eap.c revision 1.28 1 /* $NetBSD: eap.c,v 1.28 1999/10/27 13:20:34 augustss Exp $ */
2 /* $OpenBSD: eap.c,v 1.6 1999/10/05 19:24:42 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Lennart Augustsson <augustss (at) netbsd.org> and Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
42 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
43 * Phil Nelson <phil (at) cs.wwu.edu>
44 */
45
46 /*
47 * Ensoniq AudoiPCI ES1370 + AK4531 driver.
48 * Data sheets can be found at
49 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
50 * and
51 * http://206.214.38.151/pdf/4531.pdf
52 *
53 * Added Creative Ensoniq support: ES1371 + AC97 = hack city.
54 * -- Ezra Story <ezy (at) panix.com>
55 * Check es1371.zip from above, and the Audio Codec 97 spec from
56 * intel.com.
57 */
58
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/malloc.h>
64 #include <sys/device.h>
65
66 #include <dev/pci/pcidevs.h>
67 #include <dev/pci/pcivar.h>
68
69 #include <sys/audioio.h>
70 #include <dev/audio_if.h>
71 #include <dev/mulaw.h>
72 #include <dev/auconv.h>
73 #include <dev/ic/ac97.h>
74
75 #include <machine/bus.h>
76
77 #define PCI_CBIO 0x10
78
79 #define EAP_ICSC 0x00 /* interrupt / chip select control */
80 #define EAP_SERR_DISABLE 0x00000001
81 #define EAP_CDC_EN 0x00000002
82 #define EAP_JYSTK_EN 0x00000004
83 #define EAP_UART_EN 0x00000008
84 #define EAP_ADC_EN 0x00000010
85 #define EAP_DAC2_EN 0x00000020
86 #define EAP_DAC1_EN 0x00000040
87 #define EAP_BREQ 0x00000080
88 #define EAP_XTCL0 0x00000100
89 #define EAP_M_CB 0x00000200
90 #define EAP_CCB_INTRM 0x00000400
91 #define EAP_DAC_SYNC 0x00000800
92 #define EAP_WTSRSEL 0x00003000
93 #define EAP_WTSRSEL_5 0x00000000
94 #define EAP_WTSRSEL_11 0x00001000
95 #define EAP_WTSRSEL_22 0x00002000
96 #define EAP_WTSRSEL_44 0x00003000
97 #define EAP_M_SBB 0x00004000
98 #define EAP_MSFMTSEL 0x00008000
99 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
100 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
101 #define EAP_PCLKBITS 0x1fff0000
102 #define EAP_XTCL1 0x40000000
103 #define EAP_ADC_STOP 0x80000000
104 #define E1371_SYNC_RES (1<<14)
105
106 #define EAP_ICSS 0x04 /* interrupt / chip select status */
107 #define EAP_I_ADC 0x00000001
108 #define EAP_I_DAC2 0x00000002
109 #define EAP_I_DAC1 0x00000004
110 #define EAP_I_UART 0x00000008
111 #define EAP_I_MCCB 0x00000010
112 #define EAP_VC 0x00000060
113 #define EAP_CWRIP 0x00000100
114 #define EAP_CBUSY 0x00000200
115 #define EAP_CSTAT 0x00000400
116 #define EAP_INTR 0x80000000
117
118 #define EAP_UART_DATA 0x08
119 #define EAP_UART_STATUS 0x09
120 #define EAP_UART_CONTROL 0x09
121 #define EAP_MEMPAGE 0x0c
122 #define EAP_CODEC 0x10
123 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
124
125 /* ES1371 Registers */
126 #define E1371_CODEC 0x14
127 #define E1371_CODEC_WIP (1<<30)
128 #define E1371_CODEC_VALID (1<<31)
129 #define E1371_CODEC_READ (1<<23)
130 #define E1371_SET_CODEC(a,d) (((a)<<16) | (d))
131 #define E1371_SRC 0x10
132 #define E1371_SRC_RAMWE (1<<24)
133 #define E1371_SRC_RBUSY (1<<23)
134 #define E1371_SRC_DISABLE (1<<22)
135 #define E1371_SRC_DISP1 (1<<21)
136 #define E1371_SRC_DISP2 (1<<20)
137 #define E1371_SRC_DISREC (1<<19)
138 #define E1371_SRC_ADDR(a) ((a)<<25)
139 #define E1371_SRC_DATA(d) (d)
140 #define E1371_SRC_DATAMASK 0xffff
141 #define E1371_LEGACY 0x18
142
143 /* ES1371 Sample rate converter registers */
144 #define ESRC_ADC 0x78
145 #define ESRC_DAC1 0x74
146 #define ESRC_DAC2 0x70
147 #define ESRC_ADC_VOLL 0x6c
148 #define ESRC_ADC_VOLR 0x6d
149 #define ESRC_DAC1_VOLL 0x7c
150 #define ESRC_DAC1_VOLR 0x7d
151 #define ESRC_DAC2_VOLL 0x7e
152 #define ESRC_DAC2_VOLR 0x7f
153 #define ESRC_TRUNC_N 0x00
154 #define ESRC_IREGS 0x01
155 #define ESRC_ACF 0x02
156 #define ESRC_VFF 0x03
157 #define ESRC_SET_TRUNC(n) ((n)<<9)
158 #define ESRC_SET_N(n) ((n)<<4)
159 #define ESRC_SMF 0x8000
160 #define ESRC_SET_VFI(n) ((n)<<10)
161 #define ESRC_SET_ACI(n) (n)
162 #define ESRC_SET_ADC_VOL(n) ((n)<<8)
163 #define ESRC_SET_DAC_VOLI(n) ((n)<<12)
164 #define ESRC_SET_DAC_VOLF(n) (n)
165 #define SRC_MAGIC ((1<15)|(1<<13)|(1<<11)|(1<<9))
166
167
168 #define EAP_SIC 0x20
169 #define EAP_P1_S_MB 0x00000001
170 #define EAP_P1_S_EB 0x00000002
171 #define EAP_P2_S_MB 0x00000004
172 #define EAP_P2_S_EB 0x00000008
173 #define EAP_R1_S_MB 0x00000010
174 #define EAP_R1_S_EB 0x00000020
175 #define EAP_P2_DAC_SEN 0x00000040
176 #define EAP_P1_SCT_RLD 0x00000080
177 #define EAP_P1_INTR_EN 0x00000100
178 #define EAP_P2_INTR_EN 0x00000200
179 #define EAP_R1_INTR_EN 0x00000400
180 #define EAP_P1_PAUSE 0x00000800
181 #define EAP_P2_PAUSE 0x00001000
182 #define EAP_P1_LOOP_SEL 0x00002000
183 #define EAP_P2_LOOP_SEL 0x00004000
184 #define EAP_R1_LOOP_SEL 0x00008000
185 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
186 #define EAP_SET_P2_END_INC(i) ((i) << 19)
187 #define EAP_INC_BITS 0x003f0000
188
189 #define EAP_DAC1_CSR 0x24
190 #define EAP_DAC2_CSR 0x28
191 #define EAP_ADC_CSR 0x2c
192 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
193
194 #define EAP_DAC_PAGE 0xc
195 #define EAP_ADC_PAGE 0xd
196 #define EAP_UART_PAGE1 0xe
197 #define EAP_UART_PAGE2 0xf
198
199 #define EAP_DAC1_ADDR 0x30
200 #define EAP_DAC1_SIZE 0x34
201 #define EAP_DAC2_ADDR 0x38
202 #define EAP_DAC2_SIZE 0x3c
203 #define EAP_ADC_ADDR 0x30
204 #define EAP_ADC_SIZE 0x34
205 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
206
207 #define EAP_READ_TIMEOUT 5000000
208 #define EAP_WRITE_TIMEOUT 5000000
209
210
211 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
212
213 /* AK4531 registers */
214 #define AK_MASTER_L 0x00
215 #define AK_MASTER_R 0x01
216 #define AK_VOICE_L 0x02
217 #define AK_VOICE_R 0x03
218 #define AK_FM_L 0x04
219 #define AK_FM_R 0x05
220 #define AK_CD_L 0x06
221 #define AK_CD_R 0x07
222 #define AK_LINE_L 0x08
223 #define AK_LINE_R 0x09
224 #define AK_AUX_L 0x0a
225 #define AK_AUX_R 0x0b
226 #define AK_MONO1 0x0c
227 #define AK_MONO2 0x0d
228 #define AK_MIC 0x0e
229 #define AK_MONO 0x0f
230 #define AK_OUT_MIXER1 0x10
231 #define AK_M_FM_L 0x40
232 #define AK_M_FM_R 0x20
