eap.c revision 1.5 1 /* $NetBSD: eap.c,v 1.5 1998/05/06 19:21:45 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Author: Lennart Augustsson <augustss (at) cs.chalmers.se>
8 *
9 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
10 * Charles Hannum <mycroft (at) netbsd.org>
11 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
12 * Phil Nelson <phil (at) cs.wwu.edu>
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Ensoniq AudoiPCI ES1370 + AK4531 driver.
45 * Data sheets can be found at
46 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
47 * and
48 * http://206.214.38.151/pdf/4531.pdf
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/device.h>
56
57 #include <dev/pci/pcidevs.h>
58 #include <dev/pci/pcivar.h>
59
60 #include <sys/audioio.h>
61 #include <dev/audio_if.h>
62 #include <dev/mulaw.h>
63 #include <dev/auconv.h>
64
65 #include <machine/bus.h>
66
67 /* NetBSD 1.3 backwards compatibility */
68 #ifndef BUS_DMA_COHERENT
69 #define BUS_DMA_COHERENT 0 /* XXX */
70 struct cfdriver eap_cd = {
71 NULL, "eap", DV_DULL
72 };
73 #endif
74
75 #define PCI_CBIO 0x10
76
77 #define EAP_ICSC 0x00 /* interrupt / chip select control */
78 #define EAP_SERR_DISABLE 0x00000001
79 #define EAP_CDC_EN 0x00000002
80 #define EAP_JYSTK_EN 0x00000004
81 #define EAP_UART_EN 0x00000008
82 #define EAP_ADC_EN 0x00000010
83 #define EAP_DAC2_EN 0x00000020
84 #define EAP_DAC1_EN 0x00000040
85 #define EAP_BREQ 0x00000080
86 #define EAP_XTCL0 0x00000100
87 #define EAP_M_CB 0x00000200
88 #define EAP_CCB_INTRM 0x00000400
89 #define EAP_DAC_SYNC 0x00000800
90 #define EAP_WTSRSEL 0x00003000
91 #define EAP_WTSRSEL_5 0x00000000
92 #define EAP_WTSRSEL_11 0x00001000
93 #define EAP_WTSRSEL_22 0x00002000
94 #define EAP_WTSRSEL_44 0x00003000
95 #define EAP_M_SBB 0x00004000
96 #define EAP_MSFMTSEL 0x00008000
97 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
98 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
99 #define EAP_PCLKBITS 0x1fff0000
100 #define EAP_XTCL1 0x40000000
101 #define EAP_ADC_STOP 0x80000000
102
103 #define EAP_ICSS 0x04 /* interrupt / chip select status */
104 #define EAP_I_ADC 0x00000001
105 #define EAP_I_DAC2 0x00000002
106 #define EAP_I_DAC1 0x00000004
107 #define EAP_I_UART 0x00000008
108 #define EAP_I_MCCB 0x00000010
109 #define EAP_VC 0x00000060
110 #define EAP_CWRIP 0x00000100
111 #define EAP_CBUSY 0x00000200
112 #define EAP_CSTAT 0x00000400
113 #define EAP_INTR 0x80000000
114
115 #define EAP_UART_DATA 0x08
116 #define EAP_UART_STATUS 0x09
117 #define EAP_UART_CONTROL 0x09
118 #define EAP_MEMPAGE 0x0c
119 #define EAP_CODEC 0x10
120 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
121
122 #define EAP_SIC 0x20
123 #define EAP_P1_S_MB 0x00000001
124 #define EAP_P1_S_EB 0x00000002
125 #define EAP_P2_S_MB 0x00000004
126 #define EAP_P2_S_EB 0x00000008
127 #define EAP_R1_S_MB 0x00000010
128 #define EAP_R1_S_EB 0x00000020
129 #define EAP_R1P2_BITS 0x0000003c
130 #define EAP_P2_DAC_SEN 0x00000040
131 #define EAP_P1_SCT_RLD 0x00000080
132 #define EAP_P1_INTR_EN 0x00000100
133 #define EAP_P2_INTR_EN 0x00000200
134 #define EAP_R1_INTR_EN 0x00000400
135 #define EAP_P1_PAUSE 0x00000800
136 #define EAP_P2_PAUSE 0x00001000
137 #define EAP_P1_LOOP_SEL 0x00002000
138 #define EAP_P2_LOOP_SEL 0x00004000
139 #define EAP_R1_LOOP_SEL 0x00008000
140 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
141 #define EAP_SET_P2_END_INC(i) ((i) << 19)
142 #define EAP_INC_BITS 0x003f0000
143
144 #define EAP_DAC1_CSR 0x24
145 #define EAP_DAC2_CSR 0x28
146 #define EAP_ADC_CSR 0x2c
147 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
148
149 #define EAP_DAC_PAGE 0xc
150 #define EAP_ADC_PAGE 0xd
151 #define EAP_UART_PAGE1 0xe
152 #define EAP_UART_PAGE2 0xf
153
154 #define EAP_DAC1_ADDR 0x30
155 #define EAP_DAC1_SIZE 0x34
156 #define EAP_DAC2_ADDR 0x38
157 #define EAP_DAC2_SIZE 0x3c
158 #define EAP_ADC_ADDR 0x30
159 #define EAP_ADC_SIZE 0x34
160 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
161
162 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
163
164 /* AK4531 registers */
165 #define AK_MASTER_L 0x00
166 #define AK_MASTER_R 0x01
