eap.c revision 1.13 1 /* $NetBSD: eap.c,v 1.13 1998/08/12 18:55:03 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Author: Lennart Augustsson <augustss (at) cs.chalmers.se>
8 * Charles Hannum <mycroft (at) netbsd.org>
9 *
10 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
11 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
12 * Phil Nelson <phil (at) cs.wwu.edu>
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Ensoniq AudoiPCI ES1370 + AK4531 driver.
45 * Data sheets can be found at
46 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
47 * and
48 * http://206.214.38.151/pdf/4531.pdf
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/device.h>
56
57 #include <dev/pci/pcidevs.h>
58 #include <dev/pci/pcivar.h>
59
60 #include <sys/audioio.h>
61 #include <dev/audio_if.h>
62 #include <dev/mulaw.h>
63 #include <dev/auconv.h>
64
65 #include <machine/bus.h>
66
67 #define PCI_CBIO 0x10
68
69 #define EAP_ICSC 0x00 /* interrupt / chip select control */
70 #define EAP_SERR_DISABLE 0x00000001
71 #define EAP_CDC_EN 0x00000002
72 #define EAP_JYSTK_EN 0x00000004
73 #define EAP_UART_EN 0x00000008
74 #define EAP_ADC_EN 0x00000010
75 #define EAP_DAC2_EN 0x00000020
76 #define EAP_DAC1_EN 0x00000040
77 #define EAP_BREQ 0x00000080
78 #define EAP_XTCL0 0x00000100
79 #define EAP_M_CB 0x00000200
80 #define EAP_CCB_INTRM 0x00000400
81 #define EAP_DAC_SYNC 0x00000800
82 #define EAP_WTSRSEL 0x00003000
83 #define EAP_WTSRSEL_5 0x00000000
84 #define EAP_WTSRSEL_11 0x00001000
85 #define EAP_WTSRSEL_22 0x00002000
86 #define EAP_WTSRSEL_44 0x00003000
87 #define EAP_M_SBB 0x00004000
88 #define EAP_MSFMTSEL 0x00008000
89 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
90 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
91 #define EAP_PCLKBITS 0x1fff0000
92 #define EAP_XTCL1 0x40000000
93 #define EAP_ADC_STOP 0x80000000
94
95 #define EAP_ICSS 0x04 /* interrupt / chip select status */
96 #define EAP_I_ADC 0x00000001
97 #define EAP_I_DAC2 0x00000002
98 #define EAP_I_DAC1 0x00000004
99 #define EAP_I_UART 0x00000008
100 #define EAP_I_MCCB 0x00000010
101 #define EAP_VC 0x00000060
102 #define EAP_CWRIP 0x00000100
103 #define EAP_CBUSY 0x00000200
104 #define EAP_CSTAT 0x00000400
105 #define EAP_INTR 0x80000000
106
107 #define EAP_UART_DATA 0x08
108 #define EAP_UART_STATUS 0x09
109 #define EAP_UART_CONTROL 0x09
110 #define EAP_MEMPAGE 0x0c
111 #define EAP_CODEC 0x10
112 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
113
114 #define EAP_SIC 0x20
115 #define EAP_P1_S_MB 0x00000001
116 #define EAP_P1_S_EB 0x00000002
117 #define EAP_P2_S_MB 0x00000004
118 #define EAP_P2_S_EB 0x00000008
119 #define EAP_R1_S_MB 0x00000010
120 #define EAP_R1_S_EB 0x00000020
121 #define EAP_P2_DAC_SEN 0x00000040
122 #define EAP_P1_SCT_RLD 0x00000080
123 #define EAP_P1_INTR_EN 0x00000100
124 #define EAP_P2_INTR_EN 0x00000200
125 #define EAP_R1_INTR_EN 0x00000400
126 #define EAP_P1_PAUSE 0x00000800
127 #define EAP_P2_PAUSE 0x00001000
128 #define EAP_P1_LOOP_SEL 0x00002000
129 #define EAP_P2_LOOP_SEL 0x00004000
130 #define EAP_R1_LOOP_SEL 0x00008000
131 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
132 #define EAP_SET_P2_END_INC(i) ((i) << 19)
133 #define EAP_INC_BITS 0x003f0000
134
135 #define EAP_DAC1_CSR 0x24
136 #define EAP_DAC2_CSR 0x28
137 #define EAP_ADC_CSR 0x2c
138 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
139
140 #define EAP_DAC_PAGE 0xc
141 #define EAP_ADC_PAGE 0xd
142 #define EAP_UART_PAGE1 0xe
143 #define EAP_UART_PAGE2 0xf
144
145 #define EAP_DAC1_ADDR 0x30
146 #define EAP_DAC1_SIZE 0x34
147 #define EAP_DAC2_ADDR 0x38
148 #define EAP_DAC2_SIZE 0x3c
149 #define EAP_ADC_ADDR 0x30
150 #define EAP_ADC_SIZE 0x34
151 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
152
153 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
154
155 /* AK4531 registers */
156 #define AK_MASTER_L 0x00
157 #define AK_MASTER_R 0x01
158 #define AK_VOICE_L 0x02
159 #define AK_VOICE_R 0x03
160 #define AK_FM_L 0x04
161 #define AK_FM_R 0x05
162 #define AK_CD_L 0x06
163 #define AK_CD_R 0x07
164 #define AK_LINE_L 0x08
165 #define AK_LINE_R 0x09
166 #define AK_AUX_L 0x0a
167 #define AK_AUX_R 0x0b
168 #define AK_MONO1 0x0c
169 #define AK_MONO2 0x0d
170 #define AK_MIC 0x0e
171 #define AK_MONO 0x0f
172 #define AK_OUT_MIXER1 0x10
173 #define AK_M_FM_L 0x40
174 #define AK_M_FM_R 0x20
175 #define AK_M_LINE_L 0x10
176 #define AK_M_LINE_R 0x08
177 #define AK_M_CD_L 0x04
178 #define AK_M_CD_R 0x02
179 #define AK_M_MIC 0x01