233 #define AK_M_LINE_L 0x10
234 #define AK_M_LINE_R 0x08
235 #define AK_M_CD_L 0x04
236 #define AK_M_CD_R 0x02
237 #define AK_M_MIC 0x01
238 #define AK_OUT_MIXER2 0x11
239 #define AK_M_AUX_L 0x20
240 #define AK_M_AUX_R 0x10
241 #define AK_M_VOICE_L 0x08
242 #define AK_M_VOICE_R 0x04
243 #define AK_M_MONO2 0x02
244 #define AK_M_MONO1 0x01
245 #define AK_IN_MIXER1_L 0x12
246 #define AK_IN_MIXER1_R 0x13
247 #define AK_IN_MIXER2_L 0x14
248 #define AK_IN_MIXER2_R 0x15
249 #define AK_M_TMIC 0x80
250 #define AK_M_TMONO1 0x40
251 #define AK_M_TMONO2 0x20
252 #define AK_M2_AUX_L 0x10
253 #define AK_M2_AUX_R 0x08
254 #define AK_M_VOICE 0x04
255 #define AK_M2_MONO2 0x02
256 #define AK_M2_MONO1 0x01
257 #define AK_RESET 0x16
258 #define AK_PD 0x02
259 #define AK_NRST 0x01
260 #define AK_CS 0x17
261 #define AK_ADSEL 0x18
262 #define AK_MGAIN 0x19
263 #define AK_NPORTS 0x20
264
265 #define MAX_NPORTS AK_NPORTS
266
267 /* Not sensical for AC97? */
268 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
269 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
270 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
271 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
272 #define VOL_0DB 200
273
274 /* Futzable parms */
275 #define EAP_MASTER_VOL 0
276 #define EAP_VOICE_VOL 1
277 #define EAP_FM_VOL 2
278 #define EAP_VIDEO_VOL 2 /* ES1371 */
279 #define EAP_CD_VOL 3
280 #define EAP_LINE_VOL 4
281 #define EAP_AUX_VOL 5
282 #define EAP_MIC_VOL 6
283 #define EAP_RECORD_SOURCE 7
284 #define EAP_OUTPUT_SELECT 8
285 #define EAP_MIC_PREAMP 9
286 #define EAP_OUTPUT_CLASS 10
287 #define EAP_RECORD_CLASS 11
288 #define EAP_INPUT_CLASS 12
289
290 /* Debug */
291 #ifdef AUDIO_DEBUG
292 #define DPRINTF(x) if (eapdebug) printf x
293 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
294 int eapdebug = 0;
295 #else
296 #define DPRINTF(x)
297 #define DPRINTFN(n,x)
298 #endif
299
300 int eap_match __P((struct device *, struct cfdata *, void *));
301 void eap_attach __P((struct device *, struct device *, void *));
302 int eap_intr __P((void *));
303
304 struct eap_dma {
305 bus_dmamap_t map;
306 caddr_t addr;
307 bus_dma_segment_t segs[1];
308 int nsegs;
309 size_t size;
310 struct eap_dma *next;
311 };
312 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
313 #define KERNADDR(p) ((void *)((p)->addr))
314
315 struct eap_softc {
316 struct device sc_dev; /* base device */
317 void *sc_ih; /* interrupt vectoring */
318 bus_space_tag_t iot;
319 bus_space_handle_t ioh;
320 bus_dma_tag_t sc_dmatag; /* DMA tag */
321
322 struct eap_dma *sc_dmas;
323
324 void (*sc_pintr)(void *); /* dma completion intr handler */
325 void *sc_parg; /* arg for sc_intr() */
326 #ifdef DIAGNOSTIC
327 char sc_prun;
328 #endif
329
330 void (*sc_rintr)(void *); /* dma completion intr handler */
331 void *sc_rarg; /* arg for sc_intr() */
332 #ifdef DIAGNOSTIC
333 char sc_rrun;
334 #endif
335
336 u_short sc_port[MAX_NPORTS]; /* mirror of the hardware setting */
337 u_int sc_record_source; /* recording source mask */
338 u_int sc_output_source; /* output source mask */
339 u_int sc_mic_preamp;
340 char sc_1371; /* Using ES1371/AC97 codec */
341
342 struct ac97_codec_if *codec_if;
343 struct ac97_host_if host_if;
344 };
345
346 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
347 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
348
349 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
350 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
351 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
352 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
353
354 struct cfattach eap_ca = {
355 sizeof(struct eap_softc), eap_match, eap_attach
356 };
357
358 int eap_open __P((void *, int));
359 void eap_close __P((void *));
360 int eap_query_encoding __P((void *, struct audio_encoding *));
361 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
362 int eap_round_blocksize __P((void *, int));
363 int eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
364 void *, struct audio_params *));
365 int eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
366 void *, struct audio_params *));
367 int eap_halt_output __P((void *));
368 int eap_halt_input __P((void *));
369 void eap_write_codec __P((struct eap_softc *, int, int));
370 int eap_getdev __P((void *, struct audio_device *));
371 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
372 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
373 int eap1371_mixer_set_port __P((void *, mixer_ctrl_t *));
374 int eap1371_mixer_get_port __P((void *, mixer_ctrl_t *));
375 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
376 void *eap_malloc __P((void *, int, size_t, int, int));
377 void eap_free __P((void *, void *, int));
378 size_t eap_round_buffersize __P((void *, int, size_t));
379 int eap_mappage __P((void *, void *, int, int));
380 int eap_get_props __P((void *));
381 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
382 void eap1371_src_wait __P((struct eap_softc *sc));
383 void eap1371_set_adc_rate __P((struct eap_softc *sc, int rate));
384 void eap1371_set_dac_rate __P((struct eap_softc *sc, int rate, int which));
385 int eap1371_src_read __P((struct eap_softc *sc, int a));
386 void eap1371_src_write __P((struct eap_softc *sc, int a, int d));
387 int eap1371_query_devinfo __P((void *addr, mixer_devinfo_t *dip));
388
389 int eap1371_attach_codec __P((void *sc, struct ac97_codec_if *));
390 int eap1371_read_codec __P((void *sc, u_int8_t a, u_int16_t *d));
391 int eap1371_write_codec __P((void *sc, u_int8_t a, u_int16_t d));
392 void eap1371_reset_codec __P((void *sc));
393 int eap1371_get_portnum_by_name __P((struct eap_softc *, char *, char *,
394 char *));
395
396 struct audio_hw_if eap_hw_if = {
397 eap_open,
398 eap_close,
399 NULL,
400 eap_query_encoding,
401 eap_set_params,
402 eap_round_blocksize,
403 NULL,
404 NULL,
405 NULL,
406 NULL,
407 NULL,
408 eap_halt_output,
409 eap_halt_input,
410 NULL,
411 eap_getdev,
412 NULL,
413 eap_mixer_set_port,
414 eap_mixer_get_port,
415 eap_query_devinfo,
416 eap_malloc,
417 eap_free,
418 eap_round_buffersize,
