY_SOFTC(dev);
958 struct cz_softc *cz;
959 struct tty *tp;
960 int s, error;
961
962 if (sc == NULL)
963 return (ENXIO);
964
965 if (sc->sc_channel == CZTTY_CHANNEL_DEAD)
966 return (ENXIO);
967
968 cz = CZTTY_CZ(sc);
969 tp = sc->sc_tty;
970
971 if (ISSET(tp->t_state, TS_ISOPEN) &&
972 ISSET(tp->t_state, TS_XCLUDE) &&
973 p->p_ucred->cr_uid != 0)
974 return (EBUSY);
975
976 s = spltty();
977
978 /*
979 * Do the following iff this is a first open.
980 */
981 if (!ISSET(tp->t_state, TS_ISOPEN) && (tp->t_wopen == 0)) {
982 struct termios t;
983
984 tp->t_dev = dev;
985
986 /* If we're turning things on, enable interrupts */
987 if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) {
988 #ifdef CZ_DEBUG
989 printf("%s: Enabling polling.\n",
990 cz->cz_dev.dv_xname);
991 #endif
992 callout_reset(&cz->cz_callout, cz_timeout_ticks,
993 cz_poll, cz);
994 }
995
996 /*
997 * Enable the channel. Don't actually ring the
998 * doorbell here; czttyparam() will do it for us.
999 */
1000 cz_wait_pci_doorbell(cz, "czopen");
1001
1002 CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE);
1003
1004 /*
1005 * Initialize the termios status to the defaults. Add in the
1006 * sticky bits from TIOCSFLAGS.
1007 */
1008 t.c_ispeed = 0;
1009 t.c_ospeed = TTYDEF_SPEED;
1010 t.c_cflag = TTYDEF_CFLAG;
1011 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
1012 SET(t.c_cflag, CLOCAL);
1013 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
1014 SET(t.c_cflag, CRTSCTS);
1015
1016 /*
1017 * Reset the input and output rings. Do this before
1018 * we call czttyparam(), as that function enables
1019 * the channel.
1020 */
1021 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET,
1022 CZTTY_BUF_READ(sc, BUFCTL_RX_PUT));
1023 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT,
1024 CZTTY_BUF_READ(sc, BUFCTL_TX_GET));
1025
1026 /* Make sure czttyparam() will see changes. */
1027 tp->t_ospeed = 0;
1028 (void) czttyparam(tp, &t);
1029 tp->t_iflag = TTYDEF_IFLAG;
1030 tp->t_oflag = TTYDEF_OFLAG;
1031 tp->t_lflag = TTYDEF_LFLAG;
1032 ttychars(tp);
1033 ttsetwater(tp);
1034
1035 /*
1036 * Turn on DTR. We must always do this, even if carrier is not
1037 * present, because otherwise we'd have to use TIOCSDTR
1038 * immediately after setting CLOCAL, which applications do not
1039 * expect. We always assert DTR while the device is open
1040 * unless explicitly requested to deassert it.
1041 */
1042 cztty_modem(sc, 1);
1043 }
1044
1045 splx(s);
1046
1047 error = ttyopen(tp, CZTTY_DIALOUT(dev), ISSET(flags, O_NONBLOCK));
1048 if (error)
1049 goto bad;
1050
1051 error = (*linesw[tp->t_line].l_open)(dev, tp);
1052 if (error)
1053 goto bad;
1054
1055 return (0);
1056
1057 bad:
1058 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1059 /*
1060 * We failed to open the device, and nobody else had it opened.
1061 * Clean up the state as appropriate.
1062 */
1063 cztty_shutdown(sc);
1064 }
1065
1066 return (error);
1067 }
1068
1069 /*
1070 * czttyclose:
1071 *
1072 * Close a Cyclades-Z serial port.
1073 */
1074 int
1075 czttyclose(dev_t dev, int flags, int mode, struct proc *p)
1076 {
1077 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1078 struct tty *tp = sc->sc_tty;
1079
1080 /* XXX This is for cons.c. */
1081 if (!ISSET(tp->t_state, TS_ISOPEN))
1082 return (0);
1083
1084 (*linesw[tp->t_line].l_close)(tp, flags);
1085 ttyclose(tp);
1086
1087 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
1088 /*
1089 * Although we got a last close, the device may still be in
1090 * use; e.g. if this was the dialout node, and there are still
1091 * processes waiting for carrier on the non-dialout node.