167 #define AK_VOICE_L 0x02
168 #define AK_VOICE_R 0x03
169 #define AK_FM_L 0x04
170 #define AK_FM_R 0x05
171 #define AK_CD_L 0x06
172 #define AK_CD_R 0x07
173 #define AK_LINE_L 0x08
174 #define AK_LINE_R 0x09
175 #define AK_AUX_L 0x0a
176 #define AK_AUX_R 0x0b
177 #define AK_MONO1 0x0c
178 #define AK_MONO2 0x0d
179 #define AK_MIC 0x0e
180 #define AK_MONO 0x0f
181 #define AK_OUT_MIXER1 0x10
182 #define AK_M_FM_L 0x40
183 #define AK_M_FM_R 0x20
184 #define AK_M_LINE_L 0x10
185 #define AK_M_LINE_R 0x08
186 #define AK_M_CD_L 0x04
187 #define AK_M_CD_R 0x02
188 #define AK_M_MIC 0x01
189 #define AK_OUT_MIXER2 0x11
190 #define AK_M_AUX_L 0x20
191 #define AK_M_AUX_R 0x10
192 #define AK_M_VOICE_L 0x08
193 #define AK_M_VOICE_R 0x04
194 #define AK_M_MONO2 0x02
195 #define AK_M_MONO1 0x01
196 #define AK_IN_MIXER1_L 0x12
197 #define AK_IN_MIXER1_R 0x13
198 #define AK_IN_MIXER2_L 0x14
199 #define AK_IN_MIXER2_R 0x15
200 #define AK_M_TMIC 0x80
201 #define AK_M_TMONO1 0x40
202 #define AK_M_TMONO2 0x20
203 #define AK_M2_AUX_L 0x10
204 #define AK_M2_AUX_R 0x08
205 #define AK_M_VOICE 0x04
206 #define AK_M2_MONO2 0x02
207 #define AK_M2_MONO1 0x01
208 #define AK_RESET 0x16
209 #define AK_PD 0x02
210 #define AK_NRST 0x01
211 #define AK_CS 0x17
212 #define AK_ADSEL 0x18
213 #define AK_MGAIN 0x19
214
215 #define AK_NPORTS 16
216
217 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
218 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
219 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
220 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
221 #define VOL_0DB 200
222
223 #define EAP_MASTER_VOL 0
224 #define EAP_VOICE_VOL 1
225 #define EAP_FM_VOL 2
226 #define EAP_CD_VOL 3
227 #define EAP_LINE_VOL 4
228 #define EAP_AUX_VOL 5
229 #define EAP_MIC_VOL 6
230 #define EAP_RECORD_SOURCE 7
231 #define EAP_OUTPUT_CLASS 8
232 #define EAP_RECORD_CLASS 9
233 #define EAP_INPUT_CLASS 10
234
235 #define EAP_NDEVS 11
236
237
238 #ifdef AUDIO_DEBUG
239 #define DPRINTF(x) if (eapdebug) printf x
240 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
241 int eapdebug = 0;
242 #else
243 #define DPRINTF(x)
244 #define DPRINTFN(n,x)
245 #endif
246
247 #ifdef __BROKEN_INDIRECT_CONFIG
248 int eap_match __P((struct device *, void *, void *));
249 #else
250 int eap_match __P((struct device *, struct cfdata *, void *));
251 #endif
252 void eap_attach __P((struct device *, struct device *, void *));
253 int eap_intr __P((void *));
254
255 struct eap_dma {
256 bus_dmamap_t map;
257 caddr_t addr;
258 bus_dma_segment_t segs[1];
259 int nsegs;
260 size_t size;
261 struct eap_dma *next;
262 };
263 #define DMAADDR(map) ((map)->segs[0].ds_addr)
264 #define KERNADDR(map) ((void *)((map)->addr))
265
266 struct eap_softc {
267 struct device sc_dev; /* base device */
268 void *sc_ih; /* interrupt vectoring */
269 bus_space_tag_t iot;
270 bus_space_handle_t ioh;
271 bus_dma_tag_t sc_dmatag; /* DMA tag */
272
273 struct eap_dma *sc_dmas;
274
275 void (*sc_pintr)(void *); /* dma completion intr handler */
276 void *sc_parg; /* arg for sc_intr() */
277 char sc_prun;
278
279 void (*sc_rintr)(void *); /* dma completion intr handler */
280 void *sc_rarg; /* arg for sc_intr() */
281 char sc_rrun;
282
283 int sc_sampsize; /* bytes / sample */
284
285 u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */
286 u_int sc_record_source; /* recording source mask */
287 };
288
289 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
290 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
291
292 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
293 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
294 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
295 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
296
297 struct cfattach eap_ca = {
298 sizeof(struct eap_softc), eap_match, eap_attach
299 };
300
301 int eap_open __P((void *, int));
302 void eap_close __P((void *));
303 int eap_query_encoding __P((void *, struct audio_encoding *));
304 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
305 int eap_round_blocksize __P((void *, int));
306 int eap_dma_init_output __P((void *, void *, int));
