eap.c revision 1.92.12.3 1 /* $NetBSD: eap.c,v 1.92.12.3 2008/12/09 13:09:13 ad Exp $ */
2 /* $OpenBSD: eap.c,v 1.6 1999/10/05 19:24:42 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1998, 1999, 2002, 2008 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Lennart Augustsson <augustss (at) NetBSD.org>, Charles M. Hannum,
10 * Antti Kantee <pooka (at) NetBSD.org>, and Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
36 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
37 * Phil Nelson <phil (at) cs.wwu.edu>
38 *
39 * ES1371/AC97: Ezra Story <ezy (at) panix.com>
40 */
41
42 /*
43 * Ensoniq ES1370 + AK4531 and ES1371/ES1373 + AC97
44 *
45 * Documentation links:
46 *
47 * ftp://ftp.alsa-project.org/pub/manuals/ensoniq/ (ES1370 and 1371 datasheets)
48 * http://web.archive.org/web/20040622012936/http://www.corbac.com/Data/Misc/es1373.ps.gz
49 * ftp://ftp.alsa-project.org/pub/manuals/asahi_kasei/4531.pdf
50 * ftp://download.intel.com/ial/scalableplatforms/audio/ac97r21.pdf
51 */
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: eap.c,v 1.92.12.3 2008/12/09 13:09:13 ad Exp $");
55
56 #include "midi.h"
57 #include "joy_eap.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/fcntl.h>
63 #include <sys/malloc.h>
64 #include <sys/device.h>
65 #include <sys/proc.h>
66 #include <sys/select.h>
67 #include <sys/mutex.h>
68
69 #include <dev/pci/pcidevs.h>
70 #include <dev/pci/pcivar.h>
71
72 #include <sys/audioio.h>
73 #include <dev/audio_if.h>
74 #include <dev/midi_if.h>
75 #include <dev/audiovar.h>
76 #include <dev/mulaw.h>
77 #include <dev/auconv.h>
78 #include <dev/ic/ac97var.h>
79
80 #include <sys/bus.h>
81
82 #include <dev/pci/eapreg.h>
83 #include <dev/pci/eapvar.h>
84
85 #define PCI_CBIO 0x10
86
87 /* Debug */
88 #ifdef AUDIO_DEBUG
89 #define DPRINTF(x) if (eapdebug) printf x
90 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
91 int eapdebug = 0;
92 #else
93 #define DPRINTF(x)
94 #define DPRINTFN(n,x)
95 #endif
96
97 static int eap_match(device_t, cfdata_t, void *);
98 static void eap_attach(device_t, device_t, void *);
99 static int eap_detach(device_t, int);
100 static int eap_intr(void *);
101
102 struct eap_dma {
103 bus_dmamap_t map;
104 void *addr;
105 bus_dma_segment_t segs[1];
106 int nsegs;
107 size_t size;
108 struct eap_dma *next;
109 };
110
111 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
112 #define KERNADDR(p) ((void *)((p)->addr))
113
114 /*
115 * The card has two DACs. Using them is a bit twisted: we use DAC2
116 * as default and DAC1 as the optional secondary DAC.