180 #define AK_OUT_MIXER2 0x11
181 #define AK_M_AUX_L 0x20
182 #define AK_M_AUX_R 0x10
183 #define AK_M_VOICE_L 0x08
184 #define AK_M_VOICE_R 0x04
185 #define AK_M_MONO2 0x02
186 #define AK_M_MONO1 0x01
187 #define AK_IN_MIXER1_L 0x12
188 #define AK_IN_MIXER1_R 0x13
189 #define AK_IN_MIXER2_L 0x14
190 #define AK_IN_MIXER2_R 0x15
191 #define AK_M_TMIC 0x80
192 #define AK_M_TMONO1 0x40
193 #define AK_M_TMONO2 0x20
194 #define AK_M2_AUX_L 0x10
195 #define AK_M2_AUX_R 0x08
196 #define AK_M_VOICE 0x04
197 #define AK_M2_MONO2 0x02
198 #define AK_M2_MONO1 0x01
199 #define AK_RESET 0x16
200 #define AK_PD 0x02
201 #define AK_NRST 0x01
202 #define AK_CS 0x17
203 #define AK_ADSEL 0x18
204 #define AK_MGAIN 0x19
205
206 #define AK_NPORTS 16
207
208 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
209 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
210 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
211 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
212 #define VOL_0DB 200
213
214 #define EAP_MASTER_VOL 0
215 #define EAP_VOICE_VOL 1
216 #define EAP_FM_VOL 2
217 #define EAP_CD_VOL 3
218 #define EAP_LINE_VOL 4
219 #define EAP_AUX_VOL 5
220 #define EAP_MIC_VOL 6
221 #define EAP_RECORD_SOURCE 7
222 #define EAP_OUTPUT_SELECT 8
223 #define EAP_MIC_PREAMP 9
224 #define EAP_OUTPUT_CLASS 10
225 #define EAP_RECORD_CLASS 11
226 #define EAP_INPUT_CLASS 12
227
228 #ifdef AUDIO_DEBUG
229 #define DPRINTF(x) if (eapdebug) printf x
230 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
231 int eapdebug = 0;
232 #else
233 #define DPRINTF(x)
234 #define DPRINTFN(n,x)
235 #endif
236
237 int eap_match __P((struct device *, struct cfdata *, void *));
238 void eap_attach __P((struct device *, struct device *, void *));
239 int eap_intr __P((void *));
240
241 struct eap_dma {
242 bus_dmamap_t map;
243 caddr_t addr;
244 bus_dma_segment_t segs[1];
245 int nsegs;
246 size_t size;
247 struct eap_dma *next;
248 };
249 #define DMAADDR(map) ((map)->segs[0].ds_addr)
250 #define KERNADDR(map) ((void *)((map)->addr))
251
252 struct eap_softc {
253 struct device sc_dev; /* base device */
254 void *sc_ih; /* interrupt vectoring */
255 bus_space_tag_t iot;
256 bus_space_handle_t ioh;
257 bus_dma_tag_t sc_dmatag; /* DMA tag */
258
259 struct eap_dma *sc_dmas;
260
261 void (*sc_pintr)(void *); /* dma completion intr handler */
262 void *sc_parg; /* arg for sc_intr() */
263 #ifdef DIAGNOSTIC
264 char sc_prun;
265 #endif
266
267 void (*sc_rintr)(void *); /* dma completion intr handler */
268 void *sc_rarg; /* arg for sc_intr() */
269 #ifdef DIAGNOSTIC
270 char sc_rrun;
271 #endif
272
273 u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */
274 u_int sc_record_source; /* recording source mask */
275 u_int sc_output_source; /* output source mask */
276 u_int sc_mic_preamp;
277 };
278
279 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
280 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
281
282 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
283 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
284 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
285 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
286
287 struct cfattach eap_ca = {
288 sizeof(struct eap_softc), eap_match, eap_attach
289 };
290
291 int eap_open __P((void *, int));
292 void eap_close __P((void *));
293 int eap_query_encoding __P((void *, struct audio_encoding *));
294 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
295 int eap_round_blocksize __P((void *, int));
296 int eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
297 void *, struct audio_params *));
298 int eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
299 void *, struct audio_params *));
300 int eap_halt_output __P((void *));
301 int eap_halt_input __P((void *));
302 int eap_getdev __P((void *, struct audio_device *));
303 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
304 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
305 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
306 void *eap_malloc __P((void *, u_long, int, int));
307 void eap_free __P((void *, void *, int));
308 u_long eap_round __P((void *, u_long));
309 int eap_mappage __P((void *, void *, int, int));
310 int eap_get_props __P((void *));
311 void eap_write_codec __P((struct eap_softc *sc, int a, int d));
312 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
313
314 struct audio_hw_if eap_hw_if = {
315 eap_open,
316 eap_close,
317 NULL,
318 eap_query_encoding,
