Home | History | Annotate | Line # | Download | only in pci
eap.c revision 1.10
      1 /*	$NetBSD: eap.c,v 1.10 1998/08/09 22:11:48 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Author:      Lennart Augustsson <augustss (at) cs.chalmers.se>
      8  *		Charles Hannum     <mycroft (at) netbsd.org>
      9  *
     10  * Debugging:   Andreas Gustafsson <gson (at) araneus.fi>
     11  * Testing:     Chuck Cranor       <chuck (at) maria.wustl.edu>
     12  *              Phil Nelson        <phil (at) cs.wwu.edu>
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *        This product includes software developed by the NetBSD
     25  *        Foundation, Inc. and its contributors.
     26  * 4. Neither the name of The NetBSD Foundation nor the names of its
     27  *    contributors may be used to endorse or promote products derived
     28  *    from this software without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     31  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     32  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     33  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     34  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     35  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     36  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     37  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     38  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     40  * POSSIBILITY OF SUCH DAMAGE.
     41  */
     42 
     43 /*
     44  * Ensoniq AudoiPCI ES1370 + AK4531 driver.
     45  * Data sheets can be found at
     46  * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
     47  * and
     48  * http://206.214.38.151/pdf/4531.pdf
     49  */
     50 
     51 #include <sys/param.h>
     52 #include <sys/systm.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/device.h>
     56 
     57 #include <dev/pci/pcidevs.h>
     58 #include <dev/pci/pcivar.h>
     59 
     60 #include <sys/audioio.h>
     61 #include <dev/audio_if.h>
     62 #include <dev/mulaw.h>
     63 #include <dev/auconv.h>
     64 
     65 #include <machine/bus.h>
     66 
     67 #define	PCI_CBIO		0x10
     68 
     69 #define EAP_ICSC		0x00    /* interrupt / chip select control */
     70 #define  EAP_SERR_DISABLE	0x00000001
     71 #define  EAP_CDC_EN		0x00000002
     72 #define  EAP_JYSTK_EN		0x00000004
     73 #define  EAP_UART_EN		0x00000008
     74 #define  EAP_ADC_EN		0x00000010
     75 #define  EAP_DAC2_EN		0x00000020
     76 #define  EAP_DAC1_EN		0x00000040
     77 #define  EAP_BREQ		0x00000080
     78 #define  EAP_XTCL0		0x00000100
     79 #define  EAP_M_CB		0x00000200
     80 #define  EAP_CCB_INTRM		0x00000400
     81 #define  EAP_DAC_SYNC		0x00000800
     82 #define  EAP_WTSRSEL		0x00003000
     83 #define   EAP_WTSRSEL_5		0x00000000
     84 #define   EAP_WTSRSEL_11	0x00001000
     85 #define   EAP_WTSRSEL_22	0x00002000
     86 #define   EAP_WTSRSEL_44	0x00003000
     87 #define  EAP_M_SBB		0x00004000
     88 #define  EAP_MSFMTSEL		0x00008000
     89 #define  EAP_SET_PCLKDIV(n)	(((n)&0x1fff)<<16)
     90 #define  EAP_GET_PCLKDIV(n)	(((n)>>16)&0x1fff)
     91 #define  EAP_PCLKBITS		0x1fff0000
     92 #define  EAP_XTCL1		0x40000000
     93 #define  EAP_ADC_STOP		0x80000000
     94 
     95 #define EAP_ICSS		0x04	/* interrupt / chip select status */
     96 #define  EAP_I_ADC		0x00000001
     97 #define  EAP_I_DAC2		0x00000002
     98 #define  EAP_I_DAC1		0x00000004
     99 #define  EAP_I_UART		0x00000008
    100 #define  EAP_I_MCCB		0x00000010
    101 #define  EAP_VC			0x00000060
    102 #define  EAP_CWRIP		0x00000100
    103 #define  EAP_CBUSY		0x00000200
    104 #define  EAP_CSTAT		0x00000400
    105 #define  EAP_INTR		0x80000000
    106 
    107 #define EAP_UART_DATA		0x08
    108 #define EAP_UART_STATUS		0x09
    109 #define EAP_UART_CONTROL	0x09
    110 #define EAP_MEMPAGE		0x0c
    111 #define EAP_CODEC		0x10
    112 #define  EAP_SET_CODEC(a,d)	(((a)<<8) | (d))
    113 
    114 #define EAP_SIC			0x20
    115 #define  EAP_P1_S_MB		0x00000001
    116 #define  EAP_P1_S_EB		0x00000002
    117 #define  EAP_P2_S_MB		0x00000004
    118 #define  EAP_P2_S_EB		0x00000008
    119 #define  EAP_R1_S_MB		0x00000010
    120 #define  EAP_R1_S_EB		0x00000020
    121 #define  EAP_P2_DAC_SEN		0x00000040
    122 #define  EAP_P1_SCT_RLD		0x00000080
    123 #define  EAP_P1_INTR_EN		0x00000100
    124 #define  EAP_P2_INTR_EN		0x00000200
    125 #define  EAP_R1_INTR_EN		0x00000400
    126 #define  EAP_P1_PAUSE		0x00000800
    127 #define  EAP_P2_PAUSE		0x00001000
    128 #define  EAP_P1_LOOP_SEL	0x00002000
    129 #define  EAP_P2_LOOP_SEL	0x00004000
    130 #define  EAP_R1_LOOP_SEL	0x00008000
    131 #define  EAP_SET_P2_ST_INC(i)	((i) << 16)
    132 #define  EAP_SET_P2_END_INC(i)	((i) << 19)
    133 #define  EAP_INC_BITS		0x003f0000
    134 
    135 #define EAP_DAC1_CSR		0x24
    136 #define EAP_DAC2_CSR		0x28
    137 #define EAP_ADC_CSR		0x2c
    138 #define  EAP_GET_CURRSAMP(r)	((r) >> 16)
    139 
    140 #define EAP_DAC_PAGE		0xc
    141 #define EAP_ADC_PAGE		0xd
    142 #define EAP_UART_PAGE1		0xe
    143 #define EAP_UART_PAGE2		0xf
    144 
    145 #define EAP_DAC1_ADDR		0x30
    146 #define EAP_DAC1_SIZE		0x34
    147 #define EAP_DAC2_ADDR		0x38
    148 #define EAP_DAC2_SIZE		0x3c
    149 #define EAP_ADC_ADDR		0x30
    150 #define EAP_ADC_SIZE		0x34
    151 #define  EAP_SET_SIZE(c,s)	(((c)<<16) | (s))
    152 
