eap.c revision 1.23 1 /* $NetBSD: eap.c,v 1.23 1999/02/17 23:55:18 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Lennart Augustsson <augustss (at) netbsd.org> and Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
41 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
42 * Phil Nelson <phil (at) cs.wwu.edu>
43 */
44
45 /*
46 * Ensoniq AudoiPCI ES1370 + AK4531 driver.
47 * Data sheets can be found at
48 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
49 * and
50 * http://206.214.38.151/pdf/4531.pdf
51 */
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/malloc.h>
57 #include <sys/device.h>
58
59 #include <dev/pci/pcidevs.h>
60 #include <dev/pci/pcivar.h>
61
62 #include <sys/audioio.h>
63 #include <dev/audio_if.h>
64 #include <dev/mulaw.h>
65 #include <dev/auconv.h>
66
67 #include <machine/bus.h>
68
69 #define PCI_CBIO 0x10
70
71 #define EAP_ICSC 0x00 /* interrupt / chip select control */
72 #define EAP_SERR_DISABLE 0x00000001
73 #define EAP_CDC_EN 0x00000002
74 #define EAP_JYSTK_EN 0x00000004
75 #define EAP_UART_EN 0x00000008
76 #define EAP_ADC_EN 0x00000010
77 #define EAP_DAC2_EN 0x00000020
78 #define EAP_DAC1_EN 0x00000040
79 #define EAP_BREQ 0x00000080
80 #define EAP_XTCL0 0x00000100
81 #define EAP_M_CB 0x00000200
82 #define EAP_CCB_INTRM 0x00000400
83 #define EAP_DAC_SYNC 0x00000800
84 #define EAP_WTSRSEL 0x00003000
85 #define EAP_WTSRSEL_5 0x00000000
86 #define EAP_WTSRSEL_11 0x00001000
87 #define EAP_WTSRSEL_22 0x00002000
88 #define EAP_WTSRSEL_44 0x00003000
89 #define EAP_M_SBB 0x00004000
90 #define EAP_MSFMTSEL 0x00008000
91 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
92 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
93 #define EAP_PCLKBITS 0x1fff0000
94 #define EAP_XTCL1 0x40000000
95 #define EAP_ADC_STOP 0x80000000
96
97 #define EAP_ICSS 0x04 /* interrupt / chip select status */
98 #define EAP_I_ADC 0x00000001
99 #define EAP_I_DAC2 0x00000002
100 #define EAP_I_DAC1 0x00000004
101 #define EAP_I_UART 0x00000008
102 #define EAP_I_MCCB 0x00000010
103 #define EAP_VC 0x00000060
104 #define EAP_CWRIP 0x00000100
105 #define EAP_CBUSY 0x00000200
106 #define EAP_CSTAT 0x00000400
107 #define EAP_INTR 0x80000000
108
109 #define EAP_UART_DATA 0x08
110 #define EAP_UART_STATUS 0x09
111 #define EAP_UART_CONTROL 0x09
112 #define EAP_MEMPAGE 0x0c
113 #define EAP_CODEC 0x10
114 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
115
116 #define EAP_SIC 0x20
117 #define EAP_P1_S_MB 0x00000001
118 #define EAP_P1_S_EB 0x00000002
119 #define EAP_P2_S_MB 0x00000004
120 #define EAP_P2_S_EB 0x00000008
121 #define EAP_R1_S_MB 0x00000010
122 #define EAP_R1_S_EB 0x00000020
123 #define EAP_P2_DAC_SEN 0x00000040
124 #define EAP_P1_SCT_RLD 0x00000080
125 #define EAP_P1_INTR_EN 0x00000100
126 #define EAP_P2_INTR_EN 0x00000200
127 #define EAP_R1_INTR_EN 0x00000400
128 #define EAP_P1_PAUSE 0x00000800
129 #define EAP_P2_PAUSE 0x00001000
130 #define EAP_P1_LOOP_SEL 0x00002000
131 #define EAP_P2_LOOP_SEL 0x00004000
132 #define EAP_R1_LOOP_SEL 0x00008000
133 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
134 #define EAP_SET_P2_END_INC(i) ((i) << 19)
135 #define EAP_INC_BITS 0x003f0000
136
137 #define EAP_DAC1_CSR 0x24
138 #define EAP_DAC2_CSR 0x28
139 #define EAP_ADC_CSR 0x2c
140 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
141
142 #define EAP_DAC_PAGE 0xc
143 #define EAP_ADC_PAGE 0xd
144 #define EAP_UART_PAGE1 0xe
145 #define EAP_UART_PAGE2 0xf
146
147 #define EAP_DAC1_ADDR 0x30
148 #define EAP_DAC1_SIZE 0x34
149 #define EAP_DAC2_ADDR 0x38
150 #define EAP_DAC2_SIZE 0x3c
151 #define EAP_ADC_ADDR 0x30
152 #define EAP_ADC_SIZE 0x34
153 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
154
155 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
156
157 /* AK4531 registers */
158 #define AK_MASTER_L 0x00
159 #define AK_MASTER_R 0x01
160 #define AK_VOICE_L 0x02
161 #define AK_VOICE_R 0x03
162 #define AK_FM_L 0x04
163 #define AK_FM_R 0x05
164 #define AK_CD_L 0x06
165 #define AK_CD_R 0x07
166 #define AK_LINE_L 0x08
167 #define AK_LINE_R 0x09
168 #define AK_AUX_L 0x0a
169 #define AK_AUX_R 0x0b
170 #define AK_MONO1 0x0c
171 #define AK_MONO2 0x0d
172 #define AK_MIC 0x0e
173 #define AK_MONO 0x0f
174 #define AK_OUT_MIXER1 0x10
175 #define AK_M_FM_L 0x40
176 #define AK_M_FM_R 0x20
177 #define AK_M_LINE_L 0x10
178 #define AK_M_LINE_R 0x08
179 #define AK_M_CD_L 0x04
180 #define AK_M_CD_R 0x02
181 #define AK_M_MIC 0x01
182 #define AK_OUT_MIXER2 0x11
183 #define AK_M_AUX_L 0x20