319 eap_set_params,
320 eap_round_blocksize,
321 NULL,
322 NULL,
323 NULL,
324 NULL,
325 NULL,
326 eap_halt_output,
327 eap_halt_input,
328 NULL,
329 eap_getdev,
330 NULL,
331 eap_mixer_set_port,
332 eap_mixer_get_port,
333 eap_query_devinfo,
334 eap_malloc,
335 eap_free,
336 eap_round,
337 eap_mappage,
338 eap_get_props,
339 eap_trigger_output,
340 eap_trigger_input,
341 };
342
343 struct audio_device eap_device = {
344 "Ensoniq AudioPCI",
345 "",
346 "eap"
347 };
348
349 int
350 eap_match(parent, match, aux)
351 struct device *parent;
352 struct cfdata *match;
353 void *aux;
354 {
355 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
356
357 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
358 return (0);
359 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
360 return (0);
361
362 return (1);
363 }
364
365 void
366 eap_write_codec(sc, a, d)
367 struct eap_softc *sc;
368 int a, d;
369 {
370 int icss;
371
372 do {
373 icss = EREAD4(sc, EAP_ICSS);
374 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
375 } while(icss & EAP_CWRIP);
376 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
377 }
378
379 void
380 eap_attach(parent, self, aux)
381 struct device *parent;
382 struct device *self;
383 void *aux;
384 {
385 struct eap_softc *sc = (struct eap_softc *)self;
386 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
387 pci_chipset_tag_t pc = pa->pa_pc;
388 char const *intrstr;
389 pci_intr_handle_t ih;
390 pcireg_t csr;
391 char devinfo[256];
392 mixer_ctrl_t ctl;
393
394 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
395 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
396
397 /* Map I/O register */
398 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
399 &sc->iot, &sc->ioh, NULL, NULL)) {
400 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
401 return;
402 }
403
404 sc->sc_dmatag = pa->pa_dmat;
405
406 /* Enable the device. */
407 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
408 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
409 csr | PCI_COMMAND_MASTER_ENABLE);
410
411 /* Map and establish the interrupt. */
412 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
413 pa->pa_intrline, &ih)) {
414 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
415 return;
416 }
417 intrstr = pci_intr_string(pc, ih);
418 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
419 if (sc->sc_ih == NULL) {
420 printf("%s: couldn't establish interrupt",
421 sc->sc_dev.dv_xname);
422 if (intrstr != NULL)
423 printf(" at %s", intrstr);
424 printf("\n");
425 return;
426 }
427 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
428
429 /* Enable interrupts and looping mode. */
430 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
431 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
432
433 eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
434 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */
435 eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
436
437 /* Enable all relevant mixer switches. */
438 ctl.dev = EAP_OUTPUT_SELECT;
439 ctl.type = AUDIO_MIXER_SET;
440 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
441 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
442 eap_mixer_set_port(sc, &ctl);
443
444 ctl.type = AUDIO_MIXER_VALUE;
445 ctl.un.value.num_channels = 1;
446 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
447 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
448 eap_mixer_set_port(sc, &ctl);
449 }
450 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
451 eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
452 ctl.dev = EAP_MIC_PREAMP;
453 ctl.type = AUDIO_MIXER_ENUM;
454 ctl.un.ord = 0;
455 eap_mixer_set_port(sc, &ctl);
456 ctl.dev = EAP_RECORD_SOURCE;
457 ctl.type = AUDIO_MIXER_SET;
458 ctl.un.mask = 1 << EAP_MIC_VOL;
459 eap_mixer_set_port(sc, &ctl);
460
461 audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
462 }
463
464 int
465 eap_intr(p)
466 void *p;
467 {
468 struct eap_softc *sc = p;
469 u_int32_t intr, sic;
470
471 intr = EREAD4(sc, EAP_ICSS);
472 if (!(intr & EAP_INTR))
473 return (0);
474 sic = EREAD4(sc, EAP_SIC);
475 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
476 if (intr & EAP_I_ADC) {
477 /*
478 * XXX This is a hack!
479 * The EAP chip sometimes generates the recording interrupt
480 * while it is still transferring the data. To make sure
481 * it has all arrived we busy wait until the count is right.
482 * The transfer we are waiting for is 8 longwords.
