Home | History | Annotate | Line # | Download | only in pci
eap.c revision 1.6
      1 /*	$NetBSD: eap.c,v 1.6 1998/05/26 13:28:03 augustss Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Author:      Lennart Augustsson <augustss (at) cs.chalmers.se>
      8  *
      9  * Debugging:   Andreas Gustafsson <gson (at) araneus.fi>
     10  *		Charles Hannum     <mycroft (at) netbsd.org>
     11  * Testing:     Chuck Cranor       <chuck (at) maria.wustl.edu>
     12  *              Phil Nelson        <phil (at) cs.wwu.edu>
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *        This product includes software developed by the NetBSD
     25  *        Foundation, Inc. and its contributors.
     26  * 4. Neither the name of The NetBSD Foundation nor the names of its
     27  *    contributors may be used to endorse or promote products derived
     28  *    from this software without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     31  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     32  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     33  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     34  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     35  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     36  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     37  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     38  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     40  * POSSIBILITY OF SUCH DAMAGE.
     41  */
     42 
     43 /*
     44  * Ensoniq AudoiPCI ES1370 + AK4531 driver.
     45  * Data sheets can be found at
     46  * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
     47  * and
     48  * http://206.214.38.151/pdf/4531.pdf
     49  */
     50 
     51 #include <sys/param.h>
     52 #include <sys/systm.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/device.h>
     56 
     57 #include <dev/pci/pcidevs.h>
     58 #include <dev/pci/pcivar.h>
     59 
     60 #include <sys/audioio.h>
     61 #include <dev/audio_if.h>
     62 #include <dev/mulaw.h>
     63 #include <dev/auconv.h>
     64 
     65 #include <machine/bus.h>
     66 
     67 /* NetBSD 1.3 backwards compatibility */
     68 #ifndef BUS_DMA_COHERENT
     69 #define BUS_DMA_COHERENT 0	/* XXX */
     70 struct        cfdriver eap_cd = {
     71       NULL, "eap", DV_DULL
     72 };
     73 #endif
     74 
     75 #define	PCI_CBIO		0x10
     76 
     77 #define EAP_ICSC		0x00    /* interrupt / chip select control */
     78 #define  EAP_SERR_DISABLE	0x00000001
     79 #define  EAP_CDC_EN		0x00000002
     80 #define  EAP_JYSTK_EN		0x00000004
     81 #define  EAP_UART_EN		0x00000008
     82 #define  EAP_ADC_EN		0x00000010
     83 #define  EAP_DAC2_EN		0x00000020
     84 #define  EAP_DAC1_EN		0x00000040
     85 #define  EAP_BREQ		0x00000080
     86 #define  EAP_XTCL0		0x00000100
     87 #define  EAP_M_CB		0x00000200
     88 #define  EAP_CCB_INTRM		0x00000400
     89 #define  EAP_DAC_SYNC		0x00000800
     90 #define  EAP_WTSRSEL		0x00003000
     91 #define   EAP_WTSRSEL_5		0x00000000
     92 #define   EAP_WTSRSEL_11	0x00001000
     93 #define   EAP_WTSRSEL_22	0x00002000
     94 #define   EAP_WTSRSEL_44	0x00003000
     95 #define  EAP_M_SBB		0x00004000
     96 #define  EAP_MSFMTSEL		0x00008000
     97 #define  EAP_SET_PCLKDIV(n)	(((n)&0x1fff)<<16)
     98 #define  EAP_GET_PCLKDIV(n)	(((n)>>16)&0x1fff)
     99 #define  EAP_PCLKBITS		0x1fff0000
    100 #define  EAP_XTCL1		0x40000000
    101 #define  EAP_ADC_STOP		0x80000000
    102 
    103 #define EAP_ICSS		0x04	/* interrupt / chip select status */
    104 #define  EAP_I_ADC		0x00000001
    105 #define  EAP_I_DAC2		0x00000002
    106 #define  EAP_I_DAC1		0x00000004
    107 #define  EAP_I_UART		0x00000008
    108 #define  EAP_I_MCCB		0x00000010
    109 #define  EAP_VC			0x00000060
    110 #define  EAP_CWRIP		0x00000100
    111 #define  EAP_CBUSY		0x00000200
    112 #define  EAP_CSTAT		0x00000400
    113 #define  EAP_INTR		0x80000000
    114 
    115 #define EAP_UART_DATA		0x08
    116 #define EAP_UART_STATUS		0x09
    117 #define EAP_UART_CONTROL	0x09
    118 #define EAP_MEMPAGE		0x0c
    119 #define EAP_CODEC		0x10
    120 #define  EAP_SET_CODEC(a,d)	(((a)<<8) | (d))
    121 
    122 #define EAP_SIC			0x20
    123 #define  EAP_P1_S_MB		0x00000001
    124 #define  EAP_P1_S_EB		0x00000002
    125 #define  EAP_P2_S_MB		0x00000004
    126 #define  EAP_P2_S_EB		0x00000008
    127 #define  EAP_R1_S_MB		0x00000010
    128 #define  EAP_R1_S_EB		0x00000020
    129 #define  EAP_R1P2_BITS		0x0000003c
    130 #define  EAP_P2_DAC_SEN		0x00000040
    131 #define  EAP_P1_SCT_RLD		0x00000080
    132 #define  EAP_P1_INTR_EN		0x00000100
    133 #define  EAP_P2_INTR_EN		0x00000200
    134 #define  EAP_R1_INTR_EN		0x00000400
    135 #define  EAP_P1_PAUSE		0x00000800
    136 #define  EAP_P2_PAUSE		0x00001000
    137 #define  EAP_P1_LOOP_SEL	0x00002000
    138 #define  EAP_P2_LOOP_SEL	0x00004000
    139 #define  EAP_R1_LOOP_SEL	0x00008000
    140 #define  EAP_SET_P2_ST_INC(i)	((i) << 16)
    141 #define  EAP_SET_P2_END_INC(i)	((i) << 19)
    142 #define  EAP_INC_BITS		0x003f0000