184 #define AK_M_AUX_R 0x10
185 #define AK_M_VOICE_L 0x08
186 #define AK_M_VOICE_R 0x04
187 #define AK_M_MONO2 0x02
188 #define AK_M_MONO1 0x01
189 #define AK_IN_MIXER1_L 0x12
190 #define AK_IN_MIXER1_R 0x13
191 #define AK_IN_MIXER2_L 0x14
192 #define AK_IN_MIXER2_R 0x15
193 #define AK_M_TMIC 0x80
194 #define AK_M_TMONO1 0x40
195 #define AK_M_TMONO2 0x20
196 #define AK_M2_AUX_L 0x10
197 #define AK_M2_AUX_R 0x08
198 #define AK_M_VOICE 0x04
199 #define AK_M2_MONO2 0x02
200 #define AK_M2_MONO1 0x01
201 #define AK_RESET 0x16
202 #define AK_PD 0x02
203 #define AK_NRST 0x01
204 #define AK_CS 0x17
205 #define AK_ADSEL 0x18
206 #define AK_MGAIN 0x19
207
208 #define AK_NPORTS 16
209
210 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
211 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
212 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
213 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
214 #define VOL_0DB 200
215
216 #define EAP_MASTER_VOL 0
217 #define EAP_VOICE_VOL 1
218 #define EAP_FM_VOL 2
219 #define EAP_CD_VOL 3
220 #define EAP_LINE_VOL 4
221 #define EAP_AUX_VOL 5
222 #define EAP_MIC_VOL 6
223 #define EAP_RECORD_SOURCE 7
224 #define EAP_OUTPUT_SELECT 8
225 #define EAP_MIC_PREAMP 9
226 #define EAP_OUTPUT_CLASS 10
227 #define EAP_RECORD_CLASS 11
228 #define EAP_INPUT_CLASS 12
229
230 #ifdef AUDIO_DEBUG
231 #define DPRINTF(x) if (eapdebug) printf x
232 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
233 int eapdebug = 0;
234 #else
235 #define DPRINTF(x)
236 #define DPRINTFN(n,x)
237 #endif
238
239 int eap_match __P((struct device *, struct cfdata *, void *));
240 void eap_attach __P((struct device *, struct device *, void *));
241 int eap_intr __P((void *));
242
243 struct eap_dma {
244 bus_dmamap_t map;
245 caddr_t addr;
246 bus_dma_segment_t segs[1];
247 int nsegs;
248 size_t size;
249 struct eap_dma *next;
250 };
251 #define DMAADDR(map) ((map)->segs[0].ds_addr)
252 #define KERNADDR(map) ((void *)((map)->addr))
253
254 struct eap_softc {
255 struct device sc_dev; /* base device */
256 void *sc_ih; /* interrupt vectoring */
257 bus_space_tag_t iot;
258 bus_space_handle_t ioh;
259 bus_dma_tag_t sc_dmatag; /* DMA tag */
260
261 struct eap_dma *sc_dmas;
262
263 void (*sc_pintr)(void *); /* dma completion intr handler */
264 void *sc_parg; /* arg for sc_intr() */
265 #ifdef DIAGNOSTIC
266 char sc_prun;
267 #endif
268
269 void (*sc_rintr)(void *); /* dma completion intr handler */
270 void *sc_rarg; /* arg for sc_intr() */
271 #ifdef DIAGNOSTIC
272 char sc_rrun;
273 #endif
274
275 u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */
276 u_int sc_record_source; /* recording source mask */
277 u_int sc_output_source; /* output source mask */
278 u_int sc_mic_preamp;
279 };
280
281 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
282 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
283
284 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
285 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
286 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
287 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
288
289 struct cfattach eap_ca = {
290 sizeof(struct eap_softc), eap_match, eap_attach
291 };
292
293 int eap_open __P((void *, int));
294 void eap_close __P((void *));
295 int eap_query_encoding __P((void *, struct audio_encoding *));
296 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
297 int eap_round_blocksize __P((void *, int));
298 int eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
299 void *, struct audio_params *));
300 int eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
301 void *, struct audio_params *));
302 int eap_halt_output __P((void *));
303 int eap_halt_input __P((void *));
304 int eap_getdev __P((void *, struct audio_device *));
305 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
306 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
307 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
308 void *eap_malloc __P((void *, int, size_t, int, int));
309 void eap_free __P((void *, void *, int));
310 size_t eap_round_buffersize __P((void *, int, size_t));
311 int eap_mappage __P((void *, void *, int, int));
312 int eap_get_props __P((void *));
313 void eap_write_codec __P((struct eap_softc *sc, int a, int d));
314 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
315
316 struct audio_hw_if eap_hw_if = {
317 eap_open,
318 eap_close,
319 NULL,
320 eap_query_encoding,
321 eap_set_params,
