Home | History | Annotate | Line # | Download | only in pci
eap.c revision 1.25.4.1
      1 /*	$NetBSD: eap.c,v 1.25.4.1 1999/08/02 22:03:54 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Lennart Augustsson <augustss (at) netbsd.org> and Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Debugging:   Andreas Gustafsson <gson (at) araneus.fi>
     41  * Testing:     Chuck Cranor       <chuck (at) maria.wustl.edu>
     42  *              Phil Nelson        <phil (at) cs.wwu.edu>
     43  */
     44 
     45 /*
     46  * Ensoniq AudoiPCI ES1370 + AK4531 driver.
     47  * Data sheets can be found at
     48  * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
     49  * and
     50  * http://206.214.38.151/pdf/4531.pdf
     51  */
     52 
     53 #include <sys/param.h>
     54 #include <sys/systm.h>
     55 #include <sys/kernel.h>
     56 #include <sys/malloc.h>
     57 #include <sys/device.h>
     58 
     59 #include <dev/pci/pcidevs.h>
     60 #include <dev/pci/pcivar.h>
     61 
     62 #include <sys/audioio.h>
     63 #include <dev/audio_if.h>
     64 #include <dev/mulaw.h>
     65 #include <dev/auconv.h>
     66 
     67 #include <machine/bus.h>
     68 
     69 #define	PCI_CBIO		0x10
     70 
     71 #define EAP_ICSC		0x00    /* interrupt / chip select control */
     72 #define  EAP_SERR_DISABLE	0x00000001
     73 #define  EAP_CDC_EN		0x00000002
     74 #define  EAP_JYSTK_EN		0x00000004
     75 #define  EAP_UART_EN		0x00000008
     76 #define  EAP_ADC_EN		0x00000010
     77 #define  EAP_DAC2_EN		0x00000020
     78 #define  EAP_DAC1_EN		0x00000040
     79 #define  EAP_BREQ		0x00000080
     80 #define  EAP_XTCL0		0x00000100
     81 #define  EAP_M_CB		0x00000200
     82 #define  EAP_CCB_INTRM		0x00000400
     83 #define  EAP_DAC_SYNC		0x00000800
     84 #define  EAP_WTSRSEL		0x00003000
     85 #define   EAP_WTSRSEL_5		0x00000000
     86 #define   EAP_WTSRSEL_11	0x00001000
     87 #define   EAP_WTSRSEL_22	0x00002000
     88 #define   EAP_WTSRSEL_44	0x00003000
     89 #define  EAP_M_SBB		0x00004000
     90 #define  EAP_MSFMTSEL		0x00008000
     91 #define  EAP_SET_PCLKDIV(n)	(((n)&0x1fff)<<16)
     92 #define  EAP_GET_PCLKDIV(n)	(((n)>>16)&0x1fff)
     93 #define  EAP_PCLKBITS		0x1fff0000
     94 #define  EAP_XTCL1		0x40000000
     95 #define  EAP_ADC_STOP		0x80000000
     96 
     97 #define EAP_ICSS		0x04	/* interrupt / chip select status */
     98 #define  EAP_I_ADC		0x00000001
     99 #define  EAP_I_DAC2		0x00000002
    100 #define  EAP_I_DAC1		0x00000004
    101 #define  EAP_I_UART		0x00000008
    102 #define  EAP_I_MCCB		0x00000010
    103 #define  EAP_VC			0x00000060
    104 #define  EAP_CWRIP		0x00000100
    105 #define  EAP_CBUSY		0x00000200
    106 #define  EAP_CSTAT		0x00000400
    107 #define  EAP_INTR		0x80000000
    108 
    109 #define EAP_UART_DATA		0x08
    110 #define EAP_UART_STATUS		0x09
    111 #define EAP_UART_CONTROL	0x09
    112 #define EAP_MEMPAGE		0x0c
    113 #define EAP_CODEC		0x10
    114 #define  EAP_SET_CODEC(a,d)	(((a)<<8) | (d))
    115 
    116 #define EAP_SIC			0x20
    117 #define  EAP_P1_S_MB		0x00000001
    118 #define  EAP_P1_S_EB		0x00000002
    119 #define  EAP_P2_S_MB		0x00000004
    120 #define  EAP_P2_S_EB		0x00000008
    121 #define  EAP_R1_S_MB		0x00000010
    122 #define  EAP_R1_S_EB		0x00000020
    123 #define  EAP_P2_DAC_SEN		0x00000040
    124 #define  EAP_P1_SCT_RLD		0x00000080
    125 #define  EAP_P1_INTR_EN		0x00000100
    126 #define  EAP_P2_INTR_EN		0x00000200
    127 #define  EAP_R1_INTR_EN		0x00000400
    128 #define  EAP_P1_PAUSE		0x00000800
    129 #define  EAP_P2_PAUSE		0x00001000
    130 #define  EAP_P1_LOOP_SEL	0x00002000
    131 #define  EAP_P2_LOOP_SEL	0x00004000
    132 #define  EAP_R1_LOOP_SEL	0x00008000
    133 #define  EAP_SET_P2_ST_INC(i)	((i) << 16)
    134 #define  EAP_SET_P2_END_INC(i)	((i) << 19)
    135 #define  EAP_INC_BITS		0x003f0000
    136 
    137 #define EAP_DAC1_CSR		0x24
    138 #define EAP_DAC2_CSR		0x28
    139 #define EAP_ADC_CSR		0x2c
    140 #define  EAP_GET_CURRSAMP(r)	((r) >> 16)
    141 
    142 #define EAP_DAC_PAGE		0xc
    143 #define EAP_ADC_PAGE		0xd
    144 #define EAP_UART_PAGE1		0xe
    145 #define EAP_UART_PAGE2		0xf
    146 
    147 #define EAP_DAC1_ADDR		0x30
    148 #define EAP_DAC1_SIZE		0x34
    149 #define EAP_DAC2_ADDR		0x38
    150 #define EAP_DAC2_SIZE		0x3c
    151 #define EAP_ADC_ADDR		0x30
    152 #define EAP_ADC_SIZE		0x34
    153 #define  EAP_SET_SIZE(c,s)	(((c)<<16) | (s))
    154 
    155 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
    156 
    157 /* AK4531 registers */
    158 #define AK_MASTER_L		0x00
    159 #define AK_MASTER_R		0x01
    160 #define AK_VOICE_L		0x02
    161 #define AK_VOICE_R		0x03
    162 #define AK_FM_L			0x04
    163 #define AK_FM_R			0x05
    164 #define AK_CD_L			0x06
    165 #define AK_CD_R			0x07
    166 #define AK_LINE_L		0x08
    167 #define AK_LINE_R		0x09
    168 #define AK_AUX_L		0x0a
    169 #define AK_AUX_R		0x0b
    170 #define AK_MONO1		0x0c
    171 #define AK_MONO2		0x0d
    172 #define AK_MIC			0x0e
    173 #define AK_MONO			0x0f
    174 #define AK_OUT_MIXER1		0x10
    175 #define  AK_M_FM_L		0x40
    176 #define  AK_M_FM_R		0x20