    143 
    144 #define EAP_DAC1_CSR		0x24
    145 #define EAP_DAC2_CSR		0x28
    146 #define EAP_ADC_CSR		0x2c
    147 #define  EAP_GET_CURRSAMP(r)	((r) >> 16)
    148 
    149 #define EAP_DAC_PAGE		0xc
    150 #define EAP_ADC_PAGE		0xd
    151 #define EAP_UART_PAGE1		0xe
    152 #define EAP_UART_PAGE2		0xf
    153 
    154 #define EAP_DAC1_ADDR		0x30
    155 #define EAP_DAC1_SIZE		0x34
    156 #define EAP_DAC2_ADDR		0x38
    157 #define EAP_DAC2_SIZE		0x3c
    158 #define EAP_ADC_ADDR		0x30
    159 #define EAP_ADC_SIZE		0x34
    160 #define  EAP_SET_SIZE(c,s)	(((c)<<16) | (s))
    161 
    162 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
    163 
    164 /* AK4531 registers */
    165 #define AK_MASTER_L		0x00
    166 #define AK_MASTER_R		0x01
    167 #define AK_VOICE_L		0x02
    168 #define AK_VOICE_R		0x03
    169 #define AK_FM_L			0x04
    170 #define AK_FM_R			0x05
    171 #define AK_CD_L			0x06
    172 #define AK_CD_R			0x07
    173 #define AK_LINE_L		0x08
    174 #define AK_LINE_R		0x09
    175 #define AK_AUX_L		0x0a
    176 #define AK_AUX_R		0x0b
    177 #define AK_MONO1		0x0c
    178 #define AK_MONO2		0x0d
    179 #define AK_MIC			0x0e
    180 #define AK_MONO			0x0f
    181 #define AK_OUT_MIXER1		0x10
    182 #define  AK_M_FM_L		0x40
    183 #define  AK_M_FM_R		0x20
    184 #define  AK_M_LINE_L		0x10
    185 #define  AK_M_LINE_R		0x08
    186 #define  AK_M_CD_L		0x04
    187 #define  AK_M_CD_R		0x02
    188 #define  AK_M_MIC		0x01
    189 #define AK_OUT_MIXER2		0x11
    190 #define  AK_M_AUX_L		0x20
    191 #define  AK_M_AUX_R		0x10
    192 #define  AK_M_VOICE_L		0x08
    193 #define  AK_M_VOICE_R		0x04
    194 #define  AK_M_MONO2		0x02
    195 #define  AK_M_MONO1		0x01
    196 #define AK_IN_MIXER1_L		0x12
    197 #define AK_IN_MIXER1_R		0x13
    198 #define AK_IN_MIXER2_L		0x14
    199 #define AK_IN_MIXER2_R		0x15
    200 #define  AK_M_TMIC		0x80
    201 #define  AK_M_TMONO1		0x40
    202 #define  AK_M_TMONO2		0x20
    203 #define  AK_M2_AUX_L		0x10
    204 #define  AK_M2_AUX_R		0x08
    205 #define  AK_M_VOICE		0x04
    206 #define  AK_M2_MONO2		0x02
    207 #define  AK_M2_MONO1		0x01
    208 #define AK_RESET		0x16
    209 #define  AK_PD			0x02
    210 #define  AK_NRST		0x01
    211 #define AK_CS			0x17
    212 #define AK_ADSEL		0x18
    213 #define AK_MGAIN		0x19
    214 
    215 #define AK_NPORTS 16
    216 
    217 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
    218 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
    219 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
    220 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
    221 #define VOL_0DB 200
    222 
    223 #define EAP_MASTER_VOL		0
    224 #define EAP_VOICE_VOL		1
    225 #define EAP_FM_VOL		2
    226 #define EAP_CD_VOL		3
    227 #define EAP_LINE_VOL		4
    228 #define EAP_AUX_VOL		5
    229 #define EAP_MIC_VOL		6
    230 #define	EAP_RECORD_SOURCE 	7
    231 #define EAP_OUTPUT_CLASS	8
    232 #define EAP_RECORD_CLASS	9
    233 #define EAP_INPUT_CLASS		10
    234 
    235 #define EAP_NDEVS		11
    236 
    237 
    238 #ifdef AUDIO_DEBUG
    239 #define DPRINTF(x)	if (eapdebug) printf x
    240 #define DPRINTFN(n,x)	if (eapdebug>(n)) printf x
    241 int	eapdebug = 0;
    242 #else
    243 #define DPRINTF(x)
    244 #define DPRINTFN(n,x)
    245 #endif
    246 
    247 #ifdef __BROKEN_INDIRECT_CONFIG
    248 int	eap_match __P((struct device *, void *, void *));
    249 #else
    250 int	eap_match __P((struct device *, struct cfdata *, void *));
    251 #endif
    252 void	eap_attach __P((struct device *, struct device *, void *));
    253 int	eap_intr __P((void *));
    254 
    255 struct eap_dma {
    256 	bus_dmamap_t map;
    257         caddr_t addr;
    258         bus_dma_segment_t segs[1];
    259         int nsegs;
    260         size_t size;
    261         struct eap_dma *next;
    262 };
    263 #define DMAADDR(map) ((map)->segs[0].ds_addr)
    264 #define KERNADDR(map) ((void *)((map)->addr))
    265 
    266 struct eap_softc {
    267 	struct device sc_dev;		/* base device */
    268 	void *sc_ih;			/* interrupt vectoring */
    269 	bus_space_tag_t iot;
    270 	bus_space_handle_t ioh;
    271 	bus_dma_tag_t sc_dmatag;	/* DMA tag */
    272 
    273         struct eap_dma *sc_dmas;
    274 
    275 	void	(*sc_pintr)(void *);	/* dma completion intr handler */
    276 	void	*sc_parg;		/* arg for sc_intr() */
    277 	char	sc_prun;
    278 
    279 	void	(*sc_rintr)(void *);	/* dma completion intr handler */
    280 	void	*sc_rarg;		/* arg for sc_intr() */
    281 	char	sc_rrun;
    282 
    283 	int	sc_sampsize;		/* bytes / sample */
    284 
    285 	u_char	sc_port[AK_NPORTS];	/* mirror of the hardware setting */
    286 	u_int	sc_record_source;	/* recording source mask */
    287 };
    288 
    289 int	eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
    290 int	eap_freemem __P((struct eap_softc *, struct eap_dma *));
    291 
    292 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
    293 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
    294 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
