eap.c revision 1.33 1 /* $NetBSD: eap.c,v 1.33 2000/03/06 03:18:11 perry Exp $ */
2 /* $OpenBSD: eap.c,v 1.6 1999/10/05 19:24:42 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Lennart Augustsson <augustss (at) netbsd.org> and Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
42 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
43 * Phil Nelson <phil (at) cs.wwu.edu>
44 *
45 * ES1371/AC97: Ezra Story <ezy (at) panix.com>
46 */
47
48 /*
49 * Ensoniq ES1370 + AK4531 and ES1371/ES1373 + AC97
50 *
51 * Documentation links:
52 *
53 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
54 * ftp://ftp.alsa-project.org/pub/manuals/asahi_kasei/4531.pdf
55 * http://www.ensoniq.com/multimedia/semi_html/html/es1371.zip
56 * ftp://download.intel.com/pc-supp/platform/ac97/ac97r21.pdf
57 */
58
59
60 #include "midi.h"
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/fcntl.h>
66 #include <sys/malloc.h>
67 #include <sys/device.h>
68
69 #include <dev/pci/pcidevs.h>
70 #include <dev/pci/pcivar.h>
71
72 #include <sys/audioio.h>
73 #include <dev/audio_if.h>
74 #include <dev/midi_if.h>
75 #include <dev/mulaw.h>
76 #include <dev/auconv.h>
77 #include <dev/ic/ac97.h>
78
79 #include <machine/bus.h>
80
81 #define PCI_CBIO 0x10
82
83 #define EAP_ICSC 0x00 /* interrupt / chip select control */
84 #define EAP_SERR_DISABLE 0x00000001
85 #define EAP_CDC_EN 0x00000002
86 #define EAP_JYSTK_EN 0x00000004
87 #define EAP_UART_EN 0x00000008
88 #define EAP_ADC_EN 0x00000010
89 #define EAP_DAC2_EN 0x00000020
90 #define EAP_DAC1_EN 0x00000040
91 #define EAP_BREQ 0x00000080
92 #define EAP_XTCL0 0x00000100
93 #define EAP_M_CB 0x00000200
94 #define EAP_CCB_INTRM 0x00000400
95 #define EAP_DAC_SYNC 0x00000800
96 #define EAP_WTSRSEL 0x00003000
97 #define EAP_WTSRSEL_5 0x00000000
98 #define EAP_WTSRSEL_11 0x00001000
99 #define EAP_WTSRSEL_22 0x00002000
100 #define EAP_WTSRSEL_44 0x00003000
101 #define EAP_M_SBB 0x00004000
102 #define EAP_MSFMTSEL 0x00008000
103 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
104 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
105 #define EAP_PCLKBITS 0x1fff0000
106 #define EAP_XTCL1 0x40000000
107 #define EAP_ADC_STOP 0x80000000
108 #define E1371_SYNC_RES (1<<14)
109
110 #define EAP_ICSS 0x04 /* interrupt / chip select status */
111 #define EAP_I_ADC 0x00000001
112 #define EAP_I_DAC2 0x00000002
113 #define EAP_I_DAC1 0x00000004
114 #define EAP_I_UART 0x00000008
115 #define EAP_I_MCCB 0x00000010
116 #define EAP_VC 0x00000060
117 #define EAP_CWRIP 0x00000100
118 #define EAP_CBUSY 0x00000200
119 #define EAP_CSTAT 0x00000400
120 #define EAP_INTR 0x80000000
121
122 #define EAP_UART_DATA 0x08
123 #define EAP_UART_STATUS 0x09
124 #define EAP_US_RXRDY 0x01
125 #define EAP_US_TXRDY 0x02
126 #define EAP_US_TXINT 0x04
127 #define EAP_US_RXINT 0x80
128 #define EAP_UART_CONTROL 0x09
129 #define EAP_UC_CNTRL 0x03
130 #define EAP_UC_TXINTEN 0x20
131 #define EAP_UC_RXINTEN 0x80
132 #define EAP_MEMPAGE 0x0c
133 #define EAP_CODEC 0x10
134 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
135
136 /* ES1371 Registers */
137 #define E1371_CODEC 0x14
138 #define E1371_CODEC_WIP (1<<30)
139 #define E1371_CODEC_VALID (1<<31)
140 #define E1371_CODEC_READ (1<<23)
141 #define E1371_SET_CODEC(a,d) (((a)<<16) | (d))
142 #define E1371_SRC 0x10
143 #define E1371_SRC_RAMWE (1<<24)
144 #define E1371_SRC_RBUSY (1<<23)
145 #define E1371_SRC_DISABLE (1<<22)
146 #define E1371_SRC_DISP1 (1<<21)
147 #define E1371_SRC_DISP2 (1<<20)
148 #define E1371_SRC_DISREC (1<<19)
149 #define E1371_SRC_ADDR(a) ((a)<<25)
150 #define E1371_SRC_DATA(d) (d)
151 #define E1371_SRC_DATAMASK 0xffff
152 #define E1371_LEGACY 0x18
153
154 /* ES1371 Sample rate converter registers */
155 #define ESRC_ADC 0x78
156 #define ESRC_DAC1 0x74
157 #define ESRC_DAC2 0x70
158 #define ESRC_ADC_VOLL 0x6c
159 #define ESRC_ADC_VOLR 0x6d
160 #define ESRC_DAC1_VOLL 0x7c
161 #define ESRC_DAC1_VOLR 0x7d
162 #define ESRC_DAC2_VOLL 0x7e
163 #define ESRC_DAC2_VOLR 0x7f
164 #define ESRC_TRUNC_N 0x00
165 #define ESRC_IREGS 0x01
166 #define ESRC_ACF 0x02
167 #define ESRC_VFF 0x03
168 #define ESRC_SET_TRUNC(n) ((n)<<9)
169 #define ESRC_SET_N(n) ((n)<<4)
170 #define ESRC_SMF 0x8000
171 #define ESRC_SET_VFI(n) ((n)<<10)
172 #define ESRC_SET_ACI(n) (n)
173 #define ESRC_SET_ADC_VOL(n) ((n)<<8)
174 #define ESRC_SET_DAC_VOLI(n) ((n)<<12)
175 #define ESRC_SET_DAC_VOLF(n) (n)
176 #define SRC_MAGIC ((1<15)|(1<<13)|(1<<11)|(1<<9))
177
178
179 #define EAP_SIC 0x20
180 #define EAP_P1_S_MB 0x00000001
181 #define EAP_P1_S_EB 0x00000002
182 #define EAP_P2_S_MB 0x00000004
183 #define EAP_P2_S_EB 0x00000008
184 #define EAP_R1_S_MB 0x00000010
185 #define EAP_R1_S_EB 0x00000020
186 #define EAP_P2_DAC_SEN 0x00000040
187 #define EAP_P1_SCT_RLD 0x00000080
188 #define EAP_P1_INTR_EN 0x00000100
189 #define EAP_P2_INTR_EN 0x00000200
190 #define EAP_R1_INTR_EN 0x00000400
191 #define EAP_P1_PAUSE 0x00000800
192 #define EAP_P2_PAUSE 0x00001000
193 #define EAP_P1_LOOP_SEL 0x00002000
194 #define EAP_P2_LOOP_SEL 0x00004000
195 #define EAP_R1_LOOP_SEL 0x00008000
196 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
197 #define EAP_SET_P2_END_INC(i) ((i) << 19)
198 #define EAP_INC_BITS 0x003f0000
199
200 #define EAP_DAC1_CSR 0x24
201 #define EAP_DAC2_CSR 0x28
202 #define EAP_ADC_CSR 0x2c
203 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
204
205 #define EAP_DAC_PAGE 0xc
206 #define EAP_ADC_PAGE 0xd
207 #define EAP_UART_PAGE1 0xe
208 #define EAP_UART_PAGE2 0xf
209
210 #define EAP_DAC1_ADDR 0x30
211 #define EAP_DAC1_SIZE 0x34
212 #define EAP_DAC2_ADDR 0x38
213 #define EAP_DAC2_SIZE 0x3c
214 #define EAP_ADC_ADDR 0x30
215 #define EAP_ADC_SIZE 0x34
216 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
217
218 #define EAP_READ_TIMEOUT 5000000
219 #define EAP_WRITE_TIMEOUT 5000000
220
221
222 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
223
224 /* AK4531 registers */
225 #define AK_MASTER_L 0x00
226 #define AK_MASTER_R 0x01
227 #define AK_VOICE_L 0x02
228 #define AK_VOICE_R 0x03
229 #define AK_FM_L 0x04
230 #define AK_FM_R 0x05
231 #define AK_CD_L 0x06
232 #define AK_CD_R 0x07
233 #define AK_LINE_L 0x08
234 #define AK_LINE_R 0x09
235 #define AK_AUX_L 0x0a
236 #define AK_AUX_R 0x0b
237 #define AK_MONO1 0x0c
238 #define AK_MONO2 0x0d
239 #define AK_MIC 0x0e
240 #define AK_MONO 0x0f
241 #define AK_OUT_MIXER1 0x10
242 #define AK_M_FM_L 0x40
243 #define AK_M_FM_R 0x20
244 #define AK_M_LINE_L 0x10
245 #define AK_M_LINE_R 0x08
246 #define AK_M_CD_L 0x04
247 #define AK_M_CD_R 0x02
248 #define AK_M_MIC 0x01