    177 #define  AK_M_LINE_L		0x10
    178 #define  AK_M_LINE_R		0x08
    179 #define  AK_M_CD_L		0x04
    180 #define  AK_M_CD_R		0x02
    181 #define  AK_M_MIC		0x01
    182 #define AK_OUT_MIXER2		0x11
    183 #define  AK_M_AUX_L		0x20
    184 #define  AK_M_AUX_R		0x10
    185 #define  AK_M_VOICE_L		0x08
    186 #define  AK_M_VOICE_R		0x04
    187 #define  AK_M_MONO2		0x02
    188 #define  AK_M_MONO1		0x01
    189 #define AK_IN_MIXER1_L		0x12
    190 #define AK_IN_MIXER1_R		0x13
    191 #define AK_IN_MIXER2_L		0x14
    192 #define AK_IN_MIXER2_R		0x15
    193 #define  AK_M_TMIC		0x80
    194 #define  AK_M_TMONO1		0x40
    195 #define  AK_M_TMONO2		0x20
    196 #define  AK_M2_AUX_L		0x10
    197 #define  AK_M2_AUX_R		0x08
    198 #define  AK_M_VOICE		0x04
    199 #define  AK_M2_MONO2		0x02
    200 #define  AK_M2_MONO1		0x01
    201 #define AK_RESET		0x16
    202 #define  AK_PD			0x02
    203 #define  AK_NRST		0x01
    204 #define AK_CS			0x17
    205 #define AK_ADSEL		0x18
    206 #define AK_MGAIN		0x19
    207 
    208 #define AK_NPORTS 16
    209 
    210 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
    211 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
    212 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
    213 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
    214 #define VOL_0DB 200
    215 
    216 #define EAP_MASTER_VOL		0
    217 #define EAP_VOICE_VOL		1
    218 #define EAP_FM_VOL		2
    219 #define EAP_CD_VOL		3
    220 #define EAP_LINE_VOL		4
    221 #define EAP_AUX_VOL		5
    222 #define EAP_MIC_VOL		6
    223 #define	EAP_RECORD_SOURCE 	7
    224 #define EAP_OUTPUT_SELECT	8
    225 #define	EAP_MIC_PREAMP		9
    226 #define EAP_OUTPUT_CLASS	10
    227 #define EAP_RECORD_CLASS	11
    228 #define EAP_INPUT_CLASS		12
    229 
    230 #ifdef AUDIO_DEBUG
    231 #define DPRINTF(x)	if (eapdebug) printf x
    232 #define DPRINTFN(n,x)	if (eapdebug>(n)) printf x
    233 int	eapdebug = 0;
    234 #else
    235 #define DPRINTF(x)
    236 #define DPRINTFN(n,x)
    237 #endif
    238 
    239 int	eap_match __P((struct device *, struct cfdata *, void *));
    240 void	eap_attach __P((struct device *, struct device *, void *));
    241 int	eap_intr __P((void *));
    242 
    243 struct eap_dma {
    244 	bus_dmamap_t map;
    245 	caddr_t addr;
    246 	bus_dma_segment_t segs[1];
    247 	int nsegs;
    248 	size_t size;
    249 	struct eap_dma *next;
    250 };
    251 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    252 #define KERNADDR(p) ((void *)((p)->addr))
    253 
    254 struct eap_softc {
    255 	struct device sc_dev;		/* base device */
    256 	void *sc_ih;			/* interrupt vectoring */
    257 	bus_space_tag_t iot;
    258 	bus_space_handle_t ioh;
    259 	bus_dma_tag_t sc_dmatag;	/* DMA tag */
    260 
    261 	struct eap_dma *sc_dmas;
    262 
    263 	void	(*sc_pintr)(void *);	/* dma completion intr handler */
    264 	void	*sc_parg;		/* arg for sc_intr() */
    265 #ifdef DIAGNOSTIC
    266 	char	sc_prun;
    267 #endif
    268 
    269 	void	(*sc_rintr)(void *);	/* dma completion intr handler */
    270 	void	*sc_rarg;		/* arg for sc_intr() */
    271 #ifdef DIAGNOSTIC
    272 	char	sc_rrun;
    273 #endif
    274 
    275 	u_char	sc_port[AK_NPORTS];	/* mirror of the hardware setting */
    276 	u_int	sc_record_source;	/* recording source mask */
    277 	u_int	sc_output_source;	/* output source mask */
    278 	u_int	sc_mic_preamp;
    279 };
    280 
    281 int	eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
    282 int	eap_freemem __P((struct eap_softc *, struct eap_dma *));
    283 
    284 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
    285 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
    286 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
    287 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
    288 
    289 struct cfattach eap_ca = {
    290 	sizeof(struct eap_softc), eap_match, eap_attach
    291 };
    292 
    293 int	eap_open __P((void *, int));
    294 void	eap_close __P((void *));
    295 int	eap_query_encoding __P((void *, struct audio_encoding *));
    296 int	eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    297 int	eap_round_blocksize __P((void *, int));
    298 int	eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
    299 	    void *, struct audio_params *));
    300 int	eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
    301 	    void *, struct audio_params *));
    302 int	eap_halt_output __P((void *));
    303 int	eap_halt_input __P((void *));
    304 int	eap_getdev __P((void *, struct audio_device *));
    305 int	eap_mixer_set_port __P((void *, mixer_ctrl_t *));
    306 int	eap_mixer_get_port __P((void *, mixer_ctrl_t *));
    307 int	eap_query_devinfo __P((void *, mixer_devinfo_t *));
    308 void   *eap_malloc __P((void *, int, size_t, int, int));
    309 void	eap_free __P((void *, void *, int));
    310 size_t	eap_round_buffersize __P((void *, int, size_t));
    311 int	eap_mappage __P((void *, void *, int, int));
    312 int	eap_get_props __P((void *));
    313 void	eap_write_codec __P((struct eap_softc *sc, int a, int d));
    314 void	eap_set_mixer __P((struct eap_softc *sc, int a, int d));
