eap.c revision 1.85 1 /* $NetBSD: eap.c,v 1.85 2006/07/01 15:22:06 chap Exp $ */
2 /* $OpenBSD: eap.c,v 1.6 1999/10/05 19:24:42 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1998, 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Lennart Augustsson <augustss (at) NetBSD.org>, Charles M. Hannum, and
10 * Antti Kantee <pooka (at) NetBSD.org>.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
43 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
44 * Phil Nelson <phil (at) cs.wwu.edu>
45 *
46 * ES1371/AC97: Ezra Story <ezy (at) panix.com>
47 */
48
49 /*
50 * Ensoniq ES1370 + AK4531 and ES1371/ES1373 + AC97
51 *
52 * Documentation links:
53 *
54 * ftp://ftp.alsa-project.org/pub/manuals/ensoniq/ (ES1370 and 1371 datasheets)
55 * http://web.archive.org/web/20040622012936/http://www.corbac.com/Data/Misc/es1373.ps.gz
56 * ftp://ftp.alsa-project.org/pub/manuals/asahi_kasei/4531.pdf
57 * ftp://download.intel.com/ial/scalableplatforms/audio/ac97r21.pdf
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: eap.c,v 1.85 2006/07/01 15:22:06 chap Exp $");
62
63 #include "midi.h"
64 #include "joy_eap.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kernel.h>
69 #include <sys/fcntl.h>
70 #include <sys/malloc.h>
71 #include <sys/device.h>
72 #include <sys/proc.h>
73 #include <sys/select.h>
74
75 #include <dev/pci/pcidevs.h>
76 #include <dev/pci/pcivar.h>
77
78 #include <sys/audioio.h>
79 #include <dev/audio_if.h>
80 #include <dev/midi_if.h>
81 #include <dev/audiovar.h>
82 #include <dev/mulaw.h>
83 #include <dev/auconv.h>
84 #include <dev/ic/ac97var.h>
85
86 #include <machine/bus.h>
87
88 #include <dev/pci/eapreg.h>
89 #include <dev/pci/eapvar.h>
90
91 #define PCI_CBIO 0x10
92
93 /* Debug */
94 #ifdef AUDIO_DEBUG
95 #define DPRINTF(x) if (eapdebug) printf x
96 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
97 int eapdebug = 0;
98 #else
99 #define DPRINTF(x)
100 #define DPRINTFN(n,x)
101 #endif
102
103 static int eap_match(struct device *, struct cfdata *, void *);
104 static void eap_attach(struct device *, struct device *, void *);
105 static int eap_detach(struct device *, int);
106 static int eap_intr(void *);
107
108 struct eap_dma {
109 bus_dmamap_t map;
110 caddr_t addr;
111 bus_dma_segment_t segs[1];
112 int nsegs;
113 size_t size;
114 struct eap_dma *next;
115 };
116
117 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
118 #define KERNADDR(p) ((void *)((p)->addr))
119
120 /*
121 * The card has two DACs. Using them is a bit twisted: we use DAC2
122 * as default and DAC1 as the optional secondary DAC.
123 */
124 #define EAP_DAC1 1
125 #define EAP_DAC2 0
126 #define EAP_I1 EAP_DAC2
127 #define EAP_I2 EAP_DAC1
128 struct eap_instance {
129 struct device *parent;
130 int index;
131
132 void (*ei_pintr)(void *); /* DMA completion intr handler */
133 void *ei_parg; /* arg for ei_intr() */
134 struct device *ei_audiodev; /* audio device, for detach */
135 #ifdef DIAGNOSTIC
136 char ei_prun;
137 #endif
138 };
139
140 struct eap_softc {
141 struct device sc_dev; /* base device */
142 void *sc_ih; /* interrupt vectoring */
143 bus_space_tag_t iot;
144 bus_space_handle_t ioh;
145 bus_size_t iosz;
146 bus_dma_tag_t sc_dmatag; /* DMA tag */
147
148 struct eap_dma *sc_dmas;
149
150 void (*sc_rintr)(void *); /* DMA completion intr handler */
151 void *sc_rarg; /* arg for sc_intr() */
152 #ifdef DIAGNOSTIC
153 char sc_rrun;
154 #endif
155
156 #if NMIDI > 0
157 void (*sc_iintr)(void *, int); /* midi input ready handler */
158 void (*sc_ointr)(void *); /* midi output ready handler */
159 void *sc_arg;
160 struct device *sc_mididev;
161 #endif
162 #if NJOY_EAP > 0
163 struct device *sc_gameport;
164 #endif
165
166 u_short sc_port[AK_NPORTS]; /* mirror of the hardware setting */
167 u_int sc_record_source; /* recording source mask */
168 u_int sc_input_source; /* input source mask */
169 u_int sc_mic_preamp;
170 char sc_1371; /* Using ES1371/AC97 codec */
171
172 struct ac97_codec_if *codec_if;
173 struct ac97_host_if host_if;
174
175 struct eap_instance sc_ei[2];
176
177 pci_chipset_tag_t sc_pc; /* For detach */
178 };
179
180 static int eap_allocmem(struct eap_softc *, size_t, size_t,
181 struct eap_dma *);
182 static int eap_freemem(struct eap_softc *, struct eap_dma *);
183
184 #define EWRITE1(sc, r, x) bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x))
185 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
186 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
187 #define EREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r))
188 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
189 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
190
191 CFATTACH_DECL(eap, sizeof(struct eap_softc),
192 eap_match, eap_attach, eap_detach, NULL);
193
194 static int eap_open(void *, int);
195 static int eap_query_encoding(void *, struct audio_encoding *);
196 static int eap_set_params(void *, int, int, audio_params_t *,
197 audio_params_t *, stream_filter_list_t *,
198 stream_filter_list_t *);
199 static int eap_round_blocksize(void *, int, int, const audio_params_t *);
200 static int eap_trigger_output(void *, void *, void *, int,
201 void (*)(void *), void *,
202 const audio_params_t *);
203 static int eap_trigger_input(void *, void *, void *, int,
204 void (*)(void *), void *,
205 const audio_params_t *);
206 static int eap_halt_output(void *);
207 static int eap_halt_input(void *);
208 static void eap1370_write_codec(struct eap_softc *, int, int);
209 static int eap_getdev(void *, struct audio_device *);
210 static int eap1370_mixer_set_port(void *, mixer_ctrl_t *);
211 static int eap1370_mixer_get_port(void *, mixer_ctrl_t *);
212 static int eap1371_mixer_set_port(void *, mixer_ctrl_t *);
213 static int eap1371_mixer_get_port(void *, mixer_ctrl_t *);
214 static int eap1370_query_devinfo(void *, mixer_devinfo_t *);
215 static void *eap_malloc(void *, int, size_t, struct malloc_type *, int);
216 static void eap_free(void *, void *, struct malloc_type *);
217 static size_t eap_round_buffersize(void *, int, size_t);
218 static paddr_t eap_mappage(void *, void *, off_t, int);
219 static int eap_get_props(void *);
220 static void eap1370_set_mixer(struct eap_softc *, int, int);
221 static uint32_t eap1371_src_wait(struct eap_softc *);
222 static void eap1371_set_adc_rate(struct eap_softc *, int);
223 static void eap1371_set_dac_rate(struct eap_instance *, int);
224 static int eap1371_src_read(struct eap_softc *, int);
225 static void eap1371_src_write(struct eap_softc *, int, int);
226 static int eap1371_query_devinfo(void *, mixer_devinfo_t *);
227
228 static int eap1371_attach_codec(void *, struct ac97_codec_if *);
229 static int eap1371_read_codec(void *, uint8_t, uint16_t *);
230 static int eap1371_write_codec(void *, uint8_t, uint16_t );
231 static int eap1371_reset_codec(void *);
232 #if NMIDI > 0
233 static void eap_midi_close(void *);
234 static void eap_midi_getinfo(void *, struct midi_info *);
235 static int eap_midi_open(void *, int, void (*)(void *, int),
236 void (*)(void *), void *);
237 static int eap_midi_output(void *, int);