249 #define AK_OUT_MIXER2 0x11
250 #define AK_M_AUX_L 0x20
251 #define AK_M_AUX_R 0x10
252 #define AK_M_VOICE_L 0x08
253 #define AK_M_VOICE_R 0x04
254 #define AK_M_MONO2 0x02
255 #define AK_M_MONO1 0x01
256 #define AK_IN_MIXER1_L 0x12
257 #define AK_IN_MIXER1_R 0x13
258 #define AK_IN_MIXER2_L 0x14
259 #define AK_IN_MIXER2_R 0x15
260 #define AK_M_TMIC 0x80
261 #define AK_M_TMONO1 0x40
262 #define AK_M_TMONO2 0x20
263 #define AK_M2_AUX_L 0x10
264 #define AK_M2_AUX_R 0x08
265 #define AK_M_VOICE 0x04
266 #define AK_M2_MONO2 0x02
267 #define AK_M2_MONO1 0x01
268 #define AK_RESET 0x16
269 #define AK_PD 0x02
270 #define AK_NRST 0x01
271 #define AK_CS 0x17
272 #define AK_ADSEL 0x18
273 #define AK_MGAIN 0x19
274 #define AK_NPORTS 0x20
275
276 #define MAX_NPORTS AK_NPORTS
277
278 /* Not sensical for AC97? */
279 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
280 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
281 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
282 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
283 #define VOL_0DB 200
284
285 /* Futzable parms */
286 #define EAP_MASTER_VOL 0
287 #define EAP_VOICE_VOL 1
288 #define EAP_FM_VOL 2
289 #define EAP_VIDEO_VOL 2 /* ES1371 */
290 #define EAP_CD_VOL 3
291 #define EAP_LINE_VOL 4
292 #define EAP_AUX_VOL 5
293 #define EAP_MIC_VOL 6
294 #define EAP_RECORD_SOURCE 7
295 #define EAP_OUTPUT_SELECT 8
296 #define EAP_MIC_PREAMP 9
297 #define EAP_OUTPUT_CLASS 10
298 #define EAP_RECORD_CLASS 11
299 #define EAP_INPUT_CLASS 12
300
301 #define MIDI_BUSY_WAIT 100
302 #define MIDI_BUSY_DELAY 100 /* Delay when UART is busy */
303
304 /* Debug */
305 #ifdef AUDIO_DEBUG
306 #define DPRINTF(x) if (eapdebug) printf x
307 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
308 int eapdebug = 0;
309 #else
310 #define DPRINTF(x)
311 #define DPRINTFN(n,x)
312 #endif
313
314 int eap_match __P((struct device *, struct cfdata *, void *));
315 void eap_attach __P((struct device *, struct device *, void *));
316 int eap_intr __P((void *));
317
318 struct eap_dma {
319 bus_dmamap_t map;
320 caddr_t addr;
321 bus_dma_segment_t segs[1];
322 int nsegs;
323 size_t size;
324 struct eap_dma *next;
325 };
326 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
327 #define KERNADDR(p) ((void *)((p)->addr))
328
329 struct eap_softc {
330 struct device sc_dev; /* base device */
331 void *sc_ih; /* interrupt vectoring */
332 bus_space_tag_t iot;
333 bus_space_handle_t ioh;
334 bus_dma_tag_t sc_dmatag; /* DMA tag */
335
336 struct eap_dma *sc_dmas;
337
338 void (*sc_pintr)(void *); /* dma completion intr handler */
339 void *sc_parg; /* arg for sc_intr() */
340 #ifdef DIAGNOSTIC
341 char sc_prun;
342 #endif
343
344 void (*sc_rintr)(void *); /* dma completion intr handler */
345 void *sc_rarg; /* arg for sc_intr() */
346 #ifdef DIAGNOSTIC
347 char sc_rrun;
348 #endif
349
350 #if NMIDI > 0
351 void (*sc_iintr)(void *, int); /* midi input ready handler */
352 void (*sc_ointr)(void *); /* midi output ready handler */
353 void *sc_arg;
354 #endif
355
356 u_short sc_port[MAX_NPORTS]; /* mirror of the hardware setting */
357 u_int sc_record_source; /* recording source mask */
358 u_int sc_output_source; /* output source mask */
359 u_int sc_mic_preamp;
360 char sc_1371; /* Using ES1371/AC97 codec */
361
362 struct ac97_codec_if *codec_if;
363 struct ac97_host_if host_if;
364 };
365
366 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
367 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
368
369 #define EWRITE1(sc, r, x) bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x))
370 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
371 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
372 #define EREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r))
373 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
374 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
375
376 struct cfattach eap_ca = {
377 sizeof(struct eap_softc), eap_match, eap_attach
378 };
379
380 int eap_open __P((void *, int));
381 void eap_close __P((void *));
382 int eap_query_encoding __P((void *, struct audio_encoding *));
383 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
384 int eap_round_blocksize __P((void *, int));
385 int eap_trigger_output __P((void *, void *, void *, int, void (*)(void *),
386 void *, struct audio_params *));
387 int eap_trigger_input __P((void *, void *, void *, int, void (*)(void *),
388 void *, struct audio_params *));
389 int eap_halt_output __P((void *));
390 int eap_halt_input __P((void *));
391 void eap_write_codec __P((struct eap_softc *, int, int));
392 int eap_getdev __P((void *, struct audio_device *));
393 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
394 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
395 int eap1371_mixer_set_port __P((void *, mixer_ctrl_t *));
396 int eap1371_mixer_get_port __P((void *, mixer_ctrl_t *));
397 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
398 void *eap_malloc __P((void *, int, size_t, int, int));
399 void eap_free __P((void *, void *, int));
400 size_t eap_round_buffersize __P((void *, int, size_t));
401 int eap_mappage __P((void *, void *, int, int));
402 int eap_get_props __P((void *));
403 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
404 void eap1371_src_wait __P((struct eap_softc *sc));
405 void eap1371_set_adc_rate __P((struct eap_softc *sc, int rate));
406 void eap1371_set_dac_rate __P((struct eap_softc *sc, int rate, int which));
407 int eap1371_src_read __P((struct eap_softc *sc, int a));
408 void eap1371_src_write __P((struct eap_softc *sc, int a, int d));
409 int eap1371_query_devinfo __P((void *addr, mixer_devinfo_t *dip));
410
411 int eap1371_attach_codec __P((void *sc, struct ac97_codec_if *));
412 int eap1371_read_codec __P((void *sc, u_int8_t a, u_int16_t *d));
413 int eap1371_write_codec __P((void *sc, u_int8_t a, u_int16_t d));
414 void eap1371_reset_codec __P((void *sc));
415 int eap1371_get_portnum_by_name __P((struct eap_softc *, char *, char *,
416 char *));
417 #if NMIDI > 0
418 void eap_midi_close __P((void *));
419 void eap_midi_getinfo __P((void *, struct midi_info *));
420 int eap_midi_open __P((void *, int, void (*)(void *, int),
421 void (*)(void *), void *));
422 int eap_midi_output __P((void *, int));
423 #endif
424
425 struct audio_hw_if eap1370_hw_if = {
426 eap_open,
427 eap_close,
428 NULL,
429 eap_query_encoding,
430 eap_set_params,
431 eap_round_blocksize,
432 NULL,
433 NULL,
434 NULL,
435 NULL,
436 NULL,
437 eap_halt_output,
438 eap_halt_input,
439 NULL,
440 eap_getdev,
441 NULL,