    153 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
    154 
    155 /* AK4531 registers */
    156 #define AK_MASTER_L		0x00
    157 #define AK_MASTER_R		0x01
    158 #define AK_VOICE_L		0x02
    159 #define AK_VOICE_R		0x03
    160 #define AK_FM_L			0x04
    161 #define AK_FM_R			0x05
    162 #define AK_CD_L			0x06
    163 #define AK_CD_R			0x07
    164 #define AK_LINE_L		0x08
    165 #define AK_LINE_R		0x09
    166 #define AK_AUX_L		0x0a
    167 #define AK_AUX_R		0x0b
    168 #define AK_MONO1		0x0c
    169 #define AK_MONO2		0x0d
    170 #define AK_MIC			0x0e
    171 #define AK_MONO			0x0f
    172 #define AK_OUT_MIXER1		0x10
    173 #define  AK_M_FM_L		0x40
    174 #define  AK_M_FM_R		0x20
    175 #define  AK_M_LINE_L		0x10
    176 #define  AK_M_LINE_R		0x08
    177 #define  AK_M_CD_L		0x04
    178 #define  AK_M_CD_R		0x02
    179 #define  AK_M_MIC		0x01
    180 #define AK_OUT_MIXER2		0x11
    181 #define  AK_M_AUX_L		0x20
    182 #define  AK_M_AUX_R		0x10
    183 #define  AK_M_VOICE_L		0x08
    184 #define  AK_M_VOICE_R		0x04
    185 #define  AK_M_MONO2		0x02
    186 #define  AK_M_MONO1		0x01
    187 #define AK_IN_MIXER1_L		0x12
    188 #define AK_IN_MIXER1_R		0x13
    189 #define AK_IN_MIXER2_L		0x14
    190 #define AK_IN_MIXER2_R		0x15
    191 #define  AK_M_TMIC		0x80
    192 #define  AK_M_TMONO1		0x40
    193 #define  AK_M_TMONO2		0x20
    194 #define  AK_M2_AUX_L		0x10
    195 #define  AK_M2_AUX_R		0x08
    196 #define  AK_M_VOICE		0x04
    197 #define  AK_M2_MONO2		0x02
    198 #define  AK_M2_MONO1		0x01
    199 #define AK_RESET		0x16
    200 #define  AK_PD			0x02
    201 #define  AK_NRST		0x01
    202 #define AK_CS			0x17
    203 #define AK_ADSEL		0x18
    204 #define AK_MGAIN		0x19
    205 
    206 #define AK_NPORTS 16
    207 
    208 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
    209 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
    210 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
    211 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
    212 #define VOL_0DB 200
    213 
    214 #define EAP_MASTER_VOL		0
    215 #define EAP_VOICE_VOL		1
    216 #define EAP_FM_VOL		2
    217 #define EAP_CD_VOL		3
    218 #define EAP_LINE_VOL		4
    219 #define EAP_AUX_VOL		5
    220 #define EAP_MIC_VOL		6
    221 #define	EAP_RECORD_SOURCE 	7
    222 #define EAP_OUTPUT_SELECT	8
    223 #define EAP_OUTPUT_CLASS	9
    224 #define EAP_RECORD_CLASS	10
    225 #define EAP_INPUT_CLASS		11
    226 
    227 #ifdef AUDIO_DEBUG
    228 #define DPRINTF(x)	if (eapdebug) printf x
    229 #define DPRINTFN(n,x)	if (eapdebug>(n)) printf x
    230 int	eapdebug = 0;
    231 #else
    232 #define DPRINTF(x)
    233 #define DPRINTFN(n,x)
    234 #endif
    235 
    236 int	eap_match __P((struct device *, struct cfdata *, void *));
    237 void	eap_attach __P((struct device *, struct device *, void *));
    238 int	eap_intr __P((void *));
    239 
    240 struct eap_dma {
    241 	bus_dmamap_t map;
    242 	caddr_t addr;
    243 	bus_dma_segment_t segs[1];
    244 	int nsegs;
    245 	size_t size;
    246 	struct eap_dma *next;
    247 };
    248 #define DMAADDR(map) ((map)->segs[0].ds_addr)
    249 #define KERNADDR(map) ((void *)((map)->addr))
    250 
    251 struct eap_softc {
    252 	struct device sc_dev;		/* base device */
    253 	void *sc_ih;			/* interrupt vectoring */
    254 	bus_space_tag_t iot;
    255 	bus_space_handle_t ioh;
    256 	bus_dma_tag_t sc_dmatag;	/* DMA tag */
    257 
    258 	struct eap_dma *sc_dmas;
    259 
    260 	void	(*sc_pintr)(void *);	/* dma completion intr handler */
    261 	void	*sc_parg;		/* arg for sc_intr() */
    262 #ifdef DIAGNOSTIC
    263 	char	sc_prun;
    264 #endif
    265 
    266 	void	(*sc_rintr)(void *);	/* dma completion intr handler */
    267 	void	*sc_rarg;		/* arg for sc_intr() */
    268 #ifdef DIAGNOSTIC
    269 	char	sc_rrun;
    270 #endif
    271 
    272 	u_char	sc_port[AK_NPORTS];	/* mirror of the hardware setting */
    273 	u_int	sc_record_source;	/* recording source mask */
    274 	u_int	sc_output_source;	/* output source mask */
    275 };
    276 
    277 int	eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
    278 int	eap_freemem __P((struct eap_softc *, struct eap_dma *));
    279 
    280 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
    281 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
    282 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
    283 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
    284 
    285 struct cfattach eap_ca = {
    286 	sizeof(struct eap_softc), eap_match, eap_attach
    287 };
    288 
    289 int	eap_open __P((void *, int));
    290 void	eap_close __P((void *));
    291 int	eap_query_encoding __P((void *, struct audio_encoding *));
    292 int	eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    293 int	eap_round_blocksize __P((void *, int));
    294 int	eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
    295 	    void *, struct audio_params *));
    296 int	eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
    297 	    void *, struct audio_params *));
    298 int	eap_halt_output __P((void *));
    299 int	eap_halt_input __P((void *));
    300 int	eap_getdev __P((void *, struct audio_device *));
    301 int	eap_mixer_set_port __P((void *, mixer_ctrl_t *));
    302 int	eap_mixer_get_port __P((void *, mixer_ctrl_t *));
    303 int	eap_query_devinfo __P((void *, mixer_devinfo_t *));