    315 
    316 struct audio_hw_if eap_hw_if = {
    317 	eap_open,
    318 	eap_close,
    319 	NULL,
    320 	eap_query_encoding,
    321 	eap_set_params,
    322 	eap_round_blocksize,
    323 	NULL,
    324 	NULL,
    325 	NULL,
    326 	NULL,
    327 	NULL,
    328 	eap_halt_output,
    329 	eap_halt_input,
    330 	NULL,
    331 	eap_getdev,
    332 	NULL,
    333 	eap_mixer_set_port,
    334 	eap_mixer_get_port,
    335 	eap_query_devinfo,
    336 	eap_malloc,
    337 	eap_free,
    338 	eap_round_buffersize,
    339 	eap_mappage,
    340 	eap_get_props,
    341 	eap_trigger_output,
    342 	eap_trigger_input,
    343 };
    344 
    345 struct audio_device eap_device = {
    346 	"Ensoniq AudioPCI",
    347 	"",
    348 	"eap"
    349 };
    350 
    351 int
    352 eap_match(parent, match, aux)
    353 	struct device *parent;
    354 	struct cfdata *match;
    355 	void *aux;
    356 {
    357 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
    358 
    359 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
    360 		return (0);
    361 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
    362 		return (0);
    363 
    364 	return (1);
    365 }
    366 
    367 void
    368 eap_write_codec(sc, a, d)
    369 	struct eap_softc *sc;
    370 	int a, d;
    371 {
    372 	int icss;
    373 
    374 	do {
    375 		icss = EREAD4(sc, EAP_ICSS);
    376 		DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
    377 	} while(icss & EAP_CWRIP);
    378 	EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
    379 }
    380 
    381 void
    382 eap_attach(parent, self, aux)
    383 	struct device *parent;
    384 	struct device *self;
    385 	void *aux;
    386 {
    387 	struct eap_softc *sc = (struct eap_softc *)self;
    388 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    389 	pci_chipset_tag_t pc = pa->pa_pc;
    390 	char const *intrstr;
    391 	pci_intr_handle_t ih;
    392 	pcireg_t csr;
    393 	char devinfo[256];
    394 	mixer_ctrl_t ctl;
    395 
    396 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
    397 	printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
    398 
    399 	/* Map I/O register */
    400 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
    401 	      &sc->iot, &sc->ioh, NULL, NULL)) {
    402 		printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
    403 		return;
    404 	}
    405 
    406 	sc->sc_dmatag = pa->pa_dmat;
    407 
    408 	/* Enable the device. */
    409 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    410 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    411 		       csr | PCI_COMMAND_MASTER_ENABLE);
    412 
    413 	/* Map and establish the interrupt. */
    414 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    415 	    pa->pa_intrline, &ih)) {
    416 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    417 		return;
    418 	}
    419 	intrstr = pci_intr_string(pc, ih);
    420 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
    421 	if (sc->sc_ih == NULL) {
    422 		printf("%s: couldn't establish interrupt",
    423 		    sc->sc_dev.dv_xname);
    424 		if (intrstr != NULL)
    425 			printf(" at %s", intrstr);
    426 		printf("\n");
    427 		return;
    428 	}
    429 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    430 
    431 	/* Enable interrupts and looping mode. */
    432 	EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
    433 	EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
    434 
    435 	eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
    436 	eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST);	/* normal operation */
    437 	eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
    438 
    439 	/* Enable all relevant mixer switches. */
    440 	ctl.dev = EAP_OUTPUT_SELECT;
    441 	ctl.type = AUDIO_MIXER_SET;
    442 	ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
    443 	    1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
    444 	eap_mixer_set_port(sc, &ctl);
    445 
    446 	ctl.type = AUDIO_MIXER_VALUE;
    447 	ctl.un.value.num_channels = 1;
    448 	for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
    449 		ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
    450 		eap_mixer_set_port(sc, &ctl);
    451 	}
    452 	ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
    453 	eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
    454 	ctl.dev = EAP_MIC_PREAMP;
    455 	ctl.type = AUDIO_MIXER_ENUM;
    456 	ctl.un.ord = 0;
    457 	eap_mixer_set_port(sc, &ctl);
    458 	ctl.dev = EAP_RECORD_SOURCE;
    459 	ctl.type = AUDIO_MIXER_SET;
    460 	ctl.un.mask = 1 << EAP_MIC_VOL;
    461 	eap_mixer_set_port(sc, &ctl);
    462 
    463 	audio_attach_mi(&eap_hw_if, sc, &sc->sc_dev);
    464 }
    465 
    466 int
    467 eap_intr(p)
    468 	void *p;
    469 {
    470 	struct eap_softc *sc = p;
    471 	u_int32_t intr, sic;
    472 
    473 	intr = EREAD4(sc, EAP_ICSS);
    474 	if (!(intr & EAP_INTR))
    475 		return (0);
    476 	sic = EREAD4(sc, EAP_SIC);
    477 	DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
    478 	if (intr & EAP_I_ADC) {
    479 		/*
    480 		 * XXX This is a hack!