442 eap_mixer_set_port,
443 eap_mixer_get_port,
444 eap_query_devinfo,
445 eap_malloc,
446 eap_free,
447 eap_round_buffersize,
448 eap_mappage,
449 eap_get_props,
450 eap_trigger_output,
451 eap_trigger_input,
452 };
453
454 struct audio_hw_if eap1371_hw_if = {
455 eap_open,
456 eap_close,
457 NULL,
458 eap_query_encoding,
459 eap_set_params,
460 eap_round_blocksize,
461 NULL,
462 NULL,
463 NULL,
464 NULL,
465 NULL,
466 eap_halt_output,
467 eap_halt_input,
468 NULL,
469 eap_getdev,
470 NULL,
471 eap1371_mixer_set_port,
472 eap1371_mixer_get_port,
473 eap1371_query_devinfo,
474 eap_malloc,
475 eap_free,
476 eap_round_buffersize,
477 eap_mappage,
478 eap_get_props,
479 eap_trigger_output,
480 eap_trigger_input,
481 };
482
483 #if NMIDI > 0
484 struct midi_hw_if eap_midi_hw_if = {
485 eap_midi_open,
486 eap_midi_close,
487 eap_midi_output,
488 eap_midi_getinfo,
489 0, /* ioctl */
490 };
491 #endif
492
493 struct audio_device eap_device = {
494 "Ensoniq AudioPCI",
495 "",
496 "eap"
497 };
498
499 int
500 eap_match(parent, match, aux)
501 struct device *parent;
502 struct cfdata *match;
503 void *aux;
504 {
505 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
506
507 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
508 return (0);
509 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI ||
510 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI97) {
511 return (1);
512 }
513
514 return (0);
515 }
516
517 void
518 eap_write_codec(sc, a, d)
519 struct eap_softc *sc;
520 int a, d;
521 {
522 int icss, to;
523
524 to = EAP_WRITE_TIMEOUT;
525 do {
526 icss = EREAD4(sc, EAP_ICSS);
527 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
528 if (!to--) {
529 printf("eap: timeout writing to codec\n");
530 return;
531 }
532 } while(icss & EAP_CWRIP); /* XXX could use CSTAT here */
533 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
534 }
535
536 int
537 eap1371_read_codec(sc_, a, d)
538 void *sc_;
539 u_int8_t a;
540 u_int16_t *d;
541 {
542 struct eap_softc *sc = sc_;
543 int to;
544 int cdc;
545
546 to = EAP_WRITE_TIMEOUT;
547 do {
548 cdc = EREAD4(sc, E1371_CODEC);
549 if (!to--) {
550 printf("eap: timeout writing to codec\n");
551 return 1;
552 }
553 } while (cdc & E1371_CODEC_WIP);
554
555 /* just do it */
556 eap1371_src_wait(sc);
557 EWRITE4(sc, E1371_CODEC, E1371_SET_CODEC(a, 0) | E1371_CODEC_READ);
558
559 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
560 if ((cdc = EREAD4(sc, E1371_CODEC)) & E1371_CODEC_VALID)
561 break;
562 }
563
564 if (to == EAP_WRITE_TIMEOUT) {
565 DPRINTF(("eap1371: read codec timeout\n"));
566 }
567
568 *d = cdc & 0xffff;
569
570 DPRINTFN(10, ("eap1371: reading codec (%x) = %x\n", a, *d));
571
572 return (0);
573 }
574
575 int
576 eap1371_write_codec(sc_, a, d)
577 void *sc_;
578 u_int8_t a;
579 u_int16_t d;
580 {
581 struct eap_softc *sc = sc_;
582 int to;
583 int cdc;
584
585 to = EAP_WRITE_TIMEOUT;
586 do {
587 cdc = EREAD4(sc, E1371_CODEC);
588 if (!to--) {
589 printf("eap: timeout writing to codec\n");
590 return (1);
591 }
592 } while (cdc & E1371_CODEC_WIP);
593
594 /* just do it */
595 eap1371_src_wait(sc);
596 EWRITE4(sc, E1371_CODEC, E1371_SET_CODEC(a, d));
597 DPRINTFN(10, ("eap1371: writing codec %x --> %x\n", d, a));
598
599 return (0);
600 }
601
602 void
603 eap1371_src_wait(sc)
604 struct eap_softc *sc;
605 {
606 int to;
607 int src;
608
609 to = EAP_READ_TIMEOUT;
610 do {
611 src = EREAD4(sc, E1371_SRC);
612 if (!to--) {
613 printf("eap: timeout waiting for sample rate"
614 "converter\n");
615 return;
616 }
617 } while (src & E1371_SRC_RBUSY);
618 }
619
620 int
621 eap1371_src_read(sc, a)
622 struct eap_softc *sc;
623 int a;
624 {
625 int r;
626
627 eap1371_src_wait(sc);
628 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE | E1371_SRC_DISP1 |
629 E1371_SRC_DISP2 | E1371_SRC_DISREC);
630 r |= E1371_SRC_ADDR(a);
631 EWRITE4(sc, E1371_SRC, r);
632 r = EREAD4(sc, E1371_SRC) & E1371_SRC_DATAMASK;
633 return r;
634 }
635
636 void
637 eap1371_src_write(sc, a, d)
638 struct eap_softc *sc;
639 int a,d;
640 {
641 int r;
642
643 eap1371_src_wait(sc);
644 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE | E1371_SRC_DISP1 |
645 E1371_SRC_DISP2 | E1371_SRC_DISREC);
646 r |= E1371_SRC_RAMWE | E1371_SRC_ADDR(a) | E1371_SRC_DATA(d);
647 EWRITE4(sc, E1371_SRC, r);
648 }
649
650 void
651 eap1371_set_adc_rate(sc, rate)
652 struct eap_softc *sc;
653 int rate;
654 {
655 int freq, n, truncm;
656 int out;
657
658 /* Whatever, it works, so I'll leave it :) */
659
660 if (rate > 48000)
661 rate = 48000;
662 if (rate < 4000)
663 rate = 4000;
664 n = rate / 3000;
665 if ((1 << n) & SRC_MAGIC)
666 n--;
667 truncm = ((21 * n) - 1) | 1;
668 freq = ((48000 << 15) / rate) * n;
669 if (rate >= 24000) {
670 if (truncm > 239)
671 truncm = 239;
672 out = ESRC_SET_TRUNC((239 - truncm) / 2);
673 } else {
674 if (truncm > 119)
675 truncm = 119;
676 out = ESRC_SMF | ESRC_SET_TRUNC((119 - truncm) / 2);
677 }
678 out |= ESRC_SET_N(n);
679 eap1371_src_write(sc, ESRC_ADC+ESRC_TRUNC_N, out);
680
681
682 out = eap1371_src_read(sc, ESRC_ADC+ESRC_IREGS) & 0xff;
683 eap1371_src_write(sc, ESRC_ADC+ESRC_IREGS, out |
684 ESRC_SET_VFI(freq >> 15));
685 eap1371_src_write(sc, ESRC_ADC+ESRC_VFF, freq & 0x7fff);
686 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(n));
687 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(n));
688 }
689
690 void
691 eap1371_set_dac_rate(sc, rate, which)
692 struct eap_softc *sc;
693 int rate;
694 int which;
695 {
696 int dac = (which == 1) ? ESRC_DAC1 : ESRC_DAC2;
697 int freq, r;
698
699 /* Whatever, it works, so I'll leave it :) */
700
701 if (rate > 48000)
702 rate = 48000;
703 if (rate < 4000)
704 rate = 4000;
705 freq = (rate << 15) / 3000;
706
707 eap1371_src_wait(sc);
708 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
709 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
710 r |= (which == 1) ? E1371_SRC_DISP1 : E1371_SRC_DISP2;
711 EWRITE4(sc, E1371_SRC, r);
712 r = eap1371_src_read(sc, dac + ESRC_IREGS) & 0x00ff;
713 eap1371_src_write(sc, dac + ESRC_IREGS, r | ((freq >> 5) & 0xfc00));
714 eap1371_src_write(sc, dac + ESRC_VFF, freq & 0x7fff);
715 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
716 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
717 r &= ~((which == 1) ? E1371_SRC_DISP1 : E1371_SRC_DISP2);
718 EWRITE4(sc, E1371_SRC, r);
719 }
720
721 void
722 eap_attach(parent, self, aux)
723 struct device *parent;
724 struct device *self;
725 void *aux;
726 {
727 struct eap_softc *sc = (struct eap_softc *)self;