    304 void   *eap_malloc __P((void *, u_long, int, int));
    305 void	eap_free __P((void *, void *, int));
    306 u_long	eap_round __P((void *, u_long));
    307 int	eap_mappage __P((void *, void *, int, int));
    308 int	eap_get_props __P((void *));
    309 void	eap_write_codec __P((struct eap_softc *sc, int a, int d));
    310 void	eap_set_mixer __P((struct eap_softc *sc, int a, int d));
    311 
    312 struct audio_hw_if eap_hw_if = {
    313 	eap_open,
    314 	eap_close,
    315 	NULL,
    316 	eap_query_encoding,
    317 	eap_set_params,
    318 	eap_round_blocksize,
    319 	NULL,
    320 	NULL,
    321 	NULL,
    322 	NULL,
    323 	NULL,
    324 	eap_halt_output,
    325 	eap_halt_input,
    326 	NULL,
    327 	eap_getdev,
    328 	NULL,
    329 	eap_mixer_set_port,
    330 	eap_mixer_get_port,
    331 	eap_query_devinfo,
    332 	eap_malloc,
    333 	eap_free,
    334 	eap_round,
    335 	eap_mappage,
    336 	eap_get_props,
    337 	eap_trigger_output,
    338 	eap_trigger_input,
    339 };
    340 
    341 struct audio_device eap_device = {
    342 	"Ensoniq AudioPCI",
    343 	"",
    344 	"eap"
    345 };
    346 
    347 int
    348 eap_match(parent, match, aux)
    349 	struct device *parent;
    350 	struct cfdata *match;
    351 	void *aux;
    352 {
    353 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
    354 
    355 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
    356 		return (0);
    357 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
    358 		return (0);
    359 
    360 	return (1);
    361 }
    362 
    363 void
    364 eap_write_codec(sc, a, d)
    365 	struct eap_softc *sc;
    366 	int a, d;
    367 {
    368 	int icss;
    369 
    370 	do {
    371 		icss = EREAD4(sc, EAP_ICSS);
    372 		DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
    373 	} while(icss & EAP_CWRIP);
    374 	EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
    375 }
    376 
    377 void
    378 eap_attach(parent, self, aux)
    379 	struct device *parent;
    380 	struct device *self;
    381 	void *aux;
    382 {
    383 	struct eap_softc *sc = (struct eap_softc *)self;
    384 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    385 	pci_chipset_tag_t pc = pa->pa_pc;
    386 	char const *intrstr;
    387 	pci_intr_handle_t ih;
    388 	pcireg_t csr;
    389 	char devinfo[256];
    390 	mixer_ctrl_t ctl;
    391 
    392 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
    393 	printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
    394 
    395 	/* Map I/O register */
    396 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
    397 	      &sc->iot, &sc->ioh, NULL, NULL)) {
    398 		printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
    399 		return;
    400 	}
    401 
    402 	sc->sc_dmatag = pa->pa_dmat;
    403 
    404 	/* Enable the device. */
    405 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    406 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    407 		       csr | PCI_COMMAND_MASTER_ENABLE);
    408 
    409 	/* Map and establish the interrupt. */
    410 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    411 	    pa->pa_intrline, &ih)) {
    412 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    413 		return;
    414 	}
    415 	intrstr = pci_intr_string(pc, ih);
    416 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
    417 	if (sc->sc_ih == NULL) {
    418 		printf("%s: couldn't establish interrupt",
    419 		    sc->sc_dev.dv_xname);
    420 		if (intrstr != NULL)
    421 			printf(" at %s", intrstr);
    422 		printf("\n");
    423 		return;
    424 	}
    425 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    426 
    427 	/* Enable interrupts and looping mode. */
    428 	EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
    429 	EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
    430 
    431 	eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
    432 	eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST);	/* normal operation */
    433 	eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
    434 
    435 	/* Enable all relevant mixer switches. */
    436 	ctl.dev = EAP_OUTPUT_SELECT;
    437 	ctl.type = AUDIO_MIXER_SET;
    438 	ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
    439 	    1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
    440 	eap_mixer_set_port(sc, &ctl);
    441 
    442 	ctl.type = AUDIO_MIXER_VALUE;
    443 	ctl.un.value.num_channels = 1;
    444 	for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
    445 		ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
    446 		eap_mixer_set_port(sc, &ctl);
    447 	}
    448 	ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
    449 	eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
    450 	ctl.dev = EAP_RECORD_SOURCE;
    451 	ctl.type = AUDIO_MIXER_SET;
    452 	ctl.un.mask = 1 << EAP_MIC_VOL;
    453 	eap_mixer_set_port(sc, &ctl);
    454 
    455 	audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
    456 }
    457 
    458 int
    459 eap_intr(p)
    460 	void *p;
    461 {
    462 	struct eap_softc *sc = p;
    463 	u_int32_t intr, sic;
    464 
    465 	intr = EREAD4(sc, EAP_ICSS);
    466 	if (!(intr & EAP_INTR))
    467 		return (0);
    468 	sic = EREAD4(sc, EAP_SIC);
    469 	DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
    470 	if (intr & EAP_I_ADC) {
    471 		/*
    472 		 * XXX This is a hack!
