eap.c revision 1.19 1 /* $NetBSD: eap.c,v 1.19 1998/11/25 22:17:07 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Lennart Augustsson (augustss (at) netbsd.org).
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Further work: Charles M. Hannum <mycroft (at) netbsd.org>
40 *
41 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
42 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
43 * Phil Nelson <phil (at) cs.wwu.edu>
44 */
45
46 /*
47 * Ensoniq AudoiPCI ES1370 + AK4531 driver.
48 * Data sheets can be found at
49 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
50 * and
51 * http://206.214.38.151/pdf/4531.pdf
52 */
53
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/malloc.h>
58 #include <sys/device.h>
59
60 #include <dev/pci/pcidevs.h>
61 #include <dev/pci/pcivar.h>
62
63 #include <sys/audioio.h>
64 #include <dev/audio_if.h>
65 #include <dev/mulaw.h>
66 #include <dev/auconv.h>
67
68 #include <machine/bus.h>
69
70 #define PCI_CBIO 0x10
71
72 #define EAP_ICSC 0x00 /* interrupt / chip select control */
73 #define EAP_SERR_DISABLE 0x00000001
74 #define EAP_CDC_EN 0x00000002
75 #define EAP_JYSTK_EN 0x00000004
76 #define EAP_UART_EN 0x00000008
77 #define EAP_ADC_EN 0x00000010
78 #define EAP_DAC2_EN 0x00000020
79 #define EAP_DAC1_EN 0x00000040
80 #define EAP_BREQ 0x00000080
81 #define EAP_XTCL0 0x00000100
82 #define EAP_M_CB 0x00000200
83 #define EAP_CCB_INTRM 0x00000400
84 #define EAP_DAC_SYNC 0x00000800
85 #define EAP_WTSRSEL 0x00003000
86 #define EAP_WTSRSEL_5 0x00000000
87 #define EAP_WTSRSEL_11 0x00001000
88 #define EAP_WTSRSEL_22 0x00002000
89 #define EAP_WTSRSEL_44 0x00003000
90 #define EAP_M_SBB 0x00004000
91 #define EAP_MSFMTSEL 0x00008000
92 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
93 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
94 #define EAP_PCLKBITS 0x1fff0000
95 #define EAP_XTCL1 0x40000000
96 #define EAP_ADC_STOP 0x80000000
97
98 #define EAP_ICSS 0x04 /* interrupt / chip select status */
99 #define EAP_I_ADC 0x00000001
100 #define EAP_I_DAC2 0x00000002
101 #define EAP_I_DAC1 0x00000004
102 #define EAP_I_UART 0x00000008
103 #define EAP_I_MCCB 0x00000010
104 #define EAP_VC 0x00000060
105 #define EAP_CWRIP 0x00000100
106 #define EAP_CBUSY 0x00000200
107 #define EAP_CSTAT 0x00000400
108 #define EAP_INTR 0x80000000
109
110 #define EAP_UART_DATA 0x08
111 #define EAP_UART_STATUS 0x09
112 #define EAP_UART_CONTROL 0x09
113 #define EAP_MEMPAGE 0x0c
114 #define EAP_CODEC 0x10
115 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
116
117 #define EAP_SIC 0x20
118 #define EAP_P1_S_MB 0x00000001
119 #define EAP_P1_S_EB 0x00000002
120 #define EAP_P2_S_MB 0x00000004
121 #define EAP_P2_S_EB 0x00000008
122 #define EAP_R1_S_MB 0x00000010
123 #define EAP_R1_S_EB 0x00000020
124 #define EAP_P2_DAC_SEN 0x00000040
125 #define EAP_P1_SCT_RLD 0x00000080
126 #define EAP_P1_INTR_EN 0x00000100
127 #define EAP_P2_INTR_EN 0x00000200
128 #define EAP_R1_INTR_EN 0x00000400
129 #define EAP_P1_PAUSE 0x00000800
130 #define EAP_P2_PAUSE 0x00001000
131 #define EAP_P1_LOOP_SEL 0x00002000
132 #define EAP_P2_LOOP_SEL 0x00004000
133 #define EAP_R1_LOOP_SEL 0x00008000
134 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
135 #define EAP_SET_P2_END_INC(i) ((i) << 19)
136 #define EAP_INC_BITS 0x003f0000
137
138 #define EAP_DAC1_CSR 0x24
139 #define EAP_DAC2_CSR 0x28
140 #define EAP_ADC_CSR 0x2c
141 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
142
143 #define EAP_DAC_PAGE 0xc
144 #define EAP_ADC_PAGE 0xd
145 #define EAP_UART_PAGE1 0xe
146 #define EAP_UART_PAGE2 0xf
147
148 #define EAP_DAC1_ADDR 0x30
149 #define EAP_DAC1_SIZE 0x34
150 #define EAP_DAC2_ADDR 0x38
151 #define EAP_DAC2_SIZE 0x3c
152 #define EAP_ADC_ADDR 0x30
153 #define EAP_ADC_SIZE 0x34
154 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
155
156 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
157
158 /* AK4531 registers */
159 #define AK_MASTER_L 0x00
160 #define AK_MASTER_R 0x01
161 #define AK_VOICE_L 0x02
162 #define AK_VOICE_R 0x03
163 #define AK_FM_L 0x04
164 #define AK_FM_R 0x05
165 #define AK_CD_L 0x06
166 #define AK_CD_R 0x07
167 #define AK_LINE_L 0x08
168 #define AK_LINE_R 0x09
169 #define AK_AUX_L 0x0a
170 #define AK_AUX_R 0x0b
171 #define AK_MONO1 0x0c
172 #define AK_MONO2 0x0d
173 #define AK_MIC 0x0e
174 #define AK_MONO 0x0f
175 #define AK_OUT_MIXER1 0x10
176 #define AK_M_FM_L 0x40
177 #define AK_M_FM_R 0x20
178 #define AK_M_LINE_L 0x10
179 #define AK_M_LINE_R 0x08
180 #define AK_M_CD_L 0x04
