eap.c revision 1.8 1 /* $NetBSD: eap.c,v 1.8 1998/07/06 11:12:21 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Author: Lennart Augustsson <augustss (at) cs.chalmers.se>
8 *
9 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
10 * Charles Hannum <mycroft (at) netbsd.org>
11 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
12 * Phil Nelson <phil (at) cs.wwu.edu>
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the NetBSD
25 * Foundation, Inc. and its contributors.
26 * 4. Neither the name of The NetBSD Foundation nor the names of its
27 * contributors may be used to endorse or promote products derived
28 * from this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
31 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
32 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
33 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
34 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
36 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
37 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
38 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGE.
41 */
42
43 /*
44 * Ensoniq AudoiPCI ES1370 + AK4531 driver.
45 * Data sheets can be found at
46 * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
47 * and
48 * http://206.214.38.151/pdf/4531.pdf
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/device.h>
56
57 #include <dev/pci/pcidevs.h>
58 #include <dev/pci/pcivar.h>
59
60 #include <sys/audioio.h>
61 #include <dev/audio_if.h>
62 #include <dev/mulaw.h>
63 #include <dev/auconv.h>
64
65 #include <machine/bus.h>
66
67 #define PCI_CBIO 0x10
68
69 #define EAP_ICSC 0x00 /* interrupt / chip select control */
70 #define EAP_SERR_DISABLE 0x00000001
71 #define EAP_CDC_EN 0x00000002
72 #define EAP_JYSTK_EN 0x00000004
73 #define EAP_UART_EN 0x00000008
74 #define EAP_ADC_EN 0x00000010
75 #define EAP_DAC2_EN 0x00000020
76 #define EAP_DAC1_EN 0x00000040
77 #define EAP_BREQ 0x00000080
78 #define EAP_XTCL0 0x00000100
79 #define EAP_M_CB 0x00000200
80 #define EAP_CCB_INTRM 0x00000400
81 #define EAP_DAC_SYNC 0x00000800
82 #define EAP_WTSRSEL 0x00003000
83 #define EAP_WTSRSEL_5 0x00000000
84 #define EAP_WTSRSEL_11 0x00001000
85 #define EAP_WTSRSEL_22 0x00002000
86 #define EAP_WTSRSEL_44 0x00003000
87 #define EAP_M_SBB 0x00004000
88 #define EAP_MSFMTSEL 0x00008000
89 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
90 #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
91 #define EAP_PCLKBITS 0x1fff0000
92 #define EAP_XTCL1 0x40000000
93 #define EAP_ADC_STOP 0x80000000
94
95 #define EAP_ICSS 0x04 /* interrupt / chip select status */
96 #define EAP_I_ADC 0x00000001
97 #define EAP_I_DAC2 0x00000002
98 #define EAP_I_DAC1 0x00000004
99 #define EAP_I_UART 0x00000008
100 #define EAP_I_MCCB 0x00000010
101 #define EAP_VC 0x00000060
102 #define EAP_CWRIP 0x00000100
103 #define EAP_CBUSY 0x00000200
104 #define EAP_CSTAT 0x00000400
105 #define EAP_INTR 0x80000000
106
107 #define EAP_UART_DATA 0x08
108 #define EAP_UART_STATUS 0x09
109 #define EAP_UART_CONTROL 0x09
110 #define EAP_MEMPAGE 0x0c
111 #define EAP_CODEC 0x10
112 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
113
114 #define EAP_SIC 0x20
115 #define EAP_P1_S_MB 0x00000001
116 #define EAP_P1_S_EB 0x00000002
117 #define EAP_P2_S_MB 0x00000004
118 #define EAP_P2_S_EB 0x00000008
119 #define EAP_R1_S_MB 0x00000010
120 #define EAP_R1_S_EB 0x00000020
121 #define EAP_R1P2_BITS 0x0000003c
122 #define EAP_P2_DAC_SEN 0x00000040
123 #define EAP_P1_SCT_RLD 0x00000080
124 #define EAP_P1_INTR_EN 0x00000100
125 #define EAP_P2_INTR_EN 0x00000200
126 #define EAP_R1_INTR_EN 0x00000400
127 #define EAP_P1_PAUSE 0x00000800
128 #define EAP_P2_PAUSE 0x00001000
129 #define EAP_P1_LOOP_SEL 0x00002000
130 #define EAP_P2_LOOP_SEL 0x00004000
131 #define EAP_R1_LOOP_SEL 0x00008000
132 #define EAP_SET_P2_ST_INC(i) ((i) << 16)
133 #define EAP_SET_P2_END_INC(i) ((i) << 19)
134 #define EAP_INC_BITS 0x003f0000
135
136 #define EAP_DAC1_CSR 0x24
137 #define EAP_DAC2_CSR 0x28
138 #define EAP_ADC_CSR 0x2c
139 #define EAP_GET_CURRSAMP(r) ((r) >> 16)
140
141 #define EAP_DAC_PAGE 0xc
142 #define EAP_ADC_PAGE 0xd
143 #define EAP_UART_PAGE1 0xe
144 #define EAP_UART_PAGE2 0xf
145
146 #define EAP_DAC1_ADDR 0x30
147 #define EAP_DAC1_SIZE 0x34
148 #define EAP_DAC2_ADDR 0x38
149 #define EAP_DAC2_SIZE 0x3c
150 #define EAP_ADC_ADDR 0x30
151 #define EAP_ADC_SIZE 0x34
152 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
153
154 #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
155
156 /* AK4531 registers */
157 #define AK_MASTER_L 0x00
158 #define AK_MASTER_R 0x01