728 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
729 pci_chipset_tag_t pc = pa->pa_pc;
730 struct audio_hw_if *eap_hw_if;
731 char const *intrstr;
732 pci_intr_handle_t ih;
733 pcireg_t csr;
734 char devinfo[256];
735 mixer_ctrl_t ctl;
736 int i;
737 int revision;
738
739 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
740 printf(": %s (rev. 0x%02x)\n", devinfo, (revision = PCI_REVISION(pa->pa_class)));
741
742 /* Flag if we're "creative" */
743 sc->sc_1371 = PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI97;
744
745 /* Map I/O register */
746 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
747 &sc->iot, &sc->ioh, NULL, NULL)) {
748 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
749 return;
750 }
751
752 sc->sc_dmatag = pa->pa_dmat;
753
754 /* Enable the device. */
755 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
756 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
757 csr | PCI_COMMAND_MASTER_ENABLE);
758
759 /* Map and establish the interrupt. */
760 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
761 pa->pa_intrline, &ih)) {
762 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
763 return;
764 }
765 intrstr = pci_intr_string(pc, ih);
766 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
767 if (sc->sc_ih == NULL) {
768 printf("%s: couldn't establish interrupt",
769 sc->sc_dev.dv_xname);
770 if (intrstr != NULL)
771 printf(" at %s", intrstr);
772 printf("\n");
773 return;
774 }
775 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
776
777 if (!sc->sc_1371) {
778 /* Enable interrupts and looping mode. */
779 /* enable the parts we need */
780 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
781 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN);
782
783 /* reset codec */
784 /* normal operation */
785 /* select codec clocks */
786 eap_write_codec(sc, AK_RESET, AK_PD);
787 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST);
788 eap_write_codec(sc, AK_CS, 0x0);
789
790 eap_hw_if = &eap1370_hw_if;
791
792 /* Enable all relevant mixer switches. */
793 ctl.dev = EAP_OUTPUT_SELECT;
794 ctl.type = AUDIO_MIXER_SET;
795 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL |
796 1 << EAP_CD_VOL | 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL |
797 1 << EAP_MIC_VOL;
798 eap_hw_if->set_port(sc, &ctl);
799
800 ctl.type = AUDIO_MIXER_VALUE;
801 ctl.un.value.num_channels = 1;
802 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL;
803 ctl.dev++) {
804 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
805 eap_hw_if->set_port(sc, &ctl);
806 }
807 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
808 eap_hw_if->set_port(sc, &ctl);
809 ctl.dev = EAP_MIC_PREAMP;
810 ctl.type = AUDIO_MIXER_ENUM;
811 ctl.un.ord = 0;
812 eap_hw_if->set_port(sc, &ctl);
813 ctl.dev = EAP_RECORD_SOURCE;
814 ctl.type = AUDIO_MIXER_SET;
815 ctl.un.mask = 1 << EAP_MIC_VOL;
816 eap_hw_if->set_port(sc, &ctl);
817 } else {
818 /* clean slate */
819
820 #define ES1371_BINTSUMM_OFF 0x07
821 if ((revision == 7) || (revision >= 9)) {
822 EWRITE4(sc, ES1371_BINTSUMM_OFF, 0x20);
823 } else {
824 EWRITE4(sc, EAP_SIC, 0);
825 }
826
827 EWRITE4(sc, EAP_ICSC, 0);
828 EWRITE4(sc, E1371_LEGACY, 0);
829
830 /* Reset from es1371's perspective */
831 EWRITE4(sc, EAP_ICSC, E1371_SYNC_RES);
832 delay(20);
833 EWRITE4(sc, EAP_ICSC, 0);
834
835 /* must properly reprogram sample rate converter,
836 * or it locks up. Set some defaults for the life of the
837 * machine, and set up a sb default sample rate.
838 */
839 EWRITE4(sc, E1371_SRC, E1371_SRC_DISABLE);
840 for (i=0; i<0x80; i++)
841 eap1371_src_write(sc, i, 0);
842 eap1371_src_write(sc, ESRC_DAC1+ESRC_TRUNC_N, ESRC_SET_N(16));
843 eap1371_src_write(sc, ESRC_DAC2+ESRC_TRUNC_N, ESRC_SET_N(16));
844 eap1371_src_write(sc, ESRC_DAC1+ESRC_IREGS, ESRC_SET_VFI(16));
845 eap1371_src_write(sc, ESRC_DAC2+ESRC_IREGS, ESRC_SET_VFI(16));
846 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(16));
847 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(16));
848 eap1371_src_write(sc, ESRC_DAC1_VOLL, ESRC_SET_DAC_VOLI(1));
849 eap1371_src_write(sc, ESRC_DAC1_VOLR, ESRC_SET_DAC_VOLI(1));
850 eap1371_src_write(sc, ESRC_DAC2_VOLL, ESRC_SET_DAC_VOLI(1));
851 eap1371_src_write(sc, ESRC_DAC2_VOLR, ESRC_SET_DAC_VOLI(1));
852 eap1371_set_adc_rate(sc, 22050);
853 eap1371_set_dac_rate(sc, 22050, 1);
854 eap1371_set_dac_rate(sc, 22050, 2);
855
856 EWRITE4(sc, E1371_SRC, 0);
857
858 /* Reset codec */
859
860 /* Interrupt enable */
861 sc->host_if.arg = sc;
862 sc->host_if.attach = eap1371_attach_codec;
863 sc->host_if.read = eap1371_read_codec;
864 sc->host_if.write = eap1371_write_codec;
865 sc->host_if.reset = eap1371_reset_codec;
866
867 if (ac97_attach(&sc->host_if) == 0) {
868 /* Interrupt enable */
869 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
870 } else
871 return;
872
873 eap_hw_if = &eap1371_hw_if;
874
875 /* Just enable the DAC and master volumes by default */
876 ctl.type = AUDIO_MIXER_ENUM;
877 ctl.un.ord = 0; /* off */
878 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCoutputs,
879 AudioNmaster, AudioNmute);
880 eap1371_mixer_set_port(sc, &ctl);
881 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCinputs,
882 AudioNdac, AudioNmute);
883 eap1371_mixer_set_port(sc, &ctl);
884 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCrecord,
885 AudioNvolume, AudioNmute);
886 eap1371_mixer_set_port(sc, &ctl);
887
888
889 ctl.dev = eap1371_get_portnum_by_name(sc, AudioCrecord,
890 AudioNsource, NULL);
891 ctl.type = AUDIO_MIXER_ENUM;
892 ctl.un.ord = 0;
893 eap1371_mixer_set_port(sc, &ctl);
894
895 }
896
897 audio_attach_mi(eap_hw_if, sc, &sc->sc_dev);
898
899 #if NMIDI > 0
900 midi_attach_mi(&eap_midi_hw_if, sc, &sc->sc_dev);
901 #endif
902 }
903
904 int
905 eap1371_attach_codec(sc_, codec_if)
906 void *sc_;
907 struct ac97_codec_if *codec_if;
908 {
909 struct eap_softc *sc = sc_;
910
911 sc->codec_if = codec_if;
912 return (0);
913 }
914
915 void
916 eap1371_reset_codec(sc_)
917 void *sc_;
918 {
919 struct eap_softc *sc = sc_;
920 u_int32_t icsc = EREAD4(sc, EAP_ICSC);
921
922 EWRITE4(sc, EAP_ICSC, icsc | E1371_SYNC_RES);
923 delay(2);
924 EWRITE4(sc, EAP_ICSC, icsc & ~E1371_SYNC_RES);
925 delay(1);
926
927 return;
928 }
929
930 int
931 eap_intr(p)
932 void *p;
933 {
934 struct eap_softc *sc = p;
935 u_int32_t intr, sic;
936
937 intr = EREAD4(sc, EAP_ICSS);
938 if (!(intr & EAP_INTR))
939 return (0);
940 sic = EREAD4(sc, EAP_SIC);
941 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
942 if (intr & EAP_I_ADC) {
943 /*
944 * XXX This is a hack!