419 eap_mappage,
420 eap_get_props,
421 eap_trigger_output,
422 eap_trigger_input,
423 };
424
425 struct audio_device eap_device = {
426 "Ensoniq AudioPCI",
427 "",
428 "eap"
429 };
430
431 int
432 eap_match(parent, match, aux)
433 struct device *parent;
434 struct cfdata *match;
435 void *aux;
436 {
437 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
438
439 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
440 return (0);
441 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI ||
442 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI97) {
443 return (1);
444 }
445
446 return (0);
447 }
448
449 void
450 eap_write_codec(sc, a, d)
451 struct eap_softc *sc;
452 int a, d;
453 {
454
455 int icss, to = EAP_WRITE_TIMEOUT;
456
457 do {
458 icss = EREAD4(sc, EAP_ICSS);
459 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
460 if (!to--) {
461 printf("eap: timeout writing to codec\n");
462 return;
463 }
464 } while(to && icss & EAP_CWRIP); /* XXX could use CSTAT here */
465 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
466 }
467
468
469 int
470 eap1371_read_codec(sc_, a, d)
471 void *sc_;
472 u_int8_t a;
473 u_int16_t *d;
474 {
475 struct eap_softc *sc = sc_;
476 int to;
477 int cdc;
478
479 to = EAP_WRITE_TIMEOUT;
480 do {
481 cdc = EREAD4(sc, E1371_CODEC);
482 if (!to--) {
483 printf("eap: timeout writing to codec\n");
484 return 1;
485 }
486 } while (cdc & E1371_CODEC_WIP);
487
488 /* just do it */
489 eap1371_src_wait(sc);
490 EWRITE4(sc, E1371_CODEC, E1371_SET_CODEC(a, 0) | E1371_CODEC_READ);
491
492 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
493 if ((cdc = EREAD4(sc, E1371_CODEC)) & E1371_CODEC_VALID)
494 break;
495 }
496
497 if (to == EAP_WRITE_TIMEOUT) {
498 DPRINTF(("eap1371: read codec timeout\n"));
499 }
500
501 *d = cdc & 0xffff;
502
503 DPRINTFN(10, ("eap1371: reading codec (%x) = %x\n", a, *d));
504
505 return (0);
506 }
507
508 int
509 eap1371_write_codec(sc_, a, d)
510 void *sc_;
511 u_int8_t a;
512 u_int16_t d;
513 {
514 struct eap_softc *sc = sc_;
515 int to;
516 int cdc;
517
518 to = EAP_WRITE_TIMEOUT;
519 do {
520 cdc = EREAD4(sc, E1371_CODEC);
521 if (!to--) {
522 printf("eap: timeout writing to codec\n");
523 return 1;
524 }
525 } while (cdc & E1371_CODEC_WIP);
526
527 /* just do it */
528 eap1371_src_wait(sc);
529 EWRITE4(sc, E1371_CODEC, E1371_SET_CODEC(a, d));
530 DPRINTFN(10, ("eap1371: writing codec %x --> %x\n", d, a));
531
532 return (0);
533 }
534
535 void
536 eap1371_src_wait(sc)
537 struct eap_softc *sc;
538 {
539 int to;
540 int src;
541
542 to = EAP_READ_TIMEOUT;
543 do {
544 src = EREAD4(sc, E1371_SRC);
545 if (!to--) {
546 printf("eap: timeout waiting for sample rate"
547 "converter\n");
548 return;
549 }
550 } while (src & E1371_SRC_RBUSY);
551 }
552
553 int
554 eap1371_src_read(sc, a)
555 struct eap_softc *sc;
556 int a;
557 {
558 int r;
559
560 eap1371_src_wait(sc);
561 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE | E1371_SRC_DISP1 |
562 E1371_SRC_DISP2 | E1371_SRC_DISREC);
563 r |= E1371_SRC_ADDR(a);
564 EWRITE4(sc, E1371_SRC, r);
565 r = EREAD4(sc, E1371_SRC) & E1371_SRC_DATAMASK;
566 return r;
567 }
568
569 void
570 eap1371_src_write(sc, a, d)
571 struct eap_softc *sc;
572 int a,d;
573 {
574 int r;
575
576 eap1371_src_wait(sc);
577 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE | E1371_SRC_DISP1 |
578 E1371_SRC_DISP2 | E1371_SRC_DISREC);
579 r |= E1371_SRC_RAMWE | E1371_SRC_ADDR(a) | E1371_SRC_DATA(d);
580 EWRITE4(sc, E1371_SRC, r);
581 }
582
583 void
584 eap1371_set_adc_rate(sc, rate)
585 struct eap_softc *sc;
586 int rate;
587 {
588 int freq, n, truncm;
589 int out;
590
591 /* Whatever, it works, so I'll leave it :) */
592
593 if (rate > 48000)
594 rate = 48000;
595 if (rate < 4000)
596 rate = 4000;
597 n = rate / 3000;
598 if ((1 << n) & SRC_MAGIC)
599 n--;
600 truncm = ((21 * n) - 1) | 1;
601 freq = ((48000 << 15) / rate) * n;
602 if (rate >= 24000) {
603 if (truncm > 239)
604 truncm = 239;
605 out = ESRC_SET_TRUNC((239 - truncm) / 2);
606 } else {
607 if (truncm > 119)
608 truncm = 119;
609 out = ESRC_SMF | ESRC_SET_TRUNC((119 - truncm) / 2);
610 }
611 out |= ESRC_SET_N(n);
612 eap1371_src_write(sc, ESRC_ADC+ESRC_TRUNC_N, out);
613
614
615 out = eap1371_src_read(sc, ESRC_ADC+ESRC_IREGS) & 0xff;
616 eap1371_src_write(sc, ESRC_ADC+ESRC_IREGS, out |
617 ESRC_SET_VFI(freq >> 15));
618 eap1371_src_write(sc, ESRC_ADC+ESRC_VFF, freq & 0x7fff);
619 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(n));
620 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(n));
621 }
622
623 void
624 eap1371_set_dac_rate(sc, rate, which)
625 struct eap_softc *sc;
626 int rate;
627 int which;
628 {
629 int dac = (which == 1) ? ESRC_DAC1 : ESRC_DAC2;
630 int freq, r;
631
632 /* Whatever, it works, so I'll leave it :) */
633
634 if (rate > 48000)
635 rate = 48000;
636 if (rate < 4000)
637 rate = 4000;
638 freq = (rate << 15) / 3000;
639
640 eap1371_src_wait(sc);
641 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
642 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
643 r |= (which == 1) ? E1371_SRC_DISP1 : E1371_SRC_DISP2;
644 EWRITE4(sc, E1371_SRC, r);
645 r = eap1371_src_read(sc, dac + ESRC_IREGS) & 0x00ff;
646 eap1371_src_write(sc, dac + ESRC_IREGS, r | ((freq >> 5) & 0xfc00));
647 eap1371_src_write(sc, dac + ESRC_VFF, freq & 0x7fff);
648 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
649 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
650 r &= ~((which == 1) ? E1371_SRC_DISP1 : E1371_SRC_DISP2);
651 EWRITE4(sc, E1371_SRC, r);
652 }
653
654 void
655 eap_attach(parent, self, aux)
656 struct device *parent;
657 struct device *self;
658 void *aux;
659 {
660 struct eap_softc *sc = (struct eap_softc *)self;
661 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
662 pci_chipset_tag_t pc = pa->pa_pc;
663 char const *intrstr;
664 pci_intr_handle_t ih;
665 pcireg_t csr;
666 mixer_ctrl_t ctl;
667 int i;
668
669 /* Flag if we're "creative" */
670 sc->sc_1371 = PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI97;
671
672 printf(": Ensoniq AudioPCI%s (rev. 0x%02x)\n",