238 static void eap_uart_txrdy(struct eap_softc *);
239 #endif
240
241 static const struct audio_hw_if eap1370_hw_if = {
242 eap_open,
243 NULL, /* close */
244 NULL,
245 eap_query_encoding,
246 eap_set_params,
247 eap_round_blocksize,
248 NULL,
249 NULL,
250 NULL,
251 NULL,
252 NULL,
253 eap_halt_output,
254 eap_halt_input,
255 NULL,
256 eap_getdev,
257 NULL,
258 eap1370_mixer_set_port,
259 eap1370_mixer_get_port,
260 eap1370_query_devinfo,
261 eap_malloc,
262 eap_free,
263 eap_round_buffersize,
264 eap_mappage,
265 eap_get_props,
266 eap_trigger_output,
267 eap_trigger_input,
268 NULL,
269 };
270
271 static const struct audio_hw_if eap1371_hw_if = {
272 eap_open,
273 NULL, /* close */
274 NULL,
275 eap_query_encoding,
276 eap_set_params,
277 eap_round_blocksize,
278 NULL,
279 NULL,
280 NULL,
281 NULL,
282 NULL,
283 eap_halt_output,
284 eap_halt_input,
285 NULL,
286 eap_getdev,
287 NULL,
288 eap1371_mixer_set_port,
289 eap1371_mixer_get_port,
290 eap1371_query_devinfo,
291 eap_malloc,
292 eap_free,
293 eap_round_buffersize,
294 eap_mappage,
295 eap_get_props,
296 eap_trigger_output,
297 eap_trigger_input,
298 NULL,
299 };
300
301 #if NMIDI > 0
302 static const struct midi_hw_if eap_midi_hw_if = {
303 eap_midi_open,
304 eap_midi_close,
305 eap_midi_output,
306 eap_midi_getinfo,
307 0, /* ioctl */
308 };
309 #endif
310
311 static struct audio_device eap_device = {
312 "Ensoniq AudioPCI",
313 "",
314 "eap"
315 };
316
317 #define EAP_NFORMATS 4
318 static const struct audio_format eap_formats[EAP_NFORMATS] = {
319 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
320 2, AUFMT_STEREO, 0, {4000, 48000}},
321 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
322 1, AUFMT_MONAURAL, 0, {4000, 48000}},
323 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
324 2, AUFMT_STEREO, 0, {4000, 48000}},
325 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
326 1, AUFMT_MONAURAL, 0, {4000, 48000}},
327 };
328
329 static int
330 eap_match(struct device *parent, struct cfdata *match, void *aux)
331 {
332 struct pci_attach_args *pa;
333
334 pa = (struct pci_attach_args *)aux;
335 switch (PCI_VENDOR(pa->pa_id)) {
336 case PCI_VENDOR_CREATIVELABS:
337 switch (PCI_PRODUCT(pa->pa_id)) {
338 case PCI_PRODUCT_CREATIVELABS_EV1938:
339 return 1;
340 }
341 break;
342 case PCI_VENDOR_ENSONIQ:
343 switch (PCI_PRODUCT(pa->pa_id)) {
344 case PCI_PRODUCT_ENSONIQ_AUDIOPCI:
345 case PCI_PRODUCT_ENSONIQ_AUDIOPCI97:
346 case PCI_PRODUCT_ENSONIQ_CT5880:
347 return 1;
348 }
349 break;
350 }
351
352 return 0;
353 }
354
355 static void
356 eap1370_write_codec(struct eap_softc *sc, int a, int d)
357 {
358 int icss, to;
359
360 to = EAP_WRITE_TIMEOUT;
361 do {
362 icss = EREAD4(sc, EAP_ICSS);
363 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
364 if (!to--) {
365 printf("eap: timeout writing to codec\n");
366 return;
367 }
368 } while(icss & EAP_CWRIP); /* XXX could use CSTAT here */
369 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
370 }
371
372 /*
373 * Reading and writing the CODEC is very convoluted. This mimics the
374 * FreeBSD and Linux drivers.
375 */
376
377 static inline void
378 eap1371_ready_codec(struct eap_softc *sc, uint8_t a, uint32_t wd)
379 {
380 int to, s;
381 uint32_t src, t;
382
383 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
384 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
385 break;
386 delay(1);
387 }
388 if (to >= EAP_WRITE_TIMEOUT)
389 printf("%s: eap1371_ready_codec timeout 1\n",
390 sc->sc_dev.dv_xname);
391
392 s = splaudio();
393 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
394 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
395
396 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
397 t = EREAD4(sc, E1371_SRC);
398 if ((t & E1371_SRC_STATE_MASK) == 0)
399 break;
400 delay(1);
401 }
402 if (to >= EAP_READ_TIMEOUT)
403 printf("%s: eap1371_ready_codec timeout 2\n",
404 sc->sc_dev.dv_xname);
405
406 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
407 t = EREAD4(sc, E1371_SRC);
408 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
409 break;
410 delay(1);
411 }
412 if (to >= EAP_READ_TIMEOUT)
413 printf("%s: eap1371_ready_codec timeout 3\n",
414 sc->sc_dev.dv_xname);
415
416 EWRITE4(sc, E1371_CODEC, wd);
417
418 eap1371_src_wait(sc);
419 EWRITE4(sc, E1371_SRC, src);
420
421 splx(s);
422 }
423
424 static int
425 eap1371_read_codec(void *sc_, uint8_t a, uint16_t *d)
426 {
427 struct eap_softc *sc;
428 int to;
429 uint32_t t;
430
431 sc = sc_;
432 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, 0) | E1371_CODEC_READ);
433
434 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
435 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
436 break;
437 }
438 if (to > EAP_WRITE_TIMEOUT)
439 printf("%s: eap1371_read_codec timeout 1\n",
440 sc->sc_dev.dv_xname);
441
442 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
443 t = EREAD4(sc, E1371_CODEC);
444 if (t & E1371_CODEC_VALID)
445 break;
446 }
447 if (to > EAP_WRITE_TIMEOUT)
448 printf("%s: eap1371_read_codec timeout 2\n",
449 sc->sc_dev.dv_xname);
450
451 *d = (uint16_t)t;
452
453 DPRINTFN(10, ("eap1371: reading codec (%x) = %x\n", a, *d));
454
455 return 0;
456 }
457
458 static int
459 eap1371_write_codec(void *sc_, uint8_t a, uint16_t d)
460 {
461 struct eap_softc *sc;
462
463 sc = sc_;
464 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, d));
465
466 DPRINTFN(10, ("eap1371: writing codec %x --> %x\n", d, a));
467
468 return 0;
469 }
470
471 static uint32_t
472 eap1371_src_wait(struct eap_softc *sc)
473 {
474 int to;
475 u_int32_t src;
476
477 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
478 src = EREAD4(sc, E1371_SRC);
479 if (!(src & E1371_SRC_RBUSY))
480 return src;
481 delay(1);
482 }
483 printf("%s: eap1371_src_wait timeout\n", sc->sc_dev.dv_xname);
484 return src;
485 }
486
487 static int
488 eap1371_src_read(struct eap_softc *sc, int a)
489 {
490 int to;
491 uint32_t src, t;
492
493 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
494 src |= E1371_SRC_ADDR(a);
495 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
496
497 t = eap1371_src_wait(sc);
498 if ((t & E1371_SRC_STATE_MASK) != E1371_SRC_STATE_OK) {
499 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
500 t = EREAD4(sc, E1371_SRC);
501 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
502 break;
503 delay(1);
504 }
505 }
506
507 EWRITE4(sc, E1371_SRC, src);
508
509 return t & E1371_SRC_DATAMASK;
510 }
511
512 static void
513 eap1371_src_write(struct eap_softc *sc, int a, int d)
514 {
515 uint32_t r;
516
517 r = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
518 r |= E1371_SRC_RAMWE | E1371_SRC_ADDR(a) | E1371_SRC_DATA(d);
519 EWRITE4(sc, E1371_SRC, r);
520 }
521
522 static void
523 eap1371_set_adc_rate(struct eap_softc *sc, int rate)
524 {
525 int freq, n, truncm;
526 int out;
527 int s;
528
529 /* Whatever, it works, so I'll leave it :) */
530
531 if (rate > 48000)
532 rate = 48000;
533 if (rate < 4000)
534 rate = 4000;
535 n = rate / 3000;
536 if ((1 << n) & SRC_MAGIC)
537 n--;
538 truncm = ((21 * n) - 1) | 1;