    473 		 * The EAP chip sometimes generates the recording interrupt
    474 		 * while it is still transferring the data.  To make sure
    475 		 * it has all arrived we busy wait until the count is right.
    476 		 * The transfer we are waiting for is 8 longwords.
    477 		 */
    478 		int s, nw, n;
    479 		EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
    480 		s = EREAD4(sc, EAP_ADC_CSR);
    481 		nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
    482 		n = 0;
    483 		while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
    484 			delay(10);
    485 			if (++n > 100) {
    486 				printf("eapintr: dma fix timeout");
    487 				break;
    488 			}
    489 		}
    490 		/* Continue with normal interrupt handling. */
    491 		EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
    492 		EWRITE4(sc, EAP_SIC, sic);
    493 		if (sc->sc_rintr)
    494 			sc->sc_rintr(sc->sc_rarg);
    495 	}
    496 	if (intr & EAP_I_DAC2) {
    497 		EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
    498 		EWRITE4(sc, EAP_SIC, sic);
    499 		if (sc->sc_pintr)
    500 			sc->sc_pintr(sc->sc_parg);
    501 	}
    502 	return (1);
    503 }
    504 
    505 int
    506 eap_allocmem(sc, size, align, p)
    507 	struct eap_softc *sc;
    508 	size_t size;
    509 	size_t align;
    510 	struct eap_dma *p;
    511 {
    512 	int error;
    513 
    514 	p->size = size;
    515 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    516 				 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
    517 				 &p->nsegs, BUS_DMA_NOWAIT);
    518 	if (error)
    519 		return (error);
    520 
    521 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    522 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    523 	if (error)
    524 		goto free;
    525 
    526 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    527 				  0, BUS_DMA_NOWAIT, &p->map);
    528 	if (error)
    529 		goto unmap;
    530 
    531 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    532 				BUS_DMA_NOWAIT);
    533 	if (error)
    534 		goto destroy;
    535 	return (0);
    536 
    537 destroy:
    538 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    539 unmap:
    540 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    541 free:
    542 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    543 	return (error);
    544 }
    545 
    546 int
    547 eap_freemem(sc, p)
    548 	struct eap_softc *sc;
    549 	struct eap_dma *p;
    550 {
    551 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    552 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    553 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    554 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    555 	return (0);
    556 }
    557 
    558 int
    559 eap_open(addr, flags)
    560 	void *addr;
    561 	int flags;
    562 {
    563 
    564 	return (0);
    565 }
    566 
    567 /*
    568  * Close function is called at splaudio().
    569  */
    570 void
    571 eap_close(addr)
    572 	void *addr;
    573 {
    574 	struct eap_softc *sc = addr;
    575 
    576 	eap_halt_output(sc);
    577 	eap_halt_input(sc);
    578 
    579 	sc->sc_pintr = 0;
    580 	sc->sc_rintr = 0;
    581 }
    582 
    583 int
    584 eap_query_encoding(addr, fp)
    585 	void *addr;
    586 	struct audio_encoding *fp;
    587 {
    588 	switch (fp->index) {
    589 	case 0:
    590 		strcpy(fp->name, AudioEulinear);
    591 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    592 		fp->precision = 8;
    593 		fp->flags = 0;
    594 		return (0);
    595 	case 1:
    596 		strcpy(fp->name, AudioEmulaw);
    597 		fp->encoding = AUDIO_ENCODING_ULAW;
    598 		fp->precision = 8;
    599 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    600 		return (0);
    601 	case 2:
    602 		strcpy(fp->name, AudioEalaw);
    603 		fp->encoding = AUDIO_ENCODING_ALAW;
    604 		fp->precision = 8;
    605 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    606 		return (0);
    607 	case 3:
    608 		strcpy(fp->name, AudioEslinear);
    609 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    610 		fp->precision = 8;
    611 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    612 		return (0);
    613 	case 4:
    614 		strcpy(fp->name, AudioEslinear_le);
    615 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    616 		fp->precision = 16;
    617 		fp->flags = 0;
    618 		return (0);
    619 	case 5:
    620 		strcpy(fp->name, AudioEulinear_le);
    621 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    622 		fp->precision = 16;
    623 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    624 		return (0);
    625 	case 6:
    626 		strcpy(fp->name, AudioEslinear_be);
    627 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    628 		fp->precision = 16;
    629 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    630 		return (0);
    631 	case 7:
    632 		strcpy(fp->name, AudioEulinear_be);
    633 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    634 		fp->precision = 16;
    635 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    636 		return (0);
    637 	default:
    638 		return (EINVAL);
    639 	}
    640 }
    641 
    642 int
    643 eap_set_params(addr, setmode, usemode, play, rec)
    644 	void *addr;
    645 	int setmode, usemode;
    646 	struct audio_params *play, *rec;
    647 {
    648 	struct eap_softc *sc = addr;
    649 	struct audio_params *p;
    650 	u_int32_t mode, div;
    651 
    652 	/*
    653 	 * This device only has one clock, so make the sample rates match.