307 int eap_dma_init_input __P((void *, void *, int));
308 int eap_dma_output __P((void *, void *, int, void (*)(void *), void*));
309 int eap_dma_input __P((void *, void *, int, void (*)(void *), void*));
310 int eap_halt_in_dma __P((void *));
311 int eap_halt_out_dma __P((void *));
312 int eap_getdev __P((void *, struct audio_device *));
313 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
314 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
315 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
316 void *eap_malloc __P((void *, u_long, int, int));
317 void eap_free __P((void *, void *, int));
318 u_long eap_round __P((void *, u_long));
319 int eap_mappage __P((void *, void *, int, int));
320 int eap_get_props __P((void *));
321 void eap_write_codec __P((struct eap_softc *sc, int a, int d));
322 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
323
324 struct audio_hw_if eap_hw_if = {
325 eap_open,
326 eap_close,
327 NULL,
328 eap_query_encoding,
329 eap_set_params,
330 eap_round_blocksize,
331 NULL,
332 eap_dma_init_output,
333 eap_dma_init_input,
334 eap_dma_output,
335 eap_dma_input,
336 eap_halt_out_dma,
337 eap_halt_in_dma,
338 NULL,
339 eap_getdev,
340 NULL,
341 eap_mixer_set_port,
342 eap_mixer_get_port,
343 eap_query_devinfo,
344 eap_malloc,
345 eap_free,
346 eap_round,
347 eap_mappage,
348 eap_get_props,
349 };
350
351 struct audio_device eap_device = {
352 "Ensoniq AudioPCI",
353 "",
354 "eap"
355 };
356
357 int
358 eap_match(parent, match, aux)
359 struct device *parent;
360 #ifdef __BROKEN_INDIRECT_CONFIG
361 void *match;
362 #else
363 struct cfdata *match;
364 #endif
365 void *aux;
366 {
367 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
368
369 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
370 return (0);
371 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
372 return (0);
373
374 return (1);
375 }
376
377 void
378 eap_write_codec(sc, a, d)
379 struct eap_softc *sc;
380 int a, d;
381 {
382 int icss;
383
384 do {
385 icss = EREAD4(sc, EAP_ICSS);
386 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
387 } while(icss & EAP_CWRIP);
388 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
389 }
390
391 void
392 eap_attach(parent, self, aux)
393 struct device *parent;
394 struct device *self;
395 void *aux;
396 {
397 struct eap_softc *sc = (struct eap_softc *)self;
398 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
399 pci_chipset_tag_t pc = pa->pa_pc;
400 char const *intrstr;
401 pci_intr_handle_t ih;
402 pcireg_t csr;
403 char devinfo[256];
404 mixer_ctrl_t ctl;
405
406 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
407 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
408
409 /* Map I/O register */
410 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
411 &sc->iot, &sc->ioh, NULL, NULL)) {
412 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
413 return;
414 }
415
416 sc->sc_dmatag = pa->pa_dmat;
417
418 /* Enable the device. */
419 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
420 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
421 csr | PCI_COMMAND_MASTER_ENABLE);
422
423 /* Map and establish the interrupt. */
424 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
425 pa->pa_intrline, &ih)) {
426 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
427 return;
428 }
429 intrstr = pci_intr_string(pc, ih);
430 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
431 if (sc->sc_ih == NULL) {
432 printf("%s: couldn't establish interrupt",
433 sc->sc_dev.dv_xname);
434 if (intrstr != NULL)
435 printf(" at %s", intrstr);
436 printf("\n");
437 return;
438 }
439 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
440
441 /* Enable interrupts and looping mode. */
442 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
443 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
444
445 eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
446 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */
447 eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
448 /* Enable all relevant mixer switches. */
449 eap_write_codec(sc, AK_OUT_MIXER1,