673 sc->sc_1371 ? "97" : "", PCI_REVISION(pa->pa_class));
674
675 /* Map I/O register */
676 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
677 &sc->iot, &sc->ioh, NULL, NULL)) {
678 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
679 return;
680 }
681
682 sc->sc_dmatag = pa->pa_dmat;
683
684 /* Enable the device. */
685 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
686 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
687 csr | PCI_COMMAND_MASTER_ENABLE);
688
689 /* Map and establish the interrupt. */
690 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
691 pa->pa_intrline, &ih)) {
692 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
693 return;
694 }
695 intrstr = pci_intr_string(pc, ih);
696 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
697 if (sc->sc_ih == NULL) {
698 printf("%s: couldn't establish interrupt",
699 sc->sc_dev.dv_xname);
700 if (intrstr != NULL)
701 printf(" at %s", intrstr);
702 printf("\n");
703 return;
704 }
705 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
706
707 if (!sc->sc_1371) {
708 /* Enable interrupts and looping mode. */
709 /* enable the parts we need */
710 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
711 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN);
712
713 /* reset codec */
714 /* normal operation */
715 /* select codec clocks */
716 eap_write_codec(sc, AK_RESET, AK_PD);
717 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST);
718 eap_write_codec(sc, AK_CS, 0x0);
719
720 eap_hw_if.query_devinfo = eap_query_devinfo;
721 eap_hw_if.set_port = eap_mixer_set_port;
722 eap_hw_if.get_port = eap_mixer_get_port;
723
724 /* Enable all relevant mixer switches. */
725 ctl.dev = EAP_OUTPUT_SELECT;
726 ctl.type = AUDIO_MIXER_SET;
727 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL |
728 1 << EAP_CD_VOL | 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL |
729 1 << EAP_MIC_VOL;
730 eap_hw_if.set_port(sc, &ctl);
731
732 ctl.type = AUDIO_MIXER_VALUE;
733 ctl.un.value.num_channels = 1;
734 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL;
735 ctl.dev++) {
736 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
737 eap_hw_if.set_port(sc, &ctl);
738 }
739 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
740 eap_hw_if.set_port(sc, &ctl);
741 ctl.dev = EAP_MIC_PREAMP;
742 ctl.type = AUDIO_MIXER_ENUM;
743 ctl.un.ord = 0;
744 eap_hw_if.set_port(sc, &ctl);
745 ctl.dev = EAP_RECORD_SOURCE;
746 ctl.type = AUDIO_MIXER_SET;
747 ctl.un.mask = 1 << EAP_MIC_VOL;
748 eap_hw_if.set_port(sc, &ctl);
749 } else {
750 int error;
751
752 /* clean slate */
753 EWRITE4(sc, EAP_SIC, 0);
754 EWRITE4(sc, EAP_ICSC, 0);
755 EWRITE4(sc, E1371_LEGACY, 0);
756
757 /* Reset from es1371's perspective */
758 EWRITE4(sc, EAP_ICSC, E1371_SYNC_RES);
759 delay(20);
760 EWRITE4(sc, EAP_ICSC, 0);
761
762 /* must properly reprogram sample rate converter,
763 * or it locks up. Set some defaults for the life of the
764 * machine, and set up a sb default sample rate.
765 */
766 EWRITE4(sc, E1371_SRC, E1371_SRC_DISABLE);
767 for (i=0; i<0x80; i++)
768 eap1371_src_write(sc, i, 0);
769 eap1371_src_write(sc, ESRC_DAC1+ESRC_TRUNC_N, ESRC_SET_N(16));
770 eap1371_src_write(sc, ESRC_DAC2+ESRC_TRUNC_N, ESRC_SET_N(16));
771 eap1371_src_write(sc, ESRC_DAC1+ESRC_IREGS, ESRC_SET_VFI(16));
772 eap1371_src_write(sc, ESRC_DAC2+ESRC_IREGS, ESRC_SET_VFI(16));
773 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(16));
774 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(16));
775 eap1371_src_write(sc, ESRC_DAC1_VOLL, ESRC_SET_DAC_VOLI(1));
776 eap1371_src_write(sc, ESRC_DAC1_VOLR, ESRC_SET_DAC_VOLI(1));
777 eap1371_src_write(sc, ESRC_DAC2_VOLL, ESRC_SET_DAC_VOLI(1));
778 eap1371_src_write(sc, ESRC_DAC2_VOLR, ESRC_SET_DAC_VOLI(1));
779 eap1371_set_adc_rate(sc, 22050);
780 eap1371_set_dac_rate(sc, 22050, 1);
781 eap1371_set_dac_rate(sc, 22050, 2);
782
783 EWRITE4(sc, E1371_SRC, 0);
784
785 /* Reset codec */
786
787 /* Interrupt enable */
788 sc->host_if.arg = sc;
789 sc->host_if.attach = eap1371_attach_codec;
790 sc->host_if.read = eap1371_read_codec;
791 sc->host_if.write = eap1371_write_codec;
792 sc->host_if.reset = eap1371_reset_codec;
793
794 if ((error = ac97_attach(&sc->host_if)) == 0) {
795 /* Interrupt enable */
796 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
797 } else
798 return;
799
800 eap_hw_if.query_devinfo = eap1371_query_devinfo;
801 eap_hw_if.set_port = eap1371_mixer_set_port;
802 eap_hw_if.get_port = eap1371_mixer_get_port;
803
804 /* Just enable the DAC and master volumes by default */
805 ctl.type = AUDIO_MIXER_ENUM;
806 ctl.un.ord = 0; /* off */
807 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCoutputs,
808 AudioNmaster, AudioNmute);
809 eap1371_mixer_set_port(sc, &ctl);
810 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCinputs,
811 AudioNdac, AudioNmute);
812 eap1371_mixer_set_port(sc, &ctl);
813 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCrecord,
814 AudioNvolume, AudioNmute);
815 eap1371_mixer_set_port(sc, &ctl);
816
817
818 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCrecord,
819 AudioNsource, NULL);
820 ctl.type = AUDIO_MIXER_ENUM;
821 ctl.un.ord = 0;
822 eap1371_mixer_set_port(sc, &ctl);
823
824 }
825
826 audio_attach_mi(&eap_hw_if, sc, &sc->sc_dev);
827 }
828
829 int
830 eap1371_attach_codec(sc_, codec_if)
831 void *sc_;
832 struct ac97_codec_if *codec_if;
833 {
834 struct eap_softc *sc = sc_;
835
836 sc->codec_if = codec_if;
837 return (0);
838 }
839
840 void
841 eap1371_reset_codec(sc_)
842 void *sc_;
843 {
844 struct eap_softc *sc = sc_;
845 u_int32_t icsc = EREAD4(sc, EAP_ICSC);
846
847 EWRITE4(sc, EAP_ICSC, icsc | E1371_SYNC_RES);
848 delay(100);
849 EWRITE4(sc, EAP_ICSC, icsc & ~E1371_SYNC_RES);
850
851 return;
852 }
853
854 int
855 eap_intr(p)
856 void *p;
857 {
858 struct eap_softc *sc = p;
859 u_int32_t intr, sic;
860
861 intr = EREAD4(sc, EAP_ICSS);
862 if (!(intr & EAP_INTR))
863 return (0);
864 sic = EREAD4(sc, EAP_SIC);
865 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
866 if (intr & EAP_I_ADC) {
867 /*
868 * XXX This is a hack!