    654 	 */
    655 	if (play->sample_rate != rec->sample_rate) {
    656 		if ((usemode | setmode) == AUMODE_PLAY)
    657 			rec->sample_rate = play->sample_rate;
    658 		else if ((usemode | setmode) == AUMODE_RECORD)
    659 			play->sample_rate = rec->sample_rate;
    660 		else
    661 			return (EINVAL);
    662 	}
    663 
    664 	for (mode = AUMODE_RECORD; mode != -1;
    665 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    666 		if ((setmode & mode) == 0)
    667 			continue;
    668 
    669 		p = mode == AUMODE_PLAY ? play : rec;
    670 
    671 		if (p->sample_rate < 4000 || p->sample_rate > 50000 ||
    672 		    (p->precision != 8 && p->precision != 16) ||
    673 		    (p->channels != 1 && p->channels != 2))
    674 			return (EINVAL);
    675 
    676 		p->factor = 1;
    677 		p->sw_code = 0;
    678 		switch (p->encoding) {
    679 		case AUDIO_ENCODING_SLINEAR_BE:
    680 			if (p->precision == 16)
    681 				p->sw_code = swap_bytes;
    682 			else
    683 				p->sw_code = change_sign8;
    684 			break;
    685 		case AUDIO_ENCODING_SLINEAR_LE:
    686 			if (p->precision != 16)
    687 				p->sw_code = change_sign8;
    688 			break;
    689 		case AUDIO_ENCODING_ULINEAR_BE:
    690 			if (p->precision == 16)
    691 				if (mode == AUMODE_PLAY)
    692 					p->sw_code = swap_bytes_change_sign16;
    693 				else
    694 					p->sw_code = change_sign16_swap_bytes;
    695 			break;
    696 		case AUDIO_ENCODING_ULINEAR_LE:
    697 			if (p->precision == 16)
    698 				p->sw_code = change_sign16;
    699 			break;
    700 		case AUDIO_ENCODING_ULAW:
    701 			if (mode == AUMODE_PLAY) {
    702 				p->factor = 2;
    703 				p->sw_code = mulaw_to_slinear16;
    704 			} else
    705 				p->sw_code = ulinear8_to_mulaw;
    706 			break;
    707 		case AUDIO_ENCODING_ALAW:
    708 			if (mode == AUMODE_PLAY) {
    709 				p->factor = 2;
    710 				p->sw_code = alaw_to_slinear16;
    711 			} else
    712 				p->sw_code = ulinear8_to_alaw;
    713 			break;
    714 		default:
    715 			return (EINVAL);
    716 		}
    717 	}
    718 
    719 	/* Set the speed */
    720 	DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
    721 		     EREAD4(sc, EAP_ICSC)));
    722 	div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
    723 	/*
    724 	 * XXX
    725 	 * The -2 isn't documented, but seemed to make the wall time match
    726 	 * what I expect.  - mycroft
    727 	 */
    728 	div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / play->sample_rate - 2);
    729 	div |= EAP_CCB_INTRM;
    730 	EWRITE4(sc, EAP_ICSC, div);
    731 	DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
    732 
    733 	return (0);
    734 }
    735 
    736 int
    737 eap_round_blocksize(addr, blk)
    738 	void *addr;
    739 	int blk;
    740 {
    741 	return (blk & -32);	/* keep good alignment */
    742 }
    743 
    744 int
    745 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
    746 	void *addr;
    747 	void *start, *end;
    748 	int blksize;
    749 	void (*intr) __P((void *));
    750 	void *arg;
    751 	struct audio_params *param;
    752 {
    753 	struct eap_softc *sc = addr;
    754 	struct eap_dma *p;
    755 	u_int32_t mode;
    756 	int sampshift;
    757 
    758 #ifdef DIAGNOSTIC
    759 	if (sc->sc_prun)
    760 		panic("eap_trigger_output: already running");
    761 	sc->sc_prun = 1;
    762 #endif
    763 
    764 	DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    765 	    addr, start, end, blksize, intr, arg));
    766 	sc->sc_pintr = intr;
    767 	sc->sc_parg = arg;
    768 
    769 	mode = EREAD4(sc, EAP_SIC) & ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
    770 	mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
    771 	sampshift = 0;
    772 	if (param->precision * param->factor == 16) {
    773 		mode |= EAP_P2_S_EB;
    774 		sampshift++;
    775 	}
    776 	if (param->channels == 2) {
    777 		mode |= EAP_P2_S_MB;
    778 		sampshift++;
    779 	}
    780 	EWRITE4(sc, EAP_SIC, mode);
    781 
    782 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    783 		;
    784 	if (!p) {
    785 		printf("eap_trigger_output: bad addr %p\n", start);
    786 		return (EINVAL);
    787 	}
    788 
    789 	DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
    790 		 (int)DMAADDR(p), EAP_SET_SIZE(0, ((end - start) >> 2) - 1)));
    791 	EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
    792 	EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
    793 	EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, ((end - start) >> 2) - 1));
    794 
    795 	EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
    796 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
    797 	EWRITE4(sc, EAP_ICSC, mode);
    798 	mode |= EAP_DAC2_EN;
    799 	EWRITE4(sc, EAP_ICSC, mode);
    800 	DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", mode));
    801 
    802 	return (0);
    803 }
    804 
    805 int
    806 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
    807 	void *addr;
    808 	void *start, *end;
    809 	int blksize;
    810 	void (*intr) __P((void *));
    811 	void *arg;
    812 	struct audio_params *param;