    481 		 * The EAP chip sometimes generates the recording interrupt
    482 		 * while it is still transferring the data.  To make sure
    483 		 * it has all arrived we busy wait until the count is right.
    484 		 * The transfer we are waiting for is 8 longwords.
    485 		 */
    486 		int s, nw, n;
    487 		EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
    488 		s = EREAD4(sc, EAP_ADC_CSR);
    489 		nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
    490 		n = 0;
    491 		while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
    492 			delay(10);
    493 			if (++n > 100) {
    494 				printf("eapintr: dma fix timeout");
    495 				break;
    496 			}
    497 		}
    498 		/* Continue with normal interrupt handling. */
    499 		EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
    500 		EWRITE4(sc, EAP_SIC, sic);
    501 		if (sc->sc_rintr)
    502 			sc->sc_rintr(sc->sc_rarg);
    503 	}
    504 	if (intr & EAP_I_DAC2) {
    505 		EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
    506 		EWRITE4(sc, EAP_SIC, sic);
    507 		if (sc->sc_pintr)
    508 			sc->sc_pintr(sc->sc_parg);
    509 	}
    510 	return (1);
    511 }
    512 
    513 int
    514 eap_allocmem(sc, size, align, p)
    515 	struct eap_softc *sc;
    516 	size_t size;
    517 	size_t align;
    518 	struct eap_dma *p;
    519 {
    520 	int error;
    521 
    522 	p->size = size;
    523 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    524 				 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
    525 				 &p->nsegs, BUS_DMA_NOWAIT);
    526 	if (error)
    527 		return (error);
    528 
    529 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    530 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    531 	if (error)
    532 		goto free;
    533 
    534 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    535 				  0, BUS_DMA_NOWAIT, &p->map);
    536 	if (error)
    537 		goto unmap;
    538 
    539 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    540 				BUS_DMA_NOWAIT);
    541 	if (error)
    542 		goto destroy;
    543 	return (0);
    544 
    545 destroy:
    546 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    547 unmap:
    548 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    549 free:
    550 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    551 	return (error);
    552 }
    553 
    554 int
    555 eap_freemem(sc, p)
    556 	struct eap_softc *sc;
    557 	struct eap_dma *p;
    558 {
    559 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    560 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    561 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    562 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    563 	return (0);
    564 }
    565 
    566 int
    567 eap_open(addr, flags)
    568 	void *addr;
    569 	int flags;
    570 {
    571 
    572 	return (0);
    573 }
    574 
    575 /*
    576  * Close function is called at splaudio().
    577  */
    578 void
    579 eap_close(addr)
    580 	void *addr;
    581 {
    582 	struct eap_softc *sc = addr;
    583 
    584 	eap_halt_output(sc);
    585 	eap_halt_input(sc);
    586 
    587 	sc->sc_pintr = 0;
    588 	sc->sc_rintr = 0;
    589 }
    590 
    591 int
    592 eap_query_encoding(addr, fp)
    593 	void *addr;
    594 	struct audio_encoding *fp;
    595 {
    596 	switch (fp->index) {
    597 	case 0:
    598 		strcpy(fp->name, AudioEulinear);
    599 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    600 		fp->precision = 8;
    601 		fp->flags = 0;
    602 		return (0);
    603 	case 1:
    604 		strcpy(fp->name, AudioEmulaw);
    605 		fp->encoding = AUDIO_ENCODING_ULAW;
    606 		fp->precision = 8;
    607 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    608 		return (0);
    609 	case 2:
    610 		strcpy(fp->name, AudioEalaw);
    611 		fp->encoding = AUDIO_ENCODING_ALAW;
    612 		fp->precision = 8;
    613 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    614 		return (0);
    615 	case 3:
    616 		strcpy(fp->name, AudioEslinear);
    617 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    618 		fp->precision = 8;
    619 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    620 		return (0);
    621 	case 4:
    622 		strcpy(fp->name, AudioEslinear_le);
    623 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    624 		fp->precision = 16;
    625 		fp->flags = 0;
    626 		return (0);
    627 	case 5:
    628 		strcpy(fp->name, AudioEulinear_le);
    629 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    630 		fp->precision = 16;
    631 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    632 		return (0);
    633 	case 6:
    634 		strcpy(fp->name, AudioEslinear_be);
    635 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    636 		fp->precision = 16;
    637 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    638 		return (0);
    639 	case 7:
    640 		strcpy(fp->name, AudioEulinear_be);
    641 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    642 		fp->precision = 16;
    643 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    644 		return (0);
    645 	default:
    646 		return (EINVAL);
    647 	}
    648 }
    649 
    650 int
    651 eap_set_params(addr, setmode, usemode, play, rec)
    652 	void *addr;
    653 	int setmode, usemode;
    654 	struct audio_params *play, *rec;
    655 {
    656 	struct eap_softc *sc = addr;
    657 	struct audio_params *p;
    658 	int mode;
    659 	u_int32_t div;
    660 
    661 	/*
    662 	 * This device only has one clock, so make the sample rates match.