159 #define AK_VOICE_L 0x02
160 #define AK_VOICE_R 0x03
161 #define AK_FM_L 0x04
162 #define AK_FM_R 0x05
163 #define AK_CD_L 0x06
164 #define AK_CD_R 0x07
165 #define AK_LINE_L 0x08
166 #define AK_LINE_R 0x09
167 #define AK_AUX_L 0x0a
168 #define AK_AUX_R 0x0b
169 #define AK_MONO1 0x0c
170 #define AK_MONO2 0x0d
171 #define AK_MIC 0x0e
172 #define AK_MONO 0x0f
173 #define AK_OUT_MIXER1 0x10
174 #define AK_M_FM_L 0x40
175 #define AK_M_FM_R 0x20
176 #define AK_M_LINE_L 0x10
177 #define AK_M_LINE_R 0x08
178 #define AK_M_CD_L 0x04
179 #define AK_M_CD_R 0x02
180 #define AK_M_MIC 0x01
181 #define AK_OUT_MIXER2 0x11
182 #define AK_M_AUX_L 0x20
183 #define AK_M_AUX_R 0x10
184 #define AK_M_VOICE_L 0x08
185 #define AK_M_VOICE_R 0x04
186 #define AK_M_MONO2 0x02
187 #define AK_M_MONO1 0x01
188 #define AK_IN_MIXER1_L 0x12
189 #define AK_IN_MIXER1_R 0x13
190 #define AK_IN_MIXER2_L 0x14
191 #define AK_IN_MIXER2_R 0x15
192 #define AK_M_TMIC 0x80
193 #define AK_M_TMONO1 0x40
194 #define AK_M_TMONO2 0x20
195 #define AK_M2_AUX_L 0x10
196 #define AK_M2_AUX_R 0x08
197 #define AK_M_VOICE 0x04
198 #define AK_M2_MONO2 0x02
199 #define AK_M2_MONO1 0x01
200 #define AK_RESET 0x16
201 #define AK_PD 0x02
202 #define AK_NRST 0x01
203 #define AK_CS 0x17
204 #define AK_ADSEL 0x18
205 #define AK_MGAIN 0x19
206
207 #define AK_NPORTS 16
208
209 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
210 #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
211 #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
212 #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
213 #define VOL_0DB 200
214
215 #define EAP_MASTER_VOL 0
216 #define EAP_VOICE_VOL 1
217 #define EAP_FM_VOL 2
218 #define EAP_CD_VOL 3
219 #define EAP_LINE_VOL 4
220 #define EAP_AUX_VOL 5
221 #define EAP_MIC_VOL 6
222 #define EAP_RECORD_SOURCE 7
223 #define EAP_OUTPUT_SELECT 8
224 #define EAP_OUTPUT_CLASS 9
225 #define EAP_RECORD_CLASS 10
226 #define EAP_INPUT_CLASS 11
227
228 #ifdef AUDIO_DEBUG
229 #define DPRINTF(x) if (eapdebug) printf x
230 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
231 int eapdebug = 0;
232 #else
233 #define DPRINTF(x)
234 #define DPRINTFN(n,x)
235 #endif
236
237 int eap_match __P((struct device *, struct cfdata *, void *));
238 void eap_attach __P((struct device *, struct device *, void *));
239 int eap_intr __P((void *));
240
241 struct eap_dma {
242 bus_dmamap_t map;
243 caddr_t addr;
244 bus_dma_segment_t segs[1];
245 int nsegs;
246 size_t size;
247 struct eap_dma *next;
248 };
249 #define DMAADDR(map) ((map)->segs[0].ds_addr)
250 #define KERNADDR(map) ((void *)((map)->addr))
251
252 struct eap_softc {
253 struct device sc_dev; /* base device */
254 void *sc_ih; /* interrupt vectoring */
255 bus_space_tag_t iot;
256 bus_space_handle_t ioh;
257 bus_dma_tag_t sc_dmatag; /* DMA tag */
258
259 struct eap_dma *sc_dmas;
260
261 void (*sc_pintr)(void *); /* dma completion intr handler */
262 void *sc_parg; /* arg for sc_intr() */
263 char sc_prun;
264
265 void (*sc_rintr)(void *); /* dma completion intr handler */
266 void *sc_rarg; /* arg for sc_intr() */
267 char sc_rrun;
268
269 int sc_sampsize; /* bytes / sample */
270
271 u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */
272 u_int sc_record_source; /* recording source mask */
273 u_int sc_output_source; /* output source mask */
274 };
275
276 int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
277 int eap_freemem __P((struct eap_softc *, struct eap_dma *));
278
279 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
280 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
281 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
282 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
283
284 struct cfattach eap_ca = {
285 sizeof(struct eap_softc), eap_match, eap_attach
286 };
287
288 int eap_open __P((void *, int));
289 void eap_close __P((void *));
290 int eap_query_encoding __P((void *, struct audio_encoding *));
291 int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
292 int eap_round_blocksize __P((void *, int));
293 int eap_dma_init_output __P((void *, void *, int));
294 int eap_dma_init_input __P((void *, void *, int));
295 int eap_dma_output __P((void *, void *, int, void (*)(void *), void*));
296 int eap_dma_input __P((void *, void *, int, void (*)(void *), void*));
297 int eap_halt_in_dma __P((void *));
298 int eap_halt_out_dma __P((void *));
299 int eap_getdev __P((void *, struct audio_device *));
300 int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
301 int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
302 int eap_query_devinfo __P((void *, mixer_devinfo_t *));