945 * The EAP chip sometimes generates the recording interrupt
946 * while it is still transferring the data. To make sure
947 * it has all arrived we busy wait until the count is right.
948 * The transfer we are waiting for is 8 longwords.
949 */
950 int s, nw, n;
951 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
952 s = EREAD4(sc, EAP_ADC_CSR);
953 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
954 n = 0;
955 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
956 delay(10);
957 if (++n > 100) {
958 printf("eapintr: dma fix timeout");
959 break;
960 }
961 }
962 /* Continue with normal interrupt handling. */
963 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
964 EWRITE4(sc, EAP_SIC, sic);
965 if (sc->sc_rintr)
966 sc->sc_rintr(sc->sc_rarg);
967 }
968 if (intr & EAP_I_DAC2) {
969 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
970 EWRITE4(sc, EAP_SIC, sic);
971 if (sc->sc_pintr)
972 sc->sc_pintr(sc->sc_parg);
973 }
974 #if NMIDI > 0
975 if (intr & EAP_I_UART) {
976 u_int32_t data;
977
978 if (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXINT) {
979 while (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXRDY) {
980 data = EREAD1(sc, EAP_UART_DATA);
981 if (sc->sc_iintr)
982 sc->sc_iintr(sc->sc_arg, data);
983 }
984 }
985 }
986 #endif
987 return (1);
988 }
989
990 int
991 eap_allocmem(sc, size, align, p)
992 struct eap_softc *sc;
993 size_t size;
994 size_t align;
995 struct eap_dma *p;
996 {
997 int error;
998
999 p->size = size;
1000 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
1001 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
1002 &p->nsegs, BUS_DMA_NOWAIT);
1003 if (error)
1004 return (error);
1005
1006 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
1007 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
1008 if (error)
1009 goto free;
1010
1011 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
1012 0, BUS_DMA_NOWAIT, &p->map);
1013 if (error)
1014 goto unmap;
1015
1016 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
1017 BUS_DMA_NOWAIT);
1018 if (error)
1019 goto destroy;
1020 return (0);
1021
1022 destroy:
1023 bus_dmamap_destroy(sc->sc_dmatag, p->map);
1024 unmap:
1025 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
1026 free:
1027 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
1028 return (error);
1029 }
1030
1031 int
1032 eap_freemem(sc, p)
1033 struct eap_softc *sc;
1034 struct eap_dma *p;
1035 {
1036 bus_dmamap_unload(sc->sc_dmatag, p->map);
1037 bus_dmamap_destroy(sc->sc_dmatag, p->map);
1038 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
1039 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
1040 return (0);
1041 }
1042
1043 int
1044 eap_open(addr, flags)
1045 void *addr;
1046 int flags;
1047 {
1048 return (0);
1049 }
1050
1051 /*
1052 * Close function is called at splaudio().
1053 */
1054 void
1055 eap_close(addr)
1056 void *addr;
1057 {
1058 struct eap_softc *sc = addr;
1059
1060 eap_halt_output(sc);
1061 eap_halt_input(sc);
1062
1063 sc->sc_pintr = 0;
1064 sc->sc_rintr = 0;
1065 }
1066
1067 int
1068 eap_query_encoding(addr, fp)
1069 void *addr;
1070 struct audio_encoding *fp;
1071 {
1072 switch (fp->index) {
1073 case 0:
1074 strcpy(fp->name, AudioEulinear);
1075 fp->encoding = AUDIO_ENCODING_ULINEAR;
1076 fp->precision = 8;
1077 fp->flags = 0;
1078 return (0);
1079 case 1:
1080 strcpy(fp->name, AudioEmulaw);
1081 fp->encoding = AUDIO_ENCODING_ULAW;
1082 fp->precision = 8;
1083 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1084 return (0);
1085 case 2:
1086 strcpy(fp->name, AudioEalaw);
1087 fp->encoding = AUDIO_ENCODING_ALAW;
1088 fp->precision = 8;
1089 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1090 return (0);
1091 case 3:
1092 strcpy(fp->name, AudioEslinear);
1093 fp->encoding = AUDIO_ENCODING_SLINEAR;
1094 fp->precision = 8;
1095 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1096 return (0);
1097 case 4:
1098 strcpy(fp->name, AudioEslinear_le);
1099 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1100 fp->precision = 16;
1101 fp->flags = 0;
1102 return (0);
1103 case 5:
1104 strcpy(fp->name, AudioEulinear_le);
1105 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1106 fp->precision = 16;
1107 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1108 return (0);
1109 case 6:
1110 strcpy(fp->name, AudioEslinear_be);
1111 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1112 fp->precision = 16;
1113 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1114 return (0);
1115 case 7:
1116 strcpy(fp->name, AudioEulinear_be);
1117 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1118 fp->precision = 16;
1119 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1120 return (0);
1121 default:
1122 return (EINVAL);
1123 }
1124 }
1125
1126 int
1127 eap_set_params(addr, setmode, usemode, play, rec)
1128 void *addr;
1129 int setmode, usemode;
1130 struct audio_params *play, *rec;
1131 {
1132 struct eap_softc *sc = addr;
1133 struct audio_params *p;
1134 int mode;
1135 u_int32_t div;
1136
1137 /*
1138 * The es1370 only has one clock, so make the sample rates match.
1139 */
1140 if (!sc->sc_1371) {
1141 if (play->sample_rate != rec->sample_rate &&
1142 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1143 if (setmode == AUMODE_PLAY) {
1144 rec->sample_rate = play->sample_rate;
1145 setmode |= AUMODE_RECORD;
1146 } else if (setmode == AUMODE_RECORD) {
1147 play->sample_rate = rec->sample_rate;
1148 setmode |= AUMODE_PLAY;
1149 } else
1150 return (EINVAL);
1151 }
1152 }
1153
1154 for (mode = AUMODE_RECORD; mode != -1;
1155 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1156 if ((setmode & mode) == 0)
1157 continue;
1158
1159 p = mode == AUMODE_PLAY ? play : rec;
1160
1161 if (p->sample_rate < 4000 || p->sample_rate > 48000 ||
1162 (p->precision != 8 && p->precision != 16) ||
1163 (p->channels != 1 && p->channels != 2))
1164 return (EINVAL);
1165
1166 p->factor = 1;
1167 p->sw_code = 0;
1168 switch (p->encoding) {
1169 case AUDIO_ENCODING_SLINEAR_BE:
1170 if (p->precision == 16)
1171 p->sw_code = swap_bytes;
1172 else
1173 p->sw_code = change_sign8;
1174 break;
1175 case AUDIO_ENCODING_SLINEAR_LE:
1176 if (p->precision != 16)
1177 p->sw_code = change_sign8;
1178 break;
1179 case AUDIO_ENCODING_ULINEAR_BE:
1180 if (p->precision == 16) {
1181 if (mode == AUMODE_PLAY)
1182 p->sw_code = swap_bytes_change_sign16_le;
1183 else
1184 p->sw_code = change_sign16_swap_bytes_le;
1185 }
1186 break;
1187 case AUDIO_ENCODING_ULINEAR_LE:
1188 if (p->precision == 16)
1189 p->sw_code = change_sign16_le;
1190 break;
1191 case AUDIO_ENCODING_ULAW:
1192 if (mode == AUMODE_PLAY) {
1193 p->factor = 2;
1194 p->sw_code = mulaw_to_slinear16_le;
1195 } else
1196 p->sw_code = ulinear8_to_mulaw;
1197 break;
1198 case AUDIO_ENCODING_ALAW:
1199 if (mode == AUMODE_PLAY) {