322 eap_round_blocksize,
323 NULL,
324 NULL,
325 NULL,
326 NULL,
327 NULL,
328 eap_halt_output,
329 eap_halt_input,
330 NULL,
331 eap_getdev,
332 NULL,
333 eap_mixer_set_port,
334 eap_mixer_get_port,
335 eap_query_devinfo,
336 eap_malloc,
337 eap_free,
338 eap_round_buffersize,
339 eap_mappage,
340 eap_get_props,
341 eap_trigger_output,
342 eap_trigger_input,
343 };
344
345 struct audio_device eap_device = {
346 "Ensoniq AudioPCI",
347 "",
348 "eap"
349 };
350
351 int
352 eap_match(parent, match, aux)
353 struct device *parent;
354 struct cfdata *match;
355 void *aux;
356 {
357 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
358
359 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
360 return (0);
361 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
362 return (0);
363
364 return (1);
365 }
366
367 void
368 eap_write_codec(sc, a, d)
369 struct eap_softc *sc;
370 int a, d;
371 {
372 int icss;
373
374 do {
375 icss = EREAD4(sc, EAP_ICSS);
376 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
377 } while(icss & EAP_CWRIP);
378 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
379 }
380
381 void
382 eap_attach(parent, self, aux)
383 struct device *parent;
384 struct device *self;
385 void *aux;
386 {
387 struct eap_softc *sc = (struct eap_softc *)self;
388 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
389 pci_chipset_tag_t pc = pa->pa_pc;
390 char const *intrstr;
391 pci_intr_handle_t ih;
392 pcireg_t csr;
393 char devinfo[256];
394 mixer_ctrl_t ctl;
395
396 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
397 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
398
399 /* Map I/O register */
400 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
401 &sc->iot, &sc->ioh, NULL, NULL)) {
402 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
403 return;
404 }
405
406 sc->sc_dmatag = pa->pa_dmat;
407
408 /* Enable the device. */
409 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
410 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
411 csr | PCI_COMMAND_MASTER_ENABLE);
412
413 /* Map and establish the interrupt. */
414 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
415 pa->pa_intrline, &ih)) {
416 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
417 return;
418 }
419 intrstr = pci_intr_string(pc, ih);
420 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
421 if (sc->sc_ih == NULL) {
422 printf("%s: couldn't establish interrupt",
423 sc->sc_dev.dv_xname);
424 if (intrstr != NULL)
425 printf(" at %s", intrstr);
426 printf("\n");
427 return;
428 }
429 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
430
431 /* Enable interrupts and looping mode. */
432 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
433 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
434
435 eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
436 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */
437 eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
438
439 /* Enable all relevant mixer switches. */
440 ctl.dev = EAP_OUTPUT_SELECT;
441 ctl.type = AUDIO_MIXER_SET;
442 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
443 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
444 eap_mixer_set_port(sc, &ctl);
445
446 ctl.type = AUDIO_MIXER_VALUE;
447 ctl.un.value.num_channels = 1;
448 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
449 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
450 eap_mixer_set_port(sc, &ctl);
451 }
452 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
453 eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
454 ctl.dev = EAP_MIC_PREAMP;
455 ctl.type = AUDIO_MIXER_ENUM;
456 ctl.un.ord = 0;
457 eap_mixer_set_port(sc, &ctl);
458 ctl.dev = EAP_RECORD_SOURCE;
459 ctl.type = AUDIO_MIXER_SET;
460 ctl.un.mask = 1 << EAP_MIC_VOL;
461 eap_mixer_set_port(sc, &ctl);
462
463 audio_attach_mi(&eap_hw_if, sc, &sc->sc_dev);
464 }
465
466 int
467 eap_intr(p)
468 void *p;
469 {
470 struct eap_softc *sc = p;
471 u_int32_t intr, sic;
472
473 intr = EREAD4(sc, EAP_ICSS);
474 if (!(intr & EAP_INTR))
475 return (0);
476 sic = EREAD4(sc, EAP_SIC);
477 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
478 if (intr & EAP_I_ADC) {
479 /*
480 * XXX This is a hack!
481 * The EAP chip sometimes generates the recording interrupt
482 * while it is still transferring the data. To make sure
483 * it has all arrived we busy wait until the count is right.
484 * The transfer we are waiting for is 8 longwords.