    663 	 */
    664 	if (play->sample_rate != rec->sample_rate &&
    665 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    666 		if (setmode == AUMODE_PLAY) {
    667 			rec->sample_rate = play->sample_rate;
    668 			setmode |= AUMODE_RECORD;
    669 		} else if (setmode == AUMODE_RECORD) {
    670 			play->sample_rate = rec->sample_rate;
    671 			setmode |= AUMODE_PLAY;
    672 		} else
    673 			return (EINVAL);
    674 	}
    675 
    676 	for (mode = AUMODE_RECORD; mode != -1;
    677 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    678 		if ((setmode & mode) == 0)
    679 			continue;
    680 
    681 		p = mode == AUMODE_PLAY ? play : rec;
    682 
    683 		if (p->sample_rate < 4000 || p->sample_rate > 50000 ||
    684 		    (p->precision != 8 && p->precision != 16) ||
    685 		    (p->channels != 1 && p->channels != 2))
    686 			return (EINVAL);
    687 
    688 		p->factor = 1;
    689 		p->sw_code = 0;
    690 		switch (p->encoding) {
    691 		case AUDIO_ENCODING_SLINEAR_BE:
    692 			if (p->precision == 16)
    693 				p->sw_code = swap_bytes;
    694 			else
    695 				p->sw_code = change_sign8;
    696 			break;
    697 		case AUDIO_ENCODING_SLINEAR_LE:
    698 			if (p->precision != 16)
    699 				p->sw_code = change_sign8;
    700 			break;
    701 		case AUDIO_ENCODING_ULINEAR_BE:
    702 			if (p->precision == 16) {
    703 				if (mode == AUMODE_PLAY)
    704 					p->sw_code = swap_bytes_change_sign16;
    705 				else
    706 					p->sw_code = change_sign16_swap_bytes;
    707 			}
    708 			break;
    709 		case AUDIO_ENCODING_ULINEAR_LE:
    710 			if (p->precision == 16)
    711 				p->sw_code = change_sign16;
    712 			break;
    713 		case AUDIO_ENCODING_ULAW:
    714 			if (mode == AUMODE_PLAY) {
    715 				p->factor = 2;
    716 				p->sw_code = mulaw_to_slinear16;
    717 			} else
    718 				p->sw_code = ulinear8_to_mulaw;
    719 			break;
    720 		case AUDIO_ENCODING_ALAW:
    721 			if (mode == AUMODE_PLAY) {
    722 				p->factor = 2;
    723 				p->sw_code = alaw_to_slinear16;
    724 			} else
    725 				p->sw_code = ulinear8_to_alaw;
    726 			break;
    727 		default:
    728 			return (EINVAL);
    729 		}
    730 	}
    731 
    732 	/* Set the speed */
    733 	DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
    734 		     EREAD4(sc, EAP_ICSC)));
    735 	div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
    736 	/*
    737 	 * XXX
    738 	 * The -2 isn't documented, but seemed to make the wall time match
    739 	 * what I expect.  - mycroft
    740 	 */
    741 	if (usemode == AUMODE_RECORD)
    742 		div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / rec->sample_rate - 2);
    743 	else
    744 		div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / play->sample_rate - 2);
    745 	div |= EAP_CCB_INTRM;
    746 	EWRITE4(sc, EAP_ICSC, div);
    747 	DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
    748 
    749 	return (0);
    750 }
    751 
    752 int
    753 eap_round_blocksize(addr, blk)
    754 	void *addr;
    755 	int blk;
    756 {
    757 	return (blk & -32);	/* keep good alignment */
    758 }
    759 
    760 int
    761 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
    762 	void *addr;
    763 	void *start, *end;
    764 	int blksize;
    765 	void (*intr) __P((void *));
    766 	void *arg;
    767 	struct audio_params *param;
    768 {
    769 	struct eap_softc *sc = addr;
    770 	struct eap_dma *p;
    771 	u_int32_t icsc, sic;
    772 	int sampshift;
    773 
    774 #ifdef DIAGNOSTIC
    775 	if (sc->sc_prun)
    776 		panic("eap_trigger_output: already running");
    777 	sc->sc_prun = 1;
    778 #endif
    779 
    780 	DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    781 	    addr, start, end, blksize, intr, arg));
    782 	sc->sc_pintr = intr;
    783 	sc->sc_parg = arg;
    784 
    785 	icsc = EREAD4(sc, EAP_ICSC);
    786 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
    787 
    788 	sic = EREAD4(sc, EAP_SIC);
    789 	sic &= ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
    790 	sic |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
    791 	sampshift = 0;
    792 	if (param->precision * param->factor == 16) {
    793 		sic |= EAP_P2_S_EB;
    794 		sampshift++;
    795 	}
    796 	if (param->channels == 2) {
    797 		sic |= EAP_P2_S_MB;
    798 		sampshift++;
    799 	}
    800 	EWRITE4(sc, EAP_SIC, sic);
    801 
    802 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    803 		;
    804 	if (!p) {
    805 		printf("eap_trigger_output: bad addr %p\n", start);
    806 		return (EINVAL);
    807 	}
    808 
    809 	DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
    810 		 (int)DMAADDR(p),
    811 		 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
    812 	EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
    813 	EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
    814 	EWRITE4(sc, EAP_DAC2_SIZE,
    815 		EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
    816 
    817 	EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
    818 
    819 	EWRITE4(sc, EAP_ICSC, icsc | EAP_DAC2_EN);
    820 
    821 	DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
    822 
    823 	return (0);
    824 }
    825 
    826 int
    827 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
    828 	void *addr;
    829 	void *start, *end;
    830 	int blksize;
    831 	void (*intr) __P((void *));
    832 	void *arg;
    833 	struct audio_params *param;
    834 {
    835 	struct eap_softc *sc = addr;
    836 	struct eap_dma *p;