450 AK_M_FM_L | AK_M_FM_R |
451 AK_M_LINE_L | AK_M_LINE_R |
452 AK_M_CD_L | AK_M_CD_R);
453 eap_write_codec(sc, AK_OUT_MIXER2,
454 AK_M_AUX_L | AK_M_AUX_R |
455 AK_M_VOICE_L | AK_M_VOICE_R |
456 AK_M_MONO2 | AK_M_MONO1);
457 ctl.type = AUDIO_MIXER_VALUE;
458 ctl.un.value.num_channels = 1;
459 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
460 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
461 eap_mixer_set_port(sc, &ctl);
462 }
463 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
464 eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
465 ctl.dev = EAP_RECORD_SOURCE;
466 ctl.type = AUDIO_MIXER_SET;
467 ctl.un.mask = 1 << EAP_MIC_VOL;
468 eap_mixer_set_port(sc, &ctl);
469
470 audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
471 }
472
473 int
474 eap_intr(p)
475 void *p;
476 {
477 struct eap_softc *sc = p;
478 u_int32_t intr, sic;
479
480 intr = EREAD4(sc, EAP_ICSS);
481 if (!(intr & EAP_INTR))
482 return (0);
483 sic = EREAD4(sc, EAP_SIC);
484 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
485 if (intr & EAP_I_ADC) {
486 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
487 EWRITE4(sc, EAP_SIC, sic);
488 if (sc->sc_rintr)
489 sc->sc_rintr(sc->sc_rarg);
490 }
491 if (intr & EAP_I_DAC2) {
492 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
493 EWRITE4(sc, EAP_SIC, sic);
494 if (sc->sc_pintr)
495 sc->sc_pintr(sc->sc_parg);
496 }
497 return (1);
498 }
499
500 int
501 eap_allocmem(sc, size, align, p)
502 struct eap_softc *sc;
503 size_t size;
504 size_t align;
505 struct eap_dma *p;
506 {
507 int error;
508
509 p->size = size;
510 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
511 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
512 &p->nsegs, BUS_DMA_NOWAIT);
513 if (error)
514 return (error);
515
516 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
517 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
518 if (error)
519 goto free;
520
521 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
522 0, BUS_DMA_NOWAIT, &p->map);
523 if (error)
524 goto unmap;
525
526 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
527 BUS_DMA_NOWAIT);
528 if (error)
529 goto destroy;
530 return (0);
531
532 destroy:
533 bus_dmamap_destroy(sc->sc_dmatag, p->map);
534 unmap:
535 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
536 free:
537 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
538 return (error);
539 }
540
541 int
542 eap_freemem(sc, p)
543 struct eap_softc *sc;
544 struct eap_dma *p;
545 {
546 bus_dmamap_unload(sc->sc_dmatag, p->map);
547 bus_dmamap_destroy(sc->sc_dmatag, p->map);
548 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
549 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
550 return (0);
551 }
552
553 int
554 eap_open(addr, flags)
555 void *addr;
556 int flags;
557 {
558 struct eap_softc *sc = addr;
559
560 DPRINTF(("eap_open: sc=%p\n", sc));
561
562 sc->sc_pintr = 0;
563 sc->sc_rintr = 0;
564
565 return (0);
566 }
567
568 /*
569 * Close function is called at splaudio().
570 */
571 void
572 eap_close(addr)
573 void *addr;
574 {
575 struct eap_softc *sc = addr;
576
577 eap_halt_in_dma(sc);
578 eap_halt_out_dma(sc);
579
580 sc->sc_pintr = 0;
581 sc->sc_rintr = 0;
582 }
583
584 int
585 eap_query_encoding(addr, fp)
586 void *addr;
587 struct audio_encoding *fp;
588 {
589 switch (fp->index) {
590 case 0:
591 strcpy(fp->name, AudioEulinear);
592 fp->encoding = AUDIO_ENCODING_ULINEAR;
593 fp->precision = 8;
594 fp->flags = 0;
595 return (0);
596 case 1:
597 strcpy(fp->name, AudioEmulaw);
598 fp->encoding = AUDIO_ENCODING_ULAW;
599 fp->precision = 8;
600 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
601 return (0);
602 case 2:
603 strcpy(fp->name, AudioEalaw);
604 fp->encoding = AUDIO_ENCODING_ALAW;
605 fp->precision = 8;
606 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
607 return (0);
608 case 3:
609 strcpy(fp->name, AudioEslinear);
610 fp->encoding = AUDIO_ENCODING_SLINEAR;
611 fp->precision = 8;
612 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
613 return (0);
614 case 4:
615 strcpy(fp->name, AudioEslinear_le);