485 */
486 int s, nw, n;
487 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
488 s = EREAD4(sc, EAP_ADC_CSR);
489 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
490 n = 0;
491 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
492 delay(10);
493 if (++n > 100) {
494 printf("eapintr: dma fix timeout");
495 break;
496 }
497 }
498 /* Continue with normal interrupt handling. */
499 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
500 EWRITE4(sc, EAP_SIC, sic);
501 if (sc->sc_rintr)
502 sc->sc_rintr(sc->sc_rarg);
503 }
504 if (intr & EAP_I_DAC2) {
505 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
506 EWRITE4(sc, EAP_SIC, sic);
507 if (sc->sc_pintr)
508 sc->sc_pintr(sc->sc_parg);
509 }
510 return (1);
511 }
512
513 int
514 eap_allocmem(sc, size, align, p)
515 struct eap_softc *sc;
516 size_t size;
517 size_t align;
518 struct eap_dma *p;
519 {
520 int error;
521
522 p->size = size;
523 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
524 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
525 &p->nsegs, BUS_DMA_NOWAIT);
526 if (error)
527 return (error);
528
529 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
530 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
531 if (error)
532 goto free;
533
534 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
535 0, BUS_DMA_NOWAIT, &p->map);
536 if (error)
537 goto unmap;
538
539 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
540 BUS_DMA_NOWAIT);
541 if (error)
542 goto destroy;
543 return (0);
544
545 destroy:
546 bus_dmamap_destroy(sc->sc_dmatag, p->map);
547 unmap:
548 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
549 free:
550 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
551 return (error);
552 }
553
554 int
555 eap_freemem(sc, p)
556 struct eap_softc *sc;
557 struct eap_dma *p;
558 {
559 bus_dmamap_unload(sc->sc_dmatag, p->map);
560 bus_dmamap_destroy(sc->sc_dmatag, p->map);
561 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
562 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
563 return (0);
564 }
565
566 int
567 eap_open(addr, flags)
568 void *addr;
569 int flags;
570 {
571
572 return (0);
573 }
574
575 /*
576 * Close function is called at splaudio().
577 */
578 void
579 eap_close(addr)
580 void *addr;
581 {
582 struct eap_softc *sc = addr;
583
584 eap_halt_output(sc);
585 eap_halt_input(sc);
586
587 sc->sc_pintr = 0;
588 sc->sc_rintr = 0;
589 }
590
591 int
592 eap_query_encoding(addr, fp)
593 void *addr;
594 struct audio_encoding *fp;
595 {
596 switch (fp->index) {
597 case 0:
598 strcpy(fp->name, AudioEulinear);
599 fp->encoding = AUDIO_ENCODING_ULINEAR;
600 fp->precision = 8;
601 fp->flags = 0;
602 return (0);
603 case 1:
604 strcpy(fp->name, AudioEmulaw);
605 fp->encoding = AUDIO_ENCODING_ULAW;
606 fp->precision = 8;
607 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
608 return (0);
609 case 2:
610 strcpy(fp->name, AudioEalaw);
611 fp->encoding = AUDIO_ENCODING_ALAW;
612 fp->precision = 8;
613 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
614 return (0);
615 case 3:
616 strcpy(fp->name, AudioEslinear);
617 fp->encoding = AUDIO_ENCODING_SLINEAR;
618 fp->precision = 8;
619 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
620 return (0);
621 case 4:
622 strcpy(fp->name, AudioEslinear_le);
623 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
624 fp->precision = 16;
625 fp->flags = 0;
626 return (0);
627 case 5:
628 strcpy(fp->name, AudioEulinear_le);
629 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
630 fp->precision = 16;
631 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
632 return (0);
633 case 6:
634 strcpy(fp->name, AudioEslinear_be);
635 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
636 fp->precision = 16;
637 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
638 return (0);
639 case 7:
640 strcpy(fp->name, AudioEulinear_be);
641 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
642 fp->precision = 16;
643 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
644 return (0);
645 default:
646 return (EINVAL);
647 }
648 }
649
650 int
651 eap_set_params(addr, setmode, usemode, play, rec)
652 void *addr;
653 int setmode, usemode;
654 struct audio_params *play, *rec;
655 {
656 struct eap_softc *sc = addr;
657 struct audio_params *p;
658 int mode;
659 u_int32_t div;
660
661 /*
662 * This device only has one clock, so make the sample rates match.
