eap.c revision 1.7 1 /* $NetBSD: eap.c,v 1.7 1998/06/08 06:55:54 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Author: Lennart Augustsson <augustss (at) cs.chalmers.se>
8 *
9 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
10 * Charles Hannum <mycroft (at) netbsd.org>
11 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
12 * Phil Nelson <phil (at) cs.wwu.edu>
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Ensoniq AudoiPCI ES1370 + AK4531 driver.
45 * Data sheets can be found at
46 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
47 * and
48 * http://206.214.38.151/pdf/4531.pdf
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/device.h>
56
57 #include <dev/pci/pcidevs.h>
58 #include <dev/pci/pcivar.h>
59
60 #include <sys/audioio.h>
61 #include <dev/audio_if.h>
62 #include <dev/mulaw.h>
63 #include <dev/auconv.h>
64
65 #include <machine/bus.h>
66
67 /* NetBSD 1.3 backwards compatibility */
68 #ifndef BUS_DMA_COHERENT
69 #define BUS_DMA_COHERENT 0 /* XXX */
70 struct cfdriver eap_cd = {
71 NULL, "eap", DV_DULL
72 };
73 #endif
74
75 #define PCI_CBIO 0x10
76
77 #define EAP_ICSC 0x00 /* interrupt / chip select control */
78 #define EAP_SERR_DISABLE 0x00000001
79 #define EAP_CDC_EN 0x00000002
80 #define EAP_JYSTK_EN 0x00000004
81 #define EAP_UART_EN 0x00000008
82 #define EAP_ADC_EN 0x00000010
83 #define EAP_DAC2_EN 0x00000020
84 #define EAP_DAC1_EN 0x00000040
85 #define EAP_BREQ 0x00000080
86 #define EAP_XTCL0 0x00000100
87 #define EAP_M_CB 0x00000200
88 #define EAP_CCB_INTRM 0x00000400
89 #define EAP_DAC_SYNC 0x00000800
90 #define EAP_WTSRSEL 0x00003000
91 #define EAP_WTSRSEL_5 0x00000000
92 #define EAP_WTSRSEL_11 0x00001000
93 #define EAP_WTSRSEL_22 0x00002000
94 #define EAP_WTSRSEL_44 0x00003000
95 #define EAP_M_SBB 0x00004000
96 #define EAP_MSFMTSEL 0x00008000
97 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
98 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
99 #define EAP_PCLKBITS 0x1fff0000
100 #define EAP_XTCL1 0x40000000
101 #define EAP_ADC_STOP 0x80000000
102
103 #define EAP_ICSS 0x04 /* interrupt / chip select status */
104 #define EAP_I_ADC 0x00000001
105 #define EAP_I_DAC2 0x00000002
106 #define EAP_I_DAC1 0x00000004
107 #define EAP_I_UART 0x00000008
108 #define EAP_I_MCCB 0x00000010
109 #define EAP_VC 0x00000060
110 #define EAP_CWRIP 0x00000100
111 #define EAP_CBUSY 0x00000200
112 #define EAP_CSTAT 0x00000400
113 #define EAP_INTR 0x80000000
114
115 #define EAP_UART_DATA 0x08
116 #define EAP_UART_STATUS 0x09
117 #define EAP_UART_CONTROL 0x09
118 #define EAP_MEMPAGE 0x0c
119 #define EAP_CODEC 0x10
120 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
121
122 #define EAP_SIC 0x20
123 #define EAP_P1_S_MB 0x00000001
124 #define EAP_P1_S_EB 0x00000002
125 #define EAP_P2_S_MB 0x00000004
126 #define EAP_P2_S_EB 0x00000008
127 #define EAP_R1_S_MB 0x00000010
128 #define EAP_R1_S_EB 0x00000020
129 #define EAP_R1P2_BITS 0x0000003c
130 #define EAP_P2_DAC_SEN 0x00000040
131 #define EAP_P1_SCT_RLD 0x00000080
132 #define EAP_P1_INTR_EN 0x00000100
133 #define EAP_P2_INTR_EN 0x00000200
134 #define EAP_R1_INTR_EN 0x00000400
135 #define EAP_P1_PAUSE 0x00000800
136 #define EAP_P2_PAUSE 0x00001000
137 #define EAP_P1_LOOP_SEL 0x00002000
138 #define EAP_P2_LOOP_SEL 0x00004000
139 #define EAP_R1_LOOP_SEL 0x00008000
140 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
141 #define EAP_SET_P2_END_INC(i) ((i) << 19)
142 #define EAP_INC_BITS 0x003f0000
143
144 #define EAP_DAC1_CSR 0x24
145 #define EAP_DAC2_CSR 0x28
146 #define EAP_ADC_CSR 0x2c
147 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
148
149 #define EAP_DAC_PAGE 0xc
150 #define EAP_ADC_PAGE 0xd
151 #define EAP_UART_PAGE1 0xe
152 #define EAP_UART_PAGE2 0xf
153
154 #define EAP_DAC1_ADDR 0x30
155 #define EAP_DAC1_SIZE 0x34
156 #define EAP_DAC2_ADDR 0x38
157 #define EAP_DAC2_SIZE 0x3c
158 #define EAP_ADC_ADDR 0x30
159 #define EAP_ADC_SIZE 0x34
160 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
161
162 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
163
164 /* AK4531 registers */
165 #define AK_MASTER_L 0x00
166 #define AK_MASTER_R 0x01
167 #define AK_VOICE_L 0x02
168 #define AK_VOICE_R 0x03
169 #define AK_FM_L 0x04
170 #define AK_FM_R 0x05
171 #define AK_CD_L 0x06
172 #define AK_CD_R 0x07
173 #define AK_LINE_L 0x08
174 #define AK_LINE_R 0x09
175 #define AK_AUX_L 0x0a
176 #define AK_AUX_R 0x0b
177 #define AK_MONO1 0x0c
178 #define AK_MONO2 0x0d