181 #define AK_M_CD_R 0x02
182 #define AK_M_MIC 0x01
183 #define AK_OUT_MIXER2 0x11
184 #define AK_M_AUX_L 0x20
185 #define AK_M_AUX_R 0x10
186 #define AK_M_VOICE_L 0x08
187 #define AK_M_VOICE_R 0x04
188 #define AK_M_MONO2 0x02
189 #define AK_M_MONO1 0x01
190 #define AK_IN_MIXER1_L 0x12
191 #define AK_IN_MIXER1_R 0x13
192 #define AK_IN_MIXER2_L 0x14
193 #define AK_IN_MIXER2_R 0x15
194 #define AK_M_TMIC 0x80
195 #define AK_M_TMONO1 0x40
196 #define AK_M_TMONO2 0x20
197 #define AK_M2_AUX_L 0x10
198 #define AK_M2_AUX_R 0x08
199 #define AK_M_VOICE 0x04
200 #define AK_M2_MONO2 0x02
201 #define AK_M2_MONO1 0x01
202 #define AK_RESET 0x16
203 #define AK_PD 0x02
204 #define AK_NRST 0x01
205 #define AK_CS 0x17
206 #define AK_ADSEL 0x18
207 #define AK_MGAIN 0x19
208
209 #define AK_NPORTS 16
210
211 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
212 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
213 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
214 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
215 #define VOL_0DB 200
216
217 #define EAP_MASTER_VOL 0
218 #define EAP_VOICE_VOL 1
219 #define EAP_FM_VOL 2
220 #define EAP_CD_VOL 3
221 #define EAP_LINE_VOL 4
222 #define EAP_AUX_VOL 5
223 #define EAP_MIC_VOL 6
224 #define EAP_RECORD_SOURCE 7
225 #define EAP_OUTPUT_SELECT 8
226 #define EAP_MIC_PREAMP 9
227 #define EAP_OUTPUT_CLASS 10
228 #define EAP_RECORD_CLASS 11
229 #define EAP_INPUT_CLASS 12
230
231 #ifdef AUDIO_DEBUG
232 #define DPRINTF(x) if (eapdebug) printf x
233 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
234 int eapdebug = 0;
235 #else
236 #define DPRINTF(x)
237 #define DPRINTFN(n,x)
238 #endif
239
240 int eap_match __P((struct device *, struct cfdata *, void *));
241 void eap_attach __P((struct device *, struct device *, void *));
242 int eap_intr __P((void *));
243
244 struct eap_dma {
245 bus_dmamap_t map;
246 caddr_t addr;
247 bus_dma_segment_t segs[1];
248 int nsegs;
249 size_t size;
250 struct eap_dma *next;
251 };
252 #define DMAADDR(map) ((map)->segs[0].ds_addr)
253 #define KERNADDR(map) ((void *)((map)->addr))
254
255 struct eap_softc {
256 struct device sc_dev; /* base device */
257 void *sc_ih; /* interrupt vectoring */
258 bus_space_tag_t iot;
259 bus_space_handle_t ioh;
260 bus_dma_tag_t sc_dmatag; /* DMA tag */
261
262 struct eap_dma *sc_dmas;
263
264 void (*sc_pintr)(void *); /* dma completion intr handler */
265 void *sc_parg; /* arg for sc_intr() */
266 #ifdef DIAGNOSTIC
267 char sc_prun;
268 #endif
269
270 void (*sc_rintr)(void *); /* dma completion intr handler */
271 void *sc_rarg; /* arg for sc_intr() */
272 #ifdef DIAGNOSTIC
273 char sc_rrun;
274 #endif
275
276 u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */
277 u_int sc_record_source; /* recording source mask */
278 u_int sc_output_source; /* output source mask */
279 u_int sc_mic_preamp;
280 };
281
282 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
283 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
284
285 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
286 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
287 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
288 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
289
290 struct cfattach eap_ca = {
291 sizeof(struct eap_softc), eap_match, eap_attach
292 };
293
294 int eap_open __P((void *, int));
295 void eap_close __P((void *));
296 int eap_query_encoding __P((void *, struct audio_encoding *));
297 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
298 int eap_round_blocksize __P((void *, int));
299 int eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
300 void *, struct audio_params *));
301 int eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
302 void *, struct audio_params *));
303 int eap_halt_output __P((void *));
304 int eap_halt_input __P((void *));
305 int eap_getdev __P((void *, struct audio_device *));
306 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
307 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
308 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
309 void *eap_malloc __P((void *, u_long, int, int));
310 void eap_free __P((void *, void *, int));
311 u_long eap_round __P((void *, u_long));
312 int eap_mappage __P((void *, void *, int, int));
313 int eap_get_props __P((void *));
314 void eap_write_codec __P((struct eap_softc *sc, int a, int d));
315 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
316
317 struct audio_hw_if eap_hw_if = {
318 eap_open,
319 eap_close,