869 * The EAP chip sometimes generates the recording interrupt
870 * while it is still transferring the data. To make sure
871 * it has all arrived we busy wait until the count is right.
872 * The transfer we are waiting for is 8 longwords.
873 */
874 int s, nw, n;
875 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
876 s = EREAD4(sc, EAP_ADC_CSR);
877 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
878 n = 0;
879 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
880 delay(10);
881 if (++n > 100) {
882 printf("eapintr: dma fix timeout");
883 break;
884 }
885 }
886 /* Continue with normal interrupt handling. */
887 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
888 EWRITE4(sc, EAP_SIC, sic);
889 if (sc->sc_rintr)
890 sc->sc_rintr(sc->sc_rarg);
891 }
892 if (intr & EAP_I_DAC2) {
893 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
894 EWRITE4(sc, EAP_SIC, sic);
895 if (sc->sc_pintr)
896 sc->sc_pintr(sc->sc_parg);
897 }
898 return (1);
899 }
900
901 int
902 eap_allocmem(sc, size, align, p)
903 struct eap_softc *sc;
904 size_t size;
905 size_t align;
906 struct eap_dma *p;
907 {
908 int error;
909
910 p->size = size;
911 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
912 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
913 &p->nsegs, BUS_DMA_NOWAIT);
914 if (error)
915 return (error);
916
917 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
918 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
919 if (error)
920 goto free;
921
922 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
923 0, BUS_DMA_NOWAIT, &p->map);
924 if (error)
925 goto unmap;
926
927 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
928 BUS_DMA_NOWAIT);
929 if (error)
930 goto destroy;
931 return (0);
932
933 destroy:
934 bus_dmamap_destroy(sc->sc_dmatag, p->map);
935 unmap:
936 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
937 free:
938 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
939 return (error);
940 }
941
942 int
943 eap_freemem(sc, p)
944 struct eap_softc *sc;
945 struct eap_dma *p;
946 {
947 bus_dmamap_unload(sc->sc_dmatag, p->map);
948 bus_dmamap_destroy(sc->sc_dmatag, p->map);
949 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
950 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
951 return (0);
952 }
953
954 int
955 eap_open(addr, flags)
956 void *addr;
957 int flags;
958 {
959 return (0);
960 }
961
962 /*
963 * Close function is called at splaudio().
964 */
965 void
966 eap_close(addr)
967 void *addr;
968 {
969 struct eap_softc *sc = addr;
970
971 eap_halt_output(sc);
972 eap_halt_input(sc);
973
974 sc->sc_pintr = 0;
975 sc->sc_rintr = 0;
976 }
977
978 int
979 eap_query_encoding(addr, fp)
980 void *addr;
981 struct audio_encoding *fp;
982 {
983 switch (fp->index) {
984 case 0:
985 strcpy(fp->name, AudioEulinear);
986 fp->encoding = AUDIO_ENCODING_ULINEAR;
987 fp->precision = 8;
988 fp->flags = 0;
989 return (0);
990 case 1:
991 strcpy(fp->name, AudioEmulaw);
992 fp->encoding = AUDIO_ENCODING_ULAW;
993 fp->precision = 8;
994 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
995 return (0);
996 case 2:
997 strcpy(fp->name, AudioEalaw);
998 fp->encoding = AUDIO_ENCODING_ALAW;
999 fp->precision = 8;
1000 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1001 return (0);
1002 case 3:
1003 strcpy(fp->name, AudioEslinear);
1004 fp->encoding = AUDIO_ENCODING_SLINEAR;
1005 fp->precision = 8;
1006 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1007 return (0);
1008 case 4:
1009 strcpy(fp->name, AudioEslinear_le);
1010 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1011 fp->precision = 16;
1012 fp->flags = 0;
1013 return (0);
1014 case 5:
1015 strcpy(fp->name, AudioEulinear_le);
1016 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1017 fp->precision = 16;
1018 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1019 return (0);
1020 case 6:
1021 strcpy(fp->name, AudioEslinear_be);
1022 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1023 fp->precision = 16;
1024 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1025 return (0);
1026 case 7:
1027 strcpy(fp->name, AudioEulinear_be);
1028 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1029 fp->precision = 16;
1030 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1031 return (0);
1032 default:
1033 return (EINVAL);
1034 }
1035 }
1036
1037 int
1038 eap_set_params(addr, setmode, usemode, play, rec)
1039 void *addr;
1040 int setmode, usemode;
1041 struct audio_params *play, *rec;
1042 {
1043 struct eap_softc *sc = addr;
1044 struct audio_params *p;
1045 int mode;
1046 u_int32_t div;
1047
1048 /*
1049 * The es1370 only has one clock, so make the sample rates match.