179 #define AK_MIC 0x0e
180 #define AK_MONO 0x0f
181 #define AK_OUT_MIXER1 0x10
182 #define AK_M_FM_L 0x40
183 #define AK_M_FM_R 0x20
184 #define AK_M_LINE_L 0x10
185 #define AK_M_LINE_R 0x08
186 #define AK_M_CD_L 0x04
187 #define AK_M_CD_R 0x02
188 #define AK_M_MIC 0x01
189 #define AK_OUT_MIXER2 0x11
190 #define AK_M_AUX_L 0x20
191 #define AK_M_AUX_R 0x10
192 #define AK_M_VOICE_L 0x08
193 #define AK_M_VOICE_R 0x04
194 #define AK_M_MONO2 0x02
195 #define AK_M_MONO1 0x01
196 #define AK_IN_MIXER1_L 0x12
197 #define AK_IN_MIXER1_R 0x13
198 #define AK_IN_MIXER2_L 0x14
199 #define AK_IN_MIXER2_R 0x15
200 #define AK_M_TMIC 0x80
201 #define AK_M_TMONO1 0x40
202 #define AK_M_TMONO2 0x20
203 #define AK_M2_AUX_L 0x10
204 #define AK_M2_AUX_R 0x08
205 #define AK_M_VOICE 0x04
206 #define AK_M2_MONO2 0x02
207 #define AK_M2_MONO1 0x01
208 #define AK_RESET 0x16
209 #define AK_PD 0x02
210 #define AK_NRST 0x01
211 #define AK_CS 0x17
212 #define AK_ADSEL 0x18
213 #define AK_MGAIN 0x19
214
215 #define AK_NPORTS 16
216
217 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
218 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
219 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
220 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
221 #define VOL_0DB 200
222
223 #define EAP_MASTER_VOL 0
224 #define EAP_VOICE_VOL 1
225 #define EAP_FM_VOL 2
226 #define EAP_CD_VOL 3
227 #define EAP_LINE_VOL 4
228 #define EAP_AUX_VOL 5
229 #define EAP_MIC_VOL 6
230 #define EAP_RECORD_SOURCE 7
231 #define EAP_OUTPUT_CLASS 8
232 #define EAP_RECORD_CLASS 9
233 #define EAP_INPUT_CLASS 10
234
235 #define EAP_NDEVS 11
236
237
238 #ifdef AUDIO_DEBUG
239 #define DPRINTF(x) if (eapdebug) printf x
240 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
241 int eapdebug = 0;
242 #else
243 #define DPRINTF(x)
244 #define DPRINTFN(n,x)
245 #endif
246
247 int eap_match __P((struct device *, struct cfdata *, void *));
248 void eap_attach __P((struct device *, struct device *, void *));
249 int eap_intr __P((void *));
250
251 struct eap_dma {
252 bus_dmamap_t map;
253 caddr_t addr;
254 bus_dma_segment_t segs[1];
255 int nsegs;
256 size_t size;
257 struct eap_dma *next;
258 };
259 #define DMAADDR(map) ((map)->segs[0].ds_addr)
260 #define KERNADDR(map) ((void *)((map)->addr))
261
262 struct eap_softc {
263 struct device sc_dev; /* base device */
264 void *sc_ih; /* interrupt vectoring */
265 bus_space_tag_t iot;
266 bus_space_handle_t ioh;
267 bus_dma_tag_t sc_dmatag; /* DMA tag */
268
269 struct eap_dma *sc_dmas;
270
271 void (*sc_pintr)(void *); /* dma completion intr handler */
272 void *sc_parg; /* arg for sc_intr() */
273 char sc_prun;
274
275 void (*sc_rintr)(void *); /* dma completion intr handler */
276 void *sc_rarg; /* arg for sc_intr() */
277 char sc_rrun;
278
279 int sc_sampsize; /* bytes / sample */
280
281 u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */
282 u_int sc_record_source; /* recording source mask */
283 };
284
285 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
286 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
287
288 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
289 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
290 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
291 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
292
293 struct cfattach eap_ca = {
294 sizeof(struct eap_softc), eap_match, eap_attach
295 };
296
297 int eap_open __P((void *, int));
298 void eap_close __P((void *));
299 int eap_query_encoding __P((void *, struct audio_encoding *));
300 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
301 int eap_round_blocksize __P((void *, int));
302 int eap_dma_init_output __P((void *, void *, int));
303 int eap_dma_init_input __P((void *, void *, int));
304 int eap_dma_output __P((void *, void *, int, void (*)(void *), void*));
305 int eap_dma_input __P((void *, void *, int, void (*)(void *), void*));
306 int eap_halt_in_dma __P((void *));
307 int eap_halt_out_dma __P((void *));
308 int eap_getdev __P((void *, struct audio_device *));
309 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
310 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
311 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
312 void *eap_malloc __P((void *, u_long, int, int));
313 void eap_free __P((void *, void *, int));
314 u_long eap_round __P((void *, u_long));
315 int eap_mappage __P((void *, void *, int, int));