    295 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
    296 
    297 struct cfattach eap_ca = {
    298 	sizeof(struct eap_softc), eap_match, eap_attach
    299 };
    300 
    301 int	eap_open __P((void *, int));
    302 void	eap_close __P((void *));
    303 int	eap_query_encoding __P((void *, struct audio_encoding *));
    304 int	eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    305 int	eap_round_blocksize __P((void *, int));
    306 int	eap_dma_init_output __P((void *, void *, int));
    307 int	eap_dma_init_input __P((void *, void *, int));
    308 int	eap_dma_output __P((void *, void *, int, void (*)(void *), void*));
    309 int	eap_dma_input __P((void *, void *, int, void (*)(void *), void*));
    310 int	eap_halt_in_dma __P((void *));
    311 int	eap_halt_out_dma __P((void *));
    312 int	eap_getdev __P((void *, struct audio_device *));
    313 int	eap_mixer_set_port __P((void *, mixer_ctrl_t *));
    314 int	eap_mixer_get_port __P((void *, mixer_ctrl_t *));
    315 int	eap_query_devinfo __P((void *, mixer_devinfo_t *));
    316 void   *eap_malloc __P((void *, u_long, int, int));
    317 void	eap_free __P((void *, void *, int));
    318 u_long	eap_round __P((void *, u_long));
    319 int	eap_mappage __P((void *, void *, int, int));
    320 int	eap_get_props __P((void *));
    321 void	eap_write_codec __P((struct eap_softc *sc, int a, int d));
    322 void	eap_set_mixer __P((struct eap_softc *sc, int a, int d));
    323 
    324 struct audio_hw_if eap_hw_if = {
    325 	eap_open,
    326 	eap_close,
    327 	NULL,
    328 	eap_query_encoding,
    329 	eap_set_params,
    330 	eap_round_blocksize,
    331 	NULL,
    332 	eap_dma_init_output,
    333 	eap_dma_init_input,
    334 	eap_dma_output,
    335 	eap_dma_input,
    336 	eap_halt_out_dma,
    337 	eap_halt_in_dma,
    338 	NULL,
    339 	eap_getdev,
    340 	NULL,
    341 	eap_mixer_set_port,
    342 	eap_mixer_get_port,
    343 	eap_query_devinfo,
    344 	eap_malloc,
    345 	eap_free,
    346 	eap_round,
    347 	eap_mappage,
    348 	eap_get_props,
    349 };
    350 
    351 struct audio_device eap_device = {
    352 	"Ensoniq AudioPCI",
    353 	"",
    354 	"eap"
    355 };
    356 
    357 int
    358 eap_match(parent, match, aux)
    359 	struct device *parent;
    360 #ifdef __BROKEN_INDIRECT_CONFIG
    361 	void *match;
    362 #else
    363 	struct cfdata *match;
    364 #endif
    365 	void *aux;
    366 {
    367 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
    368 
    369 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
    370 		return (0);
    371 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
    372 		return (0);
    373 
    374 	return (1);
    375 }
    376 
    377 void
    378 eap_write_codec(sc, a, d)
    379 	struct eap_softc *sc;
    380 	int a, d;
    381 {
    382 	int icss;
    383 
    384 	do {
    385 	        icss = EREAD4(sc, EAP_ICSS);
    386 		DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
    387 	} while(icss & EAP_CWRIP);
    388 	EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
    389 }
    390 
    391 void
    392 eap_attach(parent, self, aux)
    393 	struct device *parent;
    394 	struct device *self;
    395 	void *aux;
    396 {
    397 	struct eap_softc *sc = (struct eap_softc *)self;
    398 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    399 	pci_chipset_tag_t pc = pa->pa_pc;
    400 	char const *intrstr;
    401 	pci_intr_handle_t ih;
    402 	pcireg_t csr;
    403 	char devinfo[256];
    404 	mixer_ctrl_t ctl;
    405 
    406 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
    407 	printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
    408 
    409 	/* Map I/O register */
    410 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
    411 	      &sc->iot, &sc->ioh, NULL, NULL)) {
    412 		printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
    413 		return;
    414 	}
    415 
    416 	sc->sc_dmatag = pa->pa_dmat;
    417 
    418 	/* Enable the device. */
    419 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    420 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    421 		       csr | PCI_COMMAND_MASTER_ENABLE);
    422 
    423 	/* Map and establish the interrupt. */
    424 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    425 	    pa->pa_intrline, &ih)) {
    426 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    427 		return;
    428 	}
    429 	intrstr = pci_intr_string(pc, ih);
    430 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
    431 	if (sc->sc_ih == NULL) {
    432 		printf("%s: couldn't establish interrupt",
    433 		    sc->sc_dev.dv_xname);
    434 		if (intrstr != NULL)
    435 			printf(" at %s", intrstr);
    436 		printf("\n");
    437 		return;
    438 	}
    439 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    440 
    441 	/* Enable interrupts and looping mode. */
    442         EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
    443         EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
    444 
    445 	eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