616 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
617 fp->precision = 16;
618 fp->flags = 0;
619 return (0);
620 case 5:
621 strcpy(fp->name, AudioEulinear_le);
622 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
623 fp->precision = 16;
624 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
625 return (0);
626 case 6:
627 strcpy(fp->name, AudioEslinear_be);
628 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
629 fp->precision = 16;
630 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
631 return (0);
632 case 7:
633 strcpy(fp->name, AudioEulinear_be);
634 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
635 fp->precision = 16;
636 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
637 return (0);
638 default:
639 return (EINVAL);
640 }
641 }
642
643 int
644 eap_set_params(addr, setmode, usemode, p, r)
645 void *addr;
646 int setmode, usemode;
647 struct audio_params *p, *r;
648 {
649 struct eap_softc *sc = addr;
650 void (*pswcode) __P((void *, u_char *buf, int cnt));
651 void (*rswcode) __P((void *, u_char *buf, int cnt));
652 u_int32_t mode, div;
653
654
655 pswcode = rswcode = 0;
656 switch (p->encoding) {
657 case AUDIO_ENCODING_SLINEAR_BE:
658 if (p->precision == 16)
659 rswcode = pswcode = swap_bytes;
660 else
661 pswcode = rswcode = change_sign8;
662 break;
663 case AUDIO_ENCODING_SLINEAR_LE:
664 if (p->precision != 16)
665 pswcode = rswcode = change_sign8;
666 break;
667 case AUDIO_ENCODING_ULINEAR_BE:
668 if (p->precision == 16) {
669 pswcode = swap_bytes_change_sign16;
670 rswcode = change_sign16_swap_bytes;
671 }
672 break;
673 case AUDIO_ENCODING_ULINEAR_LE:
674 if (p->precision == 16)
675 pswcode = rswcode = change_sign16;
676 break;
677 case AUDIO_ENCODING_ULAW:
678 pswcode = mulaw_to_ulinear8;
679 rswcode = ulinear8_to_mulaw;
680 break;
681 case AUDIO_ENCODING_ALAW:
682 pswcode = alaw_to_ulinear8;
683 rswcode = ulinear8_to_alaw;
684 break;
685 default:
686 return (EINVAL);
687 }
688 if (p->precision == 16)
689 mode = EAP_P2_S_EB | EAP_R1_S_EB;
690 else
691 mode = 0;
692 if (p->channels == 2)
693 mode |= EAP_P2_S_MB | EAP_R1_S_MB;
694 else if (p->channels != 1)
695 return (EINVAL);
696 if (p->sample_rate < 4000 || p->sample_rate > 50000)
697 return (EINVAL);
698
699 sc->sc_sampsize = p->precision / 8 * p->channels; /* bytes / sample */
700 p->sw_code = pswcode;
701 r->sw_code = rswcode;
702
703 /* Set the encoding */
704 mode |= EREAD4(sc, EAP_SIC) & ~(EAP_R1P2_BITS | EAP_INC_BITS);
705 mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(p->precision / 8);
706 EWRITE4(sc, EAP_SIC, mode);
707 DPRINTFN(2, ("eap_set_params: set SIC = 0x%08x\n", mode));
708
709 /* Set the speed */
710 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
711 EREAD4(sc, EAP_ICSC)));
712 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
713 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / p->sample_rate - 2);
714 div |= EAP_CCB_INTRM;
715 EWRITE4(sc, EAP_ICSC, div);
716 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
717
718 return (0);
719 }
720
721 int
722 eap_round_blocksize(addr, blk)
723 void *addr;
724 int blk;
725 {
726 return (blk & -16); /* keep good alignment */
727 }
728
729 int
730 eap_dma_init_input(addr, buf, cc)
731 void *addr;
732 void *buf;
733 int cc;
734 {
735 struct eap_softc *sc = addr;
736 struct eap_dma *p;
737
738 DPRINTF(("eap_dma_init_input: dma start loop input addr=%p cc=%d\n",
739 buf, cc));
740 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
741 ;
742 if (!p) {
743 printf("eap_dma_init_input: bad addr %p\n", buf);
744 return (EINVAL);
745 }
746 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
747 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
748 EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
749 DPRINTF(("eap_dma_init_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
750 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
751 return (0);
752 }
753
754 int
755 eap_dma_init_output(addr, buf, cc)
756 void *addr;
757 void *buf;
758 int cc;
759 {
760 struct eap_softc *sc = addr;
761 struct eap_dma *p;
762
763 DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc));