539 freq = ((48000 << 15) / rate) * n;
540 if (rate >= 24000) {
541 if (truncm > 239)
542 truncm = 239;
543 out = ESRC_SET_TRUNC((239 - truncm) / 2);
544 } else {
545 if (truncm > 119)
546 truncm = 119;
547 out = ESRC_SMF | ESRC_SET_TRUNC((119 - truncm) / 2);
548 }
549 out |= ESRC_SET_N(n);
550 s = splaudio();
551 eap1371_src_write(sc, ESRC_ADC+ESRC_TRUNC_N, out);
552
553 out = eap1371_src_read(sc, ESRC_ADC+ESRC_IREGS) & 0xff;
554 eap1371_src_write(sc, ESRC_ADC+ESRC_IREGS, out |
555 ESRC_SET_VFI(freq >> 15));
556 eap1371_src_write(sc, ESRC_ADC+ESRC_VFF, freq & 0x7fff);
557 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(n));
558 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(n));
559 splx(s);
560 }
561
562 static void
563 eap1371_set_dac_rate(struct eap_instance *ei, int rate)
564 {
565 struct eap_softc *sc;
566 int dac;
567 int freq, r;
568 int s;
569
570 DPRINTFN(2, ("eap1371_set_dac_date: set rate for %d\n", ei->index));
571 sc = (struct eap_softc *)ei->parent;
572 dac = ei->index == EAP_DAC1 ? ESRC_DAC1 : ESRC_DAC2;
573
574 /* Whatever, it works, so I'll leave it :) */
575
576 if (rate > 48000)
577 rate = 48000;
578 if (rate < 4000)
579 rate = 4000;
580 freq = ((rate << 15) + 1500) / 3000;
581
582 s = splaudio();
583 eap1371_src_wait(sc);
584 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
585 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
586 r |= ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2;
587 EWRITE4(sc, E1371_SRC, r);
588 r = eap1371_src_read(sc, dac + ESRC_IREGS) & 0x00ff;
589 eap1371_src_write(sc, dac + ESRC_IREGS, r | ((freq >> 5) & 0xfc00));
590 eap1371_src_write(sc, dac + ESRC_VFF, freq & 0x7fff);
591 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
592 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
593 r &= ~(ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2);
594 EWRITE4(sc, E1371_SRC, r);
595 splx(s);
596 }
597
598 static void
599 eap_attach(struct device *parent, struct device *self, void *aux)
600 {
601 struct eap_softc *sc;
602 struct pci_attach_args *pa;
603 pci_chipset_tag_t pc;
604 const struct audio_hw_if *eap_hw_if;
605 char const *intrstr;
606 pci_intr_handle_t ih;
607 pcireg_t csr;
608 char devinfo[256];
609 mixer_ctrl_t ctl;
610 int i;
611 int revision, ct5880;
612 const char *revstr;
613 #if NJOY_EAP > 0
614 struct eap_gameport_args gpargs;
615 #endif
616
617 sc = (struct eap_softc *)self;
618 pa = (struct pci_attach_args *)aux;
619 pc = pa->pa_pc;
620 revstr = "";
621 aprint_naive(": Audio controller\n");
622
623 /* Stash this away for detach */
624 sc->sc_pc = pc;
625
626 /* Flag if we're "creative" */
627 sc->sc_1371 = !(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
628 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI);
629
630 /*
631 * The vendor and product ID's are quite "interesting". Just
632 * trust the following and be happy.
633 */
634 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
635 revision = PCI_REVISION(pa->pa_class);
636 ct5880 = 0;
637 if (sc->sc_1371) {
638 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
639 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_CT5880) {
640 ct5880 = 1;
641 switch (revision) {
642 case EAP_CT5880_C: revstr = "CT5880-C "; break;
643 case EAP_CT5880_D: revstr = "CT5880-D "; break;
644 case EAP_CT5880_E: revstr = "CT5880-E "; break;
645 }
646 } else {
647 switch (revision) {
648 case EAP_EV1938_A: revstr = "EV1938-A "; break;
649 case EAP_ES1373_A: revstr = "ES1373-A "; break;
650 case EAP_ES1373_B: revstr = "ES1373-B "; break;
651 case EAP_CT5880_A: revstr = "CT5880-A "; ct5880=1;break;
652 case EAP_ES1373_8: revstr = "ES1373-8" ; ct5880=1;break;
653 case EAP_ES1371_B: revstr = "ES1371-B "; break;
654 }
655 }
656 }
657 aprint_normal(": %s %s(rev. 0x%02x)\n", devinfo, revstr, revision);
658
659 /* Map I/O register */
660 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
661 &sc->iot, &sc->ioh, NULL, &sc->iosz)) {
662 aprint_error("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
663 return;
664 }
665
666 sc->sc_dmatag = pa->pa_dmat;
667
668 /* Enable the device. */
669 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
670 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
671 csr | PCI_COMMAND_MASTER_ENABLE);
672
673 /* Map and establish the interrupt. */
674 if (pci_intr_map(pa, &ih)) {
675 aprint_error("%s: couldn't map interrupt\n",
676 sc->sc_dev.dv_xname);
677 return;
678 }
679 intrstr = pci_intr_string(pc, ih);
680 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
681 if (sc->sc_ih == NULL) {
682 aprint_error("%s: couldn't establish interrupt",
683 sc->sc_dev.dv_xname);
684 if (intrstr != NULL)
685 aprint_normal(" at %s", intrstr);
686 aprint_normal("\n");
687 return;
688 }
689 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
690
691 sc->sc_ei[EAP_I1].parent = (struct device *)sc;
692 sc->sc_ei[EAP_I1].index = EAP_DAC2;
693 sc->sc_ei[EAP_I2].parent = (struct device *)sc;
694 sc->sc_ei[EAP_I2].index = EAP_DAC1;
695
696 if (!sc->sc_1371) {
697 /* Enable interrupts and looping mode. */
698 /* enable the parts we need */
699 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
700 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN);
701
702 /* reset codec */
703 /* normal operation */
704 /* select codec clocks */
705 eap1370_write_codec(sc, AK_RESET, AK_PD);
706 eap1370_write_codec(sc, AK_RESET, AK_PD | AK_NRST);
707 eap1370_write_codec(sc, AK_CS, 0x0);
708
709 eap_hw_if = &eap1370_hw_if;
710
711 /* Enable all relevant mixer switches. */
712 ctl.dev = EAP_INPUT_SOURCE;
713 ctl.type = AUDIO_MIXER_SET;
714 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL |
715 1 << EAP_CD_VOL | 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL |
716 1 << EAP_MIC_VOL;
717 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
718
719 ctl.type = AUDIO_MIXER_VALUE;
720 ctl.un.value.num_channels = 1;
721 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL;
722 ctl.dev++) {
723 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
724 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
725 }
726 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
727 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
728 ctl.dev = EAP_MIC_PREAMP;
729 ctl.type = AUDIO_MIXER_ENUM;
730 ctl.un.ord = 0;
731 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
732 ctl.dev = EAP_RECORD_SOURCE;
733 ctl.type = AUDIO_MIXER_SET;
734 ctl.un.mask = 1 << EAP_MIC_VOL;
735 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
736 } else {
737 /* clean slate */
738
739 EWRITE4(sc, EAP_SIC, 0);
740 EWRITE4(sc, EAP_ICSC, 0);
741 EWRITE4(sc, E1371_LEGACY, 0);
742
743 if (ct5880) {
744 EWRITE4(sc, EAP_ICSS, EAP_CT5880_AC97_RESET);
745 /* Let codec wake up */
746 delay(20000);
747 }
748
749 /* Reset from es1371's perspective */
750 EWRITE4(sc, EAP_ICSC, E1371_SYNC_RES);
751 delay(20);
752 EWRITE4(sc, EAP_ICSC, 0);
753
754 /*
755 * Must properly reprogram sample rate converter,
756 * or it locks up. Set some defaults for the life of the
757 * machine, and set up a sb default sample rate.
