Home | History | Annotate | Line # | Download | only in pci
eap.c revision 1.1
      1 /*	$NetBSD: eap.c,v 1.1 1998/05/01 21:54:33 augustss Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Author:      Lennart Augustsson <augustss (at) cs.chalmers.se>
      8  *
      9  * Debugging &  Andreas Gustafsson <gson (at) araneus.fi>
     10  *    testing:  Chuck Cranor       <chuck (at) maria.wustl.edu>
     11  *              Phil Nelson        <phil (at) cs.wwu.edu>
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *        This product includes software developed by the NetBSD
     24  *        Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*
     43  * Ensoniq AudoiPCI ES1370 + AK4531 driver.
     44  * Data sheets can be found at
     45  * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
     46  * and
     47  * http://206.214.38.151/pdf/4531.pdf
     48  */
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/device.h>
     55 
     56 #include <dev/pci/pcidevs.h>
     57 #include <dev/pci/pcivar.h>
     58 
     59 #include <sys/audioio.h>
     60 #include <dev/audio_if.h>
     61 #include <dev/mulaw.h>
     62 #include <dev/auconv.h>
     63 
     64 #include <machine/bus.h>
     65 
     66 /* NetBSD 1.3 backwards compatibility */
     67 #ifndef BUS_DMA_COHERENT
     68 #define BUS_DMA_COHERENT 0	/* XXX */
     69 struct        cfdriver eap_cd = {
     70       NULL, "eap", DV_DULL
     71 };
     72 #endif
     73 
     74 #define	PCI_CBIO		0x10
     75 
     76 #define EAP_ICSC		0x00    /* interrupt / chip select control */
     77 #define  EAP_SERR_DISABLE	0x00000001
     78 #define  EAP_CDC_EN		0x00000002
     79 #define  EAP_JYSTK_EN		0x00000004
     80 #define  EAP_UART_EN		0x00000008
     81 #define  EAP_ADC_EN		0x00000010
     82 #define  EAP_DAC2_EN		0x00000020
     83 #define  EAP_DAC1_EN		0x00000040
     84 #define  EAP_BREQ		0x00000080
     85 #define  EAP_XTCL0		0x00000100
     86 #define  EAP_M_CB		0x00000200
     87 #define  EAP_CCB_INTRM		0x00000400
     88 #define  EAP_DAC_SYNC		0x00000800
     89 #define  EAP_WTSRSEL		0x00003000
     90 #define   EAP_WTSRSEL_5		0x00000000
     91 #define   EAP_WTSRSEL_11	0x00001000
     92 #define   EAP_WTSRSEL_22	0x00002000
     93 #define   EAP_WTSRSEL_44	0x00003000
     94 #define  EAP_M_SBB		0x00004000
     95 #define  EAP_MSFMTSEL		0x00008000
     96 #define  EAP_SET_PCLKDIV(n)	(((n)&0x1fff)<<16)
     97 #define  EAP_GET_PCLKDIV(n)	(((n)>>16)&0x1fff)
     98 #define  EAP_PCLKBITS		0x1fff0000
     99 #define  EAP_XTCL1		0x40000000
    100 #define  EAP_ADC_STOP		0x80000000
    101 
    102 #define EAP_ICSS		0x04	/* interrupt / chip select status */
    103 #define  EAP_I_ADC		0x00000001
    104 #define  EAP_I_DAC2		0x00000002
    105 #define  EAP_I_DAC1		0x00000004
    106 #define  EAP_I_UART		0x00000008
    107 #define  EAP_I_MCCB		0x00000010
    108 #define  EAP_VC			0x00000060
    109 #define  EAP_CWRIP		0x00000100
    110 #define  EAP_CBUSY		0x00000200
    111 #define  EAP_CSTAT		0x00000400
    112 #define  EAP_INTR		0x80000000
    113 
    114 #define EAP_UART_DATA		0x08
    115 #define EAP_UART_STATUS		0x09
    116 #define EAP_UART_CONTROL	0x09
    117 #define EAP_MEMPAGE		0x0c
    118 #define EAP_CODEC		0x10
    119 #define  EAP_SET_CODEC(a,d)	(((a)<<8) | (d))
    120 
    121 #define EAP_SIC			0x20
    122 #define  EAP_P1_S_MB		0x00000001
    123 #define  EAP_P1_S_EB		0x00000002
    124 #define  EAP_P2_S_MB		0x00000004
    125 #define  EAP_P2_S_EB		0x00000008
    126 #define  EAP_R1_S_MB		0x00000010
    127 #define  EAP_R1_S_EB		0x00000020
    128 #define  EAP_R1P2_BITS		0x0000003c
    129 #define  EAP_P2_DAC_SEN		0x00000040
    130 #define  EAP_P1_SCT_RLD		0x00000080
    131 #define  EAP_P1_INTR_EN		0x00000100
    132 #define  EAP_P2_INTR_EN		0x00000200
    133 #define  EAP_R1_INTR_EN		0x00000400
    134 #define  EAP_P1_PAUSE		0x00000800
    135 #define  EAP_P2_PAUSE		0x00001000
    136 #define  EAP_P1_LOOP_SEL	0x00002000
    137 #define  EAP_P2_LOOP_SEL	0x00004000
    138 #define  EAP_R1_LOOP_SEL	0x00008000
    139 #define  EAP_SET_P2_ST_INC(i)	((i) << 16)
    140 #define  EAP_SET_P2_END_INC(i)	((i) << 19)
    141 #define  EAP_INC_BITS		0x003f0000
    142 
    143 #define EAP_DAC1_CSR		0x24
    144 #define EAP_DAC2_CSR		0x28
    145 #define EAP_ADC_CSR		0x2c
    146 #define  EAP_GET_CURRSAMP(r)	((r) >> 16)
    147 
    148 #define EAP_DAC_PAGE		0xc
    149 #define EAP_ADC_PAGE		0xd
    150 #define EAP_UART_PAGE1		0xe
    151 #define EAP_UART_PAGE2		0xf
    152 
    153 #define EAP_DAC1_ADDR		0x30
    154 #define EAP_DAC1_SIZE		0x34
    155 #define EAP_DAC2_ADDR		0x38
    156 #define EAP_DAC2_SIZE		0x3c
    157 #define EAP_ADC_ADDR		0x30
    158 #define EAP_ADC_SIZE		0x34
    159 #define  EAP_SET_SIZE(c,s)	(((c)<<16) | (s))
    160 