1200 p->factor = 2;
1201 p->sw_code = alaw_to_slinear16_le;
1202 } else
1203 p->sw_code = ulinear8_to_alaw;
1204 break;
1205 default:
1206 return (EINVAL);
1207 }
1208 }
1209
1210 if (sc->sc_1371) {
1211 eap1371_set_dac_rate(sc, play->sample_rate, 1);
1212 eap1371_set_dac_rate(sc, play->sample_rate, 2);
1213 eap1371_set_adc_rate(sc, rec->sample_rate);
1214 } else {
1215 /* Set the speed */
1216 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
1217 EREAD4(sc, EAP_ICSC)));
1218 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
1219 /*
1220 * XXX
1221 * The -2 isn't documented, but seemed to make the wall
1222 * time match
1223 * what I expect. - mycroft
1224 */
1225 if (usemode == AUMODE_RECORD)
1226 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1227 rec->sample_rate - 2);
1228 else
1229 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1230 play->sample_rate - 2);
1231 div |= EAP_CCB_INTRM;
1232 EWRITE4(sc, EAP_ICSC, div);
1233 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1234 }
1235
1236 return (0);
1237 }
1238
1239 int
1240 eap_round_blocksize(addr, blk)
1241 void *addr;
1242 int blk;
1243 {
1244 return (blk & -32); /* keep good alignment */
1245 }
1246
1247 int
1248 eap_trigger_output(addr, start, end, blksize, intr, arg, param)
1249 void *addr;
1250 void *start, *end;
1251 int blksize;
1252 void (*intr) __P((void *));
1253 void *arg;
1254 struct audio_params *param;
1255 {
1256 struct eap_softc *sc = addr;
1257 struct eap_dma *p;
1258 u_int32_t icsc, sic;
1259 int sampshift;
1260
1261 #ifdef DIAGNOSTIC
1262 if (sc->sc_prun)
1263 panic("eap_trigger_output: already running");
1264 sc->sc_prun = 1;
1265 #endif
1266
1267 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p "
1268 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1269 sc->sc_pintr = intr;
1270 sc->sc_parg = arg;
1271
1272 icsc = EREAD4(sc, EAP_ICSC);
1273 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
1274
1275 sic = EREAD4(sc, EAP_SIC);
1276 sic &= ~(EAP_P2_S_EB | EAP_P2_S_MB | EAP_INC_BITS);
1277 sic |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(param->precision * param->factor / 8);
1278 sampshift = 0;
1279 if (param->precision * param->factor == 16) {
1280 sic |= EAP_P2_S_EB;
1281 sampshift++;
1282 }
1283 if (param->channels == 2) {
1284 sic |= EAP_P2_S_MB;
1285 sampshift++;
1286 }
1287 EWRITE4(sc, EAP_SIC, sic);
1288
1289 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1290 ;
1291 if (!p) {
1292 printf("eap_trigger_output: bad addr %p\n", start);
1293 return (EINVAL);
1294 }
1295
1296 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
1297 (int)DMAADDR(p),
1298 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1299 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1300 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
1301 EWRITE4(sc, EAP_DAC2_SIZE,
1302 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1303
1304 EWRITE2(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
1305
1306 EWRITE4(sc, EAP_ICSC, icsc | EAP_DAC2_EN);
1307
1308 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
1309
1310 return (0);
1311 }
1312
1313 int
1314 eap_trigger_input(addr, start, end, blksize, intr, arg, param)
1315 void *addr;
1316 void *start, *end;
1317 int blksize;
1318 void (*intr) __P((void *));
1319 void *arg;
1320 struct audio_params *param;
1321 {
1322 struct eap_softc *sc = addr;
1323 struct eap_dma *p;
1324 u_int32_t icsc, sic;
1325 int sampshift;
1326
1327 #ifdef DIAGNOSTIC
1328 if (sc->sc_rrun)
1329 panic("eap_trigger_input: already running");
1330 sc->sc_rrun = 1;
1331 #endif
1332
1333 DPRINTFN(1, ("eap_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1334 addr, start, end, blksize, intr, arg));
1335 sc->sc_rintr = intr;
1336 sc->sc_rarg = arg;
1337
1338 icsc = EREAD4(sc, EAP_ICSC);
1339 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1340
1341 sic = EREAD4(sc, EAP_SIC);
1342 sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
1343 sampshift = 0;
1344 if (param->precision * param->factor == 16) {
1345 sic |= EAP_R1_S_EB;
1346 sampshift++;
1347 }
1348 if (param->channels == 2) {
1349 sic |= EAP_R1_S_MB;
1350 sampshift++;
1351 }
1352 EWRITE4(sc, EAP_SIC, sic);
1353
1354 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1355 ;
1356 if (!p) {
1357 printf("eap_trigger_input: bad addr %p\n", start);
1358 return (EINVAL);
1359 }
1360
1361 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
1362 (int)DMAADDR(p),
1363 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1364 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
1365 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
1366 EWRITE4(sc, EAP_ADC_SIZE,
1367 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1368
1369 EWRITE2(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
1370
1371 EWRITE4(sc, EAP_ICSC, icsc | EAP_ADC_EN);
1372
1373 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
1374
1375 return (0);
1376 }
1377
1378 int
1379 eap_halt_output(addr)
1380 void *addr;
1381 {
1382 struct eap_softc *sc = addr;
1383 u_int32_t icsc;
1384
1385 DPRINTF(("eap: eap_halt_output\n"));
1386 icsc = EREAD4(sc, EAP_ICSC);
1387 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_DAC2_EN);
1388 #ifdef DIAGNOSTIC
1389 sc->sc_prun = 0;
1390 #endif
1391 return (0);
1392 }
1393
1394 int
1395 eap_halt_input(addr)
1396 void *addr;
1397 {
1398 struct eap_softc *sc = addr;
1399 u_int32_t icsc;
1400
1401 DPRINTF(("eap: eap_halt_input\n"));
1402 icsc = EREAD4(sc, EAP_ICSC);
1403 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1404 #ifdef DIAGNOSTIC
1405 sc->sc_rrun = 0;
1406 #endif
1407 return (0);
1408 }
1409
1410 int
1411 eap_getdev(addr, retp)
1412 void *addr;
1413 struct audio_device *retp;
1414 {
1415 *retp = eap_device;
1416 return (0);
1417 }
1418
1419 int
1420 eap1371_mixer_set_port(addr, cp)
1421 void *addr;
1422 mixer_ctrl_t *cp;
1423 {
1424 struct eap_softc *sc = addr;
1425
1426 return (sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp));
1427 }
1428
1429 int
1430 eap1371_mixer_get_port(addr, cp)
1431 void *addr;
1432 mixer_ctrl_t *cp;
1433 {
1434 struct eap_softc *sc = addr;
1435
1436 return (sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp));
1437 }
1438
1439 int
1440 eap1371_query_devinfo(addr, dip)
1441 void *addr;
1442 mixer_devinfo_t *dip;
1443 {
1444 struct eap_softc *sc = addr;
1445
1446 return (sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip));
1447 }
1448
1449 int
1450 eap1371_get_portnum_by_name(sc, class, device, qualifier)
1451 struct eap_softc *sc;
1452 char *class, *device, *qualifier;
1453 {
1454 return (sc->codec_if->vtbl->get_portnum_by_name(sc->codec_if, class,
1455 device, qualifier));
1456 }
1457
1458 void
1459 eap_set_mixer(sc, a, d)
1460 struct eap_softc *sc;
1461 int a, d;
1462 {
1463 eap_write_codec(sc, a, d);
1464
1465 sc->sc_port[a] = d;