316 int eap_get_props __P((void *));
317 void eap_write_codec __P((struct eap_softc *sc, int a, int d));
318 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
319
320 struct audio_hw_if eap_hw_if = {
321 eap_open,
322 eap_close,
323 NULL,
324 eap_query_encoding,
325 eap_set_params,
326 eap_round_blocksize,
327 NULL,
328 eap_dma_init_output,
329 eap_dma_init_input,
330 eap_dma_output,
331 eap_dma_input,
332 eap_halt_out_dma,
333 eap_halt_in_dma,
334 NULL,
335 eap_getdev,
336 NULL,
337 eap_mixer_set_port,
338 eap_mixer_get_port,
339 eap_query_devinfo,
340 eap_malloc,
341 eap_free,
342 eap_round,
343 eap_mappage,
344 eap_get_props,
345 };
346
347 struct audio_device eap_device = {
348 "Ensoniq AudioPCI",
349 "",
350 "eap"
351 };
352
353 int
354 eap_match(parent, match, aux)
355 struct device *parent;
356 struct cfdata *match;
357 void *aux;
358 {
359 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
360
361 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
362 return (0);
363 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
364 return (0);
365
366 return (1);
367 }
368
369 void
370 eap_write_codec(sc, a, d)
371 struct eap_softc *sc;
372 int a, d;
373 {
374 int icss;
375
376 do {
377 icss = EREAD4(sc, EAP_ICSS);
378 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
379 } while(icss & EAP_CWRIP);
380 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
381 }
382
383 void
384 eap_attach(parent, self, aux)
385 struct device *parent;
386 struct device *self;
387 void *aux;
388 {
389 struct eap_softc *sc = (struct eap_softc *)self;
390 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
391 pci_chipset_tag_t pc = pa->pa_pc;
392 char const *intrstr;
393 pci_intr_handle_t ih;
394 pcireg_t csr;
395 char devinfo[256];
396 mixer_ctrl_t ctl;
397
398 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
399 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
400
401 /* Map I/O register */
402 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
403 &sc->iot, &sc->ioh, NULL, NULL)) {
404 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
405 return;
406 }
407
408 sc->sc_dmatag = pa->pa_dmat;
409
410 /* Enable the device. */
411 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
412 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
413 csr | PCI_COMMAND_MASTER_ENABLE);
414
415 /* Map and establish the interrupt. */
416 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
417 pa->pa_intrline, &ih)) {
418 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
419 return;
420 }
421 intrstr = pci_intr_string(pc, ih);
422 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
423 if (sc->sc_ih == NULL) {
424 printf("%s: couldn't establish interrupt",
425 sc->sc_dev.dv_xname);
426 if (intrstr != NULL)
427 printf(" at %s", intrstr);
428 printf("\n");
429 return;
430 }
431 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
432
433 /* Enable interrupts and looping mode. */
434 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
435 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
436
437 eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
438 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */
439 eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
440 /* Enable all relevant mixer switches. */
441 eap_write_codec(sc, AK_OUT_MIXER1,
442 AK_M_FM_L | AK_M_FM_R |
443 AK_M_LINE_L | AK_M_LINE_R |
444 AK_M_CD_L | AK_M_CD_R);
445 eap_write_codec(sc, AK_OUT_MIXER2,
446 AK_M_AUX_L | AK_M_AUX_R |
447 AK_M_VOICE_L | AK_M_VOICE_R |
448 AK_M_MONO2 | AK_M_MONO1);
449 ctl.type = AUDIO_MIXER_VALUE;
450 ctl.un.value.num_channels = 1;
451 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
452 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
453 eap_mixer_set_port(sc, &ctl);
454 }
455 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
456 eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
457 ctl.dev = EAP_RECORD_SOURCE;
458 ctl.type = AUDIO_MIXER_SET;
459 ctl.un.mask = 1 << EAP_MIC_VOL;
460 eap_mixer_set_port(sc, &ctl);
461
462 audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
463 }
464
465 int
466 eap_intr(p)
467 void *p;
468 {
469 struct eap_softc *sc = p;
470 u_int32_t intr, sic;
471
472 intr = EREAD4(sc, EAP_ICSS);
473 if (!(intr & EAP_INTR))
474 return (0);
475 sic = EREAD4(sc, EAP_SIC);
476 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
477 if (intr & EAP_I_ADC) {
478 /*
479 * XXX This is a hack!