    446 	eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST);	/* normal operation */
    447 	eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
    448 	/* Enable all relevant mixer switches. */
    449 	eap_write_codec(sc, AK_OUT_MIXER1,
    450 			AK_M_FM_L | AK_M_FM_R |
    451 			AK_M_LINE_L | AK_M_LINE_R |
    452 			AK_M_CD_L | AK_M_CD_R);
    453 	eap_write_codec(sc, AK_OUT_MIXER2,
    454 			AK_M_AUX_L | AK_M_AUX_R |
    455 			AK_M_VOICE_L | AK_M_VOICE_R |
    456 			AK_M_MONO2 | AK_M_MONO1);
    457 	ctl.type = AUDIO_MIXER_VALUE;
    458 	ctl.un.value.num_channels = 1;
    459 	for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
    460 		ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
    461 		eap_mixer_set_port(sc, &ctl);
    462 	}
    463 	ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
    464 	eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
    465 	ctl.dev = EAP_RECORD_SOURCE;
    466 	ctl.type = AUDIO_MIXER_SET;
    467 	ctl.un.mask = 1 << EAP_MIC_VOL;
    468 	eap_mixer_set_port(sc, &ctl);
    469 
    470         audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
    471 }
    472 
    473 int
    474 eap_intr(p)
    475 	void *p;
    476 {
    477 	struct eap_softc *sc = p;
    478 	u_int32_t intr, sic;
    479 
    480         intr = EREAD4(sc, EAP_ICSS);
    481         if (!(intr & EAP_INTR))
    482         	return (0);
    483 	sic = EREAD4(sc, EAP_SIC);
    484 	DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
    485         if (intr & EAP_I_ADC) {
    486         	/*
    487                  * XXX This is a hack!
    488                  * The EAP chip sometimes generates the recording interrupt
    489                  * while it is still transferring the data.  To make sure
    490                  * it has all arrived we busy wait until the count is right.
    491                  * The transfer we are waiting for is 8 longwords.
    492                  */
    493         	int s, nw, n;
    494                 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
    495                 s = EREAD4(sc, EAP_ADC_CSR);
    496                 nw = ((s & 0xffff) + 1) / 4; /* # of words in DMA */
    497                 n = 0;
    498                 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
    499                 	delay(10);
    500                 	if (++n > 100) {
    501                 		printf("eapintr: dma fix timeout");
    502                                 break;
    503                         }
    504                 }
    505                 /* Continue with normal interrupt handling. */
    506 		EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
    507 		EWRITE4(sc, EAP_SIC, sic);
    508                 if (sc->sc_rintr)
    509 	        	sc->sc_rintr(sc->sc_rarg);
    510         }
    511         if (intr & EAP_I_DAC2) {
    512 		EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
    513 		EWRITE4(sc, EAP_SIC, sic);
    514                 if (sc->sc_pintr)
    515 	        	sc->sc_pintr(sc->sc_parg);
    516         }
    517 	return (1);
    518 }
    519 
    520 int
    521 eap_allocmem(sc, size, align, p)
    522 	struct eap_softc *sc;
    523 	size_t size;
    524 	size_t align;
    525         struct eap_dma *p;
    526 {
    527 	int error;
    528 
    529 	p->size = size;
    530 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    531 				 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
    532 				 &p->nsegs, BUS_DMA_NOWAIT);
    533 	if (error)
    534 		return (error);
    535 
    536 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    537 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    538 	if (error)
    539 		goto free;
    540 
    541 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    542 				  0, BUS_DMA_NOWAIT, &p->map);
    543 	if (error)
    544 		goto unmap;
    545 
    546 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    547 				BUS_DMA_NOWAIT);
    548 	if (error)
    549 		goto destroy;
    550 	return (0);
    551 
    552 destroy:
    553 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    554 unmap:
    555 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    556 free:
    557 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    558 	return (error);
    559 }
    560 
    561 int
    562 eap_freemem(sc, p)
    563 	struct eap_softc *sc;
    564         struct eap_dma *p;
    565 {
    566 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    567 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    568 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    569 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    570 	return (0);
    571 }
    572 
    573 int
    574 eap_open(addr, flags)
    575 	void *addr;
    576 	int flags;
    577 {
    578 	struct eap_softc *sc = addr;
    579 
    580         DPRINTF(("eap_open: sc=%p\n", sc));
    581 
    582         sc->sc_pintr = 0;
    583         sc->sc_rintr = 0;
    584 
    585         return (0);
    586 }
    587 
    588 /*
    589  * Close function is called at splaudio().