303 void *eap_malloc __P((void *, u_long, int, int));
304 void eap_free __P((void *, void *, int));
305 u_long eap_round __P((void *, u_long));
306 int eap_mappage __P((void *, void *, int, int));
307 int eap_get_props __P((void *));
308 void eap_write_codec __P((struct eap_softc *sc, int a, int d));
309 void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
310
311 struct audio_hw_if eap_hw_if = {
312 eap_open,
313 eap_close,
314 NULL,
315 eap_query_encoding,
316 eap_set_params,
317 eap_round_blocksize,
318 NULL,
319 eap_dma_init_output,
320 eap_dma_init_input,
321 eap_dma_output,
322 eap_dma_input,
323 eap_halt_out_dma,
324 eap_halt_in_dma,
325 NULL,
326 eap_getdev,
327 NULL,
328 eap_mixer_set_port,
329 eap_mixer_get_port,
330 eap_query_devinfo,
331 eap_malloc,
332 eap_free,
333 eap_round,
334 eap_mappage,
335 eap_get_props,
336 };
337
338 struct audio_device eap_device = {
339 "Ensoniq AudioPCI",
340 "",
341 "eap"
342 };
343
344 int
345 eap_match(parent, match, aux)
346 struct device *parent;
347 struct cfdata *match;
348 void *aux;
349 {
350 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
351
352 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
353 return (0);
354 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
355 return (0);
356
357 return (1);
358 }
359
360 void
361 eap_write_codec(sc, a, d)
362 struct eap_softc *sc;
363 int a, d;
364 {
365 int icss;
366
367 do {
368 icss = EREAD4(sc, EAP_ICSS);
369 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
370 } while(icss & EAP_CWRIP);
371 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
372 }
373
374 void
375 eap_attach(parent, self, aux)
376 struct device *parent;
377 struct device *self;
378 void *aux;
379 {
380 struct eap_softc *sc = (struct eap_softc *)self;
381 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
382 pci_chipset_tag_t pc = pa->pa_pc;
383 char const *intrstr;
384 pci_intr_handle_t ih;
385 pcireg_t csr;
386 char devinfo[256];
387 mixer_ctrl_t ctl;
388
389 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
390 printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
391
392 /* Map I/O register */
393 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
394 &sc->iot, &sc->ioh, NULL, NULL)) {
395 printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
396 return;
397 }
398
399 sc->sc_dmatag = pa->pa_dmat;
400
401 /* Enable the device. */
402 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
403 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
404 csr | PCI_COMMAND_MASTER_ENABLE);
405
406 /* Map and establish the interrupt. */
407 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
408 pa->pa_intrline, &ih)) {
409 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
410 return;
411 }
412 intrstr = pci_intr_string(pc, ih);
413 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
414 if (sc->sc_ih == NULL) {
415 printf("%s: couldn't establish interrupt",
416 sc->sc_dev.dv_xname);
417 if (intrstr != NULL)
418 printf(" at %s", intrstr);
419 printf("\n");
420 return;
421 }
422 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
423
424 /* Enable interrupts and looping mode. */
425 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
426 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
427
428 eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
429 eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */
430 eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
431
432 /* Enable all relevant mixer switches. */
433 ctl.dev = EAP_OUTPUT_SELECT;
434 ctl.type = AUDIO_MIXER_SET;
435 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
436 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
437 eap_mixer_set_port(sc, &ctl);
438
439 ctl.type = AUDIO_MIXER_VALUE;
440 ctl.un.value.num_channels = 1;
441 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
442 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
443 eap_mixer_set_port(sc, &ctl);
444 }
445 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
446 eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
447 ctl.dev = EAP_RECORD_SOURCE;
448 ctl.type = AUDIO_MIXER_SET;
449 ctl.un.mask = 1 << EAP_MIC_VOL;
450 eap_mixer_set_port(sc, &ctl);
451
452 audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
453 }
454
455 int
456 eap_intr(p)
457 void *p;
458 {
459 struct eap_softc *sc = p;
460 u_int32_t intr, sic;
461
462 intr = EREAD4(sc, EAP_ICSS);
463 if (!(intr & EAP_INTR))
464 return (0);
465 sic = EREAD4(sc, EAP_SIC);
466 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
467 if (intr & EAP_I_ADC) {
468 /*
469 * XXX This is a hack!