    813 {
    814 	struct eap_softc *sc = addr;
    815 	struct eap_dma *p;
    816 	u_int32_t mode;
    817 	int sampshift;
    818 
    819 #ifdef DIAGNOSTIC
    820 	if (sc->sc_rrun)
    821 		panic("eap_trigger_input: already running");
    822 	sc->sc_rrun = 1;
    823 #endif
    824 
    825 	DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    826 	    addr, start, end, blksize, intr, arg));
    827 	sc->sc_rintr = intr;
    828 	sc->sc_rarg = arg;
    829 
    830 	mode = EREAD4(sc, EAP_SIC) & ~(EAP_R1_S_EB | EAP_R1_S_MB);
    831 	sampshift = 0;
    832 	if (param->precision * param->factor == 16) {
    833 		mode |= EAP_R1_S_EB;
    834 		sampshift++;
    835 	}
    836 	if (param->channels == 2) {
    837 		mode |= EAP_R1_S_MB;
    838 		sampshift++;
    839 	}
    840 	EWRITE4(sc, EAP_SIC, mode);
    841 
    842 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    843 		;
    844 	if (!p) {
    845 		printf("eap_trigger_input: bad addr %p\n", start);
    846 		return (EINVAL);
    847 	}
    848 
    849 	DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
    850 		 (int)DMAADDR(p), EAP_SET_SIZE(0, ((end - start) >> 2) - 1)));
    851 	EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
    852 	EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
    853 	EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, ((end - start) >> 2) - 1));
    854 
    855 	EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
    856 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
    857 	EWRITE4(sc, EAP_ICSC, mode);
    858 	mode |= EAP_ADC_EN;
    859 	EWRITE4(sc, EAP_ICSC, mode);
    860 	DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", mode));
    861 
    862 	return (0);
    863 }
    864 
    865 int
    866 eap_halt_output(addr)
    867 	void *addr;
    868 {
    869 	struct eap_softc *sc = addr;
    870 	u_int32_t mode;
    871 
    872 	DPRINTF(("eap: eap_halt_output\n"));
    873 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
    874 	EWRITE4(sc, EAP_ICSC, mode);
    875 #ifdef DIAGNOSTIC
    876 	sc->sc_prun = 0;
    877 #endif
    878 	return (0);
    879 }
    880 
    881 int
    882 eap_halt_input(addr)
    883 	void *addr;
    884 {
    885 	struct eap_softc *sc = addr;
    886 	u_int32_t mode;
    887 
    888 	DPRINTF(("eap: eap_halt_input\n"));
    889 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
    890 	EWRITE4(sc, EAP_ICSC, mode);
    891 #ifdef DIAGNOSTIC
    892 	sc->sc_rrun = 0;
    893 #endif
    894 	return (0);
    895 }
    896 
    897 int
    898 eap_getdev(addr, retp)
    899 	void *addr;
    900 	struct audio_device *retp;
    901 {
    902 	*retp = eap_device;
    903 	return (0);
    904 }
    905 
    906 void
    907 eap_set_mixer(sc, a, d)
    908 	struct eap_softc *sc;
    909 	int a, d;
    910 {
    911 	eap_write_codec(sc, a, d);
    912 	DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
    913 }
    914 
    915 
    916 int
    917 eap_mixer_set_port(addr, cp)
    918 	void *addr;
    919 	mixer_ctrl_t *cp;
    920 {
    921 	struct eap_softc *sc = addr;
    922 	int lval, rval, l, r, la, ra;
    923 	int l1, r1, l2, r2, m, o1, o2;
    924 
    925 	if (cp->dev == EAP_RECORD_SOURCE) {
    926 		if (cp->type != AUDIO_MIXER_SET)
    927 			return (EINVAL);
    928 		m = sc->sc_record_source = cp->un.mask;
    929 		l1 = l2 = r1 = r2 = 0;
    930 		if (m & (1 << EAP_VOICE_VOL))
    931 			l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
    932 		if (m & (1 << EAP_FM_VOL))
    933 			l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
    934 		if (m & (1 << EAP_CD_VOL))
    935 			l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
    936 		if (m & (1 << EAP_LINE_VOL))
    937 			l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
    938 		if (m & (1 << EAP_AUX_VOL))
    939 			l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
    940 		if (m & (1 << EAP_MIC_VOL))
    941 			l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
    942 		eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
    943 		eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
    944 		eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
    945 		eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
    946 		return (0);
    947 	}
    948 	if (cp->dev == EAP_OUTPUT_SELECT) {
    949 		if (cp->type != AUDIO_MIXER_SET)
    950 			return (EINVAL);
    951 		m = sc->sc_output_source = cp->un.mask;
    952 		o1 = o2 = 0;
    953 		if (m & (1 << EAP_VOICE_VOL))
    954 			o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
    955 		if (m & (1 << EAP_FM_VOL))
    956 			o1 |= AK_M_FM_L | AK_M_FM_R;
    957 		if (m & (1 << EAP_CD_VOL))
    958 			o1 |= AK_M_CD_L | AK_M_CD_R;
    959 		if (m & (1 << EAP_LINE_VOL))
    960 			o1 |= AK_M_LINE_L | AK_M_LINE_R;
    961 		if (m & (1 << EAP_AUX_VOL))
    962 			o2 |= AK_M_AUX_L | AK_M_AUX_R;
    963 		if (m & (1 << EAP_MIC_VOL))
    964 			o1 |= AK_M_MIC;
    965 		eap_set_mixer(sc, AK_OUT_MIXER1, o1);
    966 		eap_set_mixer(sc, AK_OUT_MIXER2, o2);
    967 		return (0);
    968 	}
    969 	if (cp->type != AUDIO_MIXER_VALUE)
    970 		return (EINVAL);
    971 	if (cp->un.value.num_channels == 1)