320 NULL,
321 eap_query_encoding,
322 eap_set_params,
323 eap_round_blocksize,
324 NULL,
325 NULL,
326 NULL,
327 NULL,
328 NULL,
329 eap_halt_output,
330 eap_halt_input,
331 NULL,
332 eap_getdev,
333 NULL,
334 eap_mixer_set_port,
335 eap_mixer_get_port,
336 eap_query_devinfo,
337 eap_malloc,
338 eap_free,
339 eap_round,
340 eap_mappage,
341 eap_get_props,
342 eap_trigger_output,
343 eap_trigger_input,
344 };
345
346 struct audio_device eap_device = {
347 "Ensoniq AudioPCI",
348 "",
349 "eap"
350 };
351
352 int
353 eap_match(parent, match, aux)
354 struct device *parent;
355 struct cfdata *match;
356 void *aux;
357 {
358 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
359
360 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
361 return (0);
362 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
363 return (0);
364
365 return (1);
366 }
367
368 void
369 eap_write_codec(sc, a, d)
370 struct eap_softc *sc;
371 int a, d;
372 {
373 int icss;
374
375 do {
376 icss = EREAD4(sc, EAP_ICSS);
377 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
378 } while(icss & EAP_CWRIP);
379 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
380 }
381
382 void
383 eap_attach(parent, self, aux)
384 struct device *parent;
385 struct device *self;
386 void *aux;
387 {
388 struct eap_softc *sc = (struct eap_softc *)self;
389 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
390 pci_chipset_tag_t pc = pa->pa_pc;
391 char const *intrstr;
392 pci_intr_handle_t ih;
393 pcireg_t csr;
394 char devinfo[256];
395 mixer_ctrl_t ctl;
396
397 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
398 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
399
400 /* Map I/O register */
401 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
402 &sc->iot, &sc->ioh, NULL, NULL)) {
403 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
404 return;
405 }
406
407 sc->sc_dmatag = pa->pa_dmat;
408
409 /* Enable the device. */
410 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
411 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
412 csr | PCI_COMMAND_MASTER_ENABLE);
413
414 /* Map and establish the interrupt. */
415 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
416 pa->pa_intrline, &ih)) {
417 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
418 return;
419 }
420 intrstr = pci_intr_string(pc, ih);
421 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
422 if (sc->sc_ih == NULL) {
423 printf("%s: couldn't establish interrupt",
424 sc->sc_dev.dv_xname);
425 if (intrstr != NULL)
426 printf(" at %s", intrstr);
427 printf("\n");
428 return;
429 }
430 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
431
432 /* Enable interrupts and looping mode. */
433 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
434 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
435
436 eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
437 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */
438 eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
439
440 /* Enable all relevant mixer switches. */
441 ctl.dev = EAP_OUTPUT_SELECT;
442 ctl.type = AUDIO_MIXER_SET;
443 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
444 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
445 eap_mixer_set_port(sc, &ctl);
446
447 ctl.type = AUDIO_MIXER_VALUE;
448 ctl.un.value.num_channels = 1;
449 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
450 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
451 eap_mixer_set_port(sc, &ctl);
452 }
453 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
454 eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
455 ctl.dev = EAP_MIC_PREAMP;
456 ctl.type = AUDIO_MIXER_ENUM;
457 ctl.un.ord = 0;
458 eap_mixer_set_port(sc, &ctl);
459 ctl.dev = EAP_RECORD_SOURCE;
460 ctl.type = AUDIO_MIXER_SET;
461 ctl.un.mask = 1 << EAP_MIC_VOL;
462 eap_mixer_set_port(sc, &ctl);
463
464 audio_attach_mi(&eap_hw_if, sc, &sc->sc_dev);
465 }
466
467 int
468 eap_intr(p)
469 void *p;
470 {
471 struct eap_softc *sc = p;
472 u_int32_t intr, sic;
473
474 intr = EREAD4(sc, EAP_ICSS);
475 if (!(intr & EAP_INTR))
476 return (0);
477 sic = EREAD4(sc, EAP_SIC);
478 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
479 if (intr & EAP_I_ADC) {
480 /*
481 * XXX This is a hack!
482 * The EAP chip sometimes generates the recording interrupt
483 * while it is still transferring the data. To make sure
484 * it has all arrived we busy wait until the count is right.
485 * The transfer we are waiting for is 8 longwords.