    161 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
    162 
    163 /* AK4531 registers */
    164 #define AK_MASTER_L		0x00
    165 #define AK_MASTER_R		0x01
    166 #define AK_VOICE_L		0x02
    167 #define AK_VOICE_R		0x03
    168 #define AK_FM_L			0x04
    169 #define AK_FM_R			0x05
    170 #define AK_CD_L			0x06
    171 #define AK_CD_R			0x07
    172 #define AK_LINE_L		0x08
    173 #define AK_LINE_R		0x09
    174 #define AK_AUX_L		0x0a
    175 #define AK_AUX_R		0x0b
    176 #define AK_MONO1		0x0c
    177 #define AK_MONO2		0x0d
    178 #define AK_MIC			0x0e
    179 #define AK_MONO			0x0f
    180 #define AK_OUT_MIXER1		0x10
    181 #define  AK_M_FM_L		0x40
    182 #define  AK_M_FM_R		0x20
    183 #define  AK_M_LINE_L		0x10
    184 #define  AK_M_LINE_R		0x08
    185 #define  AK_M_CD_L		0x04
    186 #define  AK_M_CD_R		0x02
    187 #define  AK_M_MIC		0x01
    188 #define AK_OUT_MIXER2		0x11
    189 #define  AK_M_AUX_L		0x20
    190 #define  AK_M_AUX_R		0x10
    191 #define  AK_M_VOICE_L		0x08
    192 #define  AK_M_VOICE_R		0x04
    193 #define  AK_M_MONO2		0x02
    194 #define  AK_M_MONO1		0x01
    195 #define AK_IN_MIXER1_L		0x12
    196 #define AK_IN_MIXER1_R		0x13
    197 #define AK_IN_MIXER2_L		0x14
    198 #define AK_IN_MIXER2_R		0x15
    199 #define  AK_M_TMIC		0x80
    200 #define  AK_M_TMONO1		0x40
    201 #define  AK_M_TMONO2		0x20
    202 #define  AK_M2_AUX_L		0x10
    203 #define  AK_M2_AUX_R		0x08
    204 #define  AK_M_VOICE		0x04
    205 #define  AK_M2_MONO2		0x02
    206 #define  AK_M2_MONO1		0x01
    207 #define AK_RESET		0x16
    208 #define  AK_PD			0x02
    209 #define  AK_NRST		0x01
    210 #define AK_CS			0x17
    211 #define AK_ADSEL		0x18
    212 #define AK_MGAIN		0x19
    213 
    214 #define AK_NPORTS 16
    215 
    216 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
    217 #define VOL_TO_ATT3(v) (0x07 - ((v) >> 5))
    218 /*#define VOL_TO_GAIN5(v) ((v) >> 3)*/
    219 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)/* why is it called gain? */
    220 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
    221 #define ATT3_TO_VOL(v) ((0x07 - (v)) << 5)
    222 /*#define GAIN5_TO_VOL(v) ((v) << 3)*/
    223 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
    224 #define VOL_0DB 200
    225 
    226 #define EAP_MASTER_VOL		0
    227 #define EAP_VOICE_VOL		1
    228 #define EAP_FM_VOL		2
    229 #define EAP_CD_VOL		3
    230 #define EAP_LINE_VOL		4
    231 #define EAP_AUX_VOL		5
    232 #define EAP_MIC_VOL		6
    233 #define	EAP_RECORD_SOURCE 	7
    234 #define EAP_OUTPUT_CLASS	8
    235 #define EAP_RECORD_CLASS	9
    236 #define EAP_INPUT_CLASS		10
    237 
    238 #define EAP_NDEVS		11
    239 
    240 
    241 #ifdef AUDIO_DEBUG
    242 #define DPRINTF(x)	if (eapdebug) printf x
    243 #define DPRINTFN(n,x)	if (eapdebug>(n)) printf x
    244 int	eapdebug = 0;
    245 #else
    246 #define DPRINTF(x)
    247 #define DPRINTFN(n,x)
    248 #endif
    249 
    250 #ifdef __BROKEN_INDIRECT_CONFIG
    251 int	eap_match __P((struct device *, void *, void *));
    252 #else
    253 int	eap_match __P((struct device *, struct cfdata *, void *));
    254 #endif
    255 void	eap_attach __P((struct device *, struct device *, void *));
    256 int	eap_intr __P((void *));
    257 
    258 struct eap_dma {
    259 	bus_dmamap_t map;
    260         caddr_t addr;
    261         bus_dma_segment_t segs[1];
    262         int nsegs;
    263         size_t size;
    264         struct eap_dma *next;
    265 };
    266 #define DMAADDR(map) ((map)->segs[0].ds_addr)
    267 #define KERNADDR(map) ((void *)((map)->addr))
    268 
    269 struct eap_softc {
    270 	struct device sc_dev;		/* base device */
    271 	void *sc_ih;			/* interrupt vectoring */
    272 	bus_space_tag_t iot;
    273 	bus_space_handle_t ioh;
    274 	bus_dma_tag_t sc_dmatag;	/* DMA tag */
    275 
    276         struct eap_dma *sc_dmas;
    277 
    278 	void	(*sc_pintr)(void *);	/* dma completion intr handler */
    279 	void	*sc_parg;		/* arg for sc_intr() */
    280 	char	sc_prun;
    281 
    282 	void	(*sc_rintr)(void *);	/* dma completion intr handler */
    283 	void	*sc_rarg;		/* arg for sc_intr() */
    284 	char	sc_rrun;
    285 
    286 	int	sc_sampsize;		/* bytes / sample */
    287 
    288 	u_char	sc_port[AK_NPORTS];	/* mirror of the hardware setting */
    289 	u_int	sc_record_source;	/* recording source mask */
    290 };
    291 
    292 int	eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
    293 int	eap_freemem __P((struct eap_softc *, struct eap_dma *));
    294 
    295 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
    296 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
    297 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
    298 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
    299 
    300 struct cfattach eap_ca = {