483 */
484 int s, nw, n;
485 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
486 s = EREAD4(sc, EAP_ADC_CSR);
487 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
488 n = 0;
489 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
490 delay(10);
491 if (++n > 100) {
492 printf("eapintr: dma fix timeout");
493 break;
494 }
495 }
496 /* Continue with normal interrupt handling. */
497 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
498 EWRITE4(sc, EAP_SIC, sic);
499 if (sc->sc_rintr)
500 sc->sc_rintr(sc->sc_rarg);
501 }
502 if (intr & EAP_I_DAC2) {
503 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
504 EWRITE4(sc, EAP_SIC, sic);
505 if (sc->sc_pintr)
506 sc->sc_pintr(sc->sc_parg);
507 }
508 return (1);
509 }
510
511 int
512 eap_allocmem(sc, size, align, p)
513 struct eap_softc *sc;
514 size_t size;
515 size_t align;
516 struct eap_dma *p;
517 {
518 int error;
519
520 p->size = size;
521 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
522 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
523 &p->nsegs, BUS_DMA_NOWAIT);
524 if (error)
525 return (error);
526
527 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
528 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
529 if (error)
530 goto free;
531
532 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
533 0, BUS_DMA_NOWAIT, &p->map);
534 if (error)
535 goto unmap;
536
537 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
538 BUS_DMA_NOWAIT);
539 if (error)
540 goto destroy;
541 return (0);
542
543 destroy:
544 bus_dmamap_destroy(sc->sc_dmatag, p->map);
545 unmap:
546 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
547 free:
548 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
549 return (error);
550 }
551
552 int
553 eap_freemem(sc, p)
554 struct eap_softc *sc;
555 struct eap_dma *p;
556 {
557 bus_dmamap_unload(sc->sc_dmatag, p->map);
558 bus_dmamap_destroy(sc->sc_dmatag, p->map);
559 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
560 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
561 return (0);
562 }
563
564 int
565 eap_open(addr, flags)
566 void *addr;
567 int flags;
568 {
569
570 return (0);
571 }
572
573 /*
574 * Close function is called at splaudio().
575 */
576 void
577 eap_close(addr)
578 void *addr;
579 {
580 struct eap_softc *sc = addr;
581
582 eap_halt_output(sc);
583 eap_halt_input(sc);
584
585 sc->sc_pintr = 0;
586 sc->sc_rintr = 0;
587 }
588
589 int
590 eap_query_encoding(addr, fp)
591 void *addr;
592 struct audio_encoding *fp;
593 {
594 switch (fp->index) {
595 case 0:
596 strcpy(fp->name, AudioEulinear);
597 fp->encoding = AUDIO_ENCODING_ULINEAR;
598 fp->precision = 8;
599 fp->flags = 0;
600 return (0);
601 case 1:
602 strcpy(fp->name, AudioEmulaw);
603 fp->encoding = AUDIO_ENCODING_ULAW;
604 fp->precision = 8;
605 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
606 return (0);
607 case 2:
608 strcpy(fp->name, AudioEalaw);
609 fp->encoding = AUDIO_ENCODING_ALAW;
610 fp->precision = 8;
611 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
612 return (0);
613 case 3:
614 strcpy(fp->name, AudioEslinear);
615 fp->encoding = AUDIO_ENCODING_SLINEAR;
616 fp->precision = 8;
617 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
618 return (0);
619 case 4:
620 strcpy(fp->name, AudioEslinear_le);
621 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
622 fp->precision = 16;
623 fp->flags = 0;
624 return (0);
625 case 5:
626 strcpy(fp->name, AudioEulinear_le);
627 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
628 fp->precision = 16;
629 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
630 return (0);
631 case 6:
632 strcpy(fp->name, AudioEslinear_be);
633 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
634 fp->precision = 16;
635 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
636 return (0);
637 case 7:
638 strcpy(fp->name, AudioEulinear_be);
639 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
640 fp->precision = 16;
641 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
642 return (0);
643 default:
644 return (EINVAL);
645 }
646 }
647
648 int
649 eap_set_params(addr, setmode, usemode, play, rec)
650 void *addr;
651 int setmode, usemode;
652 struct audio_params *play, *rec;
653 {
654 struct eap_softc *sc = addr;
655 struct audio_params *p;
656 u_int32_t mode, div;
657
658 /*
659 * This device only has one clock, so make the sample rates match.