    837 	u_int32_t icsc, sic;
    838 	int sampshift;
    839 
    840 #ifdef DIAGNOSTIC
    841 	if (sc->sc_rrun)
    842 		panic("eap_trigger_input: already running");
    843 	sc->sc_rrun = 1;
    844 #endif
    845 
    846 	DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    847 	    addr, start, end, blksize, intr, arg));
    848 	sc->sc_rintr = intr;
    849 	sc->sc_rarg = arg;
    850 
    851 	icsc = EREAD4(sc, EAP_ICSC);
    852 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
    853 
    854 	sic = EREAD4(sc, EAP_SIC);
    855 	sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
    856 	sampshift = 0;
    857 	if (param->precision * param->factor == 16) {
    858 		sic |= EAP_R1_S_EB;
    859 		sampshift++;
    860 	}
    861 	if (param->channels == 2) {
    862 		sic |= EAP_R1_S_MB;
    863 		sampshift++;
    864 	}
    865 	EWRITE4(sc, EAP_SIC, sic);
    866 
    867 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    868 		;
    869 	if (!p) {
    870 		printf("eap_trigger_input: bad addr %p\n", start);
    871 		return (EINVAL);
    872 	}
    873 
    874 	DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
    875 		 (int)DMAADDR(p),
    876 		 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
    877 	EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
    878 	EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
    879 	EWRITE4(sc, EAP_ADC_SIZE,
    880 		EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
    881 
    882 	EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
    883 
    884 	EWRITE4(sc, EAP_ICSC, icsc | EAP_ADC_EN);
    885 
    886 	DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
    887 
    888 	return (0);
    889 }
    890 
    891 int
    892 eap_halt_output(addr)
    893 	void *addr;
    894 {
    895 	struct eap_softc *sc = addr;
    896 	u_int32_t icsc;
    897 
    898 	DPRINTF(("eap: eap_halt_output\n"));
    899 	icsc = EREAD4(sc, EAP_ICSC);
    900 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
    901 #ifdef DIAGNOSTIC
    902 	sc->sc_prun = 0;
    903 #endif
    904 	return (0);
    905 }
    906 
    907 int
    908 eap_halt_input(addr)
    909 	void *addr;
    910 {
    911 	struct eap_softc *sc = addr;
    912 	u_int32_t icsc;
    913 
    914 	DPRINTF(("eap: eap_halt_input\n"));
    915 	icsc = EREAD4(sc, EAP_ICSC);
    916 	EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
    917 #ifdef DIAGNOSTIC
    918 	sc->sc_rrun = 0;
    919 #endif
    920 	return (0);
    921 }
    922 
    923 int
    924 eap_getdev(addr, retp)
    925 	void *addr;
    926 	struct audio_device *retp;
    927 {
    928 	*retp = eap_device;
    929 	return (0);
    930 }
    931 
    932 void
    933 eap_set_mixer(sc, a, d)
    934 	struct eap_softc *sc;
    935 	int a, d;
    936 {
    937 	eap_write_codec(sc, a, d);
    938 	DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
    939 }
    940 
    941 
    942 int
    943 eap_mixer_set_port(addr, cp)
    944 	void *addr;
    945 	mixer_ctrl_t *cp;
    946 {
    947 	struct eap_softc *sc = addr;
    948 	int lval, rval, l, r, la, ra;
    949 	int l1, r1, l2, r2, m, o1, o2;
    950 
    951 	if (cp->dev == EAP_RECORD_SOURCE) {
    952 		if (cp->type != AUDIO_MIXER_SET)
    953 			return (EINVAL);
    954 		m = sc->sc_record_source = cp->un.mask;
    955 		l1 = l2 = r1 = r2 = 0;
    956 		if (m & (1 << EAP_VOICE_VOL))
    957 			l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
    958 		if (m & (1 << EAP_FM_VOL))
    959 			l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
    960 		if (m & (1 << EAP_CD_VOL))
    961 			l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
    962 		if (m & (1 << EAP_LINE_VOL))
    963 			l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
    964 		if (m & (1 << EAP_AUX_VOL))
    965 			l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
    966 		if (m & (1 << EAP_MIC_VOL))
    967 			l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
    968 		eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
    969 		eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
    970 		eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
    971 		eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
    972 		return (0);
    973 	}
    974 	if (cp->dev == EAP_OUTPUT_SELECT) {
    975 		if (cp->type != AUDIO_MIXER_SET)
    976 			return (EINVAL);
    977 		m = sc->sc_output_source = cp->un.mask;
    978 		o1 = o2 = 0;
    979 		if (m & (1 << EAP_VOICE_VOL))
    980 			o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
    981 		if (m & (1 << EAP_FM_VOL))
    982 			o1 |= AK_M_FM_L | AK_M_FM_R;
    983 		if (m & (1 << EAP_CD_VOL))
    984 			o1 |= AK_M_CD_L | AK_M_CD_R;
    985 		if (m & (1 << EAP_LINE_VOL))
    986 			o1 |= AK_M_LINE_L | AK_M_LINE_R;
    987 		if (m & (1 << EAP_AUX_VOL))
    988 			o2 |= AK_M_AUX_L | AK_M_AUX_R;
    989 		if (m & (1 << EAP_MIC_VOL))
    990 			o1 |= AK_M_MIC;
    991 		eap_set_mixer(sc, AK_OUT_MIXER1, o1);
    992 		eap_set_mixer(sc, AK_OUT_MIXER2, o2);
    993 		return (0);
    994 	}
    995 	if (cp->dev == EAP_MIC_PREAMP) {
    996 		if (cp->type != AUDIO_MIXER_ENUM)
    997 			return (EINVAL);
    998 		if (cp->un.ord != 0 && cp->un.ord != 1)
    999 			return (EINVAL);
   1000 		sc->sc_mic_preamp = cp->un.ord;
   1001 		eap_set_mixer(sc, AK_MGAIN, cp->un.ord);
   1002 		return (0);
   1003 	}
   1004 	if (cp->type != AUDIO_MIXER_VALUE)
   1005 		return (EINVAL);
   1006 	if (cp->un.value.num_channels == 1)
   1007 		lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1008 	else if (cp->un.value.num_channels == 2) {