1050 */
1051 if (!sc->sc_1371) {
1052 if (play->sample_rate != rec->sample_rate &&
1053 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1054 if (setmode == AUMODE_PLAY) {
1055 rec->sample_rate = play->sample_rate;
1056 setmode |= AUMODE_RECORD;
1057 } else if (setmode == AUMODE_RECORD) {
1058 play->sample_rate = rec->sample_rate;
1059 setmode |= AUMODE_PLAY;
1060 } else
1061 return (EINVAL);
1062 }
1063 }
1064
1065 for (mode = AUMODE_RECORD; mode != -1;
1066 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1067 if ((setmode & mode) == 0)
1068 continue;
1069
1070 p = mode == AUMODE_PLAY ? play : rec;
1071
1072 if (p->sample_rate < 4000 || p->sample_rate > 48000 ||
1073 (p->precision != 8 && p->precision != 16) ||
1074 (p->channels != 1 && p->channels != 2))
1075 return (EINVAL);
1076
1077 p->factor = 1;
1078 p->sw_code = 0;
1079 switch (p->encoding) {
1080 case AUDIO_ENCODING_SLINEAR_BE:
1081 if (p->precision == 16)
1082 p->sw_code = swap_bytes;
1083 else
1084 p->sw_code = change_sign8;
1085 break;
1086 case AUDIO_ENCODING_SLINEAR_LE:
1087 if (p->precision != 16)
1088 p->sw_code = change_sign8;
1089 break;
1090 case AUDIO_ENCODING_ULINEAR_BE:
1091 if (p->precision == 16) {
1092 if (mode == AUMODE_PLAY)
1093 p->sw_code = swap_bytes_change_sign16;
1094 else
1095 p->sw_code = change_sign16_swap_bytes;
1096 }
1097 break;
1098 case AUDIO_ENCODING_ULINEAR_LE:
1099 if (p->precision == 16)
1100 p->sw_code = change_sign16;
1101 break;
1102 case AUDIO_ENCODING_ULAW:
1103 if (mode == AUMODE_PLAY) {
1104 p->factor = 2;
1105 p->sw_code = mulaw_to_slinear16;
1106 } else
1107 p->sw_code = ulinear8_to_mulaw;
1108 break;
1109 case AUDIO_ENCODING_ALAW:
1110 if (mode == AUMODE_PLAY) {
1111 p->factor = 2;
1112 p->sw_code = alaw_to_slinear16;
1113 } else
1114 p->sw_code = ulinear8_to_alaw;
1115 break;
1116 default:
1117 return (EINVAL);
1118 }
1119 }
1120
1121 if (sc->sc_1371) {
1122 eap1371_set_dac_rate(sc, play->sample_rate, 1);
1123 eap1371_set_dac_rate(sc, play->sample_rate, 2);
1124 eap1371_set_adc_rate(sc, rec->sample_rate);
1125 } else {
1126 /* Set the speed */
1127 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
1128 EREAD4(sc, EAP_ICSC)));
1129 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
1130 /*
1131 * XXX
1132 * The -2 isn't documented, but seemed to make the wall
1133 * time match
1134 * what I expect. - mycroft
1135 */
1136 if (usemode == AUMODE_RECORD)
1137 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1138 rec->sample_rate - 2);
1139 else
1140 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1141 play->sample_rate - 2);
1142 div |= EAP_CCB_INTRM;
1143 EWRITE4(sc, EAP_ICSC, div);
1144 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1145 }
1146
1147 return (0);
1148 }
1149
1150 int
1151 eap_round_blocksize(addr, blk)
1152 void *addr;
1153 int blk;
1154 {
1155 return (blk & -32); /* keep good alignment */
1156 }
1157
1158 int
1159 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
1160 void *addr;
1161 void *start, *end;
1162 int blksize;
1163 void (*intr) __P((void *));
1164 void *arg;
1165 struct audio_params *param;
1166 {
1167 struct eap_softc *sc = addr;
1168 struct eap_dma *p;
1169 u_int32_t icsc, sic;
1170 int sampshift;
1171
1172 #ifdef DIAGNOSTIC
1173 if (sc->sc_prun)
1174 panic("eap_trigger_output: already running");
1175 sc->sc_prun = 1;
1176 #endif
1177
1178 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p "
1179 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1180 sc->sc_pintr = intr;
1181 sc->sc_parg = arg;
1182
1183 icsc = EREAD4(sc, EAP_ICSC);
1184 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
1185
1186 sic = EREAD4(sc, EAP_SIC);
1187 sic &= ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
1188 sic |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
1189 sampshift = 0;
1190 if (param->precision * param->factor == 16) {
1191 sic |= EAP_P2_S_EB;
1192 sampshift++;
1193 }
1194 if (param->channels == 2) {
1195 sic |= EAP_P2_S_MB;
1196 sampshift++;
1197 }
1198 EWRITE4(sc, EAP_SIC, sic);
1199
1200 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1201 ;
1202 if (!p) {
1203 printf("eap_trigger_output: bad addr %p\n", start);
1204 return (EINVAL);
1205 }
1206
1207 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
1208 (int)DMAADDR(p),
1209 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1210 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1211 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
1212 EWRITE4(sc, EAP_DAC2_SIZE,
1213 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1214
1215 EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
1216
1217 EWRITE4(sc, EAP_ICSC, icsc | EAP_DAC2_EN);
1218
1219 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
1220
1221 return (0);
1222 }
1223
1224 int
1225 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
1226 void *addr;
1227 void *start, *end;
1228 int blksize;
1229 void (*intr) __P((void *));
1230 void *arg;
1231 struct audio_params *param;
1232 {
1233 struct eap_softc *sc = addr;
1234 struct eap_dma *p;
1235 u_int32_t icsc, sic;
1236 int sampshift;
1237
1238 #ifdef DIAGNOSTIC
1239 if (sc->sc_rrun)
1240 panic("eap_trigger_input: already running");
1241 sc->sc_rrun = 1;
1242 #endif
1243
1244 DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1245 addr, start, end, blksize, intr, arg));
1246 sc->sc_rintr = intr;
1247 sc->sc_rarg = arg;
1248
1249 icsc = EREAD4(sc, EAP_ICSC);
1250 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1251
1252 sic = EREAD4(sc, EAP_SIC);
1253 sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
1254 sampshift = 0;
1255 if (param->precision * param->factor == 16) {
1256 sic |= EAP_R1_S_EB;
1257 sampshift++;
1258 }
1259 if (param->channels == 2) {
1260 sic |= EAP_R1_S_MB;
1261 sampshift++;
1262 }
1263 EWRITE4(sc, EAP_SIC, sic);
1264
1265 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1266 ;
1267 if (!p) {
1268 printf("eap_trigger_input: bad addr %p\n", start);
1269 return (EINVAL);
1270 }
1271
1272 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
1273 (int)DMAADDR(p),
1274 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1275 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
1276 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
1277 EWRITE4(sc, EAP_ADC_SIZE,
1278 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1279
1280 EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
1281
1282 EWRITE4(sc, EAP_ICSC, icsc | EAP_ADC_EN);
1283
1284 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
1285
1286 return (0);
1287 }
1288
1289 int
1290 eap_halt_output(addr)
1291 void *addr;
1292 {
1293 struct eap_softc *sc = addr;
1294 u_int32_t icsc;
1295
1296 DPRINTF(("eap: eap_halt_output\n"));
1297 icsc = EREAD4(sc, EAP_ICSC);
1298 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
1299 #ifdef DIAGNOSTIC
1300 sc->sc_prun = 0;