660 */
661 if (play->sample_rate != rec->sample_rate &&
662 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
663 if (setmode == AUMODE_PLAY) {
664 rec->sample_rate = play->sample_rate;
665 setmode |= AUMODE_RECORD;
666 } else if (setmode == AUMODE_RECORD) {
667 play->sample_rate = rec->sample_rate;
668 setmode |= AUMODE_PLAY;
669 } else
670 return (EINVAL);
671 }
672
673 for (mode = AUMODE_RECORD; mode != -1;
674 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
675 if ((setmode & mode) == 0)
676 continue;
677
678 p = mode == AUMODE_PLAY ? play : rec;
679
680 if (p->sample_rate < 4000 || p->sample_rate > 50000 ||
681 (p->precision != 8 && p->precision != 16) ||
682 (p->channels != 1 && p->channels != 2))
683 return (EINVAL);
684
685 p->factor = 1;
686 p->sw_code = 0;
687 switch (p->encoding) {
688 case AUDIO_ENCODING_SLINEAR_BE:
689 if (p->precision == 16)
690 p->sw_code = swap_bytes;
691 else
692 p->sw_code = change_sign8;
693 break;
694 case AUDIO_ENCODING_SLINEAR_LE:
695 if (p->precision != 16)
696 p->sw_code = change_sign8;
697 break;
698 case AUDIO_ENCODING_ULINEAR_BE:
699 if (p->precision == 16)
700 if (mode == AUMODE_PLAY)
701 p->sw_code = swap_bytes_change_sign16;
702 else
703 p->sw_code = change_sign16_swap_bytes;
704 break;
705 case AUDIO_ENCODING_ULINEAR_LE:
706 if (p->precision == 16)
707 p->sw_code = change_sign16;
708 break;
709 case AUDIO_ENCODING_ULAW:
710 if (mode == AUMODE_PLAY) {
711 p->factor = 2;
712 p->sw_code = mulaw_to_slinear16;
713 } else
714 p->sw_code = ulinear8_to_mulaw;
715 break;
716 case AUDIO_ENCODING_ALAW:
717 if (mode == AUMODE_PLAY) {
718 p->factor = 2;
719 p->sw_code = alaw_to_slinear16;
720 } else
721 p->sw_code = ulinear8_to_alaw;
722 break;
723 default:
724 return (EINVAL);
725 }
726 }
727
728 /* Set the speed */
729 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
730 EREAD4(sc, EAP_ICSC)));
731 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
732 /*
733 * XXX
734 * The -2 isn't documented, but seemed to make the wall time match
735 * what I expect. - mycroft
736 */
737 if (usemode == AUMODE_RECORD)
738 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / rec->sample_rate - 2);
739 else
740 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / play->sample_rate - 2);
741 div |= EAP_CCB_INTRM;
742 EWRITE4(sc, EAP_ICSC, div);
743 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
744
745 return (0);
746 }
747
748 int
749 eap_round_blocksize(addr, blk)
750 void *addr;
751 int blk;
752 {
753 return (blk & -32); /* keep good alignment */
754 }
755
756 int
757 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
758 void *addr;
759 void *start, *end;
760 int blksize;
761 void (*intr) __P((void *));
762 void *arg;
763 struct audio_params *param;
764 {
765 struct eap_softc *sc = addr;
766 struct eap_dma *p;
767 u_int32_t mode;
768 int sampshift;
769
770 #ifdef DIAGNOSTIC
771 if (sc->sc_prun)
772 panic("eap_trigger_output: already running");
773 sc->sc_prun = 1;
774 #endif
775
776 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
777 addr, start, end, blksize, intr, arg));
778 sc->sc_pintr = intr;
779 sc->sc_parg = arg;
780
781 mode = EREAD4(sc, EAP_SIC) & ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
782 mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
783 sampshift = 0;
784 if (param->precision * param->factor == 16) {
785 mode |= EAP_P2_S_EB;
786 sampshift++;
787 }
788 if (param->channels == 2) {
789 mode |= EAP_P2_S_MB;
790 sampshift++;
791 }
792 EWRITE4(sc, EAP_SIC, mode);
793
794 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
795 ;
796 if (!p) {
797 printf("eap_trigger_output: bad addr %p\n", start);
798 return (EINVAL);
799 }
800
801 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
802 (int)DMAADDR(p), EAP_SET_SIZE(0, ((end - start) >> 2) - 1)));
803 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
804 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
805 EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, ((end - start) >> 2) - 1));
806
807 EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
808 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
809 EWRITE4(sc, EAP_ICSC, mode);
810 mode |= EAP_DAC2_EN;
811 EWRITE4(sc, EAP_ICSC, mode);
812 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", mode));
813
814 return (0);
815 }
816
817 int
818 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
819 void *addr;
820 void *start, *end;
821 int blksize;
822 void (*intr) __P((void *));
823 void *arg;
824 struct audio_params *param;
825 {
826 struct eap_softc *sc = addr;
827 struct eap_dma *p;
828 u_int32_t mode;
829 int sampshift;
830
831 #ifdef DIAGNOSTIC
832 if (sc->sc_rrun)
833 panic("eap_trigger_input: already running");