    301 	sizeof(struct eap_softc), eap_match, eap_attach
    302 };
    303 
    304 int	eap_open __P((void *, int));
    305 void	eap_close __P((void *));
    306 int	eap_query_encoding __P((void *, struct audio_encoding *));
    307 int	eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    308 int	eap_round_blocksize __P((void *, int));
    309 int	eap_dma_init_output __P((void *, void *, int));
    310 int	eap_dma_init_input __P((void *, void *, int));
    311 int	eap_dma_output __P((void *, void *, int, void (*)(void *), void*));
    312 int	eap_dma_input __P((void *, void *, int, void (*)(void *), void*));
    313 int	eap_halt_in_dma __P((void *));
    314 int	eap_halt_out_dma __P((void *));
    315 int	eap_getdev __P((void *, struct audio_device *));
    316 int	eap_mixer_set_port __P((void *, mixer_ctrl_t *));
    317 int	eap_mixer_get_port __P((void *, mixer_ctrl_t *));
    318 int	eap_query_devinfo __P((void *, mixer_devinfo_t *));
    319 void   *eap_malloc __P((void *, u_long, int, int));
    320 void	eap_free __P((void *, void *, int));
    321 u_long	eap_round __P((void *, u_long));
    322 int	eap_mappage __P((void *, void *, int, int));
    323 int	eap_get_props __P((void *));
    324 void	eap_write_codec __P((struct eap_softc *sc, int a, int d));
    325 void	eap_set_mixer __P((struct eap_softc *sc, int a, int d));
    326 
    327 struct audio_hw_if eap_hw_if = {
    328 	eap_open,
    329 	eap_close,
    330 	NULL,
    331 	eap_query_encoding,
    332 	eap_set_params,
    333 	eap_round_blocksize,
    334 	NULL,
    335 	eap_dma_init_output,
    336 	eap_dma_init_input,
    337 	eap_dma_output,
    338 	eap_dma_input,
    339 	eap_halt_out_dma,
    340 	eap_halt_in_dma,
    341 	NULL,
    342 	eap_getdev,
    343 	NULL,
    344 	eap_mixer_set_port,
    345 	eap_mixer_get_port,
    346 	eap_query_devinfo,
    347 	eap_malloc,
    348 	eap_free,
    349 	eap_round,
    350 	eap_mappage,
    351 	eap_get_props,
    352 };
    353 
    354 struct audio_device eap_device = {
    355 	"Ensoniq AudioPCI",
    356 	"",
    357 	"eap"
    358 };
    359 
    360 int
    361 eap_match(parent, match, aux)
    362 	struct device *parent;
    363 #ifdef __BROKEN_INDIRECT_CONFIG
    364 	void *match;
    365 #else
    366 	struct cfdata *match;
    367 #endif
    368 	void *aux;
    369 {
    370 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
    371 
    372 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
    373 		return (0);
    374 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
    375 		return (0);
    376 
    377 	return (1);
    378 }
    379 
    380 void
    381 eap_write_codec(sc, a, d)
    382 	struct eap_softc *sc;
    383 	int a, d;
    384 {
    385 	int icss;
    386 
    387 	do {
    388 	        icss = EREAD4(sc, EAP_ICSS);
    389 		DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
    390 	} while(icss & EAP_CWRIP);
    391 	EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
    392 	/* delay(1000); */
    393 }
    394 
    395 void
    396 eap_attach(parent, self, aux)
    397 	struct device *parent;
    398 	struct device *self;
    399 	void *aux;
    400 {
    401 	struct eap_softc *sc = (struct eap_softc *)self;
    402 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    403 	pci_chipset_tag_t pc = pa->pa_pc;
    404 	char const *intrstr;
    405 	pci_intr_handle_t ih;
    406 	pcireg_t csr;
    407 	char devinfo[256];
    408 	mixer_ctrl_t ctl;
    409 
    410 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
    411 	printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
    412 
    413 	/* Map I/O register */
    414 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
    415 	      &sc->iot, &sc->ioh, NULL, NULL)) {
    416 		printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
    417 		return;
    418 	}
    419 
    420 	sc->sc_dmatag = pa->pa_dmat;
    421 
    422 	/* Enable the device. */
    423 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    424 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    425 		       csr | PCI_COMMAND_MASTER_ENABLE);
    426 
    427 	/* Map and establish the interrupt. */
    428 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    429 	    pa->pa_intrline, &ih)) {
    430 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    431 		return;
    432 	}
    433 	intrstr = pci_intr_string(pc, ih);
    434 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
    435 	if (sc->sc_ih == NULL) {
    436 		printf("%s: couldn't establish interrupt",
    437 		    sc->sc_dev.dv_xname);
    438 		if (intrstr != NULL)
    439 			printf(" at %s", intrstr);
    440 		printf("\n");
    441 		return;
    442 	}
    443 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    444 
    445 	/* Enable interrupts and looping mode. */