1301 #endif
1302 return (0);
1303 }
1304
1305 int
1306 eap_halt_input(addr)
1307 void *addr;
1308 {
1309 struct eap_softc *sc = addr;
1310 u_int32_t icsc;
1311
1312 DPRINTF(("eap: eap_halt_input\n"));
1313 icsc = EREAD4(sc, EAP_ICSC);
1314 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1315 #ifdef DIAGNOSTIC
1316 sc->sc_rrun = 0;
1317 #endif
1318 return (0);
1319 }
1320
1321 int
1322 eap_getdev(addr, retp)
1323 void *addr;
1324 struct audio_device *retp;
1325 {
1326 *retp = eap_device;
1327 return (0);
1328 }
1329
1330 int
1331 eap1371_mixer_set_port(addr, cp)
1332 void *addr;
1333 mixer_ctrl_t *cp;
1334 {
1335 struct eap_softc *sc = addr;
1336
1337 return (sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp));
1338 }
1339
1340 int
1341 eap1371_mixer_get_port(addr, cp)
1342 void *addr;
1343 mixer_ctrl_t *cp;
1344 {
1345 struct eap_softc *sc = addr;
1346
1347 return (sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp));
1348 }
1349
1350 int
1351 eap1371_query_devinfo(addr, dip)
1352 void *addr;
1353 mixer_devinfo_t *dip;
1354 {
1355 struct eap_softc *sc = addr;
1356
1357 return (sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip));
1358 }
1359
1360 int
1361 eap1371_get_portnum_by_name(sc, class, device, qualifier)
1362 struct eap_softc *sc;
1363 char *class, *device, *qualifier;
1364 {
1365 return (sc->codec_if->vtbl->get_portnum_by_name(sc->codec_if, class,
1366 device, qualifier));
1367 }
1368
1369 void
1370 eap_set_mixer(sc, a, d)
1371 struct eap_softc *sc;
1372 int a, d;
1373 {
1374 eap_write_codec(sc, a, d);
1375
1376 sc->sc_port[a] = d;
1377 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
1378 }
1379
1380 int
1381 eap_mixer_set_port(addr, cp)
1382 void *addr;
1383 mixer_ctrl_t *cp;
1384 {
1385 struct eap_softc *sc = addr;
1386 int lval, rval, l, r, la, ra;
1387 int l1, r1, l2, r2, m, o1, o2;
1388
1389 if (cp->dev == EAP_RECORD_SOURCE) {
1390 if (cp->type != AUDIO_MIXER_SET)
1391 return (EINVAL);
1392 m = sc->sc_record_source = cp->un.mask;
1393 l1 = l2 = r1 = r2 = 0;
1394 if (m & (1 << EAP_VOICE_VOL))
1395 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
1396 if (m & (1 << EAP_FM_VOL))
1397 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
1398 if (m & (1 << EAP_CD_VOL))
1399 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
1400 if (m & (1 << EAP_LINE_VOL))
1401 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
1402 if (m & (1 << EAP_AUX_VOL))
1403 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
1404 if (m & (1 << EAP_MIC_VOL))
1405 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
1406 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
1407 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
1408 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
1409 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
1410 return (0);
1411 }
1412 if (cp->dev == EAP_OUTPUT_SELECT) {
1413 if (cp->type != AUDIO_MIXER_SET)
1414 return (EINVAL);
1415 m = sc->sc_output_source = cp->un.mask;
1416 o1 = o2 = 0;
1417 if (m & (1 << EAP_VOICE_VOL))
1418 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
1419 if (m & (1 << EAP_FM_VOL))
1420 o1 |= AK_M_FM_L | AK_M_FM_R;
1421 if (m & (1 << EAP_CD_VOL))
1422 o1 |= AK_M_CD_L | AK_M_CD_R;
1423 if (m & (1 << EAP_LINE_VOL))
1424 o1 |= AK_M_LINE_L | AK_M_LINE_R;
1425 if (m & (1 << EAP_AUX_VOL))
1426 o2 |= AK_M_AUX_L | AK_M_AUX_R;
1427 if (m & (1 << EAP_MIC_VOL))
1428 o1 |= AK_M_MIC;
1429 eap_set_mixer(sc, AK_OUT_MIXER1, o1);
1430 eap_set_mixer(sc, AK_OUT_MIXER2, o2);
1431 return (0);
1432 }
1433 if (cp->dev == EAP_MIC_PREAMP) {
1434 if (cp->type != AUDIO_MIXER_ENUM)
1435 return (EINVAL);
1436 if (cp->un.ord != 0 && cp->un.ord != 1)
1437 return (EINVAL);
1438 sc->sc_mic_preamp = cp->un.ord;
1439 eap_set_mixer(sc, AK_MGAIN, cp->un.ord);
1440 return (0);
1441 }
1442 if (cp->type != AUDIO_MIXER_VALUE)
1443 return (EINVAL);
1444 if (cp->un.value.num_channels == 1)
1445 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1446 else if (cp->un.value.num_channels == 2) {
1447 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1448 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1449 } else
1450 return (EINVAL);
1451 ra = -1;
1452 switch (cp->dev) {
1453 case EAP_MASTER_VOL:
1454 l = VOL_TO_ATT5(lval);
1455 r = VOL_TO_ATT5(rval);
1456 la = AK_MASTER_L;
1457 ra = AK_MASTER_R;
1458 break;
1459 case EAP_MIC_VOL:
1460 if (cp->un.value.num_channels != 1)
1461 return (EINVAL);
1462 la = AK_MIC;
1463 goto lr;
1464 case EAP_VOICE_VOL:
1465 la = AK_VOICE_L;
1466 ra = AK_VOICE_R;
1467 goto lr;
1468 case EAP_FM_VOL:
1469 la = AK_FM_L;
1470 ra = AK_FM_R;
1471 goto lr;
1472 case EAP_CD_VOL:
1473 la = AK_CD_L;
1474 ra = AK_CD_R;
1475 goto lr;
1476 case EAP_LINE_VOL:
1477 la = AK_LINE_L;
1478 ra = AK_LINE_R;
1479 goto lr;
1480 case EAP_AUX_VOL:
1481 la = AK_AUX_L;
1482 ra = AK_AUX_R;
1483 lr:
1484 l = VOL_TO_GAIN5(lval);
1485 r = VOL_TO_GAIN5(rval);
1486 break;
1487 default:
1488 return (EINVAL);
1489 }
1490 eap_set_mixer(sc, la, l);
1491 if (ra >= 0) {
1492 eap_set_mixer(sc, ra, r);
1493 }
1494 return (0);
1495 }
1496
1497 int
1498 eap_mixer_get_port(addr, cp)
1499 void *addr;
1500 mixer_ctrl_t *cp;
1501 {
1502 struct eap_softc *sc = addr;
1503 int la, ra, l, r;
1504
1505 switch (cp->dev) {
1506 case EAP_RECORD_SOURCE:
1507 if (cp->type != AUDIO_MIXER_SET)
1508 return (EINVAL);
1509 cp->un.mask = sc->sc_record_source;
1510 return (0);
1511 case EAP_OUTPUT_SELECT:
1512 if (cp->type != AUDIO_MIXER_SET)
1513 return (EINVAL);
1514 cp->un.mask = sc->sc_output_source;
1515 return (0);
1516 case EAP_MIC_PREAMP:
1517 if (cp->type != AUDIO_MIXER_ENUM)
1518 return (EINVAL);
1519 cp->un.ord = sc->sc_mic_preamp;
1520 return (0);
1521 case EAP_MASTER_VOL:
1522 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1523 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1524 break;
1525 case EAP_MIC_VOL:
1526 if (cp->un.value.num_channels != 1)
1527 return (EINVAL);
1528 la = ra = AK_MIC;
1529 goto lr;
1530 case EAP_VOICE_VOL:
1531 la = AK_VOICE_L;
1532 ra = AK_VOICE_R;
1533 goto lr;
1534 case EAP_FM_VOL:
1535 la = AK_FM_L;
1536 ra = AK_FM_R;
1537 goto lr;
1538 case EAP_CD_VOL:
1539 la = AK_CD_L;
1540 ra = AK_CD_R;
1541 goto lr;
1542 case EAP_LINE_VOL:
1543 la = AK_LINE_L;
1544 ra = AK_LINE_R;
1545 goto lr;
1546 case EAP_AUX_VOL:
1547 la = AK_AUX_L;
1548 ra = AK_AUX_R;
1549 lr:
1550 l = GAIN5_TO_VOL(sc->sc_port[la]);
1551 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1552 break;
1553 default:
1554 return (EINVAL);
1555 }
1556 if (cp->un.value.num_channels == 1)
1557 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1558 else if (cp->un.value.num_channels == 2) {
1559 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1560 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1561 } else
1562 return (EINVAL);
1563 return (0);
1564 }
1565
1566 int