486 */
487 int s, nw, n;
488 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
489 s = EREAD4(sc, EAP_ADC_CSR);
490 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
491 n = 0;
492 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
493 delay(10);
494 if (++n > 100) {
495 printf("eapintr: dma fix timeout");
496 break;
497 }
498 }
499 /* Continue with normal interrupt handling. */
500 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
501 EWRITE4(sc, EAP_SIC, sic);
502 if (sc->sc_rintr)
503 sc->sc_rintr(sc->sc_rarg);
504 }
505 if (intr & EAP_I_DAC2) {
506 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
507 EWRITE4(sc, EAP_SIC, sic);
508 if (sc->sc_pintr)
509 sc->sc_pintr(sc->sc_parg);
510 }
511 return (1);
512 }
513
514 int
515 eap_allocmem(sc, size, align, p)
516 struct eap_softc *sc;
517 size_t size;
518 size_t align;
519 struct eap_dma *p;
520 {
521 int error;
522
523 p->size = size;
524 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
525 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
526 &p->nsegs, BUS_DMA_NOWAIT);
527 if (error)
528 return (error);
529
530 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
531 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
532 if (error)
533 goto free;
534
535 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
536 0, BUS_DMA_NOWAIT, &p->map);
537 if (error)
538 goto unmap;
539
540 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
541 BUS_DMA_NOWAIT);
542 if (error)
543 goto destroy;
544 return (0);
545
546 destroy:
547 bus_dmamap_destroy(sc->sc_dmatag, p->map);
548 unmap:
549 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
550 free:
551 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
552 return (error);
553 }
554
555 int
556 eap_freemem(sc, p)
557 struct eap_softc *sc;
558 struct eap_dma *p;
559 {
560 bus_dmamap_unload(sc->sc_dmatag, p->map);
561 bus_dmamap_destroy(sc->sc_dmatag, p->map);
562 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
563 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
564 return (0);
565 }
566
567 int
568 eap_open(addr, flags)
569 void *addr;
570 int flags;
571 {
572
573 return (0);
574 }
575
576 /*
577 * Close function is called at splaudio().
578 */
579 void
580 eap_close(addr)
581 void *addr;
582 {
583 struct eap_softc *sc = addr;
584
585 eap_halt_output(sc);
586 eap_halt_input(sc);
587
588 sc->sc_pintr = 0;
589 sc->sc_rintr = 0;
590 }
591
592 int
593 eap_query_encoding(addr, fp)
594 void *addr;
595 struct audio_encoding *fp;
596 {
597 switch (fp->index) {
598 case 0:
599 strcpy(fp->name, AudioEulinear);
600 fp->encoding = AUDIO_ENCODING_ULINEAR;
601 fp->precision = 8;
602 fp->flags = 0;
603 return (0);
604 case 1:
605 strcpy(fp->name, AudioEmulaw);
606 fp->encoding = AUDIO_ENCODING_ULAW;
607 fp->precision = 8;
608 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
609 return (0);
610 case 2:
611 strcpy(fp->name, AudioEalaw);
612 fp->encoding = AUDIO_ENCODING_ALAW;
613 fp->precision = 8;
614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 return (0);
616 case 3:
617 strcpy(fp->name, AudioEslinear);
618 fp->encoding = AUDIO_ENCODING_SLINEAR;
619 fp->precision = 8;
620 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
621 return (0);
622 case 4:
623 strcpy(fp->name, AudioEslinear_le);
624 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
625 fp->precision = 16;
626 fp->flags = 0;
627 return (0);
628 case 5:
629 strcpy(fp->name, AudioEulinear_le);
630 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
631 fp->precision = 16;
632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 return (0);
634 case 6:
635 strcpy(fp->name, AudioEslinear_be);
636 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
637 fp->precision = 16;
638 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
639 return (0);
640 case 7:
641 strcpy(fp->name, AudioEulinear_be);
642 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
643 fp->precision = 16;
644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 return (0);
646 default:
647 return (EINVAL);
648 }
649 }
650
651 int
652 eap_set_params(addr, setmode, usemode, play, rec)
653 void *addr;
654 int setmode, usemode;
655 struct audio_params *play, *rec;
656 {
657 struct eap_softc *sc = addr;
658 struct audio_params *p;
659 u_int32_t mode, div;
660
661 /*
662 * This device only has one clock, so make the sample rates match.