   1009 		lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1010 		rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1011 	} else
   1012 		return (EINVAL);
   1013 	ra = -1;
   1014 	switch (cp->dev) {
   1015 	case EAP_MASTER_VOL:
   1016 		l = VOL_TO_ATT5(lval);
   1017 		r = VOL_TO_ATT5(rval);
   1018 		la = AK_MASTER_L;
   1019 		ra = AK_MASTER_R;
   1020 		break;
   1021 	case EAP_MIC_VOL:
   1022 		if (cp->un.value.num_channels != 1)
   1023 			return (EINVAL);
   1024 		la = AK_MIC;
   1025 		goto lr;
   1026 	case EAP_VOICE_VOL:
   1027 		la = AK_VOICE_L;
   1028 		ra = AK_VOICE_R;
   1029 		goto lr;
   1030 	case EAP_FM_VOL:
   1031 		la = AK_FM_L;
   1032 		ra = AK_FM_R;
   1033 		goto lr;
   1034 	case EAP_CD_VOL:
   1035 		la = AK_CD_L;
   1036 		ra = AK_CD_R;
   1037 		goto lr;
   1038 	case EAP_LINE_VOL:
   1039 		la = AK_LINE_L;
   1040 		ra = AK_LINE_R;
   1041 		goto lr;
   1042 	case EAP_AUX_VOL:
   1043 		la = AK_AUX_L;
   1044 		ra = AK_AUX_R;
   1045 	lr:
   1046 		l = VOL_TO_GAIN5(lval);
   1047 		r = VOL_TO_GAIN5(rval);
   1048 		break;
   1049 	default:
   1050 		return (EINVAL);
   1051 	}
   1052 	eap_set_mixer(sc, la, l);
   1053 	sc->sc_port[la] = l;
   1054 	if (ra >= 0) {
   1055 		eap_set_mixer(sc, ra, r);
   1056 		sc->sc_port[ra] = r;
   1057 	}
   1058 	return (0);
   1059 }
   1060 
   1061 int
   1062 eap_mixer_get_port(addr, cp)
   1063 	void *addr;
   1064 	mixer_ctrl_t *cp;
   1065 {
   1066 	struct eap_softc *sc = addr;
   1067 	int la, ra, l, r;
   1068 
   1069 	switch (cp->dev) {
   1070 	case EAP_RECORD_SOURCE:
   1071 		if (cp->type != AUDIO_MIXER_SET)
   1072 			return (EINVAL);
   1073 		cp->un.mask = sc->sc_record_source;
   1074 		return (0);
   1075 	case EAP_OUTPUT_SELECT:
   1076 		if (cp->type != AUDIO_MIXER_SET)
   1077 			return (EINVAL);
   1078 		cp->un.mask = sc->sc_output_source;
   1079 		return (0);
   1080 	case EAP_MIC_PREAMP:
   1081 		if (cp->type != AUDIO_MIXER_ENUM)
   1082 			return (EINVAL);
   1083 		cp->un.ord = sc->sc_mic_preamp;
   1084 		return (0);
   1085 	case EAP_MASTER_VOL:
   1086 		l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
   1087 		r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
   1088 		break;
   1089 	case EAP_MIC_VOL:
   1090 		if (cp->un.value.num_channels != 1)
   1091 			return (EINVAL);
   1092 		la = ra = AK_MIC;
   1093 		goto lr;
   1094 	case EAP_VOICE_VOL:
   1095 		la = AK_VOICE_L;
   1096 		ra = AK_VOICE_R;
   1097 		goto lr;
   1098 	case EAP_FM_VOL:
   1099 		la = AK_FM_L;
   1100 		ra = AK_FM_R;
   1101 		goto lr;
   1102 	case EAP_CD_VOL:
   1103 		la = AK_CD_L;
   1104 		ra = AK_CD_R;
   1105 		goto lr;
   1106 	case EAP_LINE_VOL:
   1107 		la = AK_LINE_L;
   1108 		ra = AK_LINE_R;
   1109 		goto lr;
   1110 	case EAP_AUX_VOL:
   1111 		la = AK_AUX_L;
   1112 		ra = AK_AUX_R;
   1113 	lr:
   1114 		l = GAIN5_TO_VOL(sc->sc_port[la]);
   1115 		r = GAIN5_TO_VOL(sc->sc_port[ra]);
   1116 		break;
   1117 	default:
   1118 		return (EINVAL);
   1119 	}
   1120 	if (cp->un.value.num_channels == 1)
   1121 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
   1122 	else if (cp->un.value.num_channels == 2) {
   1123 		cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]  = l;
   1124 		cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   1125 	} else
   1126 		return (EINVAL);
   1127 	return (0);
   1128 }
   1129 
   1130 int
   1131 eap_query_devinfo(addr, dip)
   1132 	void *addr;
   1133 	mixer_devinfo_t *dip;
   1134 {
   1135 	switch (dip->index) {
   1136 	case EAP_MASTER_VOL:
   1137 		dip->type = AUDIO_MIXER_VALUE;
   1138 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1139 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1140 		strcpy(dip->label.name, AudioNmaster);
   1141 		dip->un.v.num_channels = 2;
   1142 		strcpy(dip->un.v.units.name, AudioNvolume);
   1143 		return (0);
   1144 	case EAP_VOICE_VOL:
   1145 		dip->type = AUDIO_MIXER_VALUE;
   1146 		dip->mixer_class = EAP_INPUT_CLASS;
   1147 		dip->prev = AUDIO_MIXER_LAST;
   1148 		dip->next = AUDIO_MIXER_LAST;
   1149 		strcpy(dip->label.name, AudioNdac);
   1150 		dip->un.v.num_channels = 2;
   1151 		strcpy(dip->un.v.units.name, AudioNvolume);
   1152 		return (0);
   1153 	case EAP_FM_VOL:
   1154 		dip->type = AUDIO_MIXER_VALUE;
   1155 		dip->mixer_class = EAP_INPUT_CLASS;
   1156 		dip->prev = AUDIO_MIXER_LAST;
   1157 		dip->next = AUDIO_MIXER_LAST;
   1158 		strcpy(dip->label.name, AudioNfmsynth);
   1159 		dip->un.v.num_channels = 2;
   1160 		strcpy(dip->un.v.units.name, AudioNvolume);
   1161 		return (0);
   1162 	case EAP_CD_VOL:
   1163 		dip->type = AUDIO_MIXER_VALUE;
   1164 		dip->mixer_class = EAP_INPUT_CLASS;
   1165 		dip->prev = AUDIO_MIXER_LAST;
   1166 		dip->next = AUDIO_MIXER_LAST;
   1167 		strcpy(dip->label.name, AudioNcd);
   1168 		dip->un.v.num_channels = 2;
   1169 		strcpy(dip->un.v.units.name, AudioNvolume);
   1170 		return (0);
   1171 	case EAP_LINE_VOL:
   1172 		dip->type = AUDIO_MIXER_VALUE;
   1173 		dip->mixer_class = EAP_INPUT_CLASS;
   1174 		dip->prev = AUDIO_MIXER_LAST;
   1175 		dip->next = AUDIO_MIXER_LAST;
   1176 		strcpy(dip->label.name, AudioNline);
   1177 		dip->un.v.num_channels = 2;
   1178 		strcpy(dip->un.v.units.name, AudioNvolume);
   1179 		return (0);
   1180 	case EAP_AUX_VOL:
   1181 		dip->type = AUDIO_MIXER_VALUE;
   1182 		dip->mixer_class = EAP_INPUT_CLASS;
   1183 		dip->prev = AUDIO_MIXER_LAST;
   1184 		dip->next = AUDIO_MIXER_LAST;
   1185 		strcpy(dip->label.name, AudioNaux);
   1186 		dip->un.v.num_channels = 2;