470 * The EAP chip sometimes generates the recording interrupt
471 * while it is still transferring the data. To make sure
472 * it has all arrived we busy wait until the count is right.
473 * The transfer we are waiting for is 8 longwords.
474 */
475 int s, nw, n;
476 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
477 s = EREAD4(sc, EAP_ADC_CSR);
478 nw = ((s & 0xffff) + 1) / 4; /* # of words in DMA */
479 n = 0;
480 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
481 delay(10);
482 if (++n > 100) {
483 printf("eapintr: dma fix timeout");
484 break;
485 }
486 }
487 /* Continue with normal interrupt handling. */
488 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
489 EWRITE4(sc, EAP_SIC, sic);
490 if (sc->sc_rintr)
491 sc->sc_rintr(sc->sc_rarg);
492 }
493 if (intr & EAP_I_DAC2) {
494 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
495 EWRITE4(sc, EAP_SIC, sic);
496 if (sc->sc_pintr)
497 sc->sc_pintr(sc->sc_parg);
498 }
499 return (1);
500 }
501
502 int
503 eap_allocmem(sc, size, align, p)
504 struct eap_softc *sc;
505 size_t size;
506 size_t align;
507 struct eap_dma *p;
508 {
509 int error;
510
511 p->size = size;
512 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
513 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
514 &p->nsegs, BUS_DMA_NOWAIT);
515 if (error)
516 return (error);
517
518 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
519 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
520 if (error)
521 goto free;
522
523 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
524 0, BUS_DMA_NOWAIT, &p->map);
525 if (error)
526 goto unmap;
527
528 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
529 BUS_DMA_NOWAIT);
530 if (error)
531 goto destroy;
532 return (0);
533
534 destroy:
535 bus_dmamap_destroy(sc->sc_dmatag, p->map);
536 unmap:
537 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
538 free:
539 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
540 return (error);
541 }
542
543 int
544 eap_freemem(sc, p)
545 struct eap_softc *sc;
546 struct eap_dma *p;
547 {
548 bus_dmamap_unload(sc->sc_dmatag, p->map);
549 bus_dmamap_destroy(sc->sc_dmatag, p->map);
550 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
551 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
552 return (0);
553 }
554
555 int
556 eap_open(addr, flags)
557 void *addr;
558 int flags;
559 {
560 struct eap_softc *sc = addr;
561
562 DPRINTF(("eap_open: sc=%p\n", sc));
563
564 sc->sc_pintr = 0;
565 sc->sc_rintr = 0;
566
567 return (0);
568 }
569
570 /*
571 * Close function is called at splaudio().
572 */
573 void
574 eap_close(addr)
575 void *addr;
576 {
577 struct eap_softc *sc = addr;
578
579 eap_halt_in_dma(sc);
580 eap_halt_out_dma(sc);
581
582 sc->sc_pintr = 0;
583 sc->sc_rintr = 0;
584 }
585
586 int
587 eap_query_encoding(addr, fp)
588 void *addr;
589 struct audio_encoding *fp;
590 {
591 switch (fp->index) {
592 case 0:
593 strcpy(fp->name, AudioEulinear);
594 fp->encoding = AUDIO_ENCODING_ULINEAR;
595 fp->precision = 8;
596 fp->flags = 0;
597 return (0);
598 case 1:
599 strcpy(fp->name, AudioEmulaw);
600 fp->encoding = AUDIO_ENCODING_ULAW;
601 fp->precision = 8;
602 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
603 return (0);
604 case 2:
605 strcpy(fp->name, AudioEalaw);
606 fp->encoding = AUDIO_ENCODING_ALAW;
607 fp->precision = 8;
608 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
609 return (0);
610 case 3:
611 strcpy(fp->name, AudioEslinear);
612 fp->encoding = AUDIO_ENCODING_SLINEAR;
613 fp->precision = 8;
614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 return (0);
616 case 4:
617 strcpy(fp->name, AudioEslinear_le);
618 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
619 fp->precision = 16;
620 fp->flags = 0;
621 return (0);
622 case 5:
623 strcpy(fp->name, AudioEulinear_le);
624 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
625 fp->precision = 16;
626 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
627 return (0);
628 case 6:
629 strcpy(fp->name, AudioEslinear_be);
630 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
631 fp->precision = 16;
632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 return (0);
634 case 7:
635 strcpy(fp->name, AudioEulinear_be);
636 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
637 fp->precision = 16;
638 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
639 return (0);
640 default:
641 return (EINVAL);
642 }
643 }
644
645 int
646 eap_set_params(addr, setmode, usemode, p, r)
647 void *addr;
648 int setmode, usemode;
649 struct audio_params *p, *r;
650 {
651 struct eap_softc *sc = addr;
652 void (*pswcode) __P((void *, u_char *buf, int cnt));
653 void (*rswcode) __P((void *, u_char *buf, int cnt));
654 u_int32_t mode, div;
655
656
657 pswcode = rswcode = 0;
658 switch (p->encoding) {
659 case AUDIO_ENCODING_SLINEAR_BE:
660 if (p->precision == 16)
661 rswcode = pswcode = swap_bytes;
662 else
663 pswcode = rswcode = change_sign8;
664 break;
665 case AUDIO_ENCODING_SLINEAR_LE:
666 if (p->precision != 16)
667 pswcode = rswcode = change_sign8;
668 break;
669 case AUDIO_ENCODING_ULINEAR_BE:
670 if (p->precision == 16) {
671 pswcode = swap_bytes_change_sign16;
672 rswcode = change_sign16_swap_bytes;
673 }
674 break;
675 case AUDIO_ENCODING_ULINEAR_LE:
676 if (p->precision == 16)
677 pswcode = rswcode = change_sign16;
678 break;
679 case AUDIO_ENCODING_ULAW:
680 pswcode = mulaw_to_ulinear8;
681 rswcode = ulinear8_to_mulaw;
682 break;
683 case AUDIO_ENCODING_ALAW:
684 pswcode = alaw_to_ulinear8;
685 rswcode = ulinear8_to_alaw;
686 break;
687 default:
688 return (EINVAL);
689 }
690 if (p->precision == 16)
691 mode = EAP_P2_S_EB | EAP_R1_S_EB;
692 else
693 mode = 0;
694 if (p->channels == 2)
695 mode |= EAP_P2_S_MB | EAP_R1_S_MB;
696 else if (p->channels != 1)
697 return (EINVAL);
698 if (p->sample_rate < 4000 || p->sample_rate > 50000)
699 return (EINVAL);
700
701 sc->sc_sampsize = p->precision / 8 * p->channels; /* bytes / sample */
702 p->sw_code = pswcode;
703 r->sw_code = rswcode;
704
705 /* Set the encoding */
706 mode |= EREAD4(sc, EAP_SIC) & ~(EAP_R1P2_BITS | EAP_INC_BITS);
707 mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(p->precision / 8);
708 EWRITE4(sc, EAP_SIC, mode);
709 DPRINTFN(2, ("eap_set_params: set SIC = 0x%08x\n", mode));
710
711 /* Set the speed */
712 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
713 EREAD4(sc, EAP_ICSC)));
714 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
715 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / p->sample_rate - 2);
716 div |= EAP_CCB_INTRM;
717 EWRITE4(sc, EAP_ICSC, div);
718 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
719
720 return (0);
721 }
722
723 int
724 eap_round_blocksize(addr, blk)
725 void *addr;
726 int blk;
727 {
728 return (blk & -32); /* keep good alignment */
729 }
730
731 int
732 eap_dma_init_input(addr, buf, cc)
733 void *addr;
734 void *buf;
735 int cc;
736 {
737 struct eap_softc *sc = addr;
738 struct eap_dma *p;
739
740 DPRINTF(("eap_dma_init_input: dma start loop input addr=%p cc=%d\n",
741 buf, cc));
742 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
743 ;
744 if (!p) {
745 printf("eap_dma_init_input: bad addr %p\n", buf);
746 return (EINVAL);
747 }
748 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
749 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
750 EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
751 DPRINTF(("eap_dma_init_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
752 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
753 return (0);
754 }
755
756 int
757 eap_dma_init_output(addr, buf, cc)
758 void *addr;
759 void *buf;
760 int cc;
761 {
762 struct eap_softc *sc = addr;
763 struct eap_dma *p;
764
765 DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc));
766 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
767 ;
768 if (!p) {
769 printf("eap_dma_init_output: bad addr %p\n", buf);
770 return (EINVAL);
771 }
772 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
773 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
774 EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
775 DPRINTF(("eap_dma_init_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
776 (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
777 return (0);
778 }
779
780 int
781 eap_dma_output(addr, p, cc, intr, arg)
782 void *addr;
783 void *p;
784 int cc;
785 void (*intr) __P((void *));
786 void *arg;
787 {
788 struct eap_softc *sc = addr;
789 u_int32_t mode;
790
791 DPRINTFN(sc->sc_prun ? 5 : 1,
792 ("eap_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n",
793 addr, p, cc, intr, arg));
794 sc->sc_pintr = intr;
795 sc->sc_parg = arg;
796 if (!sc->sc_prun) {
797 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
798 if (sc->sc_sampsize == 0) {