663 */
664 if (play->sample_rate != rec->sample_rate &&
665 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
666 if (setmode == AUMODE_PLAY) {
667 rec->sample_rate = play->sample_rate;
668 setmode |= AUMODE_RECORD;
669 } else if (setmode == AUMODE_RECORD) {
670 play->sample_rate = rec->sample_rate;
671 setmode |= AUMODE_PLAY;
672 } else
673 return (EINVAL);
674 }
675
676 for (mode = AUMODE_RECORD; mode != -1;
677 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
678 if ((setmode & mode) == 0)
679 continue;
680
681 p = mode == AUMODE_PLAY ? play : rec;
682
683 if (p->sample_rate < 4000 || p->sample_rate > 50000 ||
684 (p->precision != 8 && p->precision != 16) ||
685 (p->channels != 1 && p->channels != 2))
686 return (EINVAL);
687
688 p->factor = 1;
689 p->sw_code = 0;
690 switch (p->encoding) {
691 case AUDIO_ENCODING_SLINEAR_BE:
692 if (p->precision == 16)
693 p->sw_code = swap_bytes;
694 else
695 p->sw_code = change_sign8;
696 break;
697 case AUDIO_ENCODING_SLINEAR_LE:
698 if (p->precision != 16)
699 p->sw_code = change_sign8;
700 break;
701 case AUDIO_ENCODING_ULINEAR_BE:
702 if (p->precision == 16) {
703 if (mode == AUMODE_PLAY)
704 p->sw_code = swap_bytes_change_sign16;
705 else
706 p->sw_code = change_sign16_swap_bytes;
707 }
708 break;
709 case AUDIO_ENCODING_ULINEAR_LE:
710 if (p->precision == 16)
711 p->sw_code = change_sign16;
712 break;
713 case AUDIO_ENCODING_ULAW:
714 if (mode == AUMODE_PLAY) {
715 p->factor = 2;
716 p->sw_code = mulaw_to_slinear16;
717 } else
718 p->sw_code = ulinear8_to_mulaw;
719 break;
720 case AUDIO_ENCODING_ALAW:
721 if (mode == AUMODE_PLAY) {
722 p->factor = 2;
723 p->sw_code = alaw_to_slinear16;
724 } else
725 p->sw_code = ulinear8_to_alaw;
726 break;
727 default:
728 return (EINVAL);
729 }
730 }
731
732 /* Set the speed */
733 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
734 EREAD4(sc, EAP_ICSC)));
735 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
736 /*
737 * XXX
738 * The -2 isn't documented, but seemed to make the wall time match
739 * what I expect. - mycroft
740 */
741 if (usemode == AUMODE_RECORD)
742 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / rec->sample_rate - 2);
743 else
744 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / play->sample_rate - 2);
745 div |= EAP_CCB_INTRM;
746 EWRITE4(sc, EAP_ICSC, div);
747 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
748
749 return (0);
750 }
751
752 int
753 eap_round_blocksize(addr, blk)
754 void *addr;
755 int blk;
756 {
757 return (blk & -32); /* keep good alignment */
758 }
759
760 int
761 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
762 void *addr;
763 void *start, *end;
764 int blksize;
765 void (*intr) __P((void *));
766 void *arg;
767 struct audio_params *param;
768 {
769 struct eap_softc *sc = addr;
770 struct eap_dma *p;
771 u_int32_t mode;
772 int sampshift;
773
774 #ifdef DIAGNOSTIC
775 if (sc->sc_prun)
776 panic("eap_trigger_output: already running");
777 sc->sc_prun = 1;
778 #endif
779
780 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
781 addr, start, end, blksize, intr, arg));
782 sc->sc_pintr = intr;
783 sc->sc_parg = arg;
784
785 mode = EREAD4(sc, EAP_SIC) & ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
786 mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
787 sampshift = 0;
788 if (param->precision * param->factor == 16) {
789 mode |= EAP_P2_S_EB;
790 sampshift++;
791 }
792 if (param->channels == 2) {
793 mode |= EAP_P2_S_MB;
794 sampshift++;
795 }
796 EWRITE4(sc, EAP_SIC, mode);
797
798 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
799 ;
800 if (!p) {
801 printf("eap_trigger_output: bad addr %p\n", start);
802 return (EINVAL);
803 }
804
805 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
806 (int)DMAADDR(p),
807 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
808 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
809 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
810 EWRITE4(sc, EAP_DAC2_SIZE,
811 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
812
813 EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
814 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
815 EWRITE4(sc, EAP_ICSC, mode);
816 mode |= EAP_DAC2_EN;
817 EWRITE4(sc, EAP_ICSC, mode);
818 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", mode));
819
820 return (0);
821 }
822
823 int
824 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
825 void *addr;
826 void *start, *end;
827 int blksize;
828 void (*intr) __P((void *));
829 void *arg;
830 struct audio_params *param;
831 {
832 struct eap_softc *sc = addr;
833 struct eap_dma *p;
834 u_int32_t mode;
835 int sampshift;
836
837 #ifdef DIAGNOSTIC
838 if (sc->sc_rrun)
839 panic("eap_trigger_input: already running");