834 sc->sc_rrun = 1;
835 #endif
836
837 DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
838 addr, start, end, blksize, intr, arg));
839 sc->sc_rintr = intr;
840 sc->sc_rarg = arg;
841
842 mode = EREAD4(sc, EAP_SIC) & ~(EAP_R1_S_EB | EAP_R1_S_MB);
843 sampshift = 0;
844 if (param->precision * param->factor == 16) {
845 mode |= EAP_R1_S_EB;
846 sampshift++;
847 }
848 if (param->channels == 2) {
849 mode |= EAP_R1_S_MB;
850 sampshift++;
851 }
852 EWRITE4(sc, EAP_SIC, mode);
853
854 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
855 ;
856 if (!p) {
857 printf("eap_trigger_input: bad addr %p\n", start);
858 return (EINVAL);
859 }
860
861 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
862 (int)DMAADDR(p), EAP_SET_SIZE(0, ((end - start) >> 2) - 1)));
863 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
864 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
865 EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, ((end - start) >> 2) - 1));
866
867 EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
868 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
869 EWRITE4(sc, EAP_ICSC, mode);
870 mode |= EAP_ADC_EN;
871 EWRITE4(sc, EAP_ICSC, mode);
872 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", mode));
873
874 return (0);
875 }
876
877 int
878 eap_halt_output(addr)
879 void *addr;
880 {
881 struct eap_softc *sc = addr;
882 u_int32_t mode;
883
884 DPRINTF(("eap: eap_halt_output\n"));
885 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
886 EWRITE4(sc, EAP_ICSC, mode);
887 #ifdef DIAGNOSTIC
888 sc->sc_prun = 0;
889 #endif
890 return (0);
891 }
892
893 int
894 eap_halt_input(addr)
895 void *addr;
896 {
897 struct eap_softc *sc = addr;
898 u_int32_t mode;
899
900 DPRINTF(("eap: eap_halt_input\n"));
901 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
902 EWRITE4(sc, EAP_ICSC, mode);
903 #ifdef DIAGNOSTIC
904 sc->sc_rrun = 0;
905 #endif
906 return (0);
907 }
908
909 int
910 eap_getdev(addr, retp)
911 void *addr;
912 struct audio_device *retp;
913 {
914 *retp = eap_device;
915 return (0);
916 }
917
918 void
919 eap_set_mixer(sc, a, d)
920 struct eap_softc *sc;
921 int a, d;
922 {
923 eap_write_codec(sc, a, d);
924 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
925 }
926
927
928 int
929 eap_mixer_set_port(addr, cp)
930 void *addr;
931 mixer_ctrl_t *cp;
932 {
933 struct eap_softc *sc = addr;
934 int lval, rval, l, r, la, ra;
935 int l1, r1, l2, r2, m, o1, o2;
936
937 if (cp->dev == EAP_RECORD_SOURCE) {
938 if (cp->type != AUDIO_MIXER_SET)
939 return (EINVAL);
940 m = sc->sc_record_source = cp->un.mask;
941 l1 = l2 = r1 = r2 = 0;
942 if (m & (1 << EAP_VOICE_VOL))
943 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
944 if (m & (1 << EAP_FM_VOL))
945 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
946 if (m & (1 << EAP_CD_VOL))
947 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
948 if (m & (1 << EAP_LINE_VOL))
949 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
950 if (m & (1 << EAP_AUX_VOL))
951 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
952 if (m & (1 << EAP_MIC_VOL))
953 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
954 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
955 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
956 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
957 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
958 return (0);
959 }
960 if (cp->dev == EAP_OUTPUT_SELECT) {
961 if (cp->type != AUDIO_MIXER_SET)
962 return (EINVAL);
963 m = sc->sc_output_source = cp->un.mask;
964 o1 = o2 = 0;
965 if (m & (1 << EAP_VOICE_VOL))
966 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
967 if (m & (1 << EAP_FM_VOL))
968 o1 |= AK_M_FM_L | AK_M_FM_R;
969 if (m & (1 << EAP_CD_VOL))
970 o1 |= AK_M_CD_L | AK_M_CD_R;
971 if (m & (1 << EAP_LINE_VOL))
972 o1 |= AK_M_LINE_L | AK_M_LINE_R;
973 if (m & (1 << EAP_AUX_VOL))
974 o2 |= AK_M_AUX_L | AK_M_AUX_R;
975 if (m & (1 << EAP_MIC_VOL))
976 o1 |= AK_M_MIC;
977 eap_set_mixer(sc, AK_OUT_MIXER1, o1);
978 eap_set_mixer(sc, AK_OUT_MIXER2, o2);
979 return (0);
980 }
981 if (cp->dev == EAP_MIC_PREAMP) {
982 if (cp->type != AUDIO_MIXER_ENUM)
983 return (EINVAL);
984 if (cp->un.ord != 0 && cp->un.ord != 1)
985 return (EINVAL);
986 sc->sc_mic_preamp = cp->un.ord;
987 eap_set_mixer(sc, AK_MGAIN, cp->un.ord);
988 return (0);
989 }
990 if (cp->type != AUDIO_MIXER_VALUE)
991 return (EINVAL);
992 if (cp->un.value.num_channels == 1)
993 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
994 else if (cp->un.value.num_channels == 2) {
995 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
996 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
997 } else
998 return (EINVAL);