480 * The EAP chip sometimes generates the recording interrupt
481 * while it is still transferring the data. To make sure
482 * it has all arrived we busy wait until the count is right.
483 * The transfer we are waiting for is 8 longwords.
484 */
485 int s, nw, n;
486 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
487 s = EREAD4(sc, EAP_ADC_CSR);
488 nw = ((s & 0xffff) + 1) / 4; /* # of words in DMA */
489 n = 0;
490 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
491 delay(10);
492 if (++n > 100) {
493 printf("eapintr: dma fix timeout");
494 break;
495 }
496 }
497 /* Continue with normal interrupt handling. */
498 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
499 EWRITE4(sc, EAP_SIC, sic);
500 if (sc->sc_rintr)
501 sc->sc_rintr(sc->sc_rarg);
502 }
503 if (intr & EAP_I_DAC2) {
504 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
505 EWRITE4(sc, EAP_SIC, sic);
506 if (sc->sc_pintr)
507 sc->sc_pintr(sc->sc_parg);
508 }
509 return (1);
510 }
511
512 int
513 eap_allocmem(sc, size, align, p)
514 struct eap_softc *sc;
515 size_t size;
516 size_t align;
517 struct eap_dma *p;
518 {
519 int error;
520
521 p->size = size;
522 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
523 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
524 &p->nsegs, BUS_DMA_NOWAIT);
525 if (error)
526 return (error);
527
528 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
529 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
530 if (error)
531 goto free;
532
533 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
534 0, BUS_DMA_NOWAIT, &p->map);
535 if (error)
536 goto unmap;
537
538 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
539 BUS_DMA_NOWAIT);
540 if (error)
541 goto destroy;
542 return (0);
543
544 destroy:
545 bus_dmamap_destroy(sc->sc_dmatag, p->map);
546 unmap:
547 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
548 free:
549 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
550 return (error);
551 }
552
553 int
554 eap_freemem(sc, p)
555 struct eap_softc *sc;
556 struct eap_dma *p;
557 {
558 bus_dmamap_unload(sc->sc_dmatag, p->map);
559 bus_dmamap_destroy(sc->sc_dmatag, p->map);
560 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
561 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
562 return (0);
563 }
564
565 int
566 eap_open(addr, flags)
567 void *addr;
568 int flags;
569 {
570 struct eap_softc *sc = addr;
571
572 DPRINTF(("eap_open: sc=%p\n", sc));
573
574 sc->sc_pintr = 0;
575 sc->sc_rintr = 0;
576
577 return (0);
578 }
579
580 /*
581 * Close function is called at splaudio().
582 */
583 void
584 eap_close(addr)
585 void *addr;
586 {
587 struct eap_softc *sc = addr;
588
589 eap_halt_in_dma(sc);
590 eap_halt_out_dma(sc);
591
592 sc->sc_pintr = 0;
593 sc->sc_rintr = 0;
594 }
595
596 int
597 eap_query_encoding(addr, fp)
598 void *addr;
599 struct audio_encoding *fp;
600 {
601 switch (fp->index) {
602 case 0:
603 strcpy(fp->name, AudioEulinear);
604 fp->encoding = AUDIO_ENCODING_ULINEAR;
605 fp->precision = 8;
606 fp->flags = 0;
607 return (0);
608 case 1:
609 strcpy(fp->name, AudioEmulaw);
610 fp->encoding = AUDIO_ENCODING_ULAW;
611 fp->precision = 8;
612 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
613 return (0);
614 case 2:
615 strcpy(fp->name, AudioEalaw);
616 fp->encoding = AUDIO_ENCODING_ALAW;
617 fp->precision = 8;
618 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
619 return (0);
620 case 3:
621 strcpy(fp->name, AudioEslinear);
622 fp->encoding = AUDIO_ENCODING_SLINEAR;
623 fp->precision = 8;
624 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
625 return (0);
626 case 4:
627 strcpy(fp->name, AudioEslinear_le);
628 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
629 fp->precision = 16;
630 fp->flags = 0;
631 return (0);
632 case 5:
633 strcpy(fp->name, AudioEulinear_le);
634 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
635 fp->precision = 16;
636 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
637 return (0);
638 case 6:
639 strcpy(fp->name, AudioEslinear_be);