799 printf("eap_dma_output: sampsize == 0\n");
800 return EINVAL;
801 }
802 #endif
803 EWRITE2(sc, EAP_DAC2_CSR, cc / sc->sc_sampsize - 1);
804 DPRINTFN(1, ("eap_dma_output: set DAC2_CSR = %d\n",
805 cc / sc->sc_sampsize - 1));
806 DPRINTFN(1, ("eap_dma_output: old ICSC = 0x%08x\n",
807 EREAD4(sc, EAP_ICSC)));
808 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
809 EWRITE4(sc, EAP_ICSC, mode);
810 mode |= EAP_DAC2_EN;
811 EWRITE4(sc, EAP_ICSC, mode);
812 DPRINTFN(1, ("eap_dma_output: set ICSC = 0x%08x\n", mode));
813 sc->sc_prun = 1;
814 }
815 return (0);
816 }
817
818 int
819 eap_dma_input(addr, p, cc, intr, arg)
820 void *addr;
821 void *p;
822 int cc;
823 void (*intr) __P((void *));
824 void *arg;
825 {
826 struct eap_softc *sc = addr;
827 u_int32_t mode;
828
829 DPRINTFN(1, ("eap_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
830 addr, p, cc, intr, arg));
831 sc->sc_rintr = intr;
832 sc->sc_rarg = arg;
833 if (!sc->sc_rrun) {
834 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
835 if (sc->sc_sampsize == 0) {
836 printf("eap_dma_input: sampsize == 0\n");
837 return EINVAL;
838 }
839 #endif
840 EWRITE2(sc, EAP_ADC_CSR, cc / sc->sc_sampsize - 1);
841 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
842 EWRITE4(sc, EAP_ICSC, mode);
843 mode |= EAP_ADC_EN;
844 EWRITE4(sc, EAP_ICSC, mode);
845 DPRINTFN(1, ("eap_dma_input: set ICSC = 0x%08x\n", mode));
846 sc->sc_rrun = 1;
847 }
848 return (0);
849 }
850
851 int
852 eap_halt_out_dma(addr)
853 void *addr;
854 {
855 struct eap_softc *sc = addr;
856 u_int32_t mode;
857
858 DPRINTF(("eap: eap_halt_out_dma\n"));
859 mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
860 EWRITE4(sc, EAP_ICSC, mode);
861 sc->sc_prun = 0;
862 return (0);
863 }
864
865 int
866 eap_halt_in_dma(addr)
867 void *addr;
868 {
869 struct eap_softc *sc = addr;
870 u_int32_t mode;
871
872 DPRINTF(("eap: eap_halt_in_dma\n"));
873 mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
874 EWRITE4(sc, EAP_ICSC, mode);
875 sc->sc_rrun = 0;
876 return (0);
877 }
878
879 int
880 eap_getdev(addr, retp)
881 void *addr;
882 struct audio_device *retp;
883 {
884 *retp = eap_device;
885 return (0);
886 }
887
888 void
889 eap_set_mixer(sc, a, d)
890 struct eap_softc *sc;
891 int a, d;
892 {
893 eap_write_codec(sc, a, d);
894 DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
895 }
896
897
898 int
899 eap_mixer_set_port(addr, cp)
900 void *addr;
901 mixer_ctrl_t *cp;
902 {
903 struct eap_softc *sc = addr;
904 int lval, rval, l, r, la, ra;
905 int l1, r1, l2, r2, m, o1, o2;
906
907 if (cp->dev == EAP_RECORD_SOURCE) {
908 if (cp->type != AUDIO_MIXER_SET)
909 return (EINVAL);
910 m = sc->sc_record_source = cp->un.mask;
911 l1 = l2 = r1 = r2 = 0;
912 if (m & (1 << EAP_VOICE_VOL))
913 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
914 if (m & (1 << EAP_FM_VOL))
915 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
916 if (m & (1 << EAP_CD_VOL))
917 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
918 if (m & (1 << EAP_LINE_VOL))
919 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
920 if (m & (1 << EAP_AUX_VOL))
921 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
922 if (m & (1 << EAP_MIC_VOL))
923 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
924 eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
925 eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
926 eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
927 eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
928 return (0);
929 }
930 if (cp->dev == EAP_OUTPUT_SELECT) {
931 if (cp->type != AUDIO_MIXER_SET)
932 return (EINVAL);
933 m = sc->sc_output_source = cp->un.mask;
934 o1 = o2 = 0;
935 if (m & (1 << EAP_VOICE_VOL))
936 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
937 if (m & (1 << EAP_FM_VOL))
938 o1 |= AK_M_FM_L | AK_M_FM_R;
939 if (m & (1 << EAP_CD_VOL))
940 o1 |= AK_M_CD_L | AK_M_CD_R;
941 if (m & (1 << EAP_LINE_VOL))
942 o1 |= AK_M_LINE_L | AK_M_LINE_R;
943 if (m & (1 << EAP_AUX_VOL))
944 o2 |= AK_M_AUX_L | AK_M_AUX_R;
945 if (m & (1 << EAP_MIC_VOL))
946 o1 |= AK_M_MIC;
947 eap_set_mixer(sc, AK_OUT_MIXER1, o1);
948 eap_set_mixer(sc, AK_OUT_MIXER2, o2);
949 return (0);
950 }
951 if (cp->type != AUDIO_MIXER_VALUE)
952 return (EINVAL);
953 if (cp->un.value.num_channels == 1)
954 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
955 else if (cp->un.value.num_channels == 2) {