840 sc->sc_rrun = 1;
841 #endif
842
843 DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
844 addr, start, end, blksize, intr, arg));
845 sc->sc_rintr = intr;
846 sc->sc_rarg = arg;
847
848 mode = EREAD4(sc, EAP_SIC) & ~(EAP_R1_S_EB | EAP_R1_S_MB);
849 sampshift = 0;
850 if (param->precision * param->factor == 16) {
851 mode |= EAP_R1_S_EB;
852 sampshift++;
853 }
854 if (param->channels == 2) {
855 mode |= EAP_R1_S_MB;
856 sampshift++;
857 }
858 EWRITE4(sc, EAP_SIC, mode);
859
860 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
861 ;
862 if (!p) {
863 printf("eap_trigger_input: bad addr %p\n", start);
864 return (EINVAL);
865 }
866
867 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
868 (int)DMAADDR(p),
869 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
870 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
871 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
872 EWRITE4(sc, EAP_ADC_SIZE,
873 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
874
875 EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
876 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
877 EWRITE4(sc, EAP_ICSC, mode);
878 mode |= EAP_ADC_EN;
879 EWRITE4(sc, EAP_ICSC, mode);
880 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", mode));
881
882 return (0);
883 }
884
885 int
886 eap_halt_output(addr)
887 void *addr;
888 {
889 struct eap_softc *sc = addr;
890 u_int32_t mode;
891
892 DPRINTF(("eap: eap_halt_output\n"));
893 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
894 EWRITE4(sc, EAP_ICSC, mode);
895 #ifdef DIAGNOSTIC
896 sc->sc_prun = 0;
897 #endif
898 return (0);
899 }
900
901 int
902 eap_halt_input(addr)
903 void *addr;
904 {
905 struct eap_softc *sc = addr;
906 u_int32_t mode;
907
908 DPRINTF(("eap: eap_halt_input\n"));
909 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
910 EWRITE4(sc, EAP_ICSC, mode);
911 #ifdef DIAGNOSTIC
912 sc->sc_rrun = 0;
913 #endif
914 return (0);
915 }
916
917 int
918 eap_getdev(addr, retp)
919 void *addr;
920 struct audio_device *retp;
921 {
922 *retp = eap_device;
923 return (0);
924 }
925
926 void
927 eap_set_mixer(sc, a, d)
928 struct eap_softc *sc;
929 int a, d;
930 {
931 eap_write_codec(sc, a, d);
932 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
933 }
934
935
936 int
937 eap_mixer_set_port(addr, cp)
938 void *addr;
939 mixer_ctrl_t *cp;
940 {
941 struct eap_softc *sc = addr;
942 int lval, rval, l, r, la, ra;
943 int l1, r1, l2, r2, m, o1, o2;
944
945 if (cp->dev == EAP_RECORD_SOURCE) {
946 if (cp->type != AUDIO_MIXER_SET)
947 return (EINVAL);
948 m = sc->sc_record_source = cp->un.mask;
949 l1 = l2 = r1 = r2 = 0;
950 if (m & (1 << EAP_VOICE_VOL))
951 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
952 if (m & (1 << EAP_FM_VOL))
953 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
954 if (m & (1 << EAP_CD_VOL))
955 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
956 if (m & (1 << EAP_LINE_VOL))
957 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
958 if (m & (1 << EAP_AUX_VOL))
959 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
960 if (m & (1 << EAP_MIC_VOL))
961 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
962 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
963 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
964 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
965 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
966 return (0);
967 }
968 if (cp->dev == EAP_OUTPUT_SELECT) {
969 if (cp->type != AUDIO_MIXER_SET)
970 return (EINVAL);
971 m = sc->sc_output_source = cp->un.mask;
972 o1 = o2 = 0;
973 if (m & (1 << EAP_VOICE_VOL))
974 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
975 if (m & (1 << EAP_FM_VOL))
976 o1 |= AK_M_FM_L | AK_M_FM_R;
977 if (m & (1 << EAP_CD_VOL))
978 o1 |= AK_M_CD_L | AK_M_CD_R;
979 if (m & (1 << EAP_LINE_VOL))
980 o1 |= AK_M_LINE_L | AK_M_LINE_R;
981 if (m & (1 << EAP_AUX_VOL))
982 o2 |= AK_M_AUX_L | AK_M_AUX_R;
983 if (m & (1 << EAP_MIC_VOL))
984 o1 |= AK_M_MIC;
985 eap_set_mixer(sc, AK_OUT_MIXER1, o1);
986 eap_set_mixer(sc, AK_OUT_MIXER2, o2);
987 return (0);
988 }
989 if (cp->dev == EAP_MIC_PREAMP) {
990 if (cp->type != AUDIO_MIXER_ENUM)
991 return (EINVAL);
992 if (cp->un.ord != 0 && cp->un.ord != 1)
993 return (EINVAL);
994 sc->sc_mic_preamp = cp->un.ord;
995 eap_set_mixer(sc, AK_MGAIN, cp->un.ord);
996 return (0);
997 }
998 if (cp->type != AUDIO_MIXER_VALUE)
999 return (EINVAL);
1000 if (cp->un.value.num_channels == 1)
1001 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1002 else if (cp->un.value.num_channels == 2) {
1003 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1004 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1005 } else
1006 return (EINVAL);
1007 ra = -1;
1008 switch (cp->dev) {