    446         EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
    447         EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
    448 
    449 	eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
    450 	eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST);	/* normal operation */
    451 	eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
    452 	/* Enable all relevant mixer switches. */
    453 	eap_write_codec(sc, AK_OUT_MIXER1,
    454 			AK_M_FM_L | AK_M_FM_R |
    455 			AK_M_LINE_L | AK_M_LINE_R |
    456 			AK_M_CD_L | AK_M_CD_R);
    457 	eap_write_codec(sc, AK_OUT_MIXER2,
    458 			AK_M_AUX_L | AK_M_AUX_R |
    459 			AK_M_VOICE_L | AK_M_VOICE_R |
    460 			AK_M_MONO2 | AK_M_MONO1);
    461 #if 0
    462 	eap_write_codec(sc, AK_IN_MIXER1_L,
    463 			AK_M_FM_L | AK_M_LINE_L | AK_M_CD_L | AK_M_MIC);
    464 	eap_write_codec(sc, AK_IN_MIXER1_R,
    465 			AK_M_FM_R | AK_M_LINE_R | AK_M_CD_R | AK_M_MIC);
    466 	eap_write_codec(sc, AK_IN_MIXER2_L,
    467 			AK_M_TMIC | AK_M_TMONO1 | AK_M_TMONO2 | AK_M2_AUX_L |
    468 			AK_M_VOICE | AK_M2_MONO1 | AK_M2_MONO2);
    469 	eap_write_codec(sc, AK_IN_MIXER2_R,
    470 			AK_M_TMIC | AK_M_TMONO1 | AK_M_TMONO2 | AK_M2_AUX_R |
    471 			AK_M_VOICE | AK_M2_MONO1 | AK_M2_MONO2);
    472 #endif
    473 	ctl.type = AUDIO_MIXER_VALUE;
    474 	ctl.un.value.num_channels = 1;
    475 	for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
    476 		ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
    477 		eap_mixer_set_port(sc, &ctl);
    478 	}
    479 	ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
    480 	eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
    481 	ctl.dev = EAP_RECORD_SOURCE;
    482 	ctl.type = AUDIO_MIXER_SET;
    483 	ctl.un.mask = 1 << EAP_MIC_VOL;
    484 	eap_mixer_set_port(sc, &ctl);
    485 
    486         audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
    487 }
    488 
    489 int
    490 eap_intr(p)
    491 	void *p;
    492 {
    493 	struct eap_softc *sc = p;
    494 	u_int32_t intr, sic;
    495 
    496         intr = EREAD4(sc, EAP_ICSS);
    497         if (!(intr & EAP_INTR))
    498         	return (0);
    499 	sic = EREAD4(sc, EAP_SIC);
    500 	DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
    501         if (intr & EAP_I_ADC) {
    502 		EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
    503 		EWRITE4(sc, EAP_SIC, sic);
    504                 if (sc->sc_rintr)
    505 	        	sc->sc_rintr(sc->sc_rarg);
    506         }
    507         if (intr & EAP_I_DAC2) {
    508 		EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
    509 		EWRITE4(sc, EAP_SIC, sic);
    510                 if (sc->sc_pintr)
    511 	        	sc->sc_pintr(sc->sc_parg);
    512         }
    513 	return (1);
    514 }
    515 
    516 int
    517 eap_allocmem(sc, size, align, p)
    518 	struct eap_softc *sc;
    519 	size_t size;
    520 	size_t align;
    521         struct eap_dma *p;
    522 {
    523 	int error;
    524 
    525 	p->size = size;
    526 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    527 				 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
    528 				 &p->nsegs, BUS_DMA_NOWAIT);
    529 	if (error)
    530 		return (error);
    531 
    532 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    533 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    534 	if (error)
    535 		goto free;
    536 
    537 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    538 				  0, BUS_DMA_NOWAIT, &p->map);
    539 	if (error)
    540 		goto unmap;
    541 
    542 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    543 				BUS_DMA_NOWAIT);
    544 	if (error)
    545 		goto destroy;
    546 	return (0);
    547 
    548 destroy:
    549 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    550 unmap:
    551 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    552 free:
    553 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    554 	return (error);
    555 }
    556 
    557 int
    558 eap_freemem(sc, p)
    559 	struct eap_softc *sc;
    560         struct eap_dma *p;
    561 {
    562 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    563 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    564 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    565 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    566 	return (0);
    567 }
    568 
    569 int
    570 eap_open(addr, flags)
    571 	void *addr;
    572 	int flags;
    573 {
    574 	struct eap_softc *sc = addr;
    575 
    576         DPRINTF(("eap_open: sc=%p\n", sc));
    577 
    578         sc->sc_pintr = 0;
    579         sc->sc_rintr = 0;
    580 
    581         return (0);
    582 }
    583 
    584 /*
    585  * Close function is called at splaudio().