956 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
957 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
958 } else
959 return (EINVAL);
960 ra = -1;
961 switch (cp->dev) {
962 case EAP_MASTER_VOL:
963 l = VOL_TO_ATT5(lval);
964 r = VOL_TO_ATT5(rval);
965 la = AK_MASTER_L;
966 ra = AK_MASTER_R;
967 break;
968 case EAP_MIC_VOL:
969 if (cp->un.value.num_channels != 1)
970 return (EINVAL);
971 la = AK_MIC;
972 goto lr;
973 case EAP_VOICE_VOL:
974 la = AK_VOICE_L;
975 ra = AK_VOICE_R;
976 goto lr;
977 case EAP_FM_VOL:
978 la = AK_FM_L;
979 ra = AK_FM_R;
980 goto lr;
981 case EAP_CD_VOL:
982 la = AK_CD_L;
983 ra = AK_CD_R;
984 goto lr;
985 case EAP_LINE_VOL:
986 la = AK_LINE_L;
987 ra = AK_LINE_R;
988 goto lr;
989 case EAP_AUX_VOL:
990 la = AK_AUX_L;
991 ra = AK_AUX_R;
992 lr:
993 l = VOL_TO_GAIN5(lval);
994 r = VOL_TO_GAIN5(rval);
995 break;
996 default:
997 return (EINVAL);
998 }
999 eap_set_mixer(sc, la, l);
1000 sc->sc_port[la] = l;
1001 if (ra >= 0) {
1002 eap_set_mixer(sc, ra, r);
1003 sc->sc_port[ra] = r;
1004 }
1005 return (0);
1006 }
1007
1008 int
1009 eap_mixer_get_port(addr, cp)
1010 void *addr;
1011 mixer_ctrl_t *cp;
1012 {
1013 struct eap_softc *sc = addr;
1014 int la, ra, l, r;
1015
1016 switch (cp->dev) {
1017 case EAP_RECORD_SOURCE:
1018 cp->un.mask = sc->sc_record_source;
1019 return (0);
1020 case EAP_OUTPUT_SELECT:
1021 cp->un.mask = sc->sc_output_source;
1022 return (0);
1023 case EAP_MASTER_VOL:
1024 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1025 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1026 break;
1027 case EAP_MIC_VOL:
1028 if (cp->un.value.num_channels != 1)
1029 return (EINVAL);
1030 la = ra = AK_MIC;
1031 goto lr;
1032 case EAP_VOICE_VOL:
1033 la = AK_VOICE_L;
1034 ra = AK_VOICE_R;
1035 goto lr;
1036 case EAP_FM_VOL:
1037 la = AK_FM_L;
1038 ra = AK_FM_R;
1039 goto lr;
1040 case EAP_CD_VOL:
1041 la = AK_CD_L;
1042 ra = AK_CD_R;
1043 goto lr;
1044 case EAP_LINE_VOL:
1045 la = AK_LINE_L;
1046 ra = AK_LINE_R;
1047 goto lr;
1048 case EAP_AUX_VOL:
1049 la = AK_AUX_L;
1050 ra = AK_AUX_R;
1051 lr:
1052 l = GAIN5_TO_VOL(sc->sc_port[la]);
1053 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1054 break;
1055 default:
1056 return (EINVAL);
1057 }
1058 if (cp->un.value.num_channels == 1)
1059 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1060 else if (cp->un.value.num_channels == 2) {
1061 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1062 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1063 }
1064 return (0);
1065 }
1066
1067 int
1068 eap_query_devinfo(addr, dip)
1069 void *addr;
1070 mixer_devinfo_t *dip;
1071 {
1072 switch (dip->index) {
1073 case EAP_MASTER_VOL:
1074 dip->type = AUDIO_MIXER_VALUE;
1075 dip->mixer_class = EAP_OUTPUT_CLASS;
1076 dip->prev = dip->next = AUDIO_MIXER_LAST;
1077 strcpy(dip->label.name, AudioNmaster);
1078 dip->un.v.num_channels = 2;
1079 strcpy(dip->un.v.units.name, AudioNvolume);
1080 return (0);
1081 case EAP_VOICE_VOL:
1082 dip->type = AUDIO_MIXER_VALUE;
1083 dip->mixer_class = EAP_INPUT_CLASS;
1084 dip->prev = AUDIO_MIXER_LAST;
1085 dip->next = AUDIO_MIXER_LAST;
1086 strcpy(dip->label.name, AudioNdac);
1087 dip->un.v.num_channels = 2;
1088 strcpy(dip->un.v.units.name, AudioNvolume);
1089 return (0);
1090 case EAP_FM_VOL:
1091 dip->type = AUDIO_MIXER_VALUE;
1092 dip->mixer_class = EAP_INPUT_CLASS;
1093 dip->prev = AUDIO_MIXER_LAST;
1094 dip->next = AUDIO_MIXER_LAST;
1095 strcpy(dip->label.name, AudioNfmsynth);
1096 dip->un.v.num_channels = 2;
1097 strcpy(dip->un.v.units.name, AudioNvolume);
1098 return (0);
1099 case EAP_CD_VOL:
1100 dip->type = AUDIO_MIXER_VALUE;
1101 dip->mixer_class = EAP_INPUT_CLASS;
1102 dip->prev = AUDIO_MIXER_LAST;
1103 dip->next = AUDIO_MIXER_LAST;
1104 strcpy(dip->label.name, AudioNcd);
1105 dip->un.v.num_channels = 2;
1106 strcpy(dip->un.v.units.name, AudioNvolume);
1107 return (0);
1108 case EAP_LINE_VOL:
1109 dip->type = AUDIO_MIXER_VALUE;
1110 dip->mixer_class = EAP_INPUT_CLASS;
1111 dip->prev = AUDIO_MIXER_LAST;
1112 dip->next = AUDIO_MIXER_LAST;
1113 strcpy(dip->label.name, AudioNline);
1114 dip->un.v.num_channels = 2;
1115 strcpy(dip->un.v.units.name, AudioNvolume);
1116 return (0);
1117 case EAP_AUX_VOL:
1118 dip->type = AUDIO_MIXER_VALUE;
1119 dip->mixer_class = EAP_INPUT_CLASS;
1120 dip->prev = AUDIO_MIXER_LAST;
1121 dip->next = AUDIO_MIXER_LAST;
1122 strcpy(dip->label.name, AudioNaux);
1123 dip->un.v.num_channels = 2;