1009 case EAP_MASTER_VOL:
1010 l = VOL_TO_ATT5(lval);
1011 r = VOL_TO_ATT5(rval);
1012 la = AK_MASTER_L;
1013 ra = AK_MASTER_R;
1014 break;
1015 case EAP_MIC_VOL:
1016 if (cp->un.value.num_channels != 1)
1017 return (EINVAL);
1018 la = AK_MIC;
1019 goto lr;
1020 case EAP_VOICE_VOL:
1021 la = AK_VOICE_L;
1022 ra = AK_VOICE_R;
1023 goto lr;
1024 case EAP_FM_VOL:
1025 la = AK_FM_L;
1026 ra = AK_FM_R;
1027 goto lr;
1028 case EAP_CD_VOL:
1029 la = AK_CD_L;
1030 ra = AK_CD_R;
1031 goto lr;
1032 case EAP_LINE_VOL:
1033 la = AK_LINE_L;
1034 ra = AK_LINE_R;
1035 goto lr;
1036 case EAP_AUX_VOL:
1037 la = AK_AUX_L;
1038 ra = AK_AUX_R;
1039 lr:
1040 l = VOL_TO_GAIN5(lval);
1041 r = VOL_TO_GAIN5(rval);
1042 break;
1043 default:
1044 return (EINVAL);
1045 }
1046 eap_set_mixer(sc, la, l);
1047 sc->sc_port[la] = l;
1048 if (ra >= 0) {
1049 eap_set_mixer(sc, ra, r);
1050 sc->sc_port[ra] = r;
1051 }
1052 return (0);
1053 }
1054
1055 int
1056 eap_mixer_get_port(addr, cp)
1057 void *addr;
1058 mixer_ctrl_t *cp;
1059 {
1060 struct eap_softc *sc = addr;
1061 int la, ra, l, r;
1062
1063 switch (cp->dev) {
1064 case EAP_RECORD_SOURCE:
1065 if (cp->type != AUDIO_MIXER_SET)
1066 return (EINVAL);
1067 cp->un.mask = sc->sc_record_source;
1068 return (0);
1069 case EAP_OUTPUT_SELECT:
1070 if (cp->type != AUDIO_MIXER_SET)
1071 return (EINVAL);
1072 cp->un.mask = sc->sc_output_source;
1073 return (0);
1074 case EAP_MIC_PREAMP:
1075 if (cp->type != AUDIO_MIXER_ENUM)
1076 return (EINVAL);
1077 cp->un.ord = sc->sc_mic_preamp;
1078 return (0);
1079 case EAP_MASTER_VOL:
1080 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1081 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1082 break;
1083 case EAP_MIC_VOL:
1084 if (cp->un.value.num_channels != 1)
1085 return (EINVAL);
1086 la = ra = AK_MIC;
1087 goto lr;
1088 case EAP_VOICE_VOL:
1089 la = AK_VOICE_L;
1090 ra = AK_VOICE_R;
1091 goto lr;
1092 case EAP_FM_VOL:
1093 la = AK_FM_L;
1094 ra = AK_FM_R;
1095 goto lr;
1096 case EAP_CD_VOL:
1097 la = AK_CD_L;
1098 ra = AK_CD_R;
1099 goto lr;
1100 case EAP_LINE_VOL:
1101 la = AK_LINE_L;
1102 ra = AK_LINE_R;
1103 goto lr;
1104 case EAP_AUX_VOL:
1105 la = AK_AUX_L;
1106 ra = AK_AUX_R;
1107 lr:
1108 l = GAIN5_TO_VOL(sc->sc_port[la]);
1109 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1110 break;
1111 default:
1112 return (EINVAL);
1113 }
1114 if (cp->un.value.num_channels == 1)
1115 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1116 else if (cp->un.value.num_channels == 2) {
1117 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1118 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1119 } else
1120 return (EINVAL);
1121 return (0);
1122 }
1123
1124 int
1125 eap_query_devinfo(addr, dip)
1126 void *addr;
1127 mixer_devinfo_t *dip;
1128 {
1129 switch (dip->index) {
1130 case EAP_MASTER_VOL:
1131 dip->type = AUDIO_MIXER_VALUE;
1132 dip->mixer_class = EAP_OUTPUT_CLASS;
1133 dip->prev = dip->next = AUDIO_MIXER_LAST;
1134 strcpy(dip->label.name, AudioNmaster);
1135 dip->un.v.num_channels = 2;
1136 strcpy(dip->un.v.units.name, AudioNvolume);
1137 return (0);
1138 case EAP_VOICE_VOL:
1139 dip->type = AUDIO_MIXER_VALUE;
1140 dip->mixer_class = EAP_INPUT_CLASS;
1141 dip->prev = AUDIO_MIXER_LAST;
1142 dip->next = AUDIO_MIXER_LAST;
1143 strcpy(dip->label.name, AudioNdac);
1144 dip->un.v.num_channels = 2;
1145 strcpy(dip->un.v.units.name, AudioNvolume);
1146 return (0);
1147 case EAP_FM_VOL:
1148 dip->type = AUDIO_MIXER_VALUE;
1149 dip->mixer_class = EAP_INPUT_CLASS;
1150 dip->prev = AUDIO_MIXER_LAST;
1151 dip->next = AUDIO_MIXER_LAST;
1152 strcpy(dip->label.name, AudioNfmsynth);
1153 dip->un.v.num_channels = 2;
1154 strcpy(dip->un.v.units.name, AudioNvolume);
1155 return (0);
1156 case EAP_CD_VOL:
1157 dip->type = AUDIO_MIXER_VALUE;
1158 dip->mixer_class = EAP_INPUT_CLASS;
1159 dip->prev = AUDIO_MIXER_LAST;
1160 dip->next = AUDIO_MIXER_LAST;
1161 strcpy(dip->label.name, AudioNcd);
1162 dip->un.v.num_channels = 2;
1163 strcpy(dip->un.v.units.name, AudioNvolume);
1164 return (0);
1165 case EAP_LINE_VOL:
1166 dip->type = AUDIO_MIXER_VALUE;
1167 dip->mixer_class = EAP_INPUT_CLASS;
1168 dip->prev = AUDIO_MIXER_LAST;
1169 dip->next = AUDIO_MIXER_LAST;
1170 strcpy(dip->label.name, AudioNline);
1171 dip->un.v.num_channels = 2;
1172 strcpy(dip->un.v.units.name, AudioNvolume);
1173 return (0);
1174 case EAP_AUX_VOL:
1175 dip->type = AUDIO_MIXER_VALUE;
1176 dip->mixer_class = EAP_INPUT_CLASS;
1177 dip->prev = AUDIO_MIXER_LAST;
1178 dip->next = AUDIO_MIXER_LAST;
1179 strcpy(dip->label.name, AudioNaux);
1180 dip->un.v.num_channels = 2;
1181 strcpy(dip->un.v.units.name, AudioNvolume);
1182 return (0);
1183 case EAP_MIC_VOL:
1184 dip->type = AUDIO_MIXER_VALUE;
1185 dip->mixer_class = EAP_INPUT_CLASS;