640 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
641 fp->precision = 16;
642 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
643 return (0);
644 case 7:
645 strcpy(fp->name, AudioEulinear_be);
646 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
647 fp->precision = 16;
648 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
649 return (0);
650 default:
651 return (EINVAL);
652 }
653 }
654
655 int
656 eap_set_params(addr, setmode, usemode, p, r)
657 void *addr;
658 int setmode, usemode;
659 struct audio_params *p, *r;
660 {
661 struct eap_softc *sc = addr;
662 void (*pswcode) __P((void *, u_char *buf, int cnt));
663 void (*rswcode) __P((void *, u_char *buf, int cnt));
664 u_int32_t mode, div;
665
666
667 pswcode = rswcode = 0;
668 switch (p->encoding) {
669 case AUDIO_ENCODING_SLINEAR_BE:
670 if (p->precision == 16)
671 rswcode = pswcode = swap_bytes;
672 else
673 pswcode = rswcode = change_sign8;
674 break;
675 case AUDIO_ENCODING_SLINEAR_LE:
676 if (p->precision != 16)
677 pswcode = rswcode = change_sign8;
678 break;
679 case AUDIO_ENCODING_ULINEAR_BE:
680 if (p->precision == 16) {
681 pswcode = swap_bytes_change_sign16;
682 rswcode = change_sign16_swap_bytes;
683 }
684 break;
685 case AUDIO_ENCODING_ULINEAR_LE:
686 if (p->precision == 16)
687 pswcode = rswcode = change_sign16;
688 break;
689 case AUDIO_ENCODING_ULAW:
690 pswcode = mulaw_to_ulinear8;
691 rswcode = ulinear8_to_mulaw;
692 break;
693 case AUDIO_ENCODING_ALAW:
694 pswcode = alaw_to_ulinear8;
695 rswcode = ulinear8_to_alaw;
696 break;
697 default:
698 return (EINVAL);
699 }
700 if (p->precision == 16)
701 mode = EAP_P2_S_EB | EAP_R1_S_EB;
702 else
703 mode = 0;
704 if (p->channels == 2)
705 mode |= EAP_P2_S_MB | EAP_R1_S_MB;
706 else if (p->channels != 1)
707 return (EINVAL);
708 if (p->sample_rate < 4000 || p->sample_rate > 50000)
709 return (EINVAL);
710
711 sc->sc_sampsize = p->precision / 8 * p->channels; /* bytes / sample */
712 p->sw_code = pswcode;
713 r->sw_code = rswcode;
714
715 /* Set the encoding */
716 mode |= EREAD4(sc, EAP_SIC) & ~(EAP_R1P2_BITS | EAP_INC_BITS);
717 mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(p->precision / 8);
718 EWRITE4(sc, EAP_SIC, mode);
719 DPRINTFN(2, ("eap_set_params: set SIC = 0x%08x\n", mode));
720
721 /* Set the speed */
722 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
723 EREAD4(sc, EAP_ICSC)));
724 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
725 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / p->sample_rate - 2);
726 div |= EAP_CCB_INTRM;
727 EWRITE4(sc, EAP_ICSC, div);
728 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
729
730 return (0);
731 }
732
733 int
734 eap_round_blocksize(addr, blk)
735 void *addr;
736 int blk;
737 {
738 return (blk & -32); /* keep good alignment */
739 }
740
741 int
742 eap_dma_init_input(addr, buf, cc)
743 void *addr;
744 void *buf;
745 int cc;
746 {
747 struct eap_softc *sc = addr;
748 struct eap_dma *p;
749
750 DPRINTF(("eap_dma_init_input: dma start loop input addr=%p cc=%d\n",
751 buf, cc));
752 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
753 ;
754 if (!p) {
755 printf("eap_dma_init_input: bad addr %p\n", buf);
756 return (EINVAL);
757 }
758 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
759 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
760 EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
761 DPRINTF(("eap_dma_init_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
762 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
763 return (0);
764 }
765
766 int
767 eap_dma_init_output(addr, buf, cc)
768 void *addr;
769 void *buf;
770 int cc;
771 {
772 struct eap_softc *sc = addr;
773 struct eap_dma *p;
774
775 DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc));
776 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
777 ;
778 if (!p) {
779 printf("eap_dma_init_output: bad addr %p\n", buf);
780 return (EINVAL);
781 }
782 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
783 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