    586  */
    587 void
    588 eap_close(addr)
    589 	void *addr;
    590 {
    591 	struct eap_softc *sc = addr;
    592 
    593         eap_halt_in_dma(sc);
    594         eap_halt_out_dma(sc);
    595 
    596         sc->sc_pintr = 0;
    597         sc->sc_rintr = 0;
    598 }
    599 
    600 int
    601 eap_query_encoding(addr, fp)
    602 	void *addr;
    603 	struct audio_encoding *fp;
    604 {
    605 	switch (fp->index) {
    606 	case 0:
    607 		strcpy(fp->name, AudioEulinear);
    608 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    609 		fp->precision = 8;
    610 		fp->flags = 0;
    611 		return (0);
    612 	case 1:
    613 		strcpy(fp->name, AudioEmulaw);
    614 		fp->encoding = AUDIO_ENCODING_ULAW;
    615 		fp->precision = 8;
    616 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    617 		return (0);
    618 	case 2:
    619 		strcpy(fp->name, AudioEalaw);
    620 		fp->encoding = AUDIO_ENCODING_ALAW;
    621 		fp->precision = 8;
    622 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    623 		return (0);
    624 	case 3:
    625 		strcpy(fp->name, AudioEslinear);
    626 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    627 		fp->precision = 8;
    628 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    629 		return (0);
    630         case 4:
    631 		strcpy(fp->name, AudioEslinear_le);
    632 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    633 		fp->precision = 16;
    634 		fp->flags = 0;
    635 		return (0);
    636 	case 5:
    637 		strcpy(fp->name, AudioEulinear_le);
    638 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    639 		fp->precision = 16;
    640 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    641 		return (0);
    642 	case 6:
    643 		strcpy(fp->name, AudioEslinear_be);
    644 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    645 		fp->precision = 16;
    646 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    647 		return (0);
    648 	case 7:
    649 		strcpy(fp->name, AudioEulinear_be);
    650 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    651 		fp->precision = 16;
    652 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    653 		return (0);
    654 	default:
    655 		return (EINVAL);
    656 	}
    657 }
    658 
    659 int
    660 eap_set_params(addr, setmode, usemode, p, r)
    661 	void *addr;
    662 	int setmode, usemode;
    663 	struct audio_params *p, *r;
    664 {
    665 	struct eap_softc *sc = addr;
    666 	void (*pswcode) __P((void *, u_char *buf, int cnt));
    667 	void (*rswcode) __P((void *, u_char *buf, int cnt));
    668         u_int32_t mode, div;
    669 
    670 
    671         pswcode = rswcode = 0;
    672         switch (p->encoding) {
    673         case AUDIO_ENCODING_SLINEAR_BE:
    674         	if (p->precision == 16)
    675                 	rswcode = pswcode = swap_bytes;
    676 		else
    677 			pswcode = rswcode = change_sign8;
    678 		break;
    679         case AUDIO_ENCODING_SLINEAR_LE:
    680         	if (p->precision != 16)
    681 			pswcode = rswcode = change_sign8;
    682         	break;
    683         case AUDIO_ENCODING_ULINEAR_BE:
    684         	if (p->precision == 16) {
    685 			pswcode = swap_bytes_change_sign16;
    686 			rswcode = change_sign16_swap_bytes;
    687 		}
    688 		break;
    689         case AUDIO_ENCODING_ULINEAR_LE:
    690         	if (p->precision == 16)
    691 			pswcode = rswcode = change_sign16;
    692         	break;
    693         case AUDIO_ENCODING_ULAW:
    694         	pswcode = mulaw_to_ulinear8;
    695                 rswcode = ulinear8_to_mulaw;
    696                 break;
    697         case AUDIO_ENCODING_ALAW:
    698                 pswcode = alaw_to_ulinear8;
    699                 rswcode = ulinear8_to_alaw;
    700                 break;
    701         default:
    702         	return (EINVAL);
    703         }
    704 	if (p->precision == 16)
    705 		mode = EAP_P2_S_EB | EAP_R1_S_EB;
    706 	else
    707 		mode = 0;
    708         if (p->channels == 2)
    709         	mode |= EAP_P2_S_MB | EAP_R1_S_MB;
    710 	else if (p->channels != 1)
    711 		return (EINVAL);
    712         if (p->sample_rate < 4000 || p->sample_rate > 50000)
    713         	return (EINVAL);
    714 
    715         /* XXX should sampsize be *2 if stereo? */
    716 	sc->sc_sampsize = p->precision / 8 * p->channels; /* bytes / sample */
    717         p->sw_code = pswcode;
    718         r->sw_code = rswcode;
    719 
    720         /* Set the encoding */
    721         mode |= EREAD4(sc, EAP_SIC) & ~(EAP_R1P2_BITS | EAP_INC_BITS);
    722 	mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(sc->sc_sampsize);
    723         EWRITE4(sc, EAP_SIC, mode);
    724 	DPRINTFN(2, ("eap_set_params: set SIC = 0x%08x\n", mode));
    725 
    726         /* Set the speed */
    727 	DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
    728 		     EREAD4(sc, EAP_ICSC)));
    729 	div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
    730         div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / p->sample_rate);
    731 	div |= EAP_CCB_INTRM;
    732         EWRITE4(sc, EAP_ICSC, div);
    733 	DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
    734 
    735         return (0);
    736 }
    737 
    738 int
    739 eap_round_blocksize(addr, blk)
    740 	void *addr;
    741 	int blk;
    742 {