764 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
765 ;
766 if (!p) {
767 printf("eap_dma_init_output: bad addr %p\n", buf);
768 return (EINVAL);
769 }
770 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
771 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
772 EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
773 DPRINTF(("eap_dma_init_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
774 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
775 return (0);
776 }
777
778 int
779 eap_dma_output(addr, p, cc, intr, arg)
780 void *addr;
781 void *p;
782 int cc;
783 void (*intr) __P((void *));
784 void *arg;
785 {
786 struct eap_softc *sc = addr;
787 u_int32_t mode;
788
789 DPRINTFN(sc->sc_prun ? 5 : 1,
790 ("eap_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n",
791 addr, p, cc, intr, arg));
792 sc->sc_pintr = intr;
793 sc->sc_parg = arg;
794 if (!sc->sc_prun) {
795 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
796 if (sc->sc_sampsize == 0) {
797 printf("eap_dma_output: sampsize == 0\n");
798 return EINVAL;
799 }
800 #endif
801 EWRITE2(sc, EAP_DAC2_CSR, cc / sc->sc_sampsize - 1);
802 DPRINTFN(1, ("eap_dma_output: set DAC2_CSR = %d\n",
803 cc / sc->sc_sampsize - 1));
804 DPRINTFN(1, ("eap_dma_output: old ICSC = 0x%08x\n",
805 EREAD4(sc, EAP_ICSC)));
806 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
807 EWRITE4(sc, EAP_ICSC, mode);
808 mode |= EAP_DAC2_EN;
809 EWRITE4(sc, EAP_ICSC, mode);
810 DPRINTFN(1, ("eap_dma_output: set ICSC = 0x%08x\n", mode));
811 sc->sc_prun = 1;
812 }
813 return (0);
814 }
815
816 int
817 eap_dma_input(addr, p, cc, intr, arg)
818 void *addr;
819 void *p;
820 int cc;
821 void (*intr) __P((void *));
822 void *arg;
823 {
824 struct eap_softc *sc = addr;
825 u_int32_t mode;
826
827 DPRINTFN(1, ("eap_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
828 addr, p, cc, intr, arg));
829 sc->sc_rintr = intr;
830 sc->sc_rarg = arg;
831 if (!sc->sc_rrun) {
832 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
833 if (sc->sc_sampsize == 0) {
834 printf("eap_dma_input: sampsize == 0\n");
835 return EINVAL;
836 }
837 #endif
838 EWRITE2(sc, EAP_ADC_CSR, cc / sc->sc_sampsize - 1);
839 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
840 EWRITE4(sc, EAP_ICSC, mode);
841 mode |= EAP_ADC_EN;
842 EWRITE4(sc, EAP_ICSC, mode);
843 DPRINTFN(1, ("eap_dma_input: set ICSC = 0x%08x\n", mode));
844 sc->sc_rrun = 1;
845 }
846 return (0);
847 }
848
849 int
850 eap_halt_out_dma(addr)
851 void *addr;
852 {
853 struct eap_softc *sc = addr;
854 u_int32_t mode;
855
856 DPRINTF(("eap: eap_halt_out_dma\n"));
857 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
858 EWRITE4(sc, EAP_ICSC, mode);
859 sc->sc_prun = 0;
860 return (0);
861 }
862
863 int
864 eap_halt_in_dma(addr)
865 void *addr;
866 {
867 struct eap_softc *sc = addr;
868 u_int32_t mode;
869
870 DPRINTF(("eap: eap_halt_in_dma\n"));
871 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
872 EWRITE4(sc, EAP_ICSC, mode);
873 sc->sc_rrun = 0;
874 return (0);
875 }
876
877 int
878 eap_getdev(addr, retp)
879 void *addr;
880 struct audio_device *retp;
881 {
882 *retp = eap_device;
883 return (0);
884 }
885
886 void
887 eap_set_mixer(sc, a, d)
888 struct eap_softc *sc;
889 int a, d;
890 {
891 eap_write_codec(sc, a, d);
892 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
893 }
894
895
896 int
897 eap_mixer_set_port(addr, cp)
898 void *addr;
899 mixer_ctrl_t *cp;
900 {
901 struct eap_softc *sc = addr;
902 int lval, rval, l, r, la, ra;
903 int l1, r1, l2, r2, m;
904
905 if (cp->dev == EAP_RECORD_SOURCE) {
906 if (cp->type != AUDIO_MIXER_SET)
907 return (EINVAL);
908 m = sc->sc_record_source = cp->un.mask;
909 l1 = l2 = r1 = r2 = 0;
910 if (m & (1 << EAP_VOICE_VOL))
911 l2 |= AK_M_VOICE_L, r2 |= AK_M_VOICE_R;
912 if (m & (1 << EAP_FM_VOL))
913 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
914 if (m & (1 << EAP_CD_VOL))
915 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
916 if (m & (1 << EAP_LINE_VOL))
917 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
918 if (m & (1 << EAP_AUX_VOL))
919 l2 |= AK_M_AUX_L, r2 |= AK_M_AUX_R;