1186 dip->prev = AUDIO_MIXER_LAST;
1187 dip->next = EAP_MIC_PREAMP;
1188 strcpy(dip->label.name, AudioNmicrophone);
1189 dip->un.v.num_channels = 1;
1190 strcpy(dip->un.v.units.name, AudioNvolume);
1191 return (0);
1192 case EAP_RECORD_SOURCE:
1193 dip->mixer_class = EAP_RECORD_CLASS;
1194 dip->prev = dip->next = AUDIO_MIXER_LAST;
1195 strcpy(dip->label.name, AudioNsource);
1196 dip->type = AUDIO_MIXER_SET;
1197 dip->un.s.num_mem = 6;
1198 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1199 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1200 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1201 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1202 strcpy(dip->un.s.member[2].label.name, AudioNline);
1203 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1204 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1205 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1206 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1207 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1208 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1209 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1210 return (0);
1211 case EAP_OUTPUT_SELECT:
1212 dip->mixer_class = EAP_OUTPUT_CLASS;
1213 dip->prev = dip->next = AUDIO_MIXER_LAST;
1214 strcpy(dip->label.name, AudioNselect);
1215 dip->type = AUDIO_MIXER_SET;
1216 dip->un.s.num_mem = 6;
1217 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1218 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1219 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1220 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1221 strcpy(dip->un.s.member[2].label.name, AudioNline);
1222 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1223 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1224 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1225 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1226 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1227 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1228 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1229 return (0);
1230 case EAP_MIC_PREAMP:
1231 dip->type = AUDIO_MIXER_ENUM;
1232 dip->mixer_class = EAP_INPUT_CLASS;
1233 dip->prev = EAP_MIC_VOL;
1234 dip->next = AUDIO_MIXER_LAST;
1235 strcpy(dip->label.name, AudioNpreamp);
1236 dip->un.e.num_mem = 2;
1237 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1238 dip->un.e.member[0].ord = 0;
1239 strcpy(dip->un.e.member[1].label.name, AudioNon);
1240 dip->un.e.member[1].ord = 1;
1241 return (0);
1242 case EAP_OUTPUT_CLASS:
1243 dip->type = AUDIO_MIXER_CLASS;
1244 dip->mixer_class = EAP_OUTPUT_CLASS;
1245 dip->next = dip->prev = AUDIO_MIXER_LAST;
1246 strcpy(dip->label.name, AudioCoutputs);
1247 return (0);
1248 case EAP_RECORD_CLASS:
1249 dip->type = AUDIO_MIXER_CLASS;
1250 dip->mixer_class = EAP_RECORD_CLASS;
1251 dip->next = dip->prev = AUDIO_MIXER_LAST;
1252 strcpy(dip->label.name, AudioCrecord);
1253 return (0);
1254 case EAP_INPUT_CLASS:
1255 dip->type = AUDIO_MIXER_CLASS;
1256 dip->mixer_class = EAP_INPUT_CLASS;
1257 dip->next = dip->prev = AUDIO_MIXER_LAST;
1258 strcpy(dip->label.name, AudioCinputs);
1259 return (0);
1260 }
1261 return (ENXIO);
1262 }
1263
1264 void *
1265 eap_malloc(addr, direction, size, pool, flags)
1266 void *addr;
1267 int direction;
1268 size_t size;
1269 int pool, flags;
1270 {
1271 struct eap_softc *sc = addr;
1272 struct eap_dma *p;
1273 int error;
1274
1275 p = malloc(sizeof(*p), pool, flags);
1276 if (!p)
1277 return (0);
1278 error = eap_allocmem(sc, size, 16, p);
1279 if (error) {
1280 free(p, pool);
1281 return (0);
1282 }
1283 p->next = sc->sc_dmas;
1284 sc->sc_dmas = p;
1285 return (KERNADDR(p));
1286 }
1287
1288 void
1289 eap_free(addr, ptr, pool)
1290 void *addr;
1291 void *ptr;
1292 int pool;
1293 {
1294 struct eap_softc *sc = addr;
1295 struct eap_dma **p;
1296
1297 for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1298 if (KERNADDR(*p) == ptr) {
1299 eap_freemem(sc, *p);
1300 *p = (*p)->next;
1301 free(*p, pool);
1302 return;
1303 }
1304 }
1305 }
1306
1307 size_t
1308 eap_round_buffersize(addr, direction, size)
1309 void *addr;
1310 int direction;
1311 size_t size;
1312 {
1313 return (size);
1314 }
1315
1316 int
1317 eap_mappage(addr, mem, off, prot)
1318 void *addr;
1319 void *mem;
1320 int off;
1321 int prot;
1322 {
1323 struct eap_softc *sc = addr;
1324 struct eap_dma *p;
1325
1326 if (off < 0)
1327 return (-1);
1328 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1329 ;
1330 if (!p)
1331 return (-1);
1332 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1333 off, prot, BUS_DMA_WAITOK));
1334 }
1335
1336 int
1337 eap_get_props(addr)
1338 void *addr;
1339 {
1340 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1341 }
1342