    743 	return (blk & -16);	/* keep good alignment */
    744 }
    745 
    746 int
    747 eap_dma_init_input(addr, buf, cc)
    748 	void *addr;
    749 	void *buf;
    750 	int cc;
    751 {
    752 	struct eap_softc *sc = addr;
    753 	struct eap_dma *p;
    754 
    755 	DPRINTF(("eap_dma_init_input: dma start loop input addr=%p cc=%d\n", buf, cc));
    756         for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
    757 		;
    758 	if (!p) {
    759 		printf("eap_dma_init_input: bad addr %p\n", buf);
    760 		return (EINVAL);
    761 	}
    762 	EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
    763 	EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
    764 	EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
    765 	DPRINTF(("eap_dma_init_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
    766 		 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
    767 	return (0);
    768 }
    769 
    770 int
    771 eap_dma_init_output(addr, buf, cc)
    772 	void *addr;
    773 	void *buf;
    774 	int cc;
    775 {
    776 	struct eap_softc *sc = addr;
    777 	struct eap_dma *p;
    778 
    779 	DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc));
    780         for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
    781 		;
    782 	if (!p) {
    783 		printf("eap_dma_init_output: bad addr %p\n", buf);
    784 		return (EINVAL);
    785 	}
    786 	EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
    787 	EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
    788 	EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
    789 	DPRINTF(("eap_dma_init_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
    790 		 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
    791 	return (0);
    792 }
    793 
    794 int
    795 eap_dma_output(addr, p, cc, intr, arg)
    796 	void *addr;
    797 	void *p;
    798 	int cc;
    799 	void (*intr) __P((void *));
    800 	void *arg;
    801 {
    802 	struct eap_softc *sc = addr;
    803 	u_int32_t mode;
    804 
    805 	DPRINTFN(sc->sc_prun ? 5 : 1,
    806                  ("eap_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n",
    807                   addr, p, cc, intr, arg));
    808 	sc->sc_pintr = intr;
    809 	sc->sc_parg = arg;
    810 	if (!sc->sc_prun) {
    811 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
    812 	        if (sc->sc_sampsize == 0) {
    813         		printf("eap_dma_output: sampsize == 0\n");
    814                         return EINVAL;
    815                 }
    816 #endif
    817 		EWRITE2(sc, EAP_DAC2_CSR, cc / sc->sc_sampsize - 1);
    818 		DPRINTFN(1, ("eap_dma_output: set DAC2_CSR = %d\n",
    819 			     cc / sc->sc_sampsize - 1));
    820 		DPRINTFN(1, ("eap_dma_output: old ICSC = 0x%08x\n",
    821 			     EREAD4(sc, EAP_ICSC)));
    822 		mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
    823 		EWRITE4(sc, EAP_ICSC, mode);
    824 		mode |= EAP_DAC2_EN;
    825 		EWRITE4(sc, EAP_ICSC, mode);
    826 		DPRINTFN(1, ("eap_dma_output: set ICSC = 0x%08x\n", mode));
    827 		sc->sc_prun = 1;
    828 	}
    829         return (0);
    830 }
    831 
    832 int
    833 eap_dma_input(addr, p, cc, intr, arg)
    834 	void *addr;
    835 	void *p;
    836 	int cc;
    837 	void (*intr) __P((void *));
    838 	void *arg;
    839 {
    840 	struct eap_softc *sc = addr;
    841 	u_int32_t mode;
    842 
    843 	DPRINTFN(1, ("eap_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
    844 		     addr, p, cc, intr, arg));
    845 	sc->sc_rintr = intr;
    846 	sc->sc_rarg = arg;
    847 	if (!sc->sc_rrun) {
    848 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
    849 	        if (sc->sc_sampsize == 0) {
    850         		printf("eap_dma_input: sampsize == 0\n");
    851                         return EINVAL;
    852                 }
    853 #endif
    854 		EWRITE2(sc, EAP_ADC_CSR, cc / sc->sc_sampsize - 1);
    855 		mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
    856 		EWRITE4(sc, EAP_ICSC, mode);
    857 		mode |= EAP_ADC_EN;
    858 		EWRITE4(sc, EAP_ICSC, mode);
    859 		DPRINTFN(1, ("eap_dma_input: set ICSC = 0x%08x\n", mode));
    860 		sc->sc_rrun = 1;
    861 	}
    862         return (0);
    863 }
    864 
    865 int
    866 eap_halt_out_dma(addr)
    867 	void *addr;
    868 {
    869 	struct eap_softc *sc = addr;
    870 	u_int32_t mode;
    871 
    872         DPRINTF(("eap: eap_halt_out_dma\n"));
    873 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
    874 	EWRITE4(sc, EAP_ICSC, mode);
    875 	sc->sc_prun = 0;
    876         return (0);
    877 }
    878 
    879 int
    880 eap_halt_in_dma(addr)
    881 	void *addr;
    882 {
    883 	struct eap_softc *sc = addr;
    884 	u_int32_t mode;
    885 
    886         DPRINTF(("eap: eap_halt_in_dma\n"));
    887 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
    888 	EWRITE4(sc, EAP_ICSC, mode);
    889 	sc->sc_rrun = 0;
    890         return (0);
    891 }
    892 
    893 int
    894 eap_getdev(addr, retp)
    895 	void *addr;
    896         struct audio_device *retp;
    897 {
    898 	*retp = eap_device;
    899         return (0);
    900 }
    901 
    902 void
    903 eap_set_mixer(sc, a, d)
    904 	struct eap_softc *sc;
    905         int a, d;
    906 {
    907 	eap_write_codec(sc, a, d);
    908         DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
    909 }
    910 