920 if (m & (1 << EAP_MIC_VOL))
921 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
922 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
923 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
924 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
925 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
926 return (0);
927 }
928 if (cp->type != AUDIO_MIXER_VALUE)
929 return (EINVAL);
930 if (cp->un.value.num_channels == 1)
931 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
932 else if (cp->un.value.num_channels == 2) {
933 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
934 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
935 } else
936 return (EINVAL);
937 ra = -1;
938 switch (cp->dev) {
939 case EAP_MASTER_VOL:
940 l = VOL_TO_ATT5(lval);
941 r = VOL_TO_ATT5(rval);
942 la = AK_MASTER_L;
943 ra = AK_MASTER_R;
944 break;
945 case EAP_MIC_VOL:
946 if (cp->un.value.num_channels != 1)
947 return (EINVAL);
948 la = AK_MIC;
949 goto lr;
950 case EAP_VOICE_VOL:
951 la = AK_VOICE_L;
952 ra = AK_VOICE_R;
953 goto lr;
954 case EAP_FM_VOL:
955 la = AK_FM_L;
956 ra = AK_FM_R;
957 goto lr;
958 case EAP_CD_VOL:
959 la = AK_CD_L;
960 ra = AK_CD_R;
961 goto lr;
962 case EAP_LINE_VOL:
963 la = AK_LINE_L;
964 ra = AK_LINE_R;
965 goto lr;
966 case EAP_AUX_VOL:
967 la = AK_AUX_L;
968 ra = AK_AUX_R;
969 lr:
970 l = VOL_TO_GAIN5(lval);
971 r = VOL_TO_GAIN5(rval);
972 break;
973 default:
974 return (EINVAL);
975 }
976 eap_set_mixer(sc, la, l);
977 sc->sc_port[la] = l;
978 if (ra >= 0) {
979 eap_set_mixer(sc, ra, r);
980 sc->sc_port[ra] = r;
981 }
982 return (0);
983 }
984
985 int
986 eap_mixer_get_port(addr, cp)
987 void *addr;
988 mixer_ctrl_t *cp;
989 {
990 struct eap_softc *sc = addr;
991 int la, ra, l, r;
992
993 switch (cp->dev) {
994 case EAP_RECORD_SOURCE:
995 cp->un.mask = sc->sc_record_source;
996 return (0);
997 case EAP_MASTER_VOL:
998 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
999 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1000 break;
1001 case EAP_MIC_VOL:
1002 if (cp->un.value.num_channels != 1)
1003 return (EINVAL);
1004 la = ra = AK_MIC;
1005 goto lr;
1006 case EAP_VOICE_VOL:
1007 la = AK_VOICE_L;
1008 ra = AK_VOICE_R;
1009 goto lr;
1010 case EAP_FM_VOL:
1011 la = AK_FM_L;
1012 ra = AK_FM_R;
1013 goto lr;
1014 case EAP_CD_VOL:
1015 la = AK_CD_L;
1016 ra = AK_CD_R;
1017 goto lr;
1018 case EAP_LINE_VOL:
1019 la = AK_LINE_L;
1020 ra = AK_LINE_R;
1021 goto lr;
1022 case EAP_AUX_VOL:
1023 la = AK_AUX_L;
1024 ra = AK_AUX_R;
1025 lr:
1026 l = GAIN5_TO_VOL(sc->sc_port[la]);
1027 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1028 break;
1029 default:
1030 return (EINVAL);
1031 }
1032 if (cp->un.value.num_channels == 1)
1033 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1034 else if (cp->un.value.num_channels == 2) {
1035 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1036 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1037 }
1038 return (0);
1039 }
1040
1041 int
1042 eap_query_devinfo(addr, dip)
1043 void *addr;
1044 mixer_devinfo_t *dip;
1045 {
1046 switch (dip->index) {
1047 case EAP_MASTER_VOL:
1048 dip->type = AUDIO_MIXER_VALUE;
1049 dip->mixer_class = EAP_OUTPUT_CLASS;
1050 dip->prev = dip->next = AUDIO_MIXER_LAST;
1051 strcpy(dip->label.name, AudioNmaster);
1052 dip->un.v.num_channels = 2;
1053 strcpy(dip->un.v.units.name, AudioNvolume);
1054 return (0);
1055 case EAP_VOICE_VOL:
1056 dip->type = AUDIO_MIXER_VALUE;
1057 dip->mixer_class = EAP_INPUT_CLASS;
1058 dip->prev = AUDIO_MIXER_LAST;
1059 dip->next = AUDIO_MIXER_LAST;
1060 strcpy(dip->label.name, AudioNdac);
1061 dip->un.v.num_channels = 2;
1062 strcpy(dip->un.v.units.name, AudioNvolume);
1063 return (0);
1064 case EAP_FM_VOL:
1065 dip->type = AUDIO_MIXER_VALUE;
1066 dip->mixer_class = EAP_INPUT_CLASS;
1067 dip->prev = AUDIO_MIXER_LAST;
1068 dip->next = AUDIO_MIXER_LAST;
1069 strcpy(dip->label.name, AudioNfmsynth);
1070 dip->un.v.num_channels = 2;
1071 strcpy(dip->un.v.units.name, AudioNvolume);
1072 return (0);
1073 case EAP_CD_VOL:
1074 dip->type = AUDIO_MIXER_VALUE;
1075 dip->mixer_class = EAP_INPUT_CLASS;