    590  */
    591 void
    592 eap_close(addr)
    593 	void *addr;
    594 {
    595 	struct eap_softc *sc = addr;
    596 
    597         eap_halt_in_dma(sc);
    598         eap_halt_out_dma(sc);
    599 
    600         sc->sc_pintr = 0;
    601         sc->sc_rintr = 0;
    602 }
    603 
    604 int
    605 eap_query_encoding(addr, fp)
    606 	void *addr;
    607 	struct audio_encoding *fp;
    608 {
    609 	switch (fp->index) {
    610 	case 0:
    611 		strcpy(fp->name, AudioEulinear);
    612 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    613 		fp->precision = 8;
    614 		fp->flags = 0;
    615 		return (0);
    616 	case 1:
    617 		strcpy(fp->name, AudioEmulaw);
    618 		fp->encoding = AUDIO_ENCODING_ULAW;
    619 		fp->precision = 8;
    620 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    621 		return (0);
    622 	case 2:
    623 		strcpy(fp->name, AudioEalaw);
    624 		fp->encoding = AUDIO_ENCODING_ALAW;
    625 		fp->precision = 8;
    626 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    627 		return (0);
    628 	case 3:
    629 		strcpy(fp->name, AudioEslinear);
    630 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    631 		fp->precision = 8;
    632 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    633 		return (0);
    634         case 4:
    635 		strcpy(fp->name, AudioEslinear_le);
    636 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    637 		fp->precision = 16;
    638 		fp->flags = 0;
    639 		return (0);
    640 	case 5:
    641 		strcpy(fp->name, AudioEulinear_le);
    642 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    643 		fp->precision = 16;
    644 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    645 		return (0);
    646 	case 6:
    647 		strcpy(fp->name, AudioEslinear_be);
    648 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    649 		fp->precision = 16;
    650 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    651 		return (0);
    652 	case 7:
    653 		strcpy(fp->name, AudioEulinear_be);
    654 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    655 		fp->precision = 16;
    656 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    657 		return (0);
    658 	default:
    659 		return (EINVAL);
    660 	}
    661 }
    662 
    663 int
    664 eap_set_params(addr, setmode, usemode, p, r)
    665 	void *addr;
    666 	int setmode, usemode;
    667 	struct audio_params *p, *r;
    668 {
    669 	struct eap_softc *sc = addr;
    670 	void (*pswcode) __P((void *, u_char *buf, int cnt));
    671 	void (*rswcode) __P((void *, u_char *buf, int cnt));
    672         u_int32_t mode, div;
    673 
    674 
    675         pswcode = rswcode = 0;
    676         switch (p->encoding) {
    677         case AUDIO_ENCODING_SLINEAR_BE:
    678         	if (p->precision == 16)
    679                 	rswcode = pswcode = swap_bytes;
    680 		else
    681 			pswcode = rswcode = change_sign8;
    682 		break;
    683         case AUDIO_ENCODING_SLINEAR_LE:
    684         	if (p->precision != 16)
    685 			pswcode = rswcode = change_sign8;
    686         	break;
    687         case AUDIO_ENCODING_ULINEAR_BE:
    688         	if (p->precision == 16) {
    689 			pswcode = swap_bytes_change_sign16;
    690 			rswcode = change_sign16_swap_bytes;
    691 		}
    692 		break;
    693         case AUDIO_ENCODING_ULINEAR_LE:
    694         	if (p->precision == 16)
    695 			pswcode = rswcode = change_sign16;
    696         	break;
    697         case AUDIO_ENCODING_ULAW:
    698         	pswcode = mulaw_to_ulinear8;
    699                 rswcode = ulinear8_to_mulaw;
    700                 break;
    701         case AUDIO_ENCODING_ALAW:
    702                 pswcode = alaw_to_ulinear8;
    703                 rswcode = ulinear8_to_alaw;
    704                 break;
    705         default:
    706         	return (EINVAL);
    707         }
    708 	if (p->precision == 16)
    709 		mode = EAP_P2_S_EB | EAP_R1_S_EB;
    710 	else
    711 		mode = 0;
    712         if (p->channels == 2)
    713         	mode |= EAP_P2_S_MB | EAP_R1_S_MB;
    714 	else if (p->channels != 1)
    715 		return (EINVAL);
    716         if (p->sample_rate < 4000 || p->sample_rate > 50000)
    717         	return (EINVAL);
    718 
    719 	sc->sc_sampsize = p->precision / 8 * p->channels; /* bytes / sample */
    720         p->sw_code = pswcode;
    721         r->sw_code = rswcode;
    722 
    723         /* Set the encoding */
    724         mode |= EREAD4(sc, EAP_SIC) & ~(EAP_R1P2_BITS | EAP_INC_BITS);
    725 	mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(p->precision / 8);
    726         EWRITE4(sc, EAP_SIC, mode);
    727 	DPRINTFN(2, ("eap_set_params: set SIC = 0x%08x\n", mode));
    728 
    729         /* Set the speed */
    730 	DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
    731 		     EREAD4(sc, EAP_ICSC)));
    732 	div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
    733         div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / p->sample_rate - 2);
    734 	div |= EAP_CCB_INTRM;
    735         EWRITE4(sc, EAP_ICSC, div);
    736 	DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
    737 
    738         return (0);
    739 }
    740 
    741 int
    742 eap_round_blocksize(addr, blk)
    743 	void *addr;
    744 	int blk;
    745 {
    746 	return (blk & -32);	/* keep good alignment */