1092 */
1093 cztty_shutdown(sc);
1094 }
1095
1096 return (0);
1097 }
1098
1099 /*
1100 * czttyread:
1101 *
1102 * Read from a Cyclades-Z serial port.
1103 */
1104 int
1105 czttyread(dev_t dev, struct uio *uio, int flags)
1106 {
1107 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1108 struct tty *tp = sc->sc_tty;
1109
1110 return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
1111 }
1112
1113 /*
1114 * czttywrite:
1115 *
1116 * Write to a Cyclades-Z serial port.
1117 */
1118 int
1119 czttywrite(dev_t dev, struct uio *uio, int flags)
1120 {
1121 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1122 struct tty *tp = sc->sc_tty;
1123
1124 return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
1125 }
1126
1127 /*
1128 * czttyioctl:
1129 *
1130 * Perform a control operation on a Cyclades-Z serial port.
1131 */
1132 int
1133 czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1134 {
1135 struct cztty_softc *sc = CZTTY_SOFTC(dev);
1136 struct tty *tp = sc->sc_tty;
1137 int s, error;
1138
1139 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
1140 if (error >= 0)
1141 return (error);
1142
1143 error = ttioctl(tp, cmd, data, flag, p);
1144 if (error >= 0)
1145 return (error);
1146
1147 error = 0;
1148
1149 s = spltty();
1150
1151 switch (cmd) {
1152 case TIOCSBRK:
1153 cztty_break(sc, 1);
1154 break;
1155
1156 case TIOCCBRK:
1157 cztty_break(sc, 0);
1158 break;
1159
1160 case TIOCGFLAGS:
1161 *(int *)data = sc->sc_swflags;
1162 break;
1163
1164 case TIOCSFLAGS:
1165 error = suser(p->p_ucred, &p->p_acflag);
1166 if (error)
1167 break;
1168 sc->sc_swflags = *(int *)data;
1169 break;
1170
1171 case TIOCSDTR:
1172 cztty_modem(sc, 1);
1173 break;
1174
1175 case TIOCCDTR:
1176 cztty_modem(sc, 0);
1177 break;
1178
1179 case TIOCMSET:
1180 case TIOCMBIS:
1181 case TIOCMBIC:
1182 tiocm_to_cztty(sc, cmd, *(int *)data);
1183 break;
1184
1185 case TIOCMGET:
1186 *(int *)data = cztty_to_tiocm(sc);
1187 break;
1188
1189 default:
1190 error = ENOTTY;
1191 break;
1192 }
1193
1194 splx(s);
1195
1196 return (error);
1197 }
1198
1199 /*
1200 * cztty_break:
1201 *
1202 * Set or clear BREAK on a port.
1203 */
1204 void
1205 cztty_break(struct cztty_softc *sc, int onoff)
1206 {
1207 struct cz_softc *cz = CZTTY_CZ(sc);
1208
1209 cz_wait_pci_doorbell(cz, "czbreak");
1210
1211 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1212 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL,
1213 onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK);
1214 }
1215
1216 /*
1217 * cztty_modem:
1218 *
1219 * Set or clear DTR on a port.
1220 */
1221 void
1222 cztty_modem(struct cztty_softc *sc, int onoff)
1223 {
1224 struct cz_softc *cz = CZTTY_CZ(sc);
1225
1226 if (sc->sc_rs_control_dtr == 0)
1227 return;
1228
1229 cz_wait_pci_doorbell(cz, "czmod");
1230
1231 if (onoff)
1232 sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr;
1233 else
1234 sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr;
1235 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1236
1237 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1238 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1239 }
1240
1241 /*
1242 * tiocm_to_cztty:
1243 *
1244 * Process TIOCM* ioctls.