1076 dip->prev = AUDIO_MIXER_LAST;
1077 dip->next = AUDIO_MIXER_LAST;
1078 strcpy(dip->label.name, AudioNcd);
1079 dip->un.v.num_channels = 2;
1080 strcpy(dip->un.v.units.name, AudioNvolume);
1081 return (0);
1082 case EAP_LINE_VOL:
1083 dip->type = AUDIO_MIXER_VALUE;
1084 dip->mixer_class = EAP_INPUT_CLASS;
1085 dip->prev = AUDIO_MIXER_LAST;
1086 dip->next = AUDIO_MIXER_LAST;
1087 strcpy(dip->label.name, AudioNline);
1088 dip->un.v.num_channels = 2;
1089 strcpy(dip->un.v.units.name, AudioNvolume);
1090 return (0);
1091 case EAP_AUX_VOL:
1092 dip->type = AUDIO_MIXER_VALUE;
1093 dip->mixer_class = EAP_INPUT_CLASS;
1094 dip->prev = AUDIO_MIXER_LAST;
1095 dip->next = AUDIO_MIXER_LAST;
1096 strcpy(dip->label.name, AudioNaux);
1097 dip->un.v.num_channels = 2;
1098 strcpy(dip->un.v.units.name, AudioNvolume);
1099 return (0);
1100 case EAP_MIC_VOL:
1101 dip->type = AUDIO_MIXER_VALUE;
1102 dip->mixer_class = EAP_INPUT_CLASS;
1103 dip->prev = AUDIO_MIXER_LAST;
1104 dip->next = AUDIO_MIXER_LAST;
1105 strcpy(dip->label.name, AudioNmicrophone);
1106 dip->un.v.num_channels = 1;
1107 strcpy(dip->un.v.units.name, AudioNvolume);
1108 return (0);
1109 case EAP_RECORD_SOURCE:
1110 dip->mixer_class = EAP_RECORD_CLASS;
1111 dip->prev = dip->next = AUDIO_MIXER_LAST;
1112 strcpy(dip->label.name, AudioNsource);
1113 dip->type = AUDIO_MIXER_SET;
1114 dip->un.s.num_mem = 5;
1115 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1116 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1117 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1118 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1119 strcpy(dip->un.s.member[2].label.name, AudioNline);
1120 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1121 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1122 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1123 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1124 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1125 return (0);
1126 case EAP_OUTPUT_CLASS:
1127 dip->type = AUDIO_MIXER_CLASS;
1128 dip->mixer_class = EAP_OUTPUT_CLASS;
1129 dip->next = dip->prev = AUDIO_MIXER_LAST;
1130 strcpy(dip->label.name, AudioCoutputs);
1131 return (0);
1132 case EAP_RECORD_CLASS:
1133 dip->type = AUDIO_MIXER_CLASS;
1134 dip->mixer_class = EAP_RECORD_CLASS;
1135 dip->next = dip->prev = AUDIO_MIXER_LAST;
1136 strcpy(dip->label.name, AudioCrecord);
1137 return (0);
1138 case EAP_INPUT_CLASS:
1139 dip->type = AUDIO_MIXER_CLASS;
1140 dip->mixer_class = EAP_INPUT_CLASS;
1141 dip->next = dip->prev = AUDIO_MIXER_LAST;
1142 strcpy(dip->label.name, AudioCinputs);
1143 return (0);
1144 }
1145 return (ENXIO);
1146 }
1147
1148 void *
1149 eap_malloc(addr, size, pool, flags)
1150 void *addr;
1151 u_long size;
1152 int pool;
1153 int flags;
1154 {
1155 struct eap_softc *sc = addr;
1156 struct eap_dma *p;
1157 int error;
1158
1159 p = malloc(sizeof(*p), pool, flags);
1160 if (!p)
1161 return (0);
1162 error = eap_allocmem(sc, size, 16, p);
1163 if (error) {
1164 free(p, pool);
1165 return (0);
1166 }
1167 p->next = sc->sc_dmas;
1168 sc->sc_dmas = p;
1169 return (KERNADDR(p));
1170 }
1171
1172 void
1173 eap_free(addr, ptr, pool)
1174 void *addr;
1175 void *ptr;
1176 int pool;
1177 {
1178 struct eap_softc *sc = addr;
1179 struct eap_dma **p;
1180
1181 for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1182 if (KERNADDR(*p) == ptr) {
1183 eap_freemem(sc, *p);
1184 *p = (*p)->next;
1185 free(*p, pool);
1186 return;
1187 }
1188 }
1189 }
1190
1191 u_long
1192 eap_round(addr, size)
1193 void *addr;
1194 u_long size;
1195 {
1196 return (size);
1197 }
1198
1199 int
1200 eap_mappage(addr, mem, off, prot)
1201 void *addr;
1202 void *mem;
1203 int off;
1204 int prot;
1205 {
1206 struct eap_softc *sc = addr;
1207 struct eap_dma *p;
1208
1209 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1210 ;
1211 if (!p)
1212 return (-1);
1213 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1214 off, prot, BUS_DMA_WAITOK));
1215 }
1216
1217 int
1218 eap_get_props(addr)
1219 void *addr;
1220 {
1221 return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
1222 }
1223