1124 strcpy(dip->un.v.units.name, AudioNvolume);
1125 return (0);
1126 case EAP_MIC_VOL:
1127 dip->type = AUDIO_MIXER_VALUE;
1128 dip->mixer_class = EAP_INPUT_CLASS;
1129 dip->prev = AUDIO_MIXER_LAST;
1130 dip->next = AUDIO_MIXER_LAST;
1131 strcpy(dip->label.name, AudioNmicrophone);
1132 dip->un.v.num_channels = 1;
1133 strcpy(dip->un.v.units.name, AudioNvolume);
1134 return (0);
1135 case EAP_RECORD_SOURCE:
1136 dip->mixer_class = EAP_RECORD_CLASS;
1137 dip->prev = dip->next = AUDIO_MIXER_LAST;
1138 strcpy(dip->label.name, AudioNsource);
1139 dip->type = AUDIO_MIXER_SET;
1140 dip->un.s.num_mem = 6;
1141 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1142 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1143 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1144 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1145 strcpy(dip->un.s.member[2].label.name, AudioNline);
1146 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1147 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1148 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1149 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1150 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1151 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1152 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1153 return (0);
1154 case EAP_OUTPUT_SELECT:
1155 dip->mixer_class = EAP_OUTPUT_CLASS;
1156 dip->prev = dip->next = AUDIO_MIXER_LAST;
1157 strcpy(dip->label.name, AudioNselect);
1158 dip->type = AUDIO_MIXER_SET;
1159 dip->un.s.num_mem = 6;
1160 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1161 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1162 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1163 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1164 strcpy(dip->un.s.member[2].label.name, AudioNline);
1165 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1166 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1167 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1168 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1169 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1170 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1171 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1172 return (0);
1173 case EAP_OUTPUT_CLASS:
1174 dip->type = AUDIO_MIXER_CLASS;
1175 dip->mixer_class = EAP_OUTPUT_CLASS;
1176 dip->next = dip->prev = AUDIO_MIXER_LAST;
1177 strcpy(dip->label.name, AudioCoutputs);
1178 return (0);
1179 case EAP_RECORD_CLASS:
1180 dip->type = AUDIO_MIXER_CLASS;
1181 dip->mixer_class = EAP_RECORD_CLASS;
1182 dip->next = dip->prev = AUDIO_MIXER_LAST;
1183 strcpy(dip->label.name, AudioCrecord);
1184 return (0);
1185 case EAP_INPUT_CLASS:
1186 dip->type = AUDIO_MIXER_CLASS;
1187 dip->mixer_class = EAP_INPUT_CLASS;
1188 dip->next = dip->prev = AUDIO_MIXER_LAST;
1189 strcpy(dip->label.name, AudioCinputs);
1190 return (0);
1191 }
1192 return (ENXIO);
1193 }
1194
1195 void *
1196 eap_malloc(addr, size, pool, flags)
1197 void *addr;
1198 u_long size;
1199 int pool;
1200 int flags;
1201 {
1202 struct eap_softc *sc = addr;
1203 struct eap_dma *p;
1204 int error;
1205
1206 p = malloc(sizeof(*p), pool, flags);
1207 if (!p)
1208 return (0);
1209 error = eap_allocmem(sc, size, 16, p);
1210 if (error) {
1211 free(p, pool);
1212 return (0);
1213 }
1214 p->next = sc->sc_dmas;
1215 sc->sc_dmas = p;
1216 return (KERNADDR(p));
1217 }
1218
1219 void
1220 eap_free(addr, ptr, pool)
1221 void *addr;
1222 void *ptr;
1223 int pool;
1224 {
1225 struct eap_softc *sc = addr;
1226 struct eap_dma **p;
1227
1228 for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1229 if (KERNADDR(*p) == ptr) {
1230 eap_freemem(sc, *p);
1231 *p = (*p)->next;
1232 free(*p, pool);
1233 return;
1234 }
1235 }
1236 }
1237
1238 u_long
1239 eap_round(addr, size)
1240 void *addr;
1241 u_long size;
1242 {
1243 return (size);
1244 }
1245
1246 int
1247 eap_mappage(addr, mem, off, prot)
1248 void *addr;
1249 void *mem;
1250 int off;
1251 int prot;
1252 {
1253 struct eap_softc *sc = addr;
1254 struct eap_dma *p;
1255
1256 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1257 ;
1258 if (!p)
1259 return (-1);
1260 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1261 off, prot, BUS_DMA_WAITOK));
1262 }
1263
1264 int
1265 eap_get_props(addr)
1266 void *addr;
1267 {
1268 return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
1269 }
1270