1245 */
1246 void
1247 tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits)
1248 {
1249 struct cz_softc *cz = CZTTY_CZ(sc);
1250 u_int32_t czttybits;
1251
1252 czttybits = 0;
1253 if (ISSET(ttybits, TIOCM_DTR))
1254 SET(czttybits, C_RS_DTR);
1255 if (ISSET(ttybits, TIOCM_RTS))
1256 SET(czttybits, C_RS_RTS);
1257
1258 cz_wait_pci_doorbell(cz, "cztiocm");
1259
1260 switch (how) {
1261 case TIOCMBIC:
1262 CLR(sc->sc_chanctl_rs_control, czttybits);
1263 break;
1264
1265 case TIOCMBIS:
1266 SET(sc->sc_chanctl_rs_control, czttybits);
1267 break;
1268
1269 case TIOCMSET:
1270 CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS);
1271 SET(sc->sc_chanctl_rs_control, czttybits);
1272 break;
1273 }
1274
1275 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1276
1277 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1278 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1279 }
1280
1281 /*
1282 * cztty_to_tiocm:
1283 *
1284 * Process the TIOCMGET ioctl.
1285 */
1286 int
1287 cztty_to_tiocm(struct cztty_softc *sc)
1288 {
1289 struct cz_softc *cz = CZTTY_CZ(sc);
1290 u_int32_t rs_status, op_mode;
1291 int ttybits = 0;
1292
1293 cz_wait_pci_doorbell(cz, "cztty");
1294
1295 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1296 op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE);
1297
1298 if (ISSET(rs_status, C_RS_RTS))
1299 SET(ttybits, TIOCM_RTS);
1300 if (ISSET(rs_status, C_RS_CTS))
1301 SET(ttybits, TIOCM_CTS);
1302 if (ISSET(rs_status, C_RS_DCD))
1303 SET(ttybits, TIOCM_CAR);
1304 if (ISSET(rs_status, C_RS_DTR))
1305 SET(ttybits, TIOCM_DTR);
1306 if (ISSET(rs_status, C_RS_RI))
1307 SET(ttybits, TIOCM_RNG);
1308 if (ISSET(rs_status, C_RS_DSR))
1309 SET(ttybits, TIOCM_DSR);
1310
1311 if (ISSET(op_mode, C_CH_ENABLE))
1312 SET(ttybits, TIOCM_LE);
1313
1314 return (ttybits);
1315 }
1316
1317 /*
1318 * czttyparam:
1319 *
1320 * Set Cyclades-Z serial port parameters from termios.
1321 *
1322 * XXX Should just copy the whole termios after making
1323 * XXX sure all the changes could be done.
1324 */
1325 int
1326 czttyparam(struct tty *tp, struct termios *t)
1327 {
1328 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1329 struct cz_softc *cz = CZTTY_CZ(sc);
1330 u_int32_t rs_status;
1331 int ospeed, cflag;
1332
1333 ospeed = t->c_ospeed;
1334 cflag = t->c_cflag;
1335
1336 /* Check requested parameters. */
1337 if (ospeed < 0)
1338 return (EINVAL);
1339 if (t->c_ispeed && t->c_ispeed != ospeed)
1340 return (EINVAL);
1341
1342 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) {
1343 SET(cflag, CLOCAL);
1344 CLR(cflag, HUPCL);
1345 }
1346
1347 /*
1348 * If there were no changes, don't do anything. This avoids dropping
1349 * input and improves performance when all we did was frob things like
1350 * VMIN and VTIME.