663 */
664 if (play->sample_rate != rec->sample_rate &&
665 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
666 if (setmode == AUMODE_PLAY) {
667 rec->sample_rate = play->sample_rate;
668 setmode |= AUMODE_RECORD;
669 } else if (setmode == AUMODE_RECORD) {
670 play->sample_rate = rec->sample_rate;
671 setmode |= AUMODE_PLAY;
672 } else
673 return (EINVAL);
674 }
675
676 for (mode = AUMODE_RECORD; mode != -1;
677 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
678 if ((setmode & mode) == 0)
679 continue;
680
681 p = mode == AUMODE_PLAY ? play : rec;
682
683 if (p->sample_rate < 4000 || p->sample_rate > 50000 ||
684 (p->precision != 8 && p->precision != 16) ||
685 (p->channels != 1 && p->channels != 2))
686 return (EINVAL);
687
688 p->factor = 1;
689 p->sw_code = 0;
690 switch (p->encoding) {
691 case AUDIO_ENCODING_SLINEAR_BE:
692 if (p->precision == 16)
693 p->sw_code = swap_bytes;
694 else
695 p->sw_code = change_sign8;
696 break;
697 case AUDIO_ENCODING_SLINEAR_LE:
698 if (p->precision != 16)
699 p->sw_code = change_sign8;
700 break;
701 case AUDIO_ENCODING_ULINEAR_BE:
702 if (p->precision == 16) {
703 if (mode == AUMODE_PLAY)
704 p->sw_code = swap_bytes_change_sign16;
705 else
706 p->sw_code = change_sign16_swap_bytes;
707 }
708 break;
709 case AUDIO_ENCODING_ULINEAR_LE:
710 if (p->precision == 16)
711 p->sw_code = change_sign16;
712 break;
713 case AUDIO_ENCODING_ULAW:
714 if (mode == AUMODE_PLAY) {
715 p->factor = 2;
716 p->sw_code = mulaw_to_slinear16;
717 } else
718 p->sw_code = ulinear8_to_mulaw;
719 break;
720 case AUDIO_ENCODING_ALAW:
721 if (mode == AUMODE_PLAY) {
722 p->factor = 2;
723 p->sw_code = alaw_to_slinear16;
724 } else
725 p->sw_code = ulinear8_to_alaw;
726 break;
727 default:
728 return (EINVAL);
729 }
730 }
731
732 /* Set the speed */
733 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
734 EREAD4(sc, EAP_ICSC)));
735 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
736 /*
737 * XXX
738 * The -2 isn't documented, but seemed to make the wall time match
739 * what I expect. - mycroft
740 */
741 if (usemode == AUMODE_RECORD)
742 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / rec->sample_rate - 2);
743 else
744 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / play->sample_rate - 2);
745 div |= EAP_CCB_INTRM;
746 EWRITE4(sc, EAP_ICSC, div);
747 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
748
749 return (0);
750 }
751
752 int
753 eap_round_blocksize(addr, blk)
754 void *addr;
755 int blk;
756 {
757 return (blk & -32); /* keep good alignment */
758 }
759
760 int
761 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
762 void *addr;
763 void *start, *end;
764 int blksize;
765 void (*intr) __P((void *));
766 void *arg;
767 struct audio_params *param;
768 {
769 struct eap_softc *sc = addr;
770 struct eap_dma *p;
771 u_int32_t mode;
772 int sampshift;
773
774 #ifdef DIAGNOSTIC
775 if (sc->sc_prun)
776 panic("eap_trigger_output: already running");
777 sc->sc_prun = 1;
778 #endif
779
780 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
781 addr, start, end, blksize, intr, arg));
782 sc->sc_pintr = intr;
783 sc->sc_parg = arg;
784
785 mode = EREAD4(sc, EAP_SIC) & ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
786 mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
787 sampshift = 0;
788 if (param->precision * param->factor == 16) {
789 mode |= EAP_P2_S_EB;
790 sampshift++;
791 }
792 if (param->channels == 2) {
793 mode |= EAP_P2_S_MB;
794 sampshift++;
795 }
796 EWRITE4(sc, EAP_SIC, mode);
797
798 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
799 ;
800 if (!p) {
801 printf("eap_trigger_output: bad addr %p\n", start);
802 return (EINVAL);
803 }
804
805 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
806 (int)DMAADDR(p), EAP_SET_SIZE(0, ((end - start) >> 2) - 1)));
807 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
808 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
809 EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, ((end - start) >> 2) - 1));
810
811 EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
812 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
813 EWRITE4(sc, EAP_ICSC, mode);
814 mode |= EAP_DAC2_EN;
815 EWRITE4(sc, EAP_ICSC, mode);
816 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", mode));
817
818 return (0);
819 }
820
821 int
822 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
823 void *addr;
824 void *start, *end;
825 int blksize;
826 void (*intr) __P((void *));
827 void *arg;
828 struct audio_params *param;
829 {
830 struct eap_softc *sc = addr;
831 struct eap_dma *p;
832 u_int32_t mode;
833 int sampshift;
834
835 #ifdef DIAGNOSTIC
836 if (sc->sc_rrun)
837 panic("eap_trigger_input: already running");