    747 }
    748 
    749 int
    750 eap_dma_init_input(addr, buf, cc)
    751 	void *addr;
    752 	void *buf;
    753 	int cc;
    754 {
    755 	struct eap_softc *sc = addr;
    756 	struct eap_dma *p;
    757 
    758 	DPRINTF(("eap_dma_init_input: dma start loop input addr=%p cc=%d\n",
    759 		 buf, cc));
    760         for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
    761 		;
    762 	if (!p) {
    763 		printf("eap_dma_init_input: bad addr %p\n", buf);
    764 		return (EINVAL);
    765 	}
    766 	EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
    767 	EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
    768 	EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
    769 	DPRINTF(("eap_dma_init_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
    770 		 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
    771 	return (0);
    772 }
    773 
    774 int
    775 eap_dma_init_output(addr, buf, cc)
    776 	void *addr;
    777 	void *buf;
    778 	int cc;
    779 {
    780 	struct eap_softc *sc = addr;
    781 	struct eap_dma *p;
    782 
    783 	DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc));
    784         for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
    785 		;
    786 	if (!p) {
    787 		printf("eap_dma_init_output: bad addr %p\n", buf);
    788 		return (EINVAL);
    789 	}
    790 	EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
    791 	EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
    792 	EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
    793 	DPRINTF(("eap_dma_init_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
    794 		 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
    795 	return (0);
    796 }
    797 
    798 int
    799 eap_dma_output(addr, p, cc, intr, arg)
    800 	void *addr;
    801 	void *p;
    802 	int cc;
    803 	void (*intr) __P((void *));
    804 	void *arg;
    805 {
    806 	struct eap_softc *sc = addr;
    807 	u_int32_t mode;
    808 
    809 	DPRINTFN(sc->sc_prun ? 5 : 1,
    810                  ("eap_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n",
    811                   addr, p, cc, intr, arg));
    812 	sc->sc_pintr = intr;
    813 	sc->sc_parg = arg;
    814 	if (!sc->sc_prun) {
    815 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
    816 	        if (sc->sc_sampsize == 0) {
    817         		printf("eap_dma_output: sampsize == 0\n");
    818                         return EINVAL;
    819                 }
    820 #endif
    821 		EWRITE2(sc, EAP_DAC2_CSR, cc / sc->sc_sampsize - 1);
    822 		DPRINTFN(1, ("eap_dma_output: set DAC2_CSR = %d\n",
    823 			     cc / sc->sc_sampsize - 1));
    824 		DPRINTFN(1, ("eap_dma_output: old ICSC = 0x%08x\n",
    825 			     EREAD4(sc, EAP_ICSC)));
    826 		mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
    827 		EWRITE4(sc, EAP_ICSC, mode);
    828 		mode |= EAP_DAC2_EN;
    829 		EWRITE4(sc, EAP_ICSC, mode);
    830 		DPRINTFN(1, ("eap_dma_output: set ICSC = 0x%08x\n", mode));
    831 		sc->sc_prun = 1;
    832 	}
    833         return (0);
    834 }
    835 
    836 int
    837 eap_dma_input(addr, p, cc, intr, arg)
    838 	void *addr;
    839 	void *p;
    840 	int cc;
    841 	void (*intr) __P((void *));
    842 	void *arg;
    843 {
    844 	struct eap_softc *sc = addr;
    845 	u_int32_t mode;
    846 
    847 	DPRINTFN(1, ("eap_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
    848 		     addr, p, cc, intr, arg));
    849 	sc->sc_rintr = intr;
    850 	sc->sc_rarg = arg;
    851 	if (!sc->sc_rrun) {
    852 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
    853 	        if (sc->sc_sampsize == 0) {
    854         		printf("eap_dma_input: sampsize == 0\n");
    855                         return EINVAL;
    856                 }
    857 #endif
    858 		EWRITE2(sc, EAP_ADC_CSR, cc / sc->sc_sampsize - 1);
    859 		mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
    860 		EWRITE4(sc, EAP_ICSC, mode);
    861 		mode |= EAP_ADC_EN;
    862 		EWRITE4(sc, EAP_ICSC, mode);
    863 		DPRINTFN(1, ("eap_dma_input: set ICSC = 0x%08x\n", mode));
    864 		sc->sc_rrun = 1;
    865 	}
    866         return (0);
    867 }
    868 
    869 int
    870 eap_halt_out_dma(addr)
    871 	void *addr;
    872 {
    873 	struct eap_softc *sc = addr;
    874 	u_int32_t mode;
    875 
    876         DPRINTF(("eap: eap_halt_out_dma\n"));
    877 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
    878 	EWRITE4(sc, EAP_ICSC, mode);
    879 	sc->sc_prun = 0;
    880         return (0);
    881 }
    882 
    883 int
    884 eap_halt_in_dma(addr)
    885 	void *addr;
    886 {
    887 	struct eap_softc *sc = addr;
    888 	u_int32_t mode;
    889 
    890         DPRINTF(("eap: eap_halt_in_dma\n"));
    891 	mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
    892 	EWRITE4(sc, EAP_ICSC, mode);
    893 	sc->sc_rrun = 0;
    894         return (0);
    895 }
    896 
    897 int
    898 eap_getdev(addr, retp)
    899 	void *addr;
    900         struct audio_device *retp;
    901 {
    902 	*retp = eap_device;
    903         return (0);
    904 }
    905 
    906 void
    907 eap_set_mixer(sc, a, d)
    908 	struct eap_softc *sc;
    909         int a, d;
    910 {
    911 	eap_write_codec(sc, a, d);
    912         DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
    913 }
    914 
    915 