784 EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
785 DPRINTF(("eap_dma_init_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
786 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
787 return (0);
788 }
789
790 int
791 eap_dma_output(addr, p, cc, intr, arg)
792 void *addr;
793 void *p;
794 int cc;
795 void (*intr) __P((void *));
796 void *arg;
797 {
798 struct eap_softc *sc = addr;
799 u_int32_t mode;
800
801 DPRINTFN(sc->sc_prun ? 5 : 1,
802 ("eap_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n",
803 addr, p, cc, intr, arg));
804 sc->sc_pintr = intr;
805 sc->sc_parg = arg;
806 if (!sc->sc_prun) {
807 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
808 if (sc->sc_sampsize == 0) {
809 printf("eap_dma_output: sampsize == 0\n");
810 return EINVAL;
811 }
812 #endif
813 EWRITE2(sc, EAP_DAC2_CSR, cc / sc->sc_sampsize - 1);
814 DPRINTFN(1, ("eap_dma_output: set DAC2_CSR = %d\n",
815 cc / sc->sc_sampsize - 1));
816 DPRINTFN(1, ("eap_dma_output: old ICSC = 0x%08x\n",
817 EREAD4(sc, EAP_ICSC)));
818 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
819 EWRITE4(sc, EAP_ICSC, mode);
820 mode |= EAP_DAC2_EN;
821 EWRITE4(sc, EAP_ICSC, mode);
822 DPRINTFN(1, ("eap_dma_output: set ICSC = 0x%08x\n", mode));
823 sc->sc_prun = 1;
824 }
825 return (0);
826 }
827
828 int
829 eap_dma_input(addr, p, cc, intr, arg)
830 void *addr;
831 void *p;
832 int cc;
833 void (*intr) __P((void *));
834 void *arg;
835 {
836 struct eap_softc *sc = addr;
837 u_int32_t mode;
838
839 DPRINTFN(1, ("eap_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
840 addr, p, cc, intr, arg));
841 sc->sc_rintr = intr;
842 sc->sc_rarg = arg;
843 if (!sc->sc_rrun) {
844 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
845 if (sc->sc_sampsize == 0) {
846 printf("eap_dma_input: sampsize == 0\n");
847 return EINVAL;
848 }
849 #endif
850 EWRITE2(sc, EAP_ADC_CSR, cc / sc->sc_sampsize - 1);
851 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
852 EWRITE4(sc, EAP_ICSC, mode);
853 mode |= EAP_ADC_EN;
854 EWRITE4(sc, EAP_ICSC, mode);
855 DPRINTFN(1, ("eap_dma_input: set ICSC = 0x%08x\n", mode));
856 sc->sc_rrun = 1;
857 }
858 return (0);
859 }
860
861 int
862 eap_halt_out_dma(addr)
863 void *addr;
864 {
865 struct eap_softc *sc = addr;
866 u_int32_t mode;
867
868 DPRINTF(("eap: eap_halt_out_dma\n"));
869 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
870 EWRITE4(sc, EAP_ICSC, mode);
871 sc->sc_prun = 0;
872 return (0);
873 }
874
875 int
876 eap_halt_in_dma(addr)
877 void *addr;
878 {
879 struct eap_softc *sc = addr;
880 u_int32_t mode;
881
882 DPRINTF(("eap: eap_halt_in_dma\n"));
883 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
884 EWRITE4(sc, EAP_ICSC, mode);
885 sc->sc_rrun = 0;
886 return (0);
887 }
888
889 int
890 eap_getdev(addr, retp)
891 void *addr;
892 struct audio_device *retp;
893 {
894 *retp = eap_device;
895 return (0);
896 }
897
898 void
899 eap_set_mixer(sc, a, d)
900 struct eap_softc *sc;
901 int a, d;
902 {
903 eap_write_codec(sc, a, d);
904 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
905 }
906
907
908 int
909 eap_mixer_set_port(addr, cp)
910 void *addr;
911 mixer_ctrl_t *cp;
912 {
913 struct eap_softc *sc = addr;
914 int lval, rval, l, r, la, ra;
915 int l1, r1, l2, r2, m;
916
917 if (cp->dev == EAP_RECORD_SOURCE) {
918 if (cp->type != AUDIO_MIXER_SET)
919 return (EINVAL);
920 m = sc->sc_record_source = cp->un.mask;
921 l1 = l2 = r1 = r2 = 0;
922 if (m & (1 << EAP_VOICE_VOL))
923 l2 |= AK_M_VOICE_L, r2 |= AK_M_VOICE_R;
924 if (m & (1 << EAP_FM_VOL))
925 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
926 if (m & (1 << EAP_CD_VOL))
927 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
928 if (m & (1 << EAP_LINE_VOL))
929 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
930 if (m & (1 << EAP_AUX_VOL))
931 l2 |= AK_M_AUX_L, r2 |= AK_M_AUX_R;
932 if (m & (1 << EAP_MIC_VOL))
933 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
934 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