1466 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
1467 }
1468
1469 int
1470 eap_mixer_set_port(addr, cp)
1471 void *addr;
1472 mixer_ctrl_t *cp;
1473 {
1474 struct eap_softc *sc = addr;
1475 int lval, rval, l, r, la, ra;
1476 int l1, r1, l2, r2, m, o1, o2;
1477
1478 if (cp->dev == EAP_RECORD_SOURCE) {
1479 if (cp->type != AUDIO_MIXER_SET)
1480 return (EINVAL);
1481 m = sc->sc_record_source = cp->un.mask;
1482 l1 = l2 = r1 = r2 = 0;
1483 if (m & (1 << EAP_VOICE_VOL))
1484 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
1485 if (m & (1 << EAP_FM_VOL))
1486 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
1487 if (m & (1 << EAP_CD_VOL))
1488 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
1489 if (m & (1 << EAP_LINE_VOL))
1490 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
1491 if (m & (1 << EAP_AUX_VOL))
1492 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
1493 if (m & (1 << EAP_MIC_VOL))
1494 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
1495 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
1496 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
1497 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
1498 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
1499 return (0);
1500 }
1501 if (cp->dev == EAP_OUTPUT_SELECT) {
1502 if (cp->type != AUDIO_MIXER_SET)
1503 return (EINVAL);
1504 m = sc->sc_output_source = cp->un.mask;
1505 o1 = o2 = 0;
1506 if (m & (1 << EAP_VOICE_VOL))
1507 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
1508 if (m & (1 << EAP_FM_VOL))
1509 o1 |= AK_M_FM_L | AK_M_FM_R;
1510 if (m & (1 << EAP_CD_VOL))
1511 o1 |= AK_M_CD_L | AK_M_CD_R;
1512 if (m & (1 << EAP_LINE_VOL))
1513 o1 |= AK_M_LINE_L | AK_M_LINE_R;
1514 if (m & (1 << EAP_AUX_VOL))
1515 o2 |= AK_M_AUX_L | AK_M_AUX_R;
1516 if (m & (1 << EAP_MIC_VOL))
1517 o1 |= AK_M_MIC;
1518 eap_set_mixer(sc, AK_OUT_MIXER1, o1);
1519 eap_set_mixer(sc, AK_OUT_MIXER2, o2);
1520 return (0);
1521 }
1522 if (cp->dev == EAP_MIC_PREAMP) {
1523 if (cp->type != AUDIO_MIXER_ENUM)
1524 return (EINVAL);
1525 if (cp->un.ord != 0 && cp->un.ord != 1)
1526 return (EINVAL);
1527 sc->sc_mic_preamp = cp->un.ord;
1528 eap_set_mixer(sc, AK_MGAIN, cp->un.ord);
1529 return (0);
1530 }
1531 if (cp->type != AUDIO_MIXER_VALUE)
1532 return (EINVAL);
1533 if (cp->un.value.num_channels == 1)
1534 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1535 else if (cp->un.value.num_channels == 2) {
1536 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1537 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1538 } else
1539 return (EINVAL);
1540 ra = -1;
1541 switch (cp->dev) {
1542 case EAP_MASTER_VOL:
1543 l = VOL_TO_ATT5(lval);
1544 r = VOL_TO_ATT5(rval);
1545 la = AK_MASTER_L;
1546 ra = AK_MASTER_R;
1547 break;
1548 case EAP_MIC_VOL:
1549 if (cp->un.value.num_channels != 1)
1550 return (EINVAL);
1551 la = AK_MIC;
1552 goto lr;
1553 case EAP_VOICE_VOL:
1554 la = AK_VOICE_L;
1555 ra = AK_VOICE_R;
1556 goto lr;
1557 case EAP_FM_VOL:
1558 la = AK_FM_L;
1559 ra = AK_FM_R;
1560 goto lr;
1561 case EAP_CD_VOL:
1562 la = AK_CD_L;
1563 ra = AK_CD_R;
1564 goto lr;
1565 case EAP_LINE_VOL:
1566 la = AK_LINE_L;
1567 ra = AK_LINE_R;
1568 goto lr;
1569 case EAP_AUX_VOL:
1570 la = AK_AUX_L;
1571 ra = AK_AUX_R;
1572 lr:
1573 l = VOL_TO_GAIN5(lval);
1574 r = VOL_TO_GAIN5(rval);
1575 break;
1576 default:
1577 return (EINVAL);
1578 }
1579 eap_set_mixer(sc, la, l);
1580 if (ra >= 0) {
1581 eap_set_mixer(sc, ra, r);
1582 }
1583 return (0);
1584 }
1585
1586 int
1587 eap_mixer_get_port(addr, cp)
1588 void *addr;
1589 mixer_ctrl_t *cp;
1590 {
1591 struct eap_softc *sc = addr;
1592 int la, ra, l, r;
1593
1594 switch (cp->dev) {
1595 case EAP_RECORD_SOURCE:
1596 if (cp->type != AUDIO_MIXER_SET)
1597 return (EINVAL);
1598 cp->un.mask = sc->sc_record_source;
1599 return (0);
1600 case EAP_OUTPUT_SELECT:
1601 if (cp->type != AUDIO_MIXER_SET)
1602 return (EINVAL);
1603 cp->un.mask = sc->sc_output_source;
1604 return (0);
1605 case EAP_MIC_PREAMP:
1606 if (cp->type != AUDIO_MIXER_ENUM)
1607 return (EINVAL);
1608 cp->un.ord = sc->sc_mic_preamp;
1609 return (0);
1610 case EAP_MASTER_VOL:
1611 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1612 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1613 break;
1614 case EAP_MIC_VOL:
1615 if (cp->un.value.num_channels != 1)
1616 return (EINVAL);
1617 la = ra = AK_MIC;
1618 goto lr;
1619 case EAP_VOICE_VOL:
1620 la = AK_VOICE_L;
1621 ra = AK_VOICE_R;
1622 goto lr;
1623 case EAP_FM_VOL:
1624 la = AK_FM_L;
1625 ra = AK_FM_R;
1626 goto lr;
1627 case EAP_CD_VOL:
1628 la = AK_CD_L;
1629 ra = AK_CD_R;
1630 goto lr;
1631 case EAP_LINE_VOL:
1632 la = AK_LINE_L;
1633 ra = AK_LINE_R;
1634 goto lr;
1635 case EAP_AUX_VOL:
1636 la = AK_AUX_L;
1637 ra = AK_AUX_R;
1638 lr:
1639 l = GAIN5_TO_VOL(sc->sc_port[la]);
1640 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1641 break;
1642 default:
1643 return (EINVAL);
1644 }
1645 if (cp->un.value.num_channels == 1)
1646 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1647 else if (cp->un.value.num_channels == 2) {
1648 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1649 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1650 } else
1651 return (EINVAL);
1652 return (0);
1653 }
1654
1655 int
1656 eap_query_devinfo(addr, dip)
1657 void *addr;
1658 mixer_devinfo_t *dip;
1659 {
1660 switch (dip->index) {
1661 case EAP_MASTER_VOL:
1662 dip->type = AUDIO_MIXER_VALUE;
1663 dip->mixer_class = EAP_OUTPUT_CLASS;
1664 dip->prev = dip->next = AUDIO_MIXER_LAST;
1665 strcpy(dip->label.name, AudioNmaster);
1666 dip->un.v.num_channels = 2;
1667 strcpy(dip->un.v.units.name, AudioNvolume);
1668 return (0);
1669 case EAP_VOICE_VOL:
1670 dip->type = AUDIO_MIXER_VALUE;
1671 dip->mixer_class = EAP_INPUT_CLASS;
1672 dip->prev = AUDIO_MIXER_LAST;
1673 dip->next = AUDIO_MIXER_LAST;
1674 strcpy(dip->label.name, AudioNdac);
1675 dip->un.v.num_channels = 2;
1676 strcpy(dip->un.v.units.name, AudioNvolume);
1677 return (0);
1678 case EAP_FM_VOL:
1679 dip->type = AUDIO_MIXER_VALUE;
1680 dip->mixer_class = EAP_INPUT_CLASS;
1681 dip->prev = AUDIO_MIXER_LAST;
1682 dip->next = AUDIO_MIXER_LAST;
1683 strcpy(dip->label.name, AudioNfmsynth);
1684 dip->un.v.num_channels = 2;
1685 strcpy(dip->un.v.units.name, AudioNvolume);
1686 return (0);
1687 case EAP_CD_VOL:
1688 dip->type = AUDIO_MIXER_VALUE;
1689 dip->mixer_class = EAP_INPUT_CLASS;
1690 dip->prev = AUDIO_MIXER_LAST;
1691 dip->next = AUDIO_MIXER_LAST;
1692 strcpy(dip->label.name, AudioNcd);
1693 dip->un.v.num_channels = 2;
1694 strcpy(dip->un.v.units.name, AudioNvolume);
1695 return (0);
1696 case EAP_LINE_VOL:
1697 dip->type = AUDIO_MIXER_VALUE;
1698 dip->mixer_class = EAP_INPUT_CLASS;
1699 dip->prev = AUDIO_MIXER_LAST;
1700 dip->next = AUDIO_MIXER_LAST;
1701 strcpy(dip->label.name, AudioNline);
1702 dip->un.v.num_channels = 2;