    916 int
    917 eap_mixer_set_port(addr, cp)
    918 	void *addr;
    919 	mixer_ctrl_t *cp;
    920 {
    921 	struct eap_softc *sc = addr;
    922 	int lval, rval, l, r, la, ra;
    923 	int l1, r1, l2, r2, m;
    924 
    925 	if (cp->dev == EAP_RECORD_SOURCE) {
    926 		if (cp->type != AUDIO_MIXER_SET)
    927 			return (EINVAL);
    928 		m = sc->sc_record_source = cp->un.mask;
    929 		l1 = l2 = r1 = r2 = 0;
    930 		if (m & (1 << EAP_VOICE_VOL))
    931 			l2 |= AK_M_VOICE_L, r2 |= AK_M_VOICE_R;
    932 		if (m & (1 << EAP_FM_VOL))
    933 			l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
    934 		if (m & (1 << EAP_CD_VOL))
    935 			l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
    936 		if (m & (1 << EAP_LINE_VOL))
    937 			l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
    938 		if (m & (1 << EAP_AUX_VOL))
    939 			l2 |= AK_M_AUX_L, r2 |= AK_M_AUX_R;
    940 		if (m & (1 << EAP_MIC_VOL))
    941 			l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
    942 		eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
    943 		eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
    944 		eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
    945 		eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
    946 		return (0);
    947 	}
    948 	if (cp->type != AUDIO_MIXER_VALUE)
    949 		return (EINVAL);
    950 	if (cp->un.value.num_channels == 1)
    951 		lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
    952 	else if (cp->un.value.num_channels == 2) {
    953 		lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
    954 		rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
    955 	} else
    956 		return (EINVAL);
    957 	ra = -1;
    958 	switch (cp->dev) {
    959 	case EAP_MASTER_VOL:
    960 		l = VOL_TO_ATT5(lval);
    961 		r = VOL_TO_ATT5(rval);
    962 		la = AK_MASTER_L;
    963 		ra = AK_MASTER_R;
    964 		break;
    965 	case EAP_MIC_VOL:
    966 		if (cp->un.value.num_channels != 1)
    967 			return (EINVAL);
    968 		la = AK_MIC;
    969 		goto lr;
    970 	case EAP_VOICE_VOL:
    971 		la = AK_VOICE_L;
    972 		ra = AK_VOICE_R;
    973 		goto lr;
    974 	case EAP_FM_VOL:
    975 		la = AK_FM_L;
    976 		ra = AK_FM_R;
    977 		goto lr;
    978 	case EAP_CD_VOL:
    979 		la = AK_CD_L;
    980 		ra = AK_CD_R;
    981 		goto lr;
    982 	case EAP_LINE_VOL:
    983 		la = AK_LINE_L;
    984 		ra = AK_LINE_R;
    985 		goto lr;
    986 	case EAP_AUX_VOL:
    987 		la = AK_AUX_L;
    988 		ra = AK_AUX_R;
    989 	lr:
    990 		l = VOL_TO_GAIN5(lval);
    991 		r = VOL_TO_GAIN5(rval);
    992 		break;
    993 	default:
    994 		return (EINVAL);
    995 	}
    996 	eap_set_mixer(sc, la, l);
    997 	sc->sc_port[la] = l;
    998 	if (ra >= 0) {
    999 		eap_set_mixer(sc, ra, r);
   1000 		sc->sc_port[ra] = r;
   1001 	}
   1002 	return (0);
   1003 }
   1004 
   1005 int
   1006 eap_mixer_get_port(addr, cp)
   1007 	void *addr;
   1008 	mixer_ctrl_t *cp;
   1009 {
   1010 	struct eap_softc *sc = addr;
   1011 	int la, ra, l, r;
   1012 
   1013 	switch (cp->dev) {
   1014 	case EAP_RECORD_SOURCE:
   1015 		cp->un.mask = sc->sc_record_source;
   1016 		return (0);
   1017 	case EAP_MASTER_VOL:
   1018 		l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
   1019 		r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
   1020 		break;
   1021 	case EAP_MIC_VOL:
   1022 		if (cp->un.value.num_channels != 1)
   1023 			return (EINVAL);
   1024 		la = ra = AK_MIC;
   1025 		goto lr;
   1026 	case EAP_VOICE_VOL:
   1027 		la = AK_VOICE_L;
   1028 		ra = AK_VOICE_R;
   1029 		goto lr;
   1030 	case EAP_FM_VOL:
   1031 		la = AK_FM_L;
   1032 		ra = AK_FM_R;
   1033 		goto lr;
   1034 	case EAP_CD_VOL:
   1035 		la = AK_CD_L;
   1036 		ra = AK_CD_R;
   1037 		goto lr;
   1038 	case EAP_LINE_VOL:
   1039 		la = AK_LINE_L;
   1040 		ra = AK_LINE_R;
   1041 		goto lr;
   1042 	case EAP_AUX_VOL:
   1043 		la = AK_AUX_L;
   1044 		ra = AK_AUX_R;
   1045 	lr:
   1046 		l = GAIN5_TO_VOL(sc->sc_port[la]);
   1047 		r = GAIN5_TO_VOL(sc->sc_port[ra]);
   1048 		break;
   1049 	default:
   1050 		return (EINVAL);
   1051 	}
   1052 	if (cp->un.value.num_channels == 1)
   1053 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
   1054 	else if (cp->un.value.num_channels == 2) {
   1055 		cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]  = l;
   1056 		cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   1057 	}
   1058 	return (0);
   1059 }
   1060 
   1061 int
   1062 eap_query_devinfo(addr, dip)
   1063 	void *addr;
   1064 	mixer_devinfo_t *dip;
   1065 {
   1066 	switch (dip->index) {
   1067 	case EAP_MASTER_VOL:
   1068 		dip->type = AUDIO_MIXER_VALUE;
   1069 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1070 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1071 		strcpy(dip->label.name, AudioNmaster);
   1072 		dip->un.v.num_channels = 2;
   1073 		strcpy(dip->un.v.units.name, AudioNvolume);
   1074 		return (0);
   1075 	case EAP_VOICE_VOL:
   1076 		dip->type = AUDIO_MIXER_VALUE;
   1077 		dip->mixer_class = EAP_INPUT_CLASS;
   1078 		dip->prev = AUDIO_MIXER_LAST;
   1079 		dip->next = AUDIO_MIXER_LAST;
   1080 		strcpy(dip->label.name, AudioNdac);
   1081 		dip->un.v.num_channels = 2;
   1082 		strcpy(dip->un.v.units.name, AudioNvolume);
   1083 		return (0);
   1084 	case EAP_FM_VOL:
   1085 		dip->type = AUDIO_MIXER_VALUE;