1567 eap_query_devinfo(addr, dip)
1568 void *addr;
1569 mixer_devinfo_t *dip;
1570 {
1571 switch (dip->index) {
1572 case EAP_MASTER_VOL:
1573 dip->type = AUDIO_MIXER_VALUE;
1574 dip->mixer_class = EAP_OUTPUT_CLASS;
1575 dip->prev = dip->next = AUDIO_MIXER_LAST;
1576 strcpy(dip->label.name, AudioNmaster);
1577 dip->un.v.num_channels = 2;
1578 strcpy(dip->un.v.units.name, AudioNvolume);
1579 return (0);
1580 case EAP_VOICE_VOL:
1581 dip->type = AUDIO_MIXER_VALUE;
1582 dip->mixer_class = EAP_INPUT_CLASS;
1583 dip->prev = AUDIO_MIXER_LAST;
1584 dip->next = AUDIO_MIXER_LAST;
1585 strcpy(dip->label.name, AudioNdac);
1586 dip->un.v.num_channels = 2;
1587 strcpy(dip->un.v.units.name, AudioNvolume);
1588 return (0);
1589 case EAP_FM_VOL:
1590 dip->type = AUDIO_MIXER_VALUE;
1591 dip->mixer_class = EAP_INPUT_CLASS;
1592 dip->prev = AUDIO_MIXER_LAST;
1593 dip->next = AUDIO_MIXER_LAST;
1594 strcpy(dip->label.name, AudioNfmsynth);
1595 dip->un.v.num_channels = 2;
1596 strcpy(dip->un.v.units.name, AudioNvolume);
1597 return (0);
1598 case EAP_CD_VOL:
1599 dip->type = AUDIO_MIXER_VALUE;
1600 dip->mixer_class = EAP_INPUT_CLASS;
1601 dip->prev = AUDIO_MIXER_LAST;
1602 dip->next = AUDIO_MIXER_LAST;
1603 strcpy(dip->label.name, AudioNcd);
1604 dip->un.v.num_channels = 2;
1605 strcpy(dip->un.v.units.name, AudioNvolume);
1606 return (0);
1607 case EAP_LINE_VOL:
1608 dip->type = AUDIO_MIXER_VALUE;
1609 dip->mixer_class = EAP_INPUT_CLASS;
1610 dip->prev = AUDIO_MIXER_LAST;
1611 dip->next = AUDIO_MIXER_LAST;
1612 strcpy(dip->label.name, AudioNline);
1613 dip->un.v.num_channels = 2;
1614 strcpy(dip->un.v.units.name, AudioNvolume);
1615 return (0);
1616 case EAP_AUX_VOL:
1617 dip->type = AUDIO_MIXER_VALUE;
1618 dip->mixer_class = EAP_INPUT_CLASS;
1619 dip->prev = AUDIO_MIXER_LAST;
1620 dip->next = AUDIO_MIXER_LAST;
1621 strcpy(dip->label.name, AudioNaux);
1622 dip->un.v.num_channels = 2;
1623 strcpy(dip->un.v.units.name, AudioNvolume);
1624 return (0);
1625 case EAP_MIC_VOL:
1626 dip->type = AUDIO_MIXER_VALUE;
1627 dip->mixer_class = EAP_INPUT_CLASS;
1628 dip->prev = AUDIO_MIXER_LAST;
1629 dip->next = EAP_MIC_PREAMP;
1630 strcpy(dip->label.name, AudioNmicrophone);
1631 dip->un.v.num_channels = 1;
1632 strcpy(dip->un.v.units.name, AudioNvolume);
1633 return (0);
1634 case EAP_RECORD_SOURCE:
1635 dip->mixer_class = EAP_RECORD_CLASS;
1636 dip->prev = dip->next = AUDIO_MIXER_LAST;
1637 strcpy(dip->label.name, AudioNsource);
1638 dip->type = AUDIO_MIXER_SET;
1639 dip->un.s.num_mem = 6;
1640 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1641 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1642 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1643 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1644 strcpy(dip->un.s.member[2].label.name, AudioNline);
1645 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1646 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1647 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1648 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1649 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1650 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1651 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1652 return (0);
1653 case EAP_OUTPUT_SELECT:
1654 dip->mixer_class = EAP_OUTPUT_CLASS;
1655 dip->prev = dip->next = AUDIO_MIXER_LAST;
1656 strcpy(dip->label.name, AudioNselect);
1657 dip->type = AUDIO_MIXER_SET;
1658 dip->un.s.num_mem = 6;
1659 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1660 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1661 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1662 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1663 strcpy(dip->un.s.member[2].label.name, AudioNline);
1664 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1665 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1666 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1667 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1668 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1669 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1670 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1671 return (0);
1672 case EAP_MIC_PREAMP:
1673 dip->type = AUDIO_MIXER_ENUM;
1674 dip->mixer_class = EAP_INPUT_CLASS;
1675 dip->prev = EAP_MIC_VOL;
1676 dip->next = AUDIO_MIXER_LAST;
1677 strcpy(dip->label.name, AudioNpreamp);
1678 dip->un.e.num_mem = 2;
1679 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1680 dip->un.e.member[0].ord = 0;
1681 strcpy(dip->un.e.member[1].label.name, AudioNon);
1682 dip->un.e.member[1].ord = 1;
1683 return (0);
1684 case EAP_OUTPUT_CLASS:
1685 dip->type = AUDIO_MIXER_CLASS;
1686 dip->mixer_class = EAP_OUTPUT_CLASS;
1687 dip->next = dip->prev = AUDIO_MIXER_LAST;
1688 strcpy(dip->label.name, AudioCoutputs);
1689 return (0);
1690 case EAP_RECORD_CLASS:
1691 dip->type = AUDIO_MIXER_CLASS;
1692 dip->mixer_class = EAP_RECORD_CLASS;
1693 dip->next = dip->prev = AUDIO_MIXER_LAST;
1694 strcpy(dip->label.name, AudioCrecord);
1695 return (0);
1696 case EAP_INPUT_CLASS:
1697 dip->type = AUDIO_MIXER_CLASS;
1698 dip->mixer_class = EAP_INPUT_CLASS;
1699 dip->next = dip->prev = AUDIO_MIXER_LAST;
1700 strcpy(dip->label.name, AudioCinputs);
1701 return (0);
1702 }
1703 return (ENXIO);
1704 }
1705
1706 void *
1707 eap_malloc(addr, direction, size, pool, flags)
1708 void *addr;
1709 int direction;
1710 size_t size;
1711 int pool, flags;
1712 {
1713 struct eap_softc *sc = addr;
1714 struct eap_dma *p;
1715 int error;
1716
1717 p = malloc(sizeof(*p), pool, flags);
1718 if (!p)
1719 return (0);
1720 error = eap_allocmem(sc, size, 16, p);
1721 if (error) {
1722 free(p, pool);
1723 return (0);
1724 }
1725 p->next = sc->sc_dmas;
1726 sc->sc_dmas = p;
1727 return (KERNADDR(p));
1728 }
1729
1730 void
1731 eap_free(addr, ptr, pool)
1732 void *addr;
1733 void *ptr;
1734 int pool;
1735 {
1736 struct eap_softc *sc = addr;
1737 struct eap_dma **pp, *p;
1738
1739 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1740 if (KERNADDR(p) == ptr) {
1741 eap_freemem(sc, p);
1742 *pp = p->next;
1743 free(p, pool);
1744 return;
1745 }
1746 }
1747 }
1748
1749 size_t
1750 eap_round_buffersize(addr, direction, size)
1751 void *addr;
1752 int direction;
1753 size_t size;
1754 {
1755 return (size);
1756 }
1757
1758 int
1759 eap_mappage(addr, mem, off, prot)
1760 void *addr;
1761 void *mem;
1762 int off;
1763 int prot;
1764 {
1765 struct eap_softc *sc = addr;
1766 struct eap_dma *p;
1767
1768 if (off < 0)
1769 return (-1);
1770 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1771 ;
1772 if (!p)
1773 return (-1);
1774 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1775 off, prot, BUS_DMA_WAITOK));
1776 }
1777
1778 int
1779 eap_get_props(addr)
1780 void *addr;
1781 {
1782 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1783 AUDIO_PROP_FULLDUPLEX);
1784 }
1785