    911 
    912 int
    913 eap_mixer_set_port(addr, cp)
    914 	void *addr;
    915 	mixer_ctrl_t *cp;
    916 {
    917 	struct eap_softc *sc = addr;
    918 	int lval, rval, l, r, la, ra;
    919 	int l1, r1, l2, r2, m;
    920 
    921 	if (cp->dev == EAP_RECORD_SOURCE) {
    922 		if (cp->type != AUDIO_MIXER_SET)
    923 			return (EINVAL);
    924 		m = sc->sc_record_source = cp->un.mask;
    925 		l1 = l2 = r1 = r2 = 0;
    926 		if (m & (1 << EAP_VOICE_VOL))
    927 			l2 |= AK_M_VOICE_L, r2 |= AK_M_VOICE_R;
    928 		if (m & (1 << EAP_FM_VOL))
    929 			l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
    930 		if (m & (1 << EAP_CD_VOL))
    931 			l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
    932 		if (m & (1 << EAP_LINE_VOL))
    933 			l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
    934 		if (m & (1 << EAP_AUX_VOL))
    935 			l2 |= AK_M_AUX_L, r2 |= AK_M_AUX_R;
    936 		if (m & (1 << EAP_MIC_VOL))
    937 			l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
    938 		eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
    939 		eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
    940 		eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
    941 		eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
    942 		return (0);
    943 	}
    944 	if (cp->type != AUDIO_MIXER_VALUE)
    945 		return (EINVAL);
    946 	if (cp->un.value.num_channels == 1)
    947 		lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
    948 	else if (cp->un.value.num_channels == 2) {
    949 		lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
    950 		rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
    951 	} else
    952 		return (EINVAL);
    953 	ra = -1;
    954 	switch (cp->dev) {
    955 	case EAP_MASTER_VOL:
    956 		l = VOL_TO_ATT5(lval);
    957 		r = VOL_TO_ATT5(rval);
    958 		la = AK_MASTER_L;
    959 		ra = AK_MASTER_R;
    960 		break;
    961 	case EAP_MIC_VOL:
    962 		if (cp->un.value.num_channels != 1)
    963 			return (EINVAL);
    964 		la = AK_MIC;
    965 		goto lr;
    966 	case EAP_VOICE_VOL:
    967 		la = AK_VOICE_L;
    968 		ra = AK_VOICE_R;
    969 		goto lr;
    970 	case EAP_FM_VOL:
    971 		la = AK_FM_L;
    972 		ra = AK_FM_R;
    973 		goto lr;
    974 	case EAP_CD_VOL:
    975 		la = AK_CD_L;
    976 		ra = AK_CD_R;
    977 		goto lr;
    978 	case EAP_LINE_VOL:
    979 		la = AK_LINE_L;
    980 		ra = AK_LINE_R;
    981 		goto lr;
    982 	case EAP_AUX_VOL:
    983 		la = AK_AUX_L;
    984 		ra = AK_AUX_R;
    985 	lr:
    986 		l = VOL_TO_GAIN5(lval);
    987 		r = VOL_TO_GAIN5(rval);
    988 		break;
    989 	default:
    990 		return (EINVAL);
    991 	}
    992 	eap_set_mixer(sc, la, l);
    993 	sc->sc_port[la] = l;
    994 	if (ra >= 0) {
    995 		eap_set_mixer(sc, ra, r);
    996 		sc->sc_port[ra] = r;
    997 	}
    998 	return (0);
    999 }
   1000 
   1001 int
   1002 eap_mixer_get_port(addr, cp)
   1003 	void *addr;
   1004 	mixer_ctrl_t *cp;
   1005 {
   1006 	struct eap_softc *sc = addr;
   1007 	int la, ra, l, r;
   1008 
   1009 	switch (cp->dev) {
   1010 	case EAP_RECORD_SOURCE:
   1011 		cp->un.mask = sc->sc_record_source;
   1012 		return (0);
   1013 	case EAP_MASTER_VOL:
   1014 		l = ATT3_TO_VOL(sc->sc_port[AK_MASTER_L]);
   1015 		r = ATT3_TO_VOL(sc->sc_port[AK_MASTER_R]);
   1016 		break;
   1017 	case EAP_MIC_VOL:
   1018 		if (cp->un.value.num_channels != 1)
   1019 			return (EINVAL);
   1020 		la = ra = AK_MIC;
   1021 		goto lr;
   1022 	case EAP_VOICE_VOL:
   1023 		la = AK_VOICE_L;
   1024 		ra = AK_VOICE_R;
   1025 		goto lr;
   1026 	case EAP_FM_VOL:
   1027 		la = AK_FM_L;
   1028 		ra = AK_FM_R;
   1029 		goto lr;
   1030 	case EAP_CD_VOL:
   1031 		la = AK_CD_L;
   1032 		ra = AK_CD_R;
   1033 		goto lr;
   1034 	case EAP_LINE_VOL:
   1035 		la = AK_LINE_L;
   1036 		ra = AK_LINE_R;
   1037 		goto lr;
   1038 	case EAP_AUX_VOL:
   1039 		la = AK_AUX_L;
   1040 		ra = AK_AUX_R;
   1041 	lr:
   1042 		l = GAIN5_TO_VOL(sc->sc_port[la]);
   1043 		r = GAIN5_TO_VOL(sc->sc_port[ra]);
   1044 		break;
   1045 	default:
   1046 		return (EINVAL);
   1047 	}
   1048 	if (cp->un.value.num_channels == 1)
   1049 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
   1050 	else if (cp->un.value.num_channels == 2) {
   1051 		cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]  = l;
   1052 		cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   1053 	}
   1054 	return (0);
   1055 }
   1056 
   1057 #define AudioNaux	"aux"
   1058 
   1059 int
   1060 eap_query_devinfo(addr, dip)
   1061 	void *addr;
   1062 	mixer_devinfo_t *dip;
   1063 {
   1064 	switch (dip->index) {
   1065 	case EAP_MASTER_VOL:
   1066 		dip->type = AUDIO_MIXER_VALUE;
   1067 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1068 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1069 		strcpy(dip->label.name, AudioNmaster);
   1070 		dip->un.v.num_channels = 2;
   1071 		strcpy(dip->un.v.units.name, AudioNvolume);
   1072 		return (0);
   1073 	case EAP_VOICE_VOL:
   1074 		dip->type = AUDIO_MIXER_VALUE;
   1075 		dip->mixer_class = EAP_INPUT_CLASS;
   1076 		dip->prev = AUDIO_MIXER_LAST;
   1077 		dip->next = AUDIO_MIXER_LAST;
   1078 		strcpy(dip->label.name, AudioNdac);
   1079 		dip->un.v.num_channels = 2;
   1080 		strcpy(dip->un.v.units.name, AudioNvolume);
   1081 		return (0);
   1082 	case EAP_FM_VOL:
   1083 		dip->type = AUDIO_MIXER_VALUE;