1351 */
1352 if (tp->t_ospeed == ospeed &&
1353 tp->t_cflag == cflag)
1354 return (0);
1355
1356 /* Data bits. */
1357 sc->sc_chanctl_comm_data_l = 0;
1358 switch (t->c_cflag & CSIZE) {
1359 case CS5:
1360 sc->sc_chanctl_comm_data_l |= C_DL_CS5;
1361 break;
1362
1363 case CS6:
1364 sc->sc_chanctl_comm_data_l |= C_DL_CS6;
1365 break;
1366
1367 case CS7:
1368 sc->sc_chanctl_comm_data_l |= C_DL_CS7;
1369 break;
1370
1371 case CS8:
1372 sc->sc_chanctl_comm_data_l |= C_DL_CS8;
1373 break;
1374 }
1375
1376 /* Stop bits. */
1377 if (t->c_cflag & CSTOPB) {
1378 if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5)
1379 sc->sc_chanctl_comm_data_l |= C_DL_15STOP;
1380 else
1381 sc->sc_chanctl_comm_data_l |= C_DL_2STOP;
1382 } else
1383 sc->sc_chanctl_comm_data_l |= C_DL_1STOP;
1384
1385 /* Parity. */
1386 if (t->c_cflag & PARENB) {
1387 if (t->c_cflag & PARODD)
1388 sc->sc_chanctl_comm_parity = C_PR_ODD;
1389 else
1390 sc->sc_chanctl_comm_parity = C_PR_EVEN;
1391 } else
1392 sc->sc_chanctl_comm_parity = C_PR_NONE;
1393
1394 /*
1395 * Initialize flow control pins depending on the current flow control
1396 * mode.
1397 */
1398 if (ISSET(t->c_cflag, CRTSCTS)) {
1399 sc->sc_rs_control_dtr = C_RS_DTR;
1400 sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS;
1401 } else if (ISSET(t->c_cflag, MDMBUF)) {
1402 sc->sc_rs_control_dtr = 0;
1403 sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR;
1404 } else {
1405 /*
1406 * If no flow control, then always set RTS. This will make
1407 * the other side happy if it mistakenly thinks we're doing
1408 * RTS/CTS flow control.
1409 */
1410 sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS;
1411 sc->sc_chanctl_hw_flow = 0;
1412 if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR))
1413 SET(sc->sc_chanctl_rs_control, C_RS_RTS);
1414 else
1415 CLR(sc->sc_chanctl_rs_control, C_RS_RTS);
1416 }
1417
1418 /* Baud rate. */
1419 sc->sc_chanctl_comm_baud = ospeed;
1420
1421 /* Copy to tty. */
1422 tp->t_ispeed = 0;
1423 tp->t_ospeed = t->c_ospeed;
1424 tp->t_cflag = t->c_cflag;
1425
1426 /*
1427 * Now load the channel control structure.
1428 */
1429
1430 cz_wait_pci_doorbell(cz, "czparam");
1431
1432 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud);
1433 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l);
1434 CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity);
1435 CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow);
1436 CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control);
1437
1438 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1439 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW);
1440
1441 cz_wait_pci_doorbell(cz, "czparam");
1442
1443 CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel);
1444 CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM);
1445
1446 cz_wait_pci_doorbell(cz, "czparam");
1447
1448 /*
1449 * Update the tty layer's idea of the carrier bit, in case we changed
1450 * CLOCAL. We don't hang up here; we only do that by explicit
1451 * request.
1452 */
1453 rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS);
1454 (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rs_status, C_RS_DCD));
1455
1456 return (0);
1457 }
1458
1459 /*
1460 * czttystart:
1461 *
1462 * Start or restart transmission.
1463 */
1464 void
1465 czttystart(struct tty *tp)
1466 {
1467 struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev);
1468 int s;
1469
1470 s = spltty();
1471 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1472 goto out;
1473
1474 if (tp->t_outq.c_cc <= tp->t_lowat) {
1475 if (ISSET(tp->t_state, TS_ASLEEP)) {
1476 CLR(tp->t_state, TS_ASLEEP);
1477 wakeup(&tp->t_outq);
1478 }
1479 selwakeup(&tp->t_wsel);
1480 if (tp->t_outq.c_cc == 0)
1481 goto out;
1482 }
1483
1484 cztty_transmit(sc, tp);
1485 out:
1486 splx(s);
1487 }
1488
1489 /*
1490 * czttystop:
1491 *
1492 * Stop output, e.g., for ^S or output flush.
1493 */
1494 void
1495 czttystop(struct tty *tp, int flag)
1496 {
1497
1498 /*
1499 * XXX We don't do anything here, yet. Mostly, I don't know
1500 * XXX exactly how this should be implemented on this device.
1501 * XXX We've given a big chunk of data to the MIPS already,
1502 * XXX and I don't know how we request the MIPS to stop sending
1503 * XXX the data. So, punt for now. --thorpej
1504 */
1505 }
1506
1507 /*
1508 * cztty_diag:
1509 *
1510 * Issue a scheduled diagnostic message.