    972 		lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
    973 	else if (cp->un.value.num_channels == 2) {
    974 		lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
    975 		rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
    976 	} else
    977 		return (EINVAL);
    978 	ra = -1;
    979 	switch (cp->dev) {
    980 	case EAP_MASTER_VOL:
    981 		l = VOL_TO_ATT5(lval);
    982 		r = VOL_TO_ATT5(rval);
    983 		la = AK_MASTER_L;
    984 		ra = AK_MASTER_R;
    985 		break;
    986 	case EAP_MIC_VOL:
    987 		if (cp->un.value.num_channels != 1)
    988 			return (EINVAL);
    989 		la = AK_MIC;
    990 		goto lr;
    991 	case EAP_VOICE_VOL:
    992 		la = AK_VOICE_L;
    993 		ra = AK_VOICE_R;
    994 		goto lr;
    995 	case EAP_FM_VOL:
    996 		la = AK_FM_L;
    997 		ra = AK_FM_R;
    998 		goto lr;
    999 	case EAP_CD_VOL:
   1000 		la = AK_CD_L;
   1001 		ra = AK_CD_R;
   1002 		goto lr;
   1003 	case EAP_LINE_VOL:
   1004 		la = AK_LINE_L;
   1005 		ra = AK_LINE_R;
   1006 		goto lr;
   1007 	case EAP_AUX_VOL:
   1008 		la = AK_AUX_L;
   1009 		ra = AK_AUX_R;
   1010 	lr:
   1011 		l = VOL_TO_GAIN5(lval);
   1012 		r = VOL_TO_GAIN5(rval);
   1013 		break;
   1014 	default:
   1015 		return (EINVAL);
   1016 	}
   1017 	eap_set_mixer(sc, la, l);
   1018 	sc->sc_port[la] = l;
   1019 	if (ra >= 0) {
   1020 		eap_set_mixer(sc, ra, r);
   1021 		sc->sc_port[ra] = r;
   1022 	}
   1023 	return (0);
   1024 }
   1025 
   1026 int
   1027 eap_mixer_get_port(addr, cp)
   1028 	void *addr;
   1029 	mixer_ctrl_t *cp;
   1030 {
   1031 	struct eap_softc *sc = addr;
   1032 	int la, ra, l, r;
   1033 
   1034 	switch (cp->dev) {
   1035 	case EAP_RECORD_SOURCE:
   1036 		cp->un.mask = sc->sc_record_source;
   1037 		return (0);
   1038 	case EAP_OUTPUT_SELECT:
   1039 		cp->un.mask = sc->sc_output_source;
   1040 		return (0);
   1041 	case EAP_MASTER_VOL:
   1042 		l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
   1043 		r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
   1044 		break;
   1045 	case EAP_MIC_VOL:
   1046 		if (cp->un.value.num_channels != 1)
   1047 			return (EINVAL);
   1048 		la = ra = AK_MIC;
   1049 		goto lr;
   1050 	case EAP_VOICE_VOL:
   1051 		la = AK_VOICE_L;
   1052 		ra = AK_VOICE_R;
   1053 		goto lr;
   1054 	case EAP_FM_VOL:
   1055 		la = AK_FM_L;
   1056 		ra = AK_FM_R;
   1057 		goto lr;
   1058 	case EAP_CD_VOL:
   1059 		la = AK_CD_L;
   1060 		ra = AK_CD_R;
   1061 		goto lr;
   1062 	case EAP_LINE_VOL:
   1063 		la = AK_LINE_L;
   1064 		ra = AK_LINE_R;
   1065 		goto lr;
   1066 	case EAP_AUX_VOL:
   1067 		la = AK_AUX_L;
   1068 		ra = AK_AUX_R;
   1069 	lr:
   1070 		l = GAIN5_TO_VOL(sc->sc_port[la]);
   1071 		r = GAIN5_TO_VOL(sc->sc_port[ra]);
   1072 		break;
   1073 	default:
   1074 		return (EINVAL);
   1075 	}
   1076 	if (cp->un.value.num_channels == 1)
   1077 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
   1078 	else if (cp->un.value.num_channels == 2) {
   1079 		cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]  = l;
   1080 		cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   1081 	}
   1082 	return (0);
   1083 }
   1084 
   1085 int
   1086 eap_query_devinfo(addr, dip)
   1087 	void *addr;
   1088 	mixer_devinfo_t *dip;
   1089 {
   1090 	switch (dip->index) {
   1091 	case EAP_MASTER_VOL:
   1092 		dip->type = AUDIO_MIXER_VALUE;
   1093 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1094 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1095 		strcpy(dip->label.name, AudioNmaster);
   1096 		dip->un.v.num_channels = 2;
   1097 		strcpy(dip->un.v.units.name, AudioNvolume);
   1098 		return (0);
   1099 	case EAP_VOICE_VOL:
   1100 		dip->type = AUDIO_MIXER_VALUE;
   1101 		dip->mixer_class = EAP_INPUT_CLASS;
   1102 		dip->prev = AUDIO_MIXER_LAST;
   1103 		dip->next = AUDIO_MIXER_LAST;
   1104 		strcpy(dip->label.name, AudioNdac);
   1105 		dip->un.v.num_channels = 2;
   1106 		strcpy(dip->un.v.units.name, AudioNvolume);
   1107 		return (0);
   1108 	case EAP_FM_VOL:
   1109 		dip->type = AUDIO_MIXER_VALUE;
   1110 		dip->mixer_class = EAP_INPUT_CLASS;
   1111 		dip->prev = AUDIO_MIXER_LAST;
   1112 		dip->next = AUDIO_MIXER_LAST;
   1113 		strcpy(dip->label.name, AudioNfmsynth);
   1114 		dip->un.v.num_channels = 2;
   1115 		strcpy(dip->un.v.units.name, AudioNvolume);
   1116 		return (0);
   1117 	case EAP_CD_VOL:
   1118 		dip->type = AUDIO_MIXER_VALUE;
   1119 		dip->mixer_class = EAP_INPUT_CLASS;
   1120 		dip->prev = AUDIO_MIXER_LAST;
   1121 		dip->next = AUDIO_MIXER_LAST;
   1122 		strcpy(dip->label.name, AudioNcd);
   1123 		dip->un.v.num_channels = 2;
   1124 		strcpy(dip->un.v.units.name, AudioNvolume);
   1125 		return (0);
   1126 	case EAP_LINE_VOL:
   1127 		dip->type = AUDIO_MIXER_VALUE;
   1128 		dip->mixer_class = EAP_INPUT_CLASS;
   1129 		dip->prev = AUDIO_MIXER_LAST;
   1130 		dip->next = AUDIO_MIXER_LAST;
   1131 		strcpy(dip->label.name, AudioNline);
   1132 		dip->un.v.num_channels = 2;
   1133 		strcpy(dip->un.v.units.name, AudioNvolume);
   1134 		return (0);
   1135 	case EAP_AUX_VOL:
   1136 		dip->type = AUDIO_MIXER_VALUE;
   1137 		dip->mixer_class = EAP_INPUT_CLASS;