   1084 		dip->mixer_class = EAP_INPUT_CLASS;
   1085 		dip->prev = AUDIO_MIXER_LAST;
   1086 		dip->next = AUDIO_MIXER_LAST;
   1087 		strcpy(dip->label.name, AudioNfmsynth);
   1088 		dip->un.v.num_channels = 2;
   1089 		strcpy(dip->un.v.units.name, AudioNvolume);
   1090 		return (0);
   1091 	case EAP_CD_VOL:
   1092 		dip->type = AUDIO_MIXER_VALUE;
   1093 		dip->mixer_class = EAP_INPUT_CLASS;
   1094 		dip->prev = AUDIO_MIXER_LAST;
   1095 		dip->next = AUDIO_MIXER_LAST;
   1096 		strcpy(dip->label.name, AudioNcd);
   1097 		dip->un.v.num_channels = 2;
   1098 		strcpy(dip->un.v.units.name, AudioNvolume);
   1099 		return (0);
   1100 	case EAP_LINE_VOL:
   1101 		dip->type = AUDIO_MIXER_VALUE;
   1102 		dip->mixer_class = EAP_INPUT_CLASS;
   1103 		dip->prev = AUDIO_MIXER_LAST;
   1104 		dip->next = AUDIO_MIXER_LAST;
   1105 		strcpy(dip->label.name, AudioNline);
   1106 		dip->un.v.num_channels = 2;
   1107 		strcpy(dip->un.v.units.name, AudioNvolume);
   1108 		return (0);
   1109 	case EAP_AUX_VOL:
   1110 		dip->type = AUDIO_MIXER_VALUE;
   1111 		dip->mixer_class = EAP_INPUT_CLASS;
   1112 		dip->prev = AUDIO_MIXER_LAST;
   1113 		dip->next = AUDIO_MIXER_LAST;
   1114 		strcpy(dip->label.name, AudioNaux);
   1115 		dip->un.v.num_channels = 2;
   1116 		strcpy(dip->un.v.units.name, AudioNvolume);
   1117 		return (0);
   1118 	case EAP_MIC_VOL:
   1119 		dip->type = AUDIO_MIXER_VALUE;
   1120 		dip->mixer_class = EAP_INPUT_CLASS;
   1121 		dip->prev = AUDIO_MIXER_LAST;
   1122 		dip->next = AUDIO_MIXER_LAST;
   1123 		strcpy(dip->label.name, AudioNmicrophone);
   1124 		dip->un.v.num_channels = 1;
   1125 		strcpy(dip->un.v.units.name, AudioNvolume);
   1126 		return (0);
   1127 	case EAP_RECORD_SOURCE:
   1128 		dip->mixer_class = EAP_RECORD_CLASS;
   1129 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1130 		strcpy(dip->label.name, AudioNsource);
   1131 		dip->type = AUDIO_MIXER_SET;
   1132 		dip->un.s.num_mem = 5;
   1133 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   1134 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
   1135 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
   1136 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
   1137 		strcpy(dip->un.s.member[2].label.name, AudioNline);
   1138 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
   1139 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   1140 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
   1141 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
   1142 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
   1143 		return (0);
   1144 	case EAP_OUTPUT_CLASS:
   1145 		dip->type = AUDIO_MIXER_CLASS;
   1146 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1147 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1148 		strcpy(dip->label.name, AudioCoutputs);
   1149 		return (0);
   1150 	case EAP_RECORD_CLASS:
   1151 		dip->type = AUDIO_MIXER_CLASS;
   1152 		dip->mixer_class = EAP_RECORD_CLASS;
   1153 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1154 		strcpy(dip->label.name, AudioCrecord);
   1155 		return (0);
   1156 	case EAP_INPUT_CLASS:
   1157 		dip->type = AUDIO_MIXER_CLASS;
   1158 		dip->mixer_class = EAP_INPUT_CLASS;
   1159 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1160 		strcpy(dip->label.name, AudioCinputs);
   1161 		return (0);
   1162 	}
   1163 	return (ENXIO);
   1164 }
   1165 
   1166 void *
   1167 eap_malloc(addr, size, pool, flags)
   1168 	void *addr;
   1169 	u_long size;
   1170 	int pool;
   1171 	int flags;
   1172 {
   1173 	struct eap_softc *sc = addr;
   1174         struct eap_dma *p;
   1175         int error;
   1176 
   1177         p = malloc(sizeof(*p), pool, flags);
   1178         if (!p)
   1179                 return (0);
   1180         error = eap_allocmem(sc, size, 16, p);
   1181         if (error) {
   1182                 free(p, pool);
   1183         	return (0);
   1184         }
   1185         p->next = sc->sc_dmas;
   1186         sc->sc_dmas = p;
   1187 	return (KERNADDR(p));
   1188 }
   1189 
   1190 void
   1191 eap_free(addr, ptr, pool)
   1192 	void *addr;
   1193 	void *ptr;
   1194 	int pool;
   1195 {
   1196 	struct eap_softc *sc = addr;
   1197         struct eap_dma **p;
   1198 
   1199         for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
   1200                 if (KERNADDR(*p) == ptr) {
   1201                         eap_freemem(sc, *p);
   1202                         *p = (*p)->next;
   1203                         free(*p, pool);
   1204                         return;
   1205                 }
   1206         }
   1207 }
   1208 
   1209 u_long
   1210 eap_round(addr, size)
   1211 	void *addr;
   1212 	u_long size;
   1213 {
   1214 	return (size);
   1215 }
   1216 
   1217 int
   1218 eap_mappage(addr, mem, off, prot)
   1219 	void *addr;
   1220         void *mem;
   1221         int off;
   1222 	int prot;
   1223 {
   1224 	struct eap_softc *sc = addr;
   1225         struct eap_dma *p;
   1226 
   1227         for (p = sc->sc_dmas; p && KERNADDR(p) != addr; p = p->next)
   1228 		;
   1229 	if (!p)
   1230 		return (-1);
   1231 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1232 				off, prot, BUS_DMA_WAITOK));
   1233 }
   1234 
   1235 int
   1236 eap_get_props(addr)
   1237 	void *addr;
   1238 {
   1239 	return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
   1240 }
   1241