1703 strcpy(dip->un.v.units.name, AudioNvolume);
1704 return (0);
1705 case EAP_AUX_VOL:
1706 dip->type = AUDIO_MIXER_VALUE;
1707 dip->mixer_class = EAP_INPUT_CLASS;
1708 dip->prev = AUDIO_MIXER_LAST;
1709 dip->next = AUDIO_MIXER_LAST;
1710 strcpy(dip->label.name, AudioNaux);
1711 dip->un.v.num_channels = 2;
1712 strcpy(dip->un.v.units.name, AudioNvolume);
1713 return (0);
1714 case EAP_MIC_VOL:
1715 dip->type = AUDIO_MIXER_VALUE;
1716 dip->mixer_class = EAP_INPUT_CLASS;
1717 dip->prev = AUDIO_MIXER_LAST;
1718 dip->next = EAP_MIC_PREAMP;
1719 strcpy(dip->label.name, AudioNmicrophone);
1720 dip->un.v.num_channels = 1;
1721 strcpy(dip->un.v.units.name, AudioNvolume);
1722 return (0);
1723 case EAP_RECORD_SOURCE:
1724 dip->mixer_class = EAP_RECORD_CLASS;
1725 dip->prev = dip->next = AUDIO_MIXER_LAST;
1726 strcpy(dip->label.name, AudioNsource);
1727 dip->type = AUDIO_MIXER_SET;
1728 dip->un.s.num_mem = 6;
1729 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1730 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1731 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1732 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1733 strcpy(dip->un.s.member[2].label.name, AudioNline);
1734 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1735 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1736 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1737 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1738 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1739 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1740 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1741 return (0);
1742 case EAP_OUTPUT_SELECT:
1743 dip->mixer_class = EAP_OUTPUT_CLASS;
1744 dip->prev = dip->next = AUDIO_MIXER_LAST;
1745 strcpy(dip->label.name, AudioNselect);
1746 dip->type = AUDIO_MIXER_SET;
1747 dip->un.s.num_mem = 6;
1748 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1749 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1750 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1751 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1752 strcpy(dip->un.s.member[2].label.name, AudioNline);
1753 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1754 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1755 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1756 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1757 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1758 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1759 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1760 return (0);
1761 case EAP_MIC_PREAMP:
1762 dip->type = AUDIO_MIXER_ENUM;
1763 dip->mixer_class = EAP_INPUT_CLASS;
1764 dip->prev = EAP_MIC_VOL;
1765 dip->next = AUDIO_MIXER_LAST;
1766 strcpy(dip->label.name, AudioNpreamp);
1767 dip->un.e.num_mem = 2;
1768 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1769 dip->un.e.member[0].ord = 0;
1770 strcpy(dip->un.e.member[1].label.name, AudioNon);
1771 dip->un.e.member[1].ord = 1;
1772 return (0);
1773 case EAP_OUTPUT_CLASS:
1774 dip->type = AUDIO_MIXER_CLASS;
1775 dip->mixer_class = EAP_OUTPUT_CLASS;
1776 dip->next = dip->prev = AUDIO_MIXER_LAST;
1777 strcpy(dip->label.name, AudioCoutputs);
1778 return (0);
1779 case EAP_RECORD_CLASS:
1780 dip->type = AUDIO_MIXER_CLASS;
1781 dip->mixer_class = EAP_RECORD_CLASS;
1782 dip->next = dip->prev = AUDIO_MIXER_LAST;
1783 strcpy(dip->label.name, AudioCrecord);
1784 return (0);
1785 case EAP_INPUT_CLASS:
1786 dip->type = AUDIO_MIXER_CLASS;
1787 dip->mixer_class = EAP_INPUT_CLASS;
1788 dip->next = dip->prev = AUDIO_MIXER_LAST;
1789 strcpy(dip->label.name, AudioCinputs);
1790 return (0);
1791 }
1792 return (ENXIO);
1793 }
1794
1795 void *
1796 eap_malloc(addr, direction, size, pool, flags)
1797 void *addr;
1798 int direction;
1799 size_t size;
1800 int pool, flags;
1801 {
1802 struct eap_softc *sc = addr;
1803 struct eap_dma *p;
1804 int error;
1805
1806 p = malloc(sizeof(*p), pool, flags);
1807 if (!p)
1808 return (0);
1809 error = eap_allocmem(sc, size, 16, p);
1810 if (error) {
1811 free(p, pool);
1812 return (0);
1813 }
1814 p->next = sc->sc_dmas;
1815 sc->sc_dmas = p;
1816 return (KERNADDR(p));
1817 }
1818
1819 void
1820 eap_free(addr, ptr, pool)
1821 void *addr;
1822 void *ptr;
1823 int pool;
1824 {
1825 struct eap_softc *sc = addr;
1826 struct eap_dma **pp, *p;
1827
1828 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1829 if (KERNADDR(p) == ptr) {
1830 eap_freemem(sc, p);
1831 *pp = p->next;
1832 free(p, pool);
1833 return;
1834 }
1835 }
1836 }
1837
1838 size_t
1839 eap_round_buffersize(addr, direction, size)
1840 void *addr;
1841 int direction;
1842 size_t size;
1843 {
1844 return (size);
1845 }
1846
1847 int
1848 eap_mappage(addr, mem, off, prot)
1849 void *addr;
1850 void *mem;
1851 int off;
1852 int prot;
1853 {
1854 struct eap_softc *sc = addr;
1855 struct eap_dma *p;
1856
1857 if (off < 0)
1858 return (-1);
1859 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1860 ;
1861 if (!p)
1862 return (-1);
1863 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1864 off, prot, BUS_DMA_WAITOK));
1865 }
1866
1867 int
1868 eap_get_props(addr)
1869 void *addr;
1870 {
1871 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1872 AUDIO_PROP_FULLDUPLEX);
1873 }
1874
1875 #if NMIDI > 0
1876 int
1877 eap_midi_open(addr, flags, iintr, ointr, arg)
1878 void *addr;
1879 int flags;
1880 void (*iintr)__P((void *, int));
1881 void (*ointr)__P((void *));
1882 void *arg;
1883 {
1884 struct eap_softc *sc = addr;
1885 u_int32_t uctrl;
1886
1887 sc->sc_iintr = iintr;
1888 sc->sc_ointr = ointr;
1889 sc->sc_arg = arg;
1890
1891 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) | EAP_UART_EN);
1892 uctrl = 0;
1893 if (flags & FREAD)
1894 uctrl |= EAP_UC_RXINTEN;
1895 #if 0
1896 /* I don't understand ../midi.c well enough to use output interrupts */
1897 if (flags & FWRITE)
1898 uctrl |= EAP_UC_TXINTEN; */
1899 #endif
1900 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1901
1902 return (0);
1903 }
1904
1905 void
1906 eap_midi_close(addr)
1907 void *addr;
1908 {
1909 struct eap_softc *sc = addr;
1910
1911 EWRITE1(sc, EAP_UART_CONTROL, 0);
1912 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) & ~EAP_UART_EN);
1913
1914 sc->sc_iintr = 0;
1915 sc->sc_ointr = 0;
1916 }
1917
1918 int
1919 eap_midi_output(addr, d)
1920 void *addr;
1921 int d;
1922 {
1923 struct eap_softc *sc = addr;
1924 int x;
1925
1926 for (x = 0; x != MIDI_BUSY_WAIT; x++) {
1927 if (EREAD1(sc, EAP_UART_STATUS) & EAP_US_TXRDY) {
1928 EWRITE1(sc, EAP_UART_DATA, d);
1929 return (0);
1930 }
1931 delay(MIDI_BUSY_DELAY);
1932 }
1933 return (EIO);
1934 }
1935
1936 void
1937 eap_midi_getinfo(addr, mi)
1938 void *addr;
1939 struct midi_info *mi;
1940 {
1941 mi->name = "AudioPCI MIDI UART";
1942 mi->props = MIDI_PROP_CAN_INPUT;
1943 }
1944
1945 #endif
1946