758 */
759 EWRITE4(sc, E1371_SRC, E1371_SRC_DISABLE);
760 for (i = 0; i < 0x80; i++)
761 eap1371_src_write(sc, i, 0);
762 eap1371_src_write(sc, ESRC_DAC1+ESRC_TRUNC_N, ESRC_SET_N(16));
763 eap1371_src_write(sc, ESRC_DAC2+ESRC_TRUNC_N, ESRC_SET_N(16));
764 eap1371_src_write(sc, ESRC_DAC1+ESRC_IREGS, ESRC_SET_VFI(16));
765 eap1371_src_write(sc, ESRC_DAC2+ESRC_IREGS, ESRC_SET_VFI(16));
766 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(16));
767 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(16));
768 eap1371_src_write(sc, ESRC_DAC1_VOLL, ESRC_SET_DAC_VOLI(1));
769 eap1371_src_write(sc, ESRC_DAC1_VOLR, ESRC_SET_DAC_VOLI(1));
770 eap1371_src_write(sc, ESRC_DAC2_VOLL, ESRC_SET_DAC_VOLI(1));
771 eap1371_src_write(sc, ESRC_DAC2_VOLR, ESRC_SET_DAC_VOLI(1));
772 eap1371_set_adc_rate(sc, 22050);
773 eap1371_set_dac_rate(&sc->sc_ei[0], 22050);
774 eap1371_set_dac_rate(&sc->sc_ei[1], 22050);
775
776 EWRITE4(sc, E1371_SRC, 0);
777
778 /* Reset codec */
779
780 /* Interrupt enable */
781 sc->host_if.arg = sc;
782 sc->host_if.attach = eap1371_attach_codec;
783 sc->host_if.read = eap1371_read_codec;
784 sc->host_if.write = eap1371_write_codec;
785 sc->host_if.reset = eap1371_reset_codec;
786
787 if (ac97_attach(&sc->host_if, self) == 0) {
788 /* Interrupt enable */
789 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
790 } else
791 return;
792
793 eap_hw_if = &eap1371_hw_if;
794 }
795
796 sc->sc_ei[EAP_I1].ei_audiodev =
797 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I1], &sc->sc_dev);
798
799 #ifdef EAP_USE_BOTH_DACS
800 aprint_normal("%s: attaching secondary DAC\n", sc->sc_dev.dv_xname);
801 sc->sc_ei[EAP_I2].ei_audiodev =
802 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I2], &sc->sc_dev);
803 #endif
804
805 #if NMIDI > 0
806 sc->sc_mididev = midi_attach_mi(&eap_midi_hw_if, sc, &sc->sc_dev);
807 #endif
808
809 #if NJOY_EAP > 0
810 if (sc->sc_1371) {
811 gpargs.gpa_iot = sc->iot;
812 gpargs.gpa_ioh = sc->ioh;
813 sc->sc_gameport = eap_joy_attach(&sc->sc_dev, &gpargs);
814 }
815 #endif
816 }
817
818 static int
819 eap_detach(struct device *self, int flags)
820 {
821 struct eap_softc *sc;
822 int res;
823 #if NJOY_EAP > 0
824 struct eap_gameport_args gpargs;
825
826 sc = (struct eap_softc *)self;
827 if (sc->sc_gameport) {
828 gpargs.gpa_iot = sc->iot;
829 gpargs.gpa_ioh = sc->ioh;
830 res = eap_joy_detach(sc->sc_gameport, &gpargs);
831 if (res)
832 return res;
833 }
834 #else
835 sc = (struct eap_softc *)self;
836 #endif
837 #if NMIDI > 0
838 if (sc->sc_mididev != NULL) {
839 res = config_detach(sc->sc_mididev, 0);
840 if (res)
841 return res;
842 }
843 #endif
844 #ifdef EAP_USE_BOTH_DACS
845 if (sc->sc_ei[EAP_I2].ei_audiodev != NULL) {
846 res = config_detach(sc->sc_ei[EAP_I2].ei_audiodev, 0);
847 if (res)
848 return res;
849 }
850 #endif
851 if (sc->sc_ei[EAP_I1].ei_audiodev != NULL) {
852 res = config_detach(sc->sc_ei[EAP_I1].ei_audiodev, 0);
853 if (res)
854 return res;
855 }
856
857 bus_space_unmap(sc->iot, sc->ioh, sc->iosz);
858 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
859
860 return 0;
861 }
862
863 static int
864 eap1371_attach_codec(void *sc_, struct ac97_codec_if *codec_if)
865 {
866 struct eap_softc *sc;
867
868 sc = sc_;
869 sc->codec_if = codec_if;
870 return 0;
871 }
872
873 static int
874 eap1371_reset_codec(void *sc_)
875 {
876 struct eap_softc *sc;
877 uint32_t icsc;
878 int s;
879
880 sc = sc_;
881 s = splaudio();
882 icsc = EREAD4(sc, EAP_ICSC);
883 EWRITE4(sc, EAP_ICSC, icsc | E1371_SYNC_RES);
884 delay(20);
885 EWRITE4(sc, EAP_ICSC, icsc & ~E1371_SYNC_RES);
886 delay(1);
887 splx(s);
888
889 return 0;
890 }
891
892 static int
893 eap_intr(void *p)
894 {
895 struct eap_softc *sc;
896 uint32_t intr, sic;
897
898 sc = p;
899 intr = EREAD4(sc, EAP_ICSS);
900 if (!(intr & EAP_INTR))
901 return 0;
902 sic = EREAD4(sc, EAP_SIC);
903 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
904 if (intr & EAP_I_ADC) {
905 #if 0
906 /*
907 * XXX This is a hack!
908 * The EAP chip sometimes generates the recording interrupt
909 * while it is still transferring the data. To make sure
910 * it has all arrived we busy wait until the count is right.
911 * The transfer we are waiting for is 8 longwords.
912 */
913 int s, nw, n;
914 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
915 s = EREAD4(sc, EAP_ADC_CSR);
916 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
917 n = 0;
918 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
919 delay(10);
920 if (++n > 100) {
921 printf("eapintr: DMA fix timeout");
922 break;
923 }
924 }
925 /* Continue with normal interrupt handling. */
926 #endif
927 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
928 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
929 if (sc->sc_rintr)
930 sc->sc_rintr(sc->sc_rarg);
931 }
932
933 if (intr & EAP_I_DAC2) {
934 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
935 EWRITE4(sc, EAP_SIC, sic | EAP_P2_INTR_EN);
936 if (sc->sc_ei[EAP_DAC2].ei_pintr)
937 sc->sc_ei[EAP_DAC2].ei_pintr(sc->sc_ei[EAP_DAC2].ei_parg);
938 }
939
940 if (intr & EAP_I_DAC1) {
941 EWRITE4(sc, EAP_SIC, sic & ~EAP_P1_INTR_EN);
942 EWRITE4(sc, EAP_SIC, sic | EAP_P1_INTR_EN);
943 if (sc->sc_ei[EAP_DAC1].ei_pintr)
944 sc->sc_ei[EAP_DAC1].ei_pintr(sc->sc_ei[EAP_DAC1].ei_parg);
945 }
946
947 if (intr & EAP_I_MCCB)
948 panic("eap_intr: unexpected MCCB interrupt");
949 #if NMIDI > 0
950 if (intr & EAP_I_UART) {
951 uint8_t ustat;
952 uint32_t data;
953
954 ustat = EREAD1(sc, EAP_UART_STATUS);
955
956 if (ustat & EAP_US_RXINT) {
957 while (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXRDY) {
958 data = EREAD1(sc, EAP_UART_DATA);
959 sc->sc_iintr(sc->sc_arg, data);
960 }
961 }
962
963 if (ustat & EAP_US_TXINT)
964 eap_uart_txrdy(sc);
965 }
966 #endif
967 return 1;
968 }
969
970 static int
971 eap_allocmem(struct eap_softc *sc, size_t size, size_t align, struct eap_dma *p)
972 {
973 int error;
974
975 p->size = size;
976 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
977 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
978 &p->nsegs, BUS_DMA_NOWAIT);
979 if (error)
980 return error;
981
982 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
983 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
984 if (error)
985 goto free;
986
987 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
988 0, BUS_DMA_NOWAIT, &p->map);
989 if (error)
990 goto unmap;
991
992 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
993 BUS_DMA_NOWAIT);
994 if (error)
995 goto destroy;
996 return (0);
997
998 destroy:
999 bus_dmamap_destroy(sc->sc_dmatag, p->map);
1000 unmap:
1001 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
1002 free:
1003 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
1004 return error;
1005 }
1006