1511 */
1512 void
1513 cztty_diag(void *arg)
1514 {
1515 struct cztty_softc *sc = arg;
1516 struct cz_softc *cz = CZTTY_CZ(sc);
1517 u_int overflows, parity_errors, framing_errors;
1518 int s;
1519
1520 s = spltty();
1521
1522 overflows = sc->sc_overflows;
1523 sc->sc_overflows = 0;
1524
1525 parity_errors = sc->sc_parity_errors;
1526 sc->sc_parity_errors = 0;
1527
1528 framing_errors = sc->sc_framing_errors;
1529 sc->sc_framing_errors = 0;
1530
1531 sc->sc_errors = 0;
1532
1533 splx(s);
1534
1535 log(LOG_WARNING,
1536 "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n",
1537 cz->cz_dev.dv_xname, sc->sc_channel,
1538 overflows, overflows == 1 ? "" : "s",
1539 parity_errors,
1540 framing_errors, framing_errors == 1 ? "" : "s");
1541 }
1542
1543 /*
1544 * tx and rx ring buffer size macros:
1545 *
1546 * The transmitter and receiver both use ring buffers. For each one, there
1547 * is a get (consumer) and a put (producer) offset. The get value is the
1548 * next byte to be read from the ring, and the put is the next one to be
1549 * put into the ring. get == put means the ring is empty.
1550 *
1551 * For each ring, the firmware controls one of (get, put) and this driver
1552 * controls the other. For transmission, this driver updates put to point
1553 * past the valid data, and the firmware moves get as bytes are sent. Likewise
1554 * for receive, the driver controls put, and this driver controls get.
1555 */
1556 #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p)))
1557 #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g)))
1558
1559 /*
1560 * cztty_transmit()
1561 *
1562 * Look at the tty for this port and start sending.
1563 */
1564 int
1565 cztty_transmit(struct cztty_softc *sc, struct tty *tp)
1566 {
1567 struct cz_softc *cz = CZTTY_CZ(sc);
1568 u_int move, get, put, size, address;
1569 #ifdef HOSTRAMCODE
1570 int error, done = 0;
1571 #else
1572 int done = 0;
1573 #endif
1574
1575 size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE);
1576 get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET);
1577 put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT);
1578 address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR);
1579
1580 while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){
1581 #ifdef HOSTRAMCODE
1582 if (0) {
1583 move = min(tp->t_outq.c_cc, move);
1584 error = q_to_b(&tp->t_outq, 0, move);
1585 if (error != move) {
1586 printf("%s: channel %d: error moving to "
1587 "transmit buf\n", cz->cz_dev.dv_xname,
1588 sc->sc_channel);
1589 move = error;
1590 }
1591 } else {
1592 #endif
1593 move = min(ndqb(&tp->t_outq, 0), move);
1594 bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh,
1595 address + put, tp->t_outq.c_cf, move);
1596 ndflush(&tp->t_outq, move);
1597 #ifdef HOSTRAMCODE
1598 }
1599 #endif
1600
1601 put = ((put + move) % size);
1602 done = 1;
1603 }
1604 if (done) {
1605 CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put);
1606 }
1607 return (done);
1608 }
1609
1610 int
1611 cztty_receive(struct cztty_softc *sc, struct tty *tp)
1612 {
1613 struct cz_softc *cz = CZTTY_CZ(sc);
1614 u_int get, put, size, address;
1615 int done = 0, ch;
1616
1617 size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE);
1618 get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET);
1619 put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT);
1620 address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR);
1621
1622 while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) {
1623 #ifdef HOSTRAMCODE
1624 if (hostram)
1625 ch = ((char *)fifoaddr)[get];
1626 } else {
1627 #endif
1628 ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh,
1629 address + get);
1630 #ifdef HOSTRAMCODE
1631 }
1632 #endif
1633 (*linesw[tp->t_line].l_rint)(ch, tp);
1634 get = (get + 1) % size;
1635 done = 1;
1636 }
1637 if (done) {
1638 CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get);
1639 }
1640 return (done);
1641 }
1642