   1086 		dip->mixer_class = EAP_INPUT_CLASS;
   1087 		dip->prev = AUDIO_MIXER_LAST;
   1088 		dip->next = AUDIO_MIXER_LAST;
   1089 		strcpy(dip->label.name, AudioNfmsynth);
   1090 		dip->un.v.num_channels = 2;
   1091 		strcpy(dip->un.v.units.name, AudioNvolume);
   1092 		return (0);
   1093 	case EAP_CD_VOL:
   1094 		dip->type = AUDIO_MIXER_VALUE;
   1095 		dip->mixer_class = EAP_INPUT_CLASS;
   1096 		dip->prev = AUDIO_MIXER_LAST;
   1097 		dip->next = AUDIO_MIXER_LAST;
   1098 		strcpy(dip->label.name, AudioNcd);
   1099 		dip->un.v.num_channels = 2;
   1100 		strcpy(dip->un.v.units.name, AudioNvolume);
   1101 		return (0);
   1102 	case EAP_LINE_VOL:
   1103 		dip->type = AUDIO_MIXER_VALUE;
   1104 		dip->mixer_class = EAP_INPUT_CLASS;
   1105 		dip->prev = AUDIO_MIXER_LAST;
   1106 		dip->next = AUDIO_MIXER_LAST;
   1107 		strcpy(dip->label.name, AudioNline);
   1108 		dip->un.v.num_channels = 2;
   1109 		strcpy(dip->un.v.units.name, AudioNvolume);
   1110 		return (0);
   1111 	case EAP_AUX_VOL:
   1112 		dip->type = AUDIO_MIXER_VALUE;
   1113 		dip->mixer_class = EAP_INPUT_CLASS;
   1114 		dip->prev = AUDIO_MIXER_LAST;
   1115 		dip->next = AUDIO_MIXER_LAST;
   1116 		strcpy(dip->label.name, AudioNaux);
   1117 		dip->un.v.num_channels = 2;
   1118 		strcpy(dip->un.v.units.name, AudioNvolume);
   1119 		return (0);
   1120 	case EAP_MIC_VOL:
   1121 		dip->type = AUDIO_MIXER_VALUE;
   1122 		dip->mixer_class = EAP_INPUT_CLASS;
   1123 		dip->prev = AUDIO_MIXER_LAST;
   1124 		dip->next = AUDIO_MIXER_LAST;
   1125 		strcpy(dip->label.name, AudioNmicrophone);
   1126 		dip->un.v.num_channels = 1;
   1127 		strcpy(dip->un.v.units.name, AudioNvolume);
   1128 		return (0);
   1129 	case EAP_RECORD_SOURCE:
   1130 		dip->mixer_class = EAP_RECORD_CLASS;
   1131 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1132 		strcpy(dip->label.name, AudioNsource);
   1133 		dip->type = AUDIO_MIXER_SET;
   1134 		dip->un.s.num_mem = 5;
   1135 		strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   1136 		dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
   1137 		strcpy(dip->un.s.member[1].label.name, AudioNcd);
   1138 		dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
   1139 		strcpy(dip->un.s.member[2].label.name, AudioNline);
   1140 		dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
   1141 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   1142 		dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
   1143 		strcpy(dip->un.s.member[4].label.name, AudioNaux);
   1144 		dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
   1145 		return (0);
   1146 	case EAP_OUTPUT_CLASS:
   1147 		dip->type = AUDIO_MIXER_CLASS;
   1148 		dip->mixer_class = EAP_OUTPUT_CLASS;
   1149 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1150 		strcpy(dip->label.name, AudioCoutputs);
   1151 		return (0);
   1152 	case EAP_RECORD_CLASS:
   1153 		dip->type = AUDIO_MIXER_CLASS;
   1154 		dip->mixer_class = EAP_RECORD_CLASS;
   1155 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1156 		strcpy(dip->label.name, AudioCrecord);
   1157 		return (0);
   1158 	case EAP_INPUT_CLASS:
   1159 		dip->type = AUDIO_MIXER_CLASS;
   1160 		dip->mixer_class = EAP_INPUT_CLASS;
   1161 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1162 		strcpy(dip->label.name, AudioCinputs);
   1163 		return (0);
   1164 	}
   1165 	return (ENXIO);
   1166 }
   1167 
   1168 void *
   1169 eap_malloc(addr, size, pool, flags)
   1170 	void *addr;
   1171 	u_long size;
   1172 	int pool;
   1173 	int flags;
   1174 {
   1175 	struct eap_softc *sc = addr;
   1176         struct eap_dma *p;
   1177         int error;
   1178 
   1179         p = malloc(sizeof(*p), pool, flags);
   1180         if (!p)
   1181                 return (0);
   1182         error = eap_allocmem(sc, size, 16, p);
   1183         if (error) {
   1184                 free(p, pool);
   1185         	return (0);
   1186         }
   1187         p->next = sc->sc_dmas;
   1188         sc->sc_dmas = p;
   1189 	return (KERNADDR(p));
   1190 }
   1191 
   1192 void
   1193 eap_free(addr, ptr, pool)
   1194 	void *addr;
   1195 	void *ptr;
   1196 	int pool;
   1197 {
   1198 	struct eap_softc *sc = addr;
   1199         struct eap_dma **p;
   1200 
   1201         for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
   1202                 if (KERNADDR(*p) == ptr) {
   1203                         eap_freemem(sc, *p);
   1204                         *p = (*p)->next;
   1205                         free(*p, pool);
   1206                         return;
   1207                 }
   1208         }
   1209 }
   1210 
   1211 u_long
   1212 eap_round(addr, size)
   1213 	void *addr;
   1214 	u_long size;
   1215 {
   1216 	return (size);
   1217 }
   1218 
   1219 int
   1220 eap_mappage(addr, mem, off, prot)
   1221 	void *addr;
   1222         void *mem;
   1223         int off;
   1224 	int prot;
   1225 {
   1226 	struct eap_softc *sc = addr;
   1227         struct eap_dma *p;
   1228 
   1229         for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1230 		;
   1231 	if (!p)
   1232 		return (-1);
   1233 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1234 				off, prot, BUS_DMA_WAITOK));
   1235 }
   1236 
   1237 int
   1238 eap_get_props(addr)
   1239 	void *addr;
   1240 {
   1241 	return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
   1242 }
   1243