1007 static int
1008 eap_freemem(struct eap_softc *sc, struct eap_dma *p)
1009 {
1010
1011 bus_dmamap_unload(sc->sc_dmatag, p->map);
1012 bus_dmamap_destroy(sc->sc_dmatag, p->map);
1013 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
1014 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
1015 return 0;
1016 }
1017
1018 static int
1019 eap_open(void *addr, int flags)
1020 {
1021 struct eap_instance *ei;
1022
1023 ei = addr;
1024 /* there is only one ADC */
1025 if (ei->index == EAP_I2 && flags & FREAD)
1026 return EOPNOTSUPP;
1027
1028 return 0;
1029 }
1030
1031 static int
1032 eap_query_encoding(void *addr, struct audio_encoding *fp)
1033 {
1034
1035 switch (fp->index) {
1036 case 0:
1037 strcpy(fp->name, AudioEulinear);
1038 fp->encoding = AUDIO_ENCODING_ULINEAR;
1039 fp->precision = 8;
1040 fp->flags = 0;
1041 return 0;
1042 case 1:
1043 strcpy(fp->name, AudioEmulaw);
1044 fp->encoding = AUDIO_ENCODING_ULAW;
1045 fp->precision = 8;
1046 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1047 return 0;
1048 case 2:
1049 strcpy(fp->name, AudioEalaw);
1050 fp->encoding = AUDIO_ENCODING_ALAW;
1051 fp->precision = 8;
1052 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1053 return 0;
1054 case 3:
1055 strcpy(fp->name, AudioEslinear);
1056 fp->encoding = AUDIO_ENCODING_SLINEAR;
1057 fp->precision = 8;
1058 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1059 return 0;
1060 case 4:
1061 strcpy(fp->name, AudioEslinear_le);
1062 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1063 fp->precision = 16;
1064 fp->flags = 0;
1065 return 0;
1066 case 5:
1067 strcpy(fp->name, AudioEulinear_le);
1068 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1069 fp->precision = 16;
1070 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1071 return 0;
1072 case 6:
1073 strcpy(fp->name, AudioEslinear_be);
1074 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1075 fp->precision = 16;
1076 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1077 return 0;
1078 case 7:
1079 strcpy(fp->name, AudioEulinear_be);
1080 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1081 fp->precision = 16;
1082 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1083 return 0;
1084 default:
1085 return EINVAL;
1086 }
1087 }
1088
1089 static int
1090 eap_set_params(void *addr, int setmode, int usemode,
1091 audio_params_t *play, audio_params_t *rec,
1092 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1093 {
1094 struct eap_instance *ei;
1095 struct eap_softc *sc;
1096 struct audio_params *p;
1097 stream_filter_list_t *fil;
1098 int mode, i;
1099 uint32_t div;
1100
1101 ei = addr;
1102 sc = (struct eap_softc *)ei->parent;
1103 /*
1104 * The es1370 only has one clock, so make the sample rates match.
1105 * This only applies for ADC/DAC2. The FM DAC is handled below.
1106 */
1107 if (!sc->sc_1371 && ei->index == EAP_DAC2) {
1108 if (play->sample_rate != rec->sample_rate &&
1109 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1110 if (setmode == AUMODE_PLAY) {
1111 rec->sample_rate = play->sample_rate;
1112 setmode |= AUMODE_RECORD;
1113 } else if (setmode == AUMODE_RECORD) {
1114 play->sample_rate = rec->sample_rate;
1115 setmode |= AUMODE_PLAY;
1116 } else
1117 return EINVAL;
1118 }
1119 }
1120
1121 for (mode = AUMODE_RECORD; mode != -1;
1122 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1123 if ((setmode & mode) == 0)
1124 continue;
1125
1126 p = mode == AUMODE_PLAY ? play : rec;
1127
1128 if (p->sample_rate < 4000 || p->sample_rate > 48000 ||
1129 (p->precision != 8 && p->precision != 16) ||
1130 (p->channels != 1 && p->channels != 2))
1131 return EINVAL;
1132
1133 fil = mode == AUMODE_PLAY ? pfil : rfil;
1134 i = auconv_set_converter(eap_formats, EAP_NFORMATS,
1135 mode, p, FALSE, fil);
1136 if (i < 0)
1137 return EINVAL;
1138 }
1139
1140 if (sc->sc_1371) {
1141 eap1371_set_dac_rate(ei, play->sample_rate);
1142 eap1371_set_adc_rate(sc, rec->sample_rate);
1143 } else if (ei->index == EAP_DAC2) {
1144 /* Set the speed */
1145 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
1146 EREAD4(sc, EAP_ICSC)));
1147 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
1148 /*
1149 * XXX
1150 * The -2 isn't documented, but seemed to make the wall
1151 * time match
1152 * what I expect. - mycroft
1153 */
1154 if (usemode == AUMODE_RECORD)
1155 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1156 rec->sample_rate - 2);
1157 else
1158 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1159 play->sample_rate - 2);
1160 #if 0
1161 div |= EAP_CCB_INTRM;
1162 #else
1163 /*
1164 * It is not obvious how to acknowledge MCCB interrupts, so
1165 * we had better not enable them.
1166 */
1167 #endif
1168 EWRITE4(sc, EAP_ICSC, div);
1169 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1170 } else {
1171 /*
1172 * The FM DAC has only a few fixed-frequency choises, so
1173 * pick out the best candidate.
1174 */
1175 div = EREAD4(sc, EAP_ICSC);
1176 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n", div));
1177
1178 div &= ~EAP_WTSRSEL;
1179 if (play->sample_rate < 8268)
1180 div |= EAP_WTSRSEL_5;
1181 else if (play->sample_rate < 16537)
1182 div |= EAP_WTSRSEL_11;
1183 else if (play->sample_rate < 33075)
1184 div |= EAP_WTSRSEL_22;
1185 else
1186 div |= EAP_WTSRSEL_44;
1187
1188 EWRITE4(sc, EAP_ICSC, div);
1189 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1190 }
1191
1192 return 0;
1193 }
1194
1195 static int
1196 eap_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param)
1197 {
1198
1199 return blk & -32; /* keep good alignment */
1200 }
1201
1202 static int
1203 eap_trigger_output(
1204 void *addr,
1205 void *start,
1206 void *end,
1207 int blksize,
1208 void (*intr)(void *),
1209 void *arg,
1210 const audio_params_t *param)
1211 {
1212 struct eap_instance *ei;
1213 struct eap_softc *sc;
1214 struct eap_dma *p;
1215 uint32_t icsc, sic;
1216 int sampshift;
1217
1218 ei = addr;
1219 sc = (struct eap_softc *)ei->parent;
1220 #ifdef DIAGNOSTIC
1221 if (ei->ei_prun)
1222 panic("eap_trigger_output: already running");
1223 ei->ei_prun = 1;
1224 #endif
1225
1226 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p "
1227 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1228 ei->ei_pintr = intr;
1229 ei->ei_parg = arg;
1230
1231 sic = EREAD4(sc, EAP_SIC);
1232 sic &= ~(EAP_S_EB(ei->index) | EAP_S_MB(ei->index) | EAP_INC_BITS);
1233
1234 if (ei->index == EAP_DAC2)
1235 sic |= EAP_SET_P2_ST_INC(0)
1236 | EAP_SET_P2_END_INC(param->precision / 8);
1237
1238 sampshift = 0;
1239 if (param->precision == 16) {
1240 sic |= EAP_S_EB(ei->index);
1241 sampshift++;
1242 }
1243 if (param->channels == 2) {
1244 sic |= EAP_S_MB(ei->index);
1245 sampshift++;
1246 }
1247 EWRITE4(sc, EAP_SIC, sic & ~EAP_P_INTR_EN(ei->index));