   1187 		strcpy(dip->un.v.units.name, AudioNvolume);
   1188 		return (0);
   1189 	case EAP_MIC_VOL:
   1190 		dip->type = AUDIO_MIXER_VALUE;
   1191 		dip->mixer_class = EAP_INPUT_CLASS;
   1192 		dip->prev = AUDIO_MIXER_LAST;
   1193 		dip->next = EAP_MIC_PREAMP;
   1194 		strcpy(dip->label.name, AudioNmicrophone);
   1195 		dip->un.v.num_channels = 1;
   1196 		strcpy(dip->un.v.units.name, AudioNvolume);
   1197 		return (0);
   1198 	case EAP_RECORD_SOURCE:
   1199 		dip->mixer_class = EAP_RECORD_CLASS;
   1200 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1201 		strcpy(dip->label.name, AudioNsource);
   1202 		dip->type = AUDIO_MIXER_SET;
   1203 		dip->un.s.num_mem = 6;
   1204 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   1205 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
   1206 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
   1207 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
   1208 		strcpy(dip->un.s.member[2].label.name, AudioNline);
   1209 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
   1210 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   1211 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
   1212 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
   1213 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
   1214 		strcpy(dip->un.s.member[5].label.name, AudioNdac);
   1215 		dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
   1216 		return (0);
   1217 	case EAP_OUTPUT_SELECT:
   1218 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1219 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1220 		strcpy(dip->label.name, AudioNselect);
   1221 		dip->type = AUDIO_MIXER_SET;
   1222 		dip->un.s.num_mem = 6;
   1223 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   1224 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
   1225 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
   1226 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
   1227 		strcpy(dip->un.s.member[2].label.name, AudioNline);
   1228 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
   1229 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   1230 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
   1231 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
   1232 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
   1233 		strcpy(dip->un.s.member[5].label.name, AudioNdac);
   1234 		dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
   1235 		return (0);
   1236 	case EAP_MIC_PREAMP:
   1237 		dip->type = AUDIO_MIXER_ENUM;
   1238 		dip->mixer_class = EAP_INPUT_CLASS;
   1239 		dip->prev = EAP_MIC_VOL;
   1240 		dip->next = AUDIO_MIXER_LAST;
   1241 		strcpy(dip->label.name, AudioNpreamp);
   1242 		dip->un.e.num_mem = 2;
   1243 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1244 		dip->un.e.member[0].ord = 0;
   1245 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1246 		dip->un.e.member[1].ord = 1;
   1247 		return (0);
   1248 	case EAP_OUTPUT_CLASS:
   1249 		dip->type = AUDIO_MIXER_CLASS;
   1250 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1251 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1252 		strcpy(dip->label.name, AudioCoutputs);
   1253 		return (0);
   1254 	case EAP_RECORD_CLASS:
   1255 		dip->type = AUDIO_MIXER_CLASS;
   1256 		dip->mixer_class = EAP_RECORD_CLASS;
   1257 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1258 		strcpy(dip->label.name, AudioCrecord);
   1259 		return (0);
   1260 	case EAP_INPUT_CLASS:
   1261 		dip->type = AUDIO_MIXER_CLASS;
   1262 		dip->mixer_class = EAP_INPUT_CLASS;
   1263 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1264 		strcpy(dip->label.name, AudioCinputs);
   1265 		return (0);
   1266 	}
   1267 	return (ENXIO);
   1268 }
   1269 
   1270 void *
   1271 eap_malloc(addr, direction, size, pool, flags)
   1272 	void *addr;
   1273 	int direction;
   1274 	size_t size;
   1275 	int pool, flags;
   1276 {
   1277 	struct eap_softc *sc = addr;
   1278 	struct eap_dma *p;
   1279 	int error;
   1280 
   1281 	p = malloc(sizeof(*p), pool, flags);
   1282 	if (!p)
   1283 		return (0);
   1284 	error = eap_allocmem(sc, size, 16, p);
   1285 	if (error) {
   1286 		free(p, pool);
   1287 		return (0);
   1288 	}
   1289 	p->next = sc->sc_dmas;
   1290 	sc->sc_dmas = p;
   1291 	return (KERNADDR(p));
   1292 }
   1293 
   1294 void
   1295 eap_free(addr, ptr, pool)
   1296 	void *addr;
   1297 	void *ptr;
   1298 	int pool;
   1299 {
   1300 	struct eap_softc *sc = addr;
   1301 	struct eap_dma **pp, *p;
   1302 
   1303 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1304 		if (KERNADDR(p) == ptr) {
   1305 			eap_freemem(sc, p);
   1306 			*pp = p->next;
   1307 			free(p, pool);
   1308 			return;
   1309 		}
   1310 	}
   1311 }
   1312 
   1313 size_t
   1314 eap_round_buffersize(addr, direction, size)
   1315 	void *addr;
   1316 	int direction;
   1317 	size_t size;
   1318 {
   1319 	return (size);
   1320 }
   1321 
   1322 int
   1323 eap_mappage(addr, mem, off, prot)
   1324 	void *addr;
   1325 	void *mem;
   1326 	int off;
   1327 	int prot;
   1328 {
   1329 	struct eap_softc *sc = addr;
   1330 	struct eap_dma *p;
   1331 
   1332 	if (off < 0)
   1333 		return (-1);
   1334 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1335 		;
   1336 	if (!p)
   1337 		return (-1);
   1338 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1339 				off, prot, BUS_DMA_WAITOK));
   1340 }
   1341 
   1342 int
   1343 eap_get_props(addr)
   1344 	void *addr;
   1345 {
   1346 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   1347 }
   1348