838 sc->sc_rrun = 1;
839 #endif
840
841 DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
842 addr, start, end, blksize, intr, arg));
843 sc->sc_rintr = intr;
844 sc->sc_rarg = arg;
845
846 mode = EREAD4(sc, EAP_SIC) & ~(EAP_R1_S_EB | EAP_R1_S_MB);
847 sampshift = 0;
848 if (param->precision * param->factor == 16) {
849 mode |= EAP_R1_S_EB;
850 sampshift++;
851 }
852 if (param->channels == 2) {
853 mode |= EAP_R1_S_MB;
854 sampshift++;
855 }
856 EWRITE4(sc, EAP_SIC, mode);
857
858 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
859 ;
860 if (!p) {
861 printf("eap_trigger_input: bad addr %p\n", start);
862 return (EINVAL);
863 }
864
865 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
866 (int)DMAADDR(p), EAP_SET_SIZE(0, ((end - start) >> 2) - 1)));
867 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
868 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
869 EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, ((end - start) >> 2) - 1));
870
871 EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
872 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
873 EWRITE4(sc, EAP_ICSC, mode);
874 mode |= EAP_ADC_EN;
875 EWRITE4(sc, EAP_ICSC, mode);
876 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", mode));
877
878 return (0);
879 }
880
881 int
882 eap_halt_output(addr)
883 void *addr;
884 {
885 struct eap_softc *sc = addr;
886 u_int32_t mode;
887
888 DPRINTF(("eap: eap_halt_output\n"));
889 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
890 EWRITE4(sc, EAP_ICSC, mode);
891 #ifdef DIAGNOSTIC
892 sc->sc_prun = 0;
893 #endif
894 return (0);
895 }
896
897 int
898 eap_halt_input(addr)
899 void *addr;
900 {
901 struct eap_softc *sc = addr;
902 u_int32_t mode;
903
904 DPRINTF(("eap: eap_halt_input\n"));
905 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
906 EWRITE4(sc, EAP_ICSC, mode);
907 #ifdef DIAGNOSTIC
908 sc->sc_rrun = 0;
909 #endif
910 return (0);
911 }
912
913 int
914 eap_getdev(addr, retp)
915 void *addr;
916 struct audio_device *retp;
917 {
918 *retp = eap_device;
919 return (0);
920 }
921
922 void
923 eap_set_mixer(sc, a, d)
924 struct eap_softc *sc;
925 int a, d;
926 {
927 eap_write_codec(sc, a, d);
928 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
929 }
930
931
932 int
933 eap_mixer_set_port(addr, cp)
934 void *addr;
935 mixer_ctrl_t *cp;
936 {
937 struct eap_softc *sc = addr;
938 int lval, rval, l, r, la, ra;
939 int l1, r1, l2, r2, m, o1, o2;
940
941 if (cp->dev == EAP_RECORD_SOURCE) {
942 if (cp->type != AUDIO_MIXER_SET)
943 return (EINVAL);
944 m = sc->sc_record_source = cp->un.mask;
945 l1 = l2 = r1 = r2 = 0;
946 if (m & (1 << EAP_VOICE_VOL))
947 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
948 if (m & (1 << EAP_FM_VOL))
949 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
950 if (m & (1 << EAP_CD_VOL))
951 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
952 if (m & (1 << EAP_LINE_VOL))
953 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
954 if (m & (1 << EAP_AUX_VOL))
955 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
956 if (m & (1 << EAP_MIC_VOL))
957 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
958 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
959 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
960 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
961 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
962 return (0);
963 }
964 if (cp->dev == EAP_OUTPUT_SELECT) {
965 if (cp->type != AUDIO_MIXER_SET)
966 return (EINVAL);
967 m = sc->sc_output_source = cp->un.mask;
968 o1 = o2 = 0;
969 if (m & (1 << EAP_VOICE_VOL))
970 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
971 if (m & (1 << EAP_FM_VOL))
972 o1 |= AK_M_FM_L | AK_M_FM_R;
973 if (m & (1 << EAP_CD_VOL))
974 o1 |= AK_M_CD_L | AK_M_CD_R;
975 if (m & (1 << EAP_LINE_VOL))
976 o1 |= AK_M_LINE_L | AK_M_LINE_R;
977 if (m & (1 << EAP_AUX_VOL))
978 o2 |= AK_M_AUX_L | AK_M_AUX_R;
979 if (m & (1 << EAP_MIC_VOL))
980 o1 |= AK_M_MIC;
981 eap_set_mixer(sc, AK_OUT_MIXER1, o1);
982 eap_set_mixer(sc, AK_OUT_MIXER2, o2);
983 return (0);
984 }
985 if (cp->dev == EAP_MIC_PREAMP) {
986 if (cp->type != AUDIO_MIXER_ENUM)
987 return (EINVAL);
988 if (cp->un.ord != 0 && cp->un.ord != 1)
989 return (EINVAL);
990 sc->sc_mic_preamp = cp->un.ord;
991 eap_set_mixer(sc, AK_MGAIN, cp->un.ord);
992 return (0);
993 }
994 if (cp->type != AUDIO_MIXER_VALUE)
995 return (EINVAL);
996 if (cp->un.value.num_channels == 1)
997 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
998 else if (cp->un.value.num_channels == 2) {
999 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1000 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1001 } else
1002 return (EINVAL);
1003 ra = -1;