1248 EWRITE4(sc, EAP_SIC, sic | EAP_P_INTR_EN(ei->index));
1249
1250 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1251 continue;
1252 if (!p) {
1253 printf("eap_trigger_output: bad addr %p\n", start);
1254 return EINVAL;
1255 }
1256
1257 if (ei->index == EAP_DAC2) {
1258 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
1259 (int)DMAADDR(p),
1260 (int)EAP_SET_SIZE(0,
1261 (((char *)end - (char *)start) >> 2) - 1)));
1262 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1263 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
1264 EWRITE4(sc, EAP_DAC2_SIZE,
1265 EAP_SET_SIZE(0,
1266 ((char *)end - (char *)start) >> 2) - 1);
1267 EWRITE4(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
1268 } else if (ei->index == EAP_DAC1) {
1269 DPRINTF(("eap_trigger_output: DAC1_ADDR=0x%x, DAC1_SIZE=0x%x\n",
1270 (int)DMAADDR(p),
1271 (int)EAP_SET_SIZE(0,
1272 (((char *)end - (char *)start) >> 2) - 1)));
1273 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1274 EWRITE4(sc, EAP_DAC1_ADDR, DMAADDR(p));
1275 EWRITE4(sc, EAP_DAC1_SIZE,
1276 EAP_SET_SIZE(0,
1277 ((char *)end - (char *)start) >> 2) - 1);
1278 EWRITE4(sc, EAP_DAC1_CSR, (blksize >> sampshift) - 1);
1279 }
1280 #ifdef DIAGNOSTIC
1281 else
1282 panic("eap_trigger_output: impossible instance %d", ei->index);
1283 #endif
1284
1285 if (sc->sc_1371)
1286 EWRITE4(sc, E1371_SRC, 0);
1287
1288 icsc = EREAD4(sc, EAP_ICSC);
1289 icsc |= EAP_DAC_EN(ei->index);
1290 EWRITE4(sc, EAP_ICSC, icsc);
1291
1292 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
1293
1294 return 0;
1295 }
1296
1297 static int
1298 eap_trigger_input(
1299 void *addr,
1300 void *start,
1301 void *end,
1302 int blksize,
1303 void (*intr)(void *),
1304 void *arg,
1305 const audio_params_t *param)
1306 {
1307 struct eap_instance *ei;
1308 struct eap_softc *sc;
1309 struct eap_dma *p;
1310 uint32_t icsc, sic;
1311 int sampshift;
1312
1313 ei = addr;
1314 sc = (struct eap_softc *)ei->parent;
1315 #ifdef DIAGNOSTIC
1316 if (sc->sc_rrun)
1317 panic("eap_trigger_input: already running");
1318 sc->sc_rrun = 1;
1319 #endif
1320
1321 DPRINTFN(1, ("eap_trigger_input: ei=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1322 addr, start, end, blksize, intr, arg));
1323 sc->sc_rintr = intr;
1324 sc->sc_rarg = arg;
1325
1326 sic = EREAD4(sc, EAP_SIC);
1327 sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
1328 sampshift = 0;
1329 if (param->precision == 16) {
1330 sic |= EAP_R1_S_EB;
1331 sampshift++;
1332 }
1333 if (param->channels == 2) {
1334 sic |= EAP_R1_S_MB;
1335 sampshift++;
1336 }
1337 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
1338 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
1339
1340 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1341 continue;
1342 if (!p) {
1343 printf("eap_trigger_input: bad addr %p\n", start);
1344 return (EINVAL);
1345 }
1346
1347 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
1348 (int)DMAADDR(p),
1349 (int)EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1350 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
1351 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
1352 EWRITE4(sc, EAP_ADC_SIZE,
1353 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1354
1355 EWRITE4(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
1356
1357 if (sc->sc_1371)
1358 EWRITE4(sc, E1371_SRC, 0);
1359
1360 icsc = EREAD4(sc, EAP_ICSC);
1361 icsc |= EAP_ADC_EN;
1362 EWRITE4(sc, EAP_ICSC, icsc);
1363
1364 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
1365
1366 return 0;
1367 }
1368
1369 static int
1370 eap_halt_output(void *addr)
1371 {
1372 struct eap_instance *ei;
1373 struct eap_softc *sc;
1374 uint32_t icsc;
1375
1376 DPRINTF(("eap: eap_halt_output\n"));
1377 ei = addr;
1378 sc = (struct eap_softc *)ei->parent;
1379 icsc = EREAD4(sc, EAP_ICSC);
1380 EWRITE4(sc, EAP_ICSC, icsc & ~(EAP_DAC_EN(ei->index)));
1381 ei->ei_pintr = 0;
1382 #ifdef DIAGNOSTIC
1383 ei->ei_prun = 0;
1384 #endif
1385
1386 return 0;
1387 }
1388
1389 static int
1390 eap_halt_input(void *addr)
1391 {
1392 struct eap_instance *ei;
1393 struct eap_softc *sc;
1394 uint32_t icsc;
1395
1396 #define EAP_USE_FMDAC_ALSO
1397 DPRINTF(("eap: eap_halt_input\n"));
1398 ei = addr;
1399 sc = (struct eap_softc *)ei->parent;
1400 icsc = EREAD4(sc, EAP_ICSC);
1401 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1402 sc->sc_rintr = 0;
1403 #ifdef DIAGNOSTIC
1404 sc->sc_rrun = 0;
1405 #endif
1406
1407 return 0;
1408 }
1409
1410 static int
1411 eap_getdev(void *addr, struct audio_device *retp)
1412 {
1413
1414 *retp = eap_device;
1415 return 0;
1416 }
1417
1418 static int
1419 eap1371_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1420 {
1421 struct eap_instance *ei;
1422 struct eap_softc *sc;
1423
1424 ei = addr;
1425 sc = (struct eap_softc *)ei->parent;
1426 return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
1427 }
1428
1429 static int
1430 eap1371_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1431 {
1432 struct eap_instance *ei;
1433 struct eap_softc *sc;
1434
1435 ei = addr;
1436 sc = (struct eap_softc *)ei->parent;
1437 return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
1438 }
1439
1440 static int
1441 eap1371_query_devinfo(void *addr, mixer_devinfo_t *dip)
1442 {
1443 struct eap_instance *ei;
1444 struct eap_softc *sc;
1445
1446 ei = addr;
1447 sc = (struct eap_softc *)ei->parent;
1448 return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip);
1449 }
1450
1451 static void
1452 eap1370_set_mixer(struct eap_softc *sc, int a, int d)
1453 {
1454 eap1370_write_codec(sc, a, d);
1455
1456 sc->sc_port[a] = d;
1457 DPRINTFN(1, ("eap1370_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
1458 }
1459
1460 static int
1461 eap1370_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1462 {
1463 struct eap_instance *ei;
1464 struct eap_softc *sc;
1465 int lval, rval, l, r, la, ra;
1466 int l1, r1, l2, r2, m, o1, o2;
1467
1468 ei = addr;
1469 sc = (struct eap_softc *)ei->parent;
1470 if (cp->dev == EAP_RECORD_SOURCE) {
1471 if (cp->type != AUDIO_MIXER_SET)
1472 return EINVAL;
1473 m = sc->sc_record_source = cp->un.mask;
1474 l1 = l2 = r1 = r2 = 0;
1475 if (m & (1 << EAP_VOICE_VOL))
1476 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
1477 if (m & (1 << EAP_FM_VOL))
1478 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
1479 if (m & (1 << EAP_CD_VOL))
1480 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
1481 if (m & (1 << EAP_LINE_VOL))
1482 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
1483 if (m & (1 << EAP_AUX_VOL))
1484 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
1485 if (m & (1 << EAP_MIC_VOL))
1486 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
1487 eap1370_set_mixer(sc, AK_IN_MIXER1_L, l1);