935 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
936 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
937 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
938 return (0);
939 }
940 if (cp->type != AUDIO_MIXER_VALUE)
941 return (EINVAL);
942 if (cp->un.value.num_channels == 1)
943 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
944 else if (cp->un.value.num_channels == 2) {
945 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
946 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
947 } else
948 return (EINVAL);
949 ra = -1;
950 switch (cp->dev) {
951 case EAP_MASTER_VOL:
952 l = VOL_TO_ATT5(lval);
953 r = VOL_TO_ATT5(rval);
954 la = AK_MASTER_L;
955 ra = AK_MASTER_R;
956 break;
957 case EAP_MIC_VOL:
958 if (cp->un.value.num_channels != 1)
959 return (EINVAL);
960 la = AK_MIC;
961 goto lr;
962 case EAP_VOICE_VOL:
963 la = AK_VOICE_L;
964 ra = AK_VOICE_R;
965 goto lr;
966 case EAP_FM_VOL:
967 la = AK_FM_L;
968 ra = AK_FM_R;
969 goto lr;
970 case EAP_CD_VOL:
971 la = AK_CD_L;
972 ra = AK_CD_R;
973 goto lr;
974 case EAP_LINE_VOL:
975 la = AK_LINE_L;
976 ra = AK_LINE_R;
977 goto lr;
978 case EAP_AUX_VOL:
979 la = AK_AUX_L;
980 ra = AK_AUX_R;
981 lr:
982 l = VOL_TO_GAIN5(lval);
983 r = VOL_TO_GAIN5(rval);
984 break;
985 default:
986 return (EINVAL);
987 }
988 eap_set_mixer(sc, la, l);
989 sc->sc_port[la] = l;
990 if (ra >= 0) {
991 eap_set_mixer(sc, ra, r);
992 sc->sc_port[ra] = r;
993 }
994 return (0);
995 }
996
997 int
998 eap_mixer_get_port(addr, cp)
999 void *addr;
1000 mixer_ctrl_t *cp;
1001 {
1002 struct eap_softc *sc = addr;
1003 int la, ra, l, r;
1004
1005 switch (cp->dev) {
1006 case EAP_RECORD_SOURCE:
1007 cp->un.mask = sc->sc_record_source;
1008 return (0);
1009 case EAP_MASTER_VOL:
1010 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1011 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1012 break;
1013 case EAP_MIC_VOL:
1014 if (cp->un.value.num_channels != 1)
1015 return (EINVAL);
1016 la = ra = AK_MIC;
1017 goto lr;
1018 case EAP_VOICE_VOL:
1019 la = AK_VOICE_L;
1020 ra = AK_VOICE_R;
1021 goto lr;
1022 case EAP_FM_VOL:
1023 la = AK_FM_L;
1024 ra = AK_FM_R;
1025 goto lr;
1026 case EAP_CD_VOL:
1027 la = AK_CD_L;
1028 ra = AK_CD_R;
1029 goto lr;
1030 case EAP_LINE_VOL:
1031 la = AK_LINE_L;
1032 ra = AK_LINE_R;
1033 goto lr;
1034 case EAP_AUX_VOL:
1035 la = AK_AUX_L;
1036 ra = AK_AUX_R;
1037 lr:
1038 l = GAIN5_TO_VOL(sc->sc_port[la]);
1039 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1040 break;
1041 default:
1042 return (EINVAL);
1043 }
1044 if (cp->un.value.num_channels == 1)
1045 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1046 else if (cp->un.value.num_channels == 2) {
1047 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1048 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1049 }
1050 return (0);
1051 }
1052
1053 int
1054 eap_query_devinfo(addr, dip)
1055 void *addr;
1056 mixer_devinfo_t *dip;
1057 {
1058 switch (dip->index) {
1059 case EAP_MASTER_VOL:
1060 dip->type = AUDIO_MIXER_VALUE;
1061 dip->mixer_class = EAP_OUTPUT_CLASS;
1062 dip->prev = dip->next = AUDIO_MIXER_LAST;
1063 strcpy(dip->label.name, AudioNmaster);
1064 dip->un.v.num_channels = 2;
1065 strcpy(dip->un.v.units.name, AudioNvolume);
1066 return (0);
1067 case EAP_VOICE_VOL:
1068 dip->type = AUDIO_MIXER_VALUE;
1069 dip->mixer_class = EAP_INPUT_CLASS;
1070 dip->prev = AUDIO_MIXER_LAST;
1071 dip->next = AUDIO_MIXER_LAST;
1072 strcpy(dip->label.name, AudioNdac);
1073 dip->un.v.num_channels = 2;
1074 strcpy(dip->un.v.units.name, AudioNvolume);
1075 return (0);
1076 case EAP_FM_VOL:
1077 dip->type = AUDIO_MIXER_VALUE;
1078 dip->mixer_class = EAP_INPUT_CLASS;
1079 dip->prev = AUDIO_MIXER_LAST;
1080 dip->next = AUDIO_MIXER_LAST;
1081 strcpy(dip->label.name, AudioNfmsynth);
1082 dip->un.v.num_channels = 2;
1083 strcpy(dip->un.v.units.name, AudioNvolume);
1084 return (0);
1085 case EAP_CD_VOL:
1086 dip->type = AUDIO_MIXER_VALUE;
1087 dip->mixer_class = EAP_INPUT_CLASS;
1088 dip->prev = AUDIO_MIXER_LAST;
1089 dip->next = AUDIO_MIXER_LAST;