   1138 		dip->prev = AUDIO_MIXER_LAST;
   1139 		dip->next = AUDIO_MIXER_LAST;
   1140 		strcpy(dip->label.name, AudioNaux);
   1141 		dip->un.v.num_channels = 2;
   1142 		strcpy(dip->un.v.units.name, AudioNvolume);
   1143 		return (0);
   1144 	case EAP_MIC_VOL:
   1145 		dip->type = AUDIO_MIXER_VALUE;
   1146 		dip->mixer_class = EAP_INPUT_CLASS;
   1147 		dip->prev = AUDIO_MIXER_LAST;
   1148 		dip->next = AUDIO_MIXER_LAST;
   1149 		strcpy(dip->label.name, AudioNmicrophone);
   1150 		dip->un.v.num_channels = 1;
   1151 		strcpy(dip->un.v.units.name, AudioNvolume);
   1152 		return (0);
   1153 	case EAP_RECORD_SOURCE:
   1154 		dip->mixer_class = EAP_RECORD_CLASS;
   1155 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1156 		strcpy(dip->label.name, AudioNsource);
   1157 		dip->type = AUDIO_MIXER_SET;
   1158 		dip->un.s.num_mem = 6;
   1159 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   1160 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
   1161 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
   1162 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
   1163 		strcpy(dip->un.s.member[2].label.name, AudioNline);
   1164 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
   1165 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   1166 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
   1167 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
   1168 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
   1169 		strcpy(dip->un.s.member[5].label.name, AudioNdac);
   1170 		dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
   1171 		return (0);
   1172 	case EAP_OUTPUT_SELECT:
   1173 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1174 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1175 		strcpy(dip->label.name, AudioNselect);
   1176 		dip->type = AUDIO_MIXER_SET;
   1177 		dip->un.s.num_mem = 6;
   1178 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   1179 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
   1180 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
   1181 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
   1182 		strcpy(dip->un.s.member[2].label.name, AudioNline);
   1183 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
   1184 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   1185 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
   1186 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
   1187 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
   1188 		strcpy(dip->un.s.member[5].label.name, AudioNdac);
   1189 		dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
   1190 		return (0);
   1191 	case EAP_OUTPUT_CLASS:
   1192 		dip->type = AUDIO_MIXER_CLASS;
   1193 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1194 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1195 		strcpy(dip->label.name, AudioCoutputs);
   1196 		return (0);
   1197 	case EAP_RECORD_CLASS:
   1198 		dip->type = AUDIO_MIXER_CLASS;
   1199 		dip->mixer_class = EAP_RECORD_CLASS;
   1200 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1201 		strcpy(dip->label.name, AudioCrecord);
   1202 		return (0);
   1203 	case EAP_INPUT_CLASS:
   1204 		dip->type = AUDIO_MIXER_CLASS;
   1205 		dip->mixer_class = EAP_INPUT_CLASS;
   1206 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1207 		strcpy(dip->label.name, AudioCinputs);
   1208 		return (0);
   1209 	}
   1210 	return (ENXIO);
   1211 }
   1212 
   1213 void *
   1214 eap_malloc(addr, size, pool, flags)
   1215 	void *addr;
   1216 	u_long size;
   1217 	int pool;
   1218 	int flags;
   1219 {
   1220 	struct eap_softc *sc = addr;
   1221 	struct eap_dma *p;
   1222 	int error;
   1223 
   1224 	p = malloc(sizeof(*p), pool, flags);
   1225 	if (!p)
   1226 		return (0);
   1227 	error = eap_allocmem(sc, size, 16, p);
   1228 	if (error) {
   1229 		free(p, pool);
   1230 		return (0);
   1231 	}
   1232 	p->next = sc->sc_dmas;
   1233 	sc->sc_dmas = p;
   1234 	return (KERNADDR(p));
   1235 }
   1236 
   1237 void
   1238 eap_free(addr, ptr, pool)
   1239 	void *addr;
   1240 	void *ptr;
   1241 	int pool;
   1242 {
   1243 	struct eap_softc *sc = addr;
   1244 	struct eap_dma **p;
   1245 
   1246 	for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
   1247 		if (KERNADDR(*p) == ptr) {
   1248 			eap_freemem(sc, *p);
   1249 			*p = (*p)->next;
   1250 			free(*p, pool);
   1251 			return;
   1252 		}
   1253 	}
   1254 }
   1255 
   1256 u_long
   1257 eap_round(addr, size)
   1258 	void *addr;
   1259 	u_long size;
   1260 {
   1261 	return (size);
   1262 }
   1263 
   1264 int
   1265 eap_mappage(addr, mem, off, prot)
   1266 	void *addr;
   1267 	void *mem;
   1268 	int off;
   1269 	int prot;
   1270 {
   1271 	struct eap_softc *sc = addr;
   1272 	struct eap_dma *p;
   1273 
   1274 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1275 		;
   1276 	if (!p)
   1277 		return (-1);
   1278 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1279 				off, prot, BUS_DMA_WAITOK));
   1280 }
   1281 
   1282 int
   1283 eap_get_props(addr)
   1284 	void *addr;
   1285 {
   1286 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   1287 }
   1288