999 ra = -1;
1000 switch (cp->dev) {
1001 case EAP_MASTER_VOL:
1002 l = VOL_TO_ATT5(lval);
1003 r = VOL_TO_ATT5(rval);
1004 la = AK_MASTER_L;
1005 ra = AK_MASTER_R;
1006 break;
1007 case EAP_MIC_VOL:
1008 if (cp->un.value.num_channels != 1)
1009 return (EINVAL);
1010 la = AK_MIC;
1011 goto lr;
1012 case EAP_VOICE_VOL:
1013 la = AK_VOICE_L;
1014 ra = AK_VOICE_R;
1015 goto lr;
1016 case EAP_FM_VOL:
1017 la = AK_FM_L;
1018 ra = AK_FM_R;
1019 goto lr;
1020 case EAP_CD_VOL:
1021 la = AK_CD_L;
1022 ra = AK_CD_R;
1023 goto lr;
1024 case EAP_LINE_VOL:
1025 la = AK_LINE_L;
1026 ra = AK_LINE_R;
1027 goto lr;
1028 case EAP_AUX_VOL:
1029 la = AK_AUX_L;
1030 ra = AK_AUX_R;
1031 lr:
1032 l = VOL_TO_GAIN5(lval);
1033 r = VOL_TO_GAIN5(rval);
1034 break;
1035 default:
1036 return (EINVAL);
1037 }
1038 eap_set_mixer(sc, la, l);
1039 sc->sc_port[la] = l;
1040 if (ra >= 0) {
1041 eap_set_mixer(sc, ra, r);
1042 sc->sc_port[ra] = r;
1043 }
1044 return (0);
1045 }
1046
1047 int
1048 eap_mixer_get_port(addr, cp)
1049 void *addr;
1050 mixer_ctrl_t *cp;
1051 {
1052 struct eap_softc *sc = addr;
1053 int la, ra, l, r;
1054
1055 switch (cp->dev) {
1056 case EAP_RECORD_SOURCE:
1057 if (cp->type != AUDIO_MIXER_SET)
1058 return (EINVAL);
1059 cp->un.mask = sc->sc_record_source;
1060 return (0);
1061 case EAP_OUTPUT_SELECT:
1062 if (cp->type != AUDIO_MIXER_SET)
1063 return (EINVAL);
1064 cp->un.mask = sc->sc_output_source;
1065 return (0);
1066 case EAP_MIC_PREAMP:
1067 if (cp->type != AUDIO_MIXER_ENUM)
1068 return (EINVAL);
1069 cp->un.ord = sc->sc_mic_preamp;
1070 return (0);
1071 case EAP_MASTER_VOL:
1072 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1073 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1074 break;
1075 case EAP_MIC_VOL:
1076 if (cp->un.value.num_channels != 1)
1077 return (EINVAL);
1078 la = ra = AK_MIC;
1079 goto lr;
1080 case EAP_VOICE_VOL:
1081 la = AK_VOICE_L;
1082 ra = AK_VOICE_R;
1083 goto lr;
1084 case EAP_FM_VOL:
1085 la = AK_FM_L;
1086 ra = AK_FM_R;
1087 goto lr;
1088 case EAP_CD_VOL:
1089 la = AK_CD_L;
1090 ra = AK_CD_R;
1091 goto lr;
1092 case EAP_LINE_VOL:
1093 la = AK_LINE_L;
1094 ra = AK_LINE_R;
1095 goto lr;
1096 case EAP_AUX_VOL:
1097 la = AK_AUX_L;
1098 ra = AK_AUX_R;
1099 lr:
1100 l = GAIN5_TO_VOL(sc->sc_port[la]);
1101 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1102 break;
1103 default:
1104 return (EINVAL);
1105 }
1106 if (cp->un.value.num_channels == 1)
1107 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1108 else if (cp->un.value.num_channels == 2) {
1109 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1110 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1111 } else
1112 return (EINVAL);
1113 return (0);
1114 }
1115
1116 int
1117 eap_query_devinfo(addr, dip)
1118 void *addr;
1119 mixer_devinfo_t *dip;
1120 {
1121 switch (dip->index) {
1122 case EAP_MASTER_VOL:
1123 dip->type = AUDIO_MIXER_VALUE;
1124 dip->mixer_class = EAP_OUTPUT_CLASS;
1125 dip->prev = dip->next = AUDIO_MIXER_LAST;
1126 strcpy(dip->label.name, AudioNmaster);
1127 dip->un.v.num_channels = 2;
1128 strcpy(dip->un.v.units.name, AudioNvolume);
1129 return (0);
1130 case EAP_VOICE_VOL:
1131 dip->type = AUDIO_MIXER_VALUE;
1132 dip->mixer_class = EAP_INPUT_CLASS;
1133 dip->prev = AUDIO_MIXER_LAST;
1134 dip->next = AUDIO_MIXER_LAST;
1135 strcpy(dip->label.name, AudioNdac);
1136 dip->un.v.num_channels = 2;
1137 strcpy(dip->un.v.units.name, AudioNvolume);
1138 return (0);
1139 case EAP_FM_VOL:
1140 dip->type = AUDIO_MIXER_VALUE;
1141 dip->mixer_class = EAP_INPUT_CLASS;
1142 dip->prev = AUDIO_MIXER_LAST;
1143 dip->next = AUDIO_MIXER_LAST;
1144 strcpy(dip->label.name, AudioNfmsynth);
1145 dip->un.v.num_channels = 2;
1146 strcpy(dip->un.v.units.name, AudioNvolume);
1147 return (0);
1148 case EAP_CD_VOL:
1149 dip->type = AUDIO_MIXER_VALUE;
1150 dip->mixer_class = EAP_INPUT_CLASS;
1151 dip->prev = AUDIO_MIXER_LAST;
1152 dip->next = AUDIO_MIXER_LAST;
1153 strcpy(dip->label.name, AudioNcd);
1154 dip->un.v.num_channels = 2;
1155 strcpy(dip->un.v.units.name, AudioNvolume);
1156 return (0);
1157 case EAP_LINE_VOL:
1158 dip->type = AUDIO_MIXER_VALUE;
1159 dip->mixer_class = EAP_INPUT_CLASS;
1160 dip->prev = AUDIO_MIXER_LAST;
1161 dip->next = AUDIO_MIXER_LAST;
1162 strcpy(dip->label.name, AudioNline);
1163 dip->un.v.num_channels = 2;
1164 strcpy(dip->un.v.units.name, AudioNvolume);
1165 return (0);
1166 case EAP_AUX_VOL:
1167 dip->type = AUDIO_MIXER_VALUE;
1168 dip->mixer_class = EAP_INPUT_CLASS;
1169 dip->prev = AUDIO_MIXER_LAST;
1170 dip->next = AUDIO_MIXER_LAST;
1171 strcpy(dip->label.name, AudioNaux);
1172 dip->un.v.num_channels = 2;
1173 strcpy(dip->un.v.units.name, AudioNvolume);
1174 return (0);
1175 case EAP_MIC_VOL:
1176 dip->type = AUDIO_MIXER_VALUE;
1177 dip->mixer_class = EAP_INPUT_CLASS;
1178 dip->prev = AUDIO_MIXER_LAST;
1179 dip->next = AUDIO_MIXER_LAST;
1180 strcpy(dip->label.name, AudioNmicrophone);
1181 dip->un.v.num_channels = 1;
1182 strcpy(dip->un.v.units.name, AudioNvolume);
1183 return (0);
1184 case EAP_RECORD_SOURCE:
1185 dip->mixer_class = EAP_RECORD_CLASS;
1186 dip->prev = dip->next = AUDIO_MIXER_LAST;
1187 strcpy(dip->label.name, AudioNsource);
1188 dip->type = AUDIO_MIXER_SET;
1189 dip->un.s.num_mem = 6;
1190 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1191 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1192 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1193 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1194 strcpy(dip->un.s.member[2].label.name, AudioNline);
1195 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1196 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1197 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1198 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1199 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1200 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1201 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1202 return (0);
1203 case EAP_OUTPUT_SELECT:
1204 dip->mixer_class = EAP_OUTPUT_CLASS;
1205 dip->prev = dip->next = AUDIO_MIXER_LAST;
1206 strcpy(dip->label.name, AudioNselect);
1207 dip->type = AUDIO_MIXER_SET;
1208 dip->un.s.num_mem = 6;
1209 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1210 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1211 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1212 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1213 strcpy(dip->un.s.member[2].label.name, AudioNline);
1214 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1215 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1216 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1217 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1218 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1219 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1220 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1221 return (0);
1222 case EAP_MIC_PREAMP:
1223 dip->type = AUDIO_MIXER_ENUM;
1224 dip->mixer_class = EAP_RECORD_CLASS;
1225 dip->next = dip->prev = AUDIO_MIXER_LAST;
1226 strcpy(dip->label.name, AudioNpreamp);
1227 dip->un.e.num_mem = 2;
1228 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1229 dip->un.e.member[0].ord = 0;
1230 strcpy(dip->un.e.member[1].label.name, AudioNon);
1231 dip->un.e.member[1].ord = 1;
1232 return (0);
1233 case EAP_OUTPUT_CLASS:
1234 dip->type = AUDIO_MIXER_CLASS;
1235 dip->mixer_class = EAP_OUTPUT_CLASS;
1236 dip->next = dip->prev = AUDIO_MIXER_LAST;
1237 strcpy(dip->label.name, AudioCoutputs);
1238 return (0);
1239 case EAP_RECORD_CLASS:
1240 dip->type = AUDIO_MIXER_CLASS;
1241 dip->mixer_class = EAP_RECORD_CLASS;
1242 dip->next = dip->prev = AUDIO_MIXER_LAST;
1243 strcpy(dip->label.name, AudioCrecord);
1244 return (0);
1245 case EAP_INPUT_CLASS:
1246 dip->type = AUDIO_MIXER_CLASS;
1247 dip->mixer_class = EAP_INPUT_CLASS;
1248 dip->next = dip->prev = AUDIO_MIXER_LAST;
1249 strcpy(dip->label.name, AudioCinputs);
1250 return (0);
1251 }
1252 return (ENXIO);
1253 }
1254
1255 void *
1256 eap_malloc(addr, size, pool, flags)
1257 void *addr;
1258 u_long size;
1259 int pool;
1260 int flags;
1261 {
1262 struct eap_softc *sc = addr;
1263 struct eap_dma *p;
1264 int error;
1265
1266 p = malloc(sizeof(*p), pool, flags);
1267 if (!p)
1268 return (0);
1269 error = eap_allocmem(sc, size, 16, p);
1270 if (error) {
1271 free(p, pool);
1272 return (0);
1273 }
1274 p->next = sc->sc_dmas;
1275 sc->sc_dmas = p;
1276 return (KERNADDR(p));
1277 }
1278
1279 void
1280 eap_free(addr, ptr, pool)
1281 void *addr;
1282 void *ptr;
1283 int pool;
1284 {
1285 struct eap_softc *sc = addr;
1286 struct eap_dma **p;
1287
1288 for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1289 if (KERNADDR(*p) == ptr) {
1290 eap_freemem(sc, *p);
1291 *p = (*p)->next;
1292 free(*p, pool);
1293 return;
1294 }
1295 }
1296 }
1297
1298 u_long
1299 eap_round(addr, size)
1300 void *addr;
1301 u_long size;
1302 {
1303 return (size);
1304 }
1305
1306 int
1307 eap_mappage(addr, mem, off, prot)
1308 void *addr;
1309 void *mem;
1310 int off;
1311 int prot;
1312 {
1313 struct eap_softc *sc = addr;
1314 struct eap_dma *p;
1315
1316 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1317 ;
1318 if (!p)
1319 return (-1);
1320 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1321 off, prot, BUS_DMA_WAITOK));
1322 }
1323
1324 int
1325 eap_get_props(addr)
1326 void *addr;
1327 {
1328 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1329 }
1330