1090 strcpy(dip->label.name, AudioNcd);
1091 dip->un.v.num_channels = 2;
1092 strcpy(dip->un.v.units.name, AudioNvolume);
1093 return (0);
1094 case EAP_LINE_VOL:
1095 dip->type = AUDIO_MIXER_VALUE;
1096 dip->mixer_class = EAP_INPUT_CLASS;
1097 dip->prev = AUDIO_MIXER_LAST;
1098 dip->next = AUDIO_MIXER_LAST;
1099 strcpy(dip->label.name, AudioNline);
1100 dip->un.v.num_channels = 2;
1101 strcpy(dip->un.v.units.name, AudioNvolume);
1102 return (0);
1103 case EAP_AUX_VOL:
1104 dip->type = AUDIO_MIXER_VALUE;
1105 dip->mixer_class = EAP_INPUT_CLASS;
1106 dip->prev = AUDIO_MIXER_LAST;
1107 dip->next = AUDIO_MIXER_LAST;
1108 strcpy(dip->label.name, AudioNaux);
1109 dip->un.v.num_channels = 2;
1110 strcpy(dip->un.v.units.name, AudioNvolume);
1111 return (0);
1112 case EAP_MIC_VOL:
1113 dip->type = AUDIO_MIXER_VALUE;
1114 dip->mixer_class = EAP_INPUT_CLASS;
1115 dip->prev = AUDIO_MIXER_LAST;
1116 dip->next = AUDIO_MIXER_LAST;
1117 strcpy(dip->label.name, AudioNmicrophone);
1118 dip->un.v.num_channels = 1;
1119 strcpy(dip->un.v.units.name, AudioNvolume);
1120 return (0);
1121 case EAP_RECORD_SOURCE:
1122 dip->mixer_class = EAP_RECORD_CLASS;
1123 dip->prev = dip->next = AUDIO_MIXER_LAST;
1124 strcpy(dip->label.name, AudioNsource);
1125 dip->type = AUDIO_MIXER_SET;
1126 dip->un.s.num_mem = 5;
1127 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1128 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1129 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1130 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1131 strcpy(dip->un.s.member[2].label.name, AudioNline);
1132 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1133 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1134 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1135 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1136 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1137 return (0);
1138 case EAP_OUTPUT_CLASS:
1139 dip->type = AUDIO_MIXER_CLASS;
1140 dip->mixer_class = EAP_OUTPUT_CLASS;
1141 dip->next = dip->prev = AUDIO_MIXER_LAST;
1142 strcpy(dip->label.name, AudioCoutputs);
1143 return (0);
1144 case EAP_RECORD_CLASS:
1145 dip->type = AUDIO_MIXER_CLASS;
1146 dip->mixer_class = EAP_RECORD_CLASS;
1147 dip->next = dip->prev = AUDIO_MIXER_LAST;
1148 strcpy(dip->label.name, AudioCrecord);
1149 return (0);
1150 case EAP_INPUT_CLASS:
1151 dip->type = AUDIO_MIXER_CLASS;
1152 dip->mixer_class = EAP_INPUT_CLASS;
1153 dip->next = dip->prev = AUDIO_MIXER_LAST;
1154 strcpy(dip->label.name, AudioCinputs);
1155 return (0);
1156 }
1157 return (ENXIO);
1158 }
1159
1160 void *
1161 eap_malloc(addr, size, pool, flags)
1162 void *addr;
1163 u_long size;
1164 int pool;
1165 int flags;
1166 {
1167 struct eap_softc *sc = addr;
1168 struct eap_dma *p;
1169 int error;
1170
1171 p = malloc(sizeof(*p), pool, flags);
1172 if (!p)
1173 return (0);
1174 error = eap_allocmem(sc, size, 16, p);
1175 if (error) {
1176 free(p, pool);
1177 return (0);
1178 }
1179 p->next = sc->sc_dmas;
1180 sc->sc_dmas = p;
1181 return (KERNADDR(p));
1182 }
1183
1184 void
1185 eap_free(addr, ptr, pool)
1186 void *addr;
1187 void *ptr;
1188 int pool;
1189 {
1190 struct eap_softc *sc = addr;
1191 struct eap_dma **p;
1192
1193 for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1194 if (KERNADDR(*p) == ptr) {
1195 eap_freemem(sc, *p);
1196 *p = (*p)->next;
1197 free(*p, pool);
1198 return;
1199 }
1200 }
1201 }
1202
1203 u_long
1204 eap_round(addr, size)
1205 void *addr;
1206 u_long size;
1207 {
1208 return (size);
1209 }
1210
1211 int
1212 eap_mappage(addr, mem, off, prot)
1213 void *addr;
1214 void *mem;
1215 int off;
1216 int prot;
1217 {
1218 struct eap_softc *sc = addr;
1219 struct eap_dma *p;
1220
1221 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1222 ;
1223 if (!p)
1224 return (-1);
1225 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1226 off, prot, BUS_DMA_WAITOK));
1227 }
1228
1229 int
1230 eap_get_props(addr)
1231 void *addr;
1232 {
1233 return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
1234 }
1235