1488 eap1370_set_mixer(sc, AK_IN_MIXER1_R, r1);
1489 eap1370_set_mixer(sc, AK_IN_MIXER2_L, l2);
1490 eap1370_set_mixer(sc, AK_IN_MIXER2_R, r2);
1491 return 0;
1492 }
1493 if (cp->dev == EAP_INPUT_SOURCE) {
1494 if (cp->type != AUDIO_MIXER_SET)
1495 return EINVAL;
1496 m = sc->sc_input_source = cp->un.mask;
1497 o1 = o2 = 0;
1498 if (m & (1 << EAP_VOICE_VOL))
1499 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
1500 if (m & (1 << EAP_FM_VOL))
1501 o1 |= AK_M_FM_L | AK_M_FM_R;
1502 if (m & (1 << EAP_CD_VOL))
1503 o1 |= AK_M_CD_L | AK_M_CD_R;
1504 if (m & (1 << EAP_LINE_VOL))
1505 o1 |= AK_M_LINE_L | AK_M_LINE_R;
1506 if (m & (1 << EAP_AUX_VOL))
1507 o2 |= AK_M_AUX_L | AK_M_AUX_R;
1508 if (m & (1 << EAP_MIC_VOL))
1509 o1 |= AK_M_MIC;
1510 eap1370_set_mixer(sc, AK_OUT_MIXER1, o1);
1511 eap1370_set_mixer(sc, AK_OUT_MIXER2, o2);
1512 return 0;
1513 }
1514 if (cp->dev == EAP_MIC_PREAMP) {
1515 if (cp->type != AUDIO_MIXER_ENUM)
1516 return EINVAL;
1517 if (cp->un.ord != 0 && cp->un.ord != 1)
1518 return EINVAL;
1519 sc->sc_mic_preamp = cp->un.ord;
1520 eap1370_set_mixer(sc, AK_MGAIN, cp->un.ord);
1521 return 0;
1522 }
1523 if (cp->type != AUDIO_MIXER_VALUE)
1524 return EINVAL;
1525 if (cp->un.value.num_channels == 1)
1526 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1527 else if (cp->un.value.num_channels == 2) {
1528 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1529 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1530 } else
1531 return EINVAL;
1532 ra = -1;
1533 switch (cp->dev) {
1534 case EAP_MASTER_VOL:
1535 l = VOL_TO_ATT5(lval);
1536 r = VOL_TO_ATT5(rval);
1537 la = AK_MASTER_L;
1538 ra = AK_MASTER_R;
1539 break;
1540 case EAP_MIC_VOL:
1541 if (cp->un.value.num_channels != 1)
1542 return EINVAL;
1543 la = AK_MIC;
1544 goto lr;
1545 case EAP_VOICE_VOL:
1546 la = AK_VOICE_L;
1547 ra = AK_VOICE_R;
1548 goto lr;
1549 case EAP_FM_VOL:
1550 la = AK_FM_L;
1551 ra = AK_FM_R;
1552 goto lr;
1553 case EAP_CD_VOL:
1554 la = AK_CD_L;
1555 ra = AK_CD_R;
1556 goto lr;
1557 case EAP_LINE_VOL:
1558 la = AK_LINE_L;
1559 ra = AK_LINE_R;
1560 goto lr;
1561 case EAP_AUX_VOL:
1562 la = AK_AUX_L;
1563 ra = AK_AUX_R;
1564 lr:
1565 l = VOL_TO_GAIN5(lval);
1566 r = VOL_TO_GAIN5(rval);
1567 break;
1568 default:
1569 return EINVAL;
1570 }
1571 eap1370_set_mixer(sc, la, l);
1572 if (ra >= 0) {
1573 eap1370_set_mixer(sc, ra, r);
1574 }
1575 return 0;
1576 }
1577
1578 static int
1579 eap1370_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1580 {
1581 struct eap_instance *ei;
1582 struct eap_softc *sc;
1583 int la, ra, l, r;
1584
1585 ei = addr;
1586 sc = (struct eap_softc *)ei->parent;
1587 switch (cp->dev) {
1588 case EAP_RECORD_SOURCE:
1589 if (cp->type != AUDIO_MIXER_SET)
1590 return EINVAL;
1591 cp->un.mask = sc->sc_record_source;
1592 return 0;
1593 case EAP_INPUT_SOURCE:
1594 if (cp->type != AUDIO_MIXER_SET)
1595 return EINVAL;
1596 cp->un.mask = sc->sc_input_source;
1597 return 0;
1598 case EAP_MIC_PREAMP:
1599 if (cp->type != AUDIO_MIXER_ENUM)
1600 return EINVAL;
1601 cp->un.ord = sc->sc_mic_preamp;
1602 return 0;
1603 case EAP_MASTER_VOL:
1604 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1605 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1606 break;
1607 case EAP_MIC_VOL:
1608 if (cp->un.value.num_channels != 1)
1609 return EINVAL;
1610 la = ra = AK_MIC;
1611 goto lr;
1612 case EAP_VOICE_VOL:
1613 la = AK_VOICE_L;
1614 ra = AK_VOICE_R;
1615 goto lr;
1616 case EAP_FM_VOL:
1617 la = AK_FM_L;
1618 ra = AK_FM_R;
1619 goto lr;
1620 case EAP_CD_VOL:
1621 la = AK_CD_L;
1622 ra = AK_CD_R;
1623 goto lr;
1624 case EAP_LINE_VOL:
1625 la = AK_LINE_L;
1626 ra = AK_LINE_R;
1627 goto lr;
1628 case EAP_AUX_VOL:
1629 la = AK_AUX_L;
1630 ra = AK_AUX_R;
1631 lr:
1632 l = GAIN5_TO_VOL(sc->sc_port[la]);
1633 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1634 break;
1635 default:
1636 return EINVAL;
1637 }
1638 if (cp->un.value.num_channels == 1)
1639 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1640 else if (cp->un.value.num_channels == 2) {
1641 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1642 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1643 } else
1644 return EINVAL;
1645 return 0;
1646 }
1647
1648 static int
1649 eap1370_query_devinfo(void *addr, mixer_devinfo_t *dip)
1650 {
1651
1652 switch (dip->index) {
1653 case EAP_MASTER_VOL:
1654 dip->type = AUDIO_MIXER_VALUE;
1655 dip->mixer_class = EAP_OUTPUT_CLASS;
1656 dip->prev = dip->next = AUDIO_MIXER_LAST;
1657 strcpy(dip->label.name, AudioNmaster);
1658 dip->un.v.num_channels = 2;
1659 dip->un.v.delta = 8;
1660 strcpy(dip->un.v.units.name, AudioNvolume);
1661 return 0;
1662 case EAP_VOICE_VOL:
1663 dip->type = AUDIO_MIXER_VALUE;
1664 dip->mixer_class = EAP_INPUT_CLASS;
1665 dip->prev = AUDIO_MIXER_LAST;
1666 dip->next = AUDIO_MIXER_LAST;
1667 strcpy(dip->label.name, AudioNdac);
1668 dip->un.v.num_channels = 2;
1669 dip->un.v.delta = 8;
1670 strcpy(dip->un.v.units.name, AudioNvolume);
1671 return 0;
1672 case EAP_FM_VOL:
1673 dip->type = AUDIO_MIXER_VALUE;
1674 dip->mixer_class = EAP_INPUT_CLASS;
1675 dip->prev = AUDIO_MIXER_LAST;
1676 dip->next = AUDIO_MIXER_LAST;
1677 strcpy(dip->label.name, AudioNfmsynth);
1678 dip->un.v.num_channels = 2;
1679 dip->un.v.delta = 8;
1680 strcpy(dip->un.v.units.name, AudioNvolume);
1681 return 0;
1682 case EAP_CD_VOL:
1683 dip->type = AUDIO_MIXER_VALUE;
1684 dip->mixer_class = EAP_INPUT_CLASS;
1685 dip->prev = AUDIO_MIXER_LAST;
1686 dip->next = AUDIO_MIXER_LAST;
1687 strcpy(dip->label.name, AudioNcd);
1688 dip->un.v.num_channels = 2;
1689 dip->un.v.delta = 8;
1690 strcpy(dip->un.v.units.name, AudioNvolume);
1691 return 0;
1692 case EAP_LINE_VOL:
1693 dip->type = AUDIO_MIXER_VALUE;
1694 dip->mixer_class = EAP_INPUT_CLASS;
1695 dip->prev = AUDIO_MIXER_LAST;
1696 dip->next = AUDIO_MIXER_LAST;
1697 strcpy(dip->label.name, AudioNline);
1698 dip->un.v.num_channels = 2;
1699 dip->un.v.delta = 8;
1700 strcpy(dip->un.v.units.name, AudioNvolume);
1701 return 0;
1702 case EAP_AUX_VOL:
1703 dip->type = AUDIO_MIXER_VALUE;
1704 dip->mixer_class = EAP_INPUT_CLASS;
1705 dip->prev = AUDIO_MIXER_LAST;
1706 dip->next = AUDIO_MIXER_LAST;
1707 strcpy(dip->label.name, AudioNaux);
1708 dip->un.v.num_channels = 2;
1709 dip->un.v.delta = 8;
1710 strcpy(dip->un.v.units.name, AudioNvolume);
1711 return 0;
1712 case EAP_MIC_VOL:
1713 dip->type = AUDIO_MIXER_VALUE;
1714 dip->mixer_class = EAP_INPUT_CLASS;
1715 dip->prev = AUDIO_MIXER_LAST;
1716 dip->next = EAP_MIC_PREAMP;
1717 strcpy(dip->label.name, AudioNmicrophone);
1718 dip->un.v.num_channels = 1;
1719 dip->un.v.delta = 8;
1720 strcpy(dip->un.v.units.name, AudioNvolume);
1721 return 0;
1722 case EAP_RECORD_SOURCE:
1723 dip->mixer_class = EAP_RECORD_CLASS;
1724 dip->prev = dip->next = AUDIO_MIXER_LAST;