1004 switch (cp->dev) {
1005 case EAP_MASTER_VOL:
1006 l = VOL_TO_ATT5(lval);
1007 r = VOL_TO_ATT5(rval);
1008 la = AK_MASTER_L;
1009 ra = AK_MASTER_R;
1010 break;
1011 case EAP_MIC_VOL:
1012 if (cp->un.value.num_channels != 1)
1013 return (EINVAL);
1014 la = AK_MIC;
1015 goto lr;
1016 case EAP_VOICE_VOL:
1017 la = AK_VOICE_L;
1018 ra = AK_VOICE_R;
1019 goto lr;
1020 case EAP_FM_VOL:
1021 la = AK_FM_L;
1022 ra = AK_FM_R;
1023 goto lr;
1024 case EAP_CD_VOL:
1025 la = AK_CD_L;
1026 ra = AK_CD_R;
1027 goto lr;
1028 case EAP_LINE_VOL:
1029 la = AK_LINE_L;
1030 ra = AK_LINE_R;
1031 goto lr;
1032 case EAP_AUX_VOL:
1033 la = AK_AUX_L;
1034 ra = AK_AUX_R;
1035 lr:
1036 l = VOL_TO_GAIN5(lval);
1037 r = VOL_TO_GAIN5(rval);
1038 break;
1039 default:
1040 return (EINVAL);
1041 }
1042 eap_set_mixer(sc, la, l);
1043 sc->sc_port[la] = l;
1044 if (ra >= 0) {
1045 eap_set_mixer(sc, ra, r);
1046 sc->sc_port[ra] = r;
1047 }
1048 return (0);
1049 }
1050
1051 int
1052 eap_mixer_get_port(addr, cp)
1053 void *addr;
1054 mixer_ctrl_t *cp;
1055 {
1056 struct eap_softc *sc = addr;
1057 int la, ra, l, r;
1058
1059 switch (cp->dev) {
1060 case EAP_RECORD_SOURCE:
1061 if (cp->type != AUDIO_MIXER_SET)
1062 return (EINVAL);
1063 cp->un.mask = sc->sc_record_source;
1064 return (0);
1065 case EAP_OUTPUT_SELECT:
1066 if (cp->type != AUDIO_MIXER_SET)
1067 return (EINVAL);
1068 cp->un.mask = sc->sc_output_source;
1069 return (0);
1070 case EAP_MIC_PREAMP:
1071 if (cp->type != AUDIO_MIXER_ENUM)
1072 return (EINVAL);
1073 cp->un.ord = sc->sc_mic_preamp;
1074 return (0);
1075 case EAP_MASTER_VOL:
1076 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1077 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1078 break;
1079 case EAP_MIC_VOL:
1080 if (cp->un.value.num_channels != 1)
1081 return (EINVAL);
1082 la = ra = AK_MIC;
1083 goto lr;
1084 case EAP_VOICE_VOL:
1085 la = AK_VOICE_L;
1086 ra = AK_VOICE_R;
1087 goto lr;
1088 case EAP_FM_VOL:
1089 la = AK_FM_L;
1090 ra = AK_FM_R;
1091 goto lr;
1092 case EAP_CD_VOL:
1093 la = AK_CD_L;
1094 ra = AK_CD_R;
1095 goto lr;
1096 case EAP_LINE_VOL:
1097 la = AK_LINE_L;
1098 ra = AK_LINE_R;
1099 goto lr;
1100 case EAP_AUX_VOL:
1101 la = AK_AUX_L;
1102 ra = AK_AUX_R;
1103 lr:
1104 l = GAIN5_TO_VOL(sc->sc_port[la]);
1105 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1106 break;
1107 default:
1108 return (EINVAL);
1109 }
1110 if (cp->un.value.num_channels == 1)
1111 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1112 else if (cp->un.value.num_channels == 2) {
1113 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1114 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1115 } else
1116 return (EINVAL);
1117 return (0);
1118 }
1119
1120 int
1121 eap_query_devinfo(addr, dip)
1122 void *addr;
1123 mixer_devinfo_t *dip;
1124 {
1125 switch (dip->index) {
1126 case EAP_MASTER_VOL:
1127 dip->type = AUDIO_MIXER_VALUE;
1128 dip->mixer_class = EAP_OUTPUT_CLASS;
1129 dip->prev = dip->next = AUDIO_MIXER_LAST;
1130 strcpy(dip->label.name, AudioNmaster);
1131 dip->un.v.num_channels = 2;
1132 strcpy(dip->un.v.units.name, AudioNvolume);
1133 return (0);
1134 case EAP_VOICE_VOL:
1135 dip->type = AUDIO_MIXER_VALUE;
1136 dip->mixer_class = EAP_INPUT_CLASS;
1137 dip->prev = AUDIO_MIXER_LAST;
1138 dip->next = AUDIO_MIXER_LAST;
1139 strcpy(dip->label.name, AudioNdac);
1140 dip->un.v.num_channels = 2;
1141 strcpy(dip->un.v.units.name, AudioNvolume);
1142 return (0);
1143 case EAP_FM_VOL:
1144 dip->type = AUDIO_MIXER_VALUE;
1145 dip->mixer_class = EAP_INPUT_CLASS;
1146 dip->prev = AUDIO_MIXER_LAST;
1147 dip->next = AUDIO_MIXER_LAST;
1148 strcpy(dip->label.name, AudioNfmsynth);
1149 dip->un.v.num_channels = 2;
1150 strcpy(dip->un.v.units.name, AudioNvolume);
1151 return (0);
1152 case EAP_CD_VOL:
1153 dip->type = AUDIO_MIXER_VALUE;
1154 dip->mixer_class = EAP_INPUT_CLASS;
1155 dip->prev = AUDIO_MIXER_LAST;
1156 dip->next = AUDIO_MIXER_LAST;
1157 strcpy(dip->label.name, AudioNcd);
1158 dip->un.v.num_channels = 2;
1159 strcpy(dip->un.v.units.name, AudioNvolume);
1160 return (0);
1161 case EAP_LINE_VOL:
1162 dip->type = AUDIO_MIXER_VALUE;
1163 dip->mixer_class = EAP_INPUT_CLASS;
1164 dip->prev = AUDIO_MIXER_LAST;
1165 dip->next = AUDIO_MIXER_LAST;
1166 strcpy(dip->label.name, AudioNline);
1167 dip->un.v.num_channels = 2;
1168 strcpy(dip->un.v.units.name, AudioNvolume);
1169 return (0);
1170 case EAP_AUX_VOL:
1171 dip->type = AUDIO_MIXER_VALUE;
1172 dip->mixer_class = EAP_INPUT_CLASS;
1173 dip->prev = AUDIO_MIXER_LAST;
1174 dip->next = AUDIO_MIXER_LAST;
1175 strcpy(dip->label.name, AudioNaux);
1176 dip->un.v.num_channels = 2;
1177 strcpy(dip->un.v.units.name, AudioNvolume);
1178 return (0);
1179 case EAP_MIC_VOL:
1180 dip->type = AUDIO_MIXER_VALUE;