1725 strcpy(dip->label.name, AudioNsource);
1726 dip->type = AUDIO_MIXER_SET;
1727 dip->un.s.num_mem = 6;
1728 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1729 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1730 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1731 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1732 strcpy(dip->un.s.member[2].label.name, AudioNline);
1733 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1734 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1735 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1736 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1737 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1738 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1739 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1740 return 0;
1741 case EAP_INPUT_SOURCE:
1742 dip->mixer_class = EAP_INPUT_CLASS;
1743 dip->prev = dip->next = AUDIO_MIXER_LAST;
1744 strcpy(dip->label.name, AudioNsource);
1745 dip->type = AUDIO_MIXER_SET;
1746 dip->un.s.num_mem = 6;
1747 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1748 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1749 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1750 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1751 strcpy(dip->un.s.member[2].label.name, AudioNline);
1752 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1753 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1754 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1755 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1756 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1757 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1758 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1759 return 0;
1760 case EAP_MIC_PREAMP:
1761 dip->type = AUDIO_MIXER_ENUM;
1762 dip->mixer_class = EAP_INPUT_CLASS;
1763 dip->prev = EAP_MIC_VOL;
1764 dip->next = AUDIO_MIXER_LAST;
1765 strcpy(dip->label.name, AudioNpreamp);
1766 dip->un.e.num_mem = 2;
1767 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1768 dip->un.e.member[0].ord = 0;
1769 strcpy(dip->un.e.member[1].label.name, AudioNon);
1770 dip->un.e.member[1].ord = 1;
1771 return 0;
1772 case EAP_OUTPUT_CLASS:
1773 dip->type = AUDIO_MIXER_CLASS;
1774 dip->mixer_class = EAP_OUTPUT_CLASS;
1775 dip->next = dip->prev = AUDIO_MIXER_LAST;
1776 strcpy(dip->label.name, AudioCoutputs);
1777 return 0;
1778 case EAP_RECORD_CLASS:
1779 dip->type = AUDIO_MIXER_CLASS;
1780 dip->mixer_class = EAP_RECORD_CLASS;
1781 dip->next = dip->prev = AUDIO_MIXER_LAST;
1782 strcpy(dip->label.name, AudioCrecord);
1783 return 0;
1784 case EAP_INPUT_CLASS:
1785 dip->type = AUDIO_MIXER_CLASS;
1786 dip->mixer_class = EAP_INPUT_CLASS;
1787 dip->next = dip->prev = AUDIO_MIXER_LAST;
1788 strcpy(dip->label.name, AudioCinputs);
1789 return 0;
1790 }
1791 return ENXIO;
1792 }
1793
1794 static void *
1795 eap_malloc(void *addr, int direction, size_t size,
1796 struct malloc_type *pool, int flags)
1797 {
1798 struct eap_instance *ei;
1799 struct eap_softc *sc;
1800 struct eap_dma *p;
1801 int error;
1802
1803 p = malloc(sizeof(*p), pool, flags);
1804 if (!p)
1805 return NULL;
1806 ei = addr;
1807 sc = (struct eap_softc *)ei->parent;
1808 error = eap_allocmem(sc, size, 16, p);
1809 if (error) {
1810 free(p, pool);
1811 return NULL;
1812 }
1813 p->next = sc->sc_dmas;
1814 sc->sc_dmas = p;
1815 return KERNADDR(p);
1816 }
1817
1818 static void
1819 eap_free(void *addr, void *ptr, struct malloc_type *pool)
1820 {
1821 struct eap_instance *ei;
1822 struct eap_softc *sc;
1823 struct eap_dma **pp, *p;
1824
1825 ei = addr;
1826 sc = (struct eap_softc *)ei->parent;
1827 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1828 if (KERNADDR(p) == ptr) {
1829 eap_freemem(sc, p);
1830 *pp = p->next;
1831 free(p, pool);
1832 return;
1833 }
1834 }
1835 }
1836
1837 static size_t
1838 eap_round_buffersize(void *addr, int direction, size_t size)
1839 {
1840
1841 return size;
1842 }
1843
1844 static paddr_t
1845 eap_mappage(void *addr, void *mem, off_t off, int prot)
1846 {
1847 struct eap_instance *ei;
1848 struct eap_softc *sc;
1849 struct eap_dma *p;
1850
1851 if (off < 0)
1852 return -1;
1853 ei = addr;
1854 sc = (struct eap_softc *)ei->parent;
1855 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1856 continue;
1857 if (!p)
1858 return -1;
1859 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1860 off, prot, BUS_DMA_WAITOK);
1861 }
1862
1863 static int
1864 eap_get_props(void *addr)
1865 {
1866
1867 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1868 AUDIO_PROP_FULLDUPLEX;
1869 }
1870
1871 #if NMIDI > 0
1872 static int
1873 eap_midi_open(void *addr, int flags,
1874 void (*iintr)(void *, int),
1875 void (*ointr)(void *),
1876 void *arg)
1877 {
1878 struct eap_softc *sc;
1879 uint8_t uctrl;
1880
1881 sc = addr;
1882 sc->sc_arg = arg;
1883
1884 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) | EAP_UART_EN);
1885 uctrl = 0;
1886 if (flags & FREAD) {
1887 uctrl |= EAP_UC_RXINTEN;
1888 sc->sc_iintr = iintr;
1889 }
1890 if (flags & FWRITE)
1891 sc->sc_ointr = ointr;
1892 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1893
1894 return 0;
1895 }
1896
1897 static void
1898 eap_midi_close(void *addr)
1899 {
1900 struct eap_softc *sc;
1901
1902 sc = addr;
1903 tsleep(sc, PWAIT, "eapclm", hz/10); /* give uart a chance to drain */
1904 EWRITE1(sc, EAP_UART_CONTROL, 0);
1905 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) & ~EAP_UART_EN);
1906
1907 sc->sc_iintr = 0;
1908 sc->sc_ointr = 0;
1909 }
1910
1911 static int
1912 eap_midi_output(void *addr, int d)
1913 {
1914 struct eap_softc *sc;
1915 uint8_t uctrl;
1916
1917 sc = addr;
1918 EWRITE1(sc, EAP_UART_DATA, d);
1919
1920 uctrl = EAP_UC_TXINTEN;
1921 if (sc->sc_iintr)
1922 uctrl |= EAP_UC_RXINTEN;
1923 /*
1924 * This is a write-only register, so we have to remember the right
1925 * value of RXINTEN as well as setting TXINTEN. But if we are open
1926 * for reading, it will always be correct to set RXINTEN here; only
1927 * during service of a receive interrupt could it be momentarily
1928 * toggled off, and whether we got here from the top half or from
1929 * an interrupt, that won't be the current state.
1930 */
1931 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1932 return 0;
1933 }
1934
1935 static void
1936 eap_midi_getinfo(void *addr, struct midi_info *mi)
1937 {
1938 mi->name = "AudioPCI MIDI UART";
1939 mi->props = MIDI_PROP_CAN_INPUT | MIDI_PROP_OUT_INTR;
1940 }
1941
1942 static void
1943 eap_uart_txrdy(struct eap_softc *sc)
1944 {
1945 uint8_t uctrl;
1946 uctrl = 0;
1947 if (sc->sc_iintr)
1948 uctrl = EAP_UC_RXINTEN;
1949 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1950 sc->sc_ointr(sc->sc_arg);
1951 }
1952
1953 #endif
1954