1181 dip->mixer_class = EAP_INPUT_CLASS;
1182 dip->prev = AUDIO_MIXER_LAST;
1183 dip->next = EAP_MIC_PREAMP;
1184 strcpy(dip->label.name, AudioNmicrophone);
1185 dip->un.v.num_channels = 1;
1186 strcpy(dip->un.v.units.name, AudioNvolume);
1187 return (0);
1188 case EAP_RECORD_SOURCE:
1189 dip->mixer_class = EAP_RECORD_CLASS;
1190 dip->prev = dip->next = AUDIO_MIXER_LAST;
1191 strcpy(dip->label.name, AudioNsource);
1192 dip->type = AUDIO_MIXER_SET;
1193 dip->un.s.num_mem = 6;
1194 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1195 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1196 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1197 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1198 strcpy(dip->un.s.member[2].label.name, AudioNline);
1199 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1200 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1201 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1202 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1203 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1204 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1205 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1206 return (0);
1207 case EAP_OUTPUT_SELECT:
1208 dip->mixer_class = EAP_OUTPUT_CLASS;
1209 dip->prev = dip->next = AUDIO_MIXER_LAST;
1210 strcpy(dip->label.name, AudioNselect);
1211 dip->type = AUDIO_MIXER_SET;
1212 dip->un.s.num_mem = 6;
1213 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1214 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1215 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1216 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1217 strcpy(dip->un.s.member[2].label.name, AudioNline);
1218 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1219 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1220 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1221 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1222 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1223 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1224 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1225 return (0);
1226 case EAP_MIC_PREAMP:
1227 dip->type = AUDIO_MIXER_ENUM;
1228 dip->mixer_class = EAP_INPUT_CLASS;
1229 dip->prev = EAP_MIC_VOL;
1230 dip->next = AUDIO_MIXER_LAST;
1231 strcpy(dip->label.name, AudioNpreamp);
1232 dip->un.e.num_mem = 2;
1233 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1234 dip->un.e.member[0].ord = 0;
1235 strcpy(dip->un.e.member[1].label.name, AudioNon);
1236 dip->un.e.member[1].ord = 1;
1237 return (0);
1238 case EAP_OUTPUT_CLASS:
1239 dip->type = AUDIO_MIXER_CLASS;
1240 dip->mixer_class = EAP_OUTPUT_CLASS;
1241 dip->next = dip->prev = AUDIO_MIXER_LAST;
1242 strcpy(dip->label.name, AudioCoutputs);
1243 return (0);
1244 case EAP_RECORD_CLASS:
1245 dip->type = AUDIO_MIXER_CLASS;
1246 dip->mixer_class = EAP_RECORD_CLASS;
1247 dip->next = dip->prev = AUDIO_MIXER_LAST;
1248 strcpy(dip->label.name, AudioCrecord);
1249 return (0);
1250 case EAP_INPUT_CLASS:
1251 dip->type = AUDIO_MIXER_CLASS;
1252 dip->mixer_class = EAP_INPUT_CLASS;
1253 dip->next = dip->prev = AUDIO_MIXER_LAST;
1254 strcpy(dip->label.name, AudioCinputs);
1255 return (0);
1256 }
1257 return (ENXIO);
1258 }
1259
1260 void *
1261 eap_malloc(addr, size, pool, flags)
1262 void *addr;
1263 u_long size;
1264 int pool;
1265 int flags;
1266 {
1267 struct eap_softc *sc = addr;
1268 struct eap_dma *p;
1269 int error;
1270
1271 p = malloc(sizeof(*p), pool, flags);
1272 if (!p)
1273 return (0);
1274 error = eap_allocmem(sc, size, 16, p);
1275 if (error) {
1276 free(p, pool);
1277 return (0);
1278 }
1279 p->next = sc->sc_dmas;
1280 sc->sc_dmas = p;
1281 return (KERNADDR(p));
1282 }
1283
1284 void
1285 eap_free(addr, ptr, pool)
1286 void *addr;
1287 void *ptr;
1288 int pool;
1289 {
1290 struct eap_softc *sc = addr;
1291 struct eap_dma **p;
1292
1293 for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1294 if (KERNADDR(*p) == ptr) {
1295 eap_freemem(sc, *p);
1296 *p = (*p)->next;
1297 free(*p, pool);
1298 return;
1299 }
1300 }
1301 }
1302
1303 u_long
1304 eap_round(addr, size)
1305 void *addr;
1306 u_long size;
1307 {
1308 return (size);
1309 }
1310
1311 int
1312 eap_mappage(addr, mem, off, prot)
1313 void *addr;
1314 void *mem;
1315 int off;
1316 int prot;
1317 {
1318 struct eap_softc *sc = addr;
1319 struct eap_dma *p;
1320
1321 if (off < 0)
1322 return (-1);
1323 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1324 ;
1325 if (!p)
1326 return (-1);
1327 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1328 off, prot, BUS_DMA_WAITOK));
1329 }
1330
1331 int
1332 eap_get_props(addr)
1333 void *addr;
1334 {
1335 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1336 }
1337