117 */
118 #define EAP_DAC1 1
119 #define EAP_DAC2 0
120 #define EAP_I1 EAP_DAC2
121 #define EAP_I2 EAP_DAC1
122 struct eap_instance {
123 device_t parent;
124 int index;
125
126 void (*ei_pintr)(void *); /* DMA completion intr handler */
127 void *ei_parg; /* arg for ei_intr() */
128 device_t ei_audiodev; /* audio device, for detach */
129 #ifdef DIAGNOSTIC
130 char ei_prun;
131 #endif
132 };
133
134 struct eap_softc {
135 device_t sc_dev; /* base device */
136 void *sc_ih; /* interrupt vectoring */
137 bus_space_tag_t iot;
138 bus_space_handle_t ioh;
139 bus_size_t iosz;
140 bus_dma_tag_t sc_dmatag; /* DMA tag */
141 kmutex_t sc_intr_lock;
142 kmutex_t sc_lock;
143
144 struct eap_dma *sc_dmas;
145
146 void (*sc_rintr)(void *); /* DMA completion intr handler */
147 void *sc_rarg; /* arg for sc_intr() */
148 #ifdef DIAGNOSTIC
149 char sc_rrun;
150 #endif
151
152 #if NMIDI > 0
153 void (*sc_iintr)(void *, int); /* midi input ready handler */
154 void (*sc_ointr)(void *); /* midi output ready handler */
155 void *sc_arg;
156 device_t sc_mididev;
157 #endif
158 #if NJOY_EAP > 0
159 device_t sc_gameport;
160 #endif
161
162 u_short sc_port[AK_NPORTS]; /* mirror of the hardware setting */
163 u_int sc_record_source; /* recording source mask */
164 u_int sc_input_source; /* input source mask */
165 u_int sc_mic_preamp;
166 char sc_1371; /* Using ES1371/AC97 codec */
167
168 struct ac97_codec_if *codec_if;
169 struct ac97_host_if host_if;
170
171 struct eap_instance sc_ei[2];
172
173 pci_chipset_tag_t sc_pc; /* For detach */
174 };
175
176 static int eap_allocmem(struct eap_softc *, size_t, size_t,
177 struct eap_dma *);
178 static int eap_freemem(struct eap_softc *, struct eap_dma *);
179
180 #define EWRITE1(sc, r, x) bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x))
181 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
182 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
183 #define EREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r))
184 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
185 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
186
187 CFATTACH_DECL_NEW(eap, sizeof(struct eap_softc),
188 eap_match, eap_attach, eap_detach, NULL);
189
190 static int eap_open(void *, int);
191 static int eap_query_encoding(void *, struct audio_encoding *);
192 static int eap_set_params(void *, int, int, audio_params_t *,
193 audio_params_t *, stream_filter_list_t *,
194 stream_filter_list_t *);
195 static int eap_round_blocksize(void *, int, int, const audio_params_t *);
196 static int eap_trigger_output(void *, void *, void *, int,
197 void (*)(void *), void *,
198 const audio_params_t *);
199 static int eap_trigger_input(void *, void *, void *, int,
200 void (*)(void *), void *,
201 const audio_params_t *);
202 static int eap_halt_output(void *);
203 static int eap_halt_input(void *);
204 static void eap1370_write_codec(struct eap_softc *, int, int);
205 static int eap_getdev(void *, struct audio_device *);
206 static int eap1370_mixer_set_port(void *, mixer_ctrl_t *);
207 static int eap1370_mixer_get_port(void *, mixer_ctrl_t *);
208 static int eap1371_mixer_set_port(void *, mixer_ctrl_t *);
209 static int eap1371_mixer_get_port(void *, mixer_ctrl_t *);
210 static int eap1370_query_devinfo(void *, mixer_devinfo_t *);
211 static void *eap_malloc(void *, int, size_t, struct malloc_type *, int);
212 static void eap_free(void *, void *, struct malloc_type *);
213 static size_t eap_round_buffersize(void *, int, size_t);
214 static paddr_t eap_mappage(void *, void *, off_t, int);
215 static int eap_get_props(void *);
216 static void eap1370_set_mixer(struct eap_softc *, int, int);
217 static uint32_t eap1371_src_wait(struct eap_softc *);
218 static void eap1371_set_adc_rate(struct eap_softc *, int);
219 static void eap1371_set_dac_rate(struct eap_instance *, int);
220 static int eap1371_src_read(struct eap_softc *, int);
221 static void eap1371_src_write(struct eap_softc *, int, int);
222 static int eap1371_query_devinfo(void *, mixer_devinfo_t *);
223
224 static int eap1371_attach_codec(void *, struct ac97_codec_if *);
225 static int eap1371_read_codec(void *, uint8_t, uint16_t *);
226 static int eap1371_write_codec(void *, uint8_t, uint16_t );
227 static int eap1371_reset_codec(void *);
228 static void eap_get_locks(void *, kmutex_t **, kmutex_t **);
229
230 #if NMIDI > 0
231 static void eap_midi_close(void *);
232 static void eap_midi_getinfo(void *, struct midi_info *);
233 static int eap_midi_open(void *, int, void (*)(void *, int),
234 void (*)(void *), void *);
235 static int eap_midi_output(void *, int);
236 static void eap_uart_txrdy(struct eap_softc *);
237 #endif
238
239 static const struct audio_hw_if eap1370_hw_if = {
240 eap_open,
241 NULL, /* close */
242 NULL,
243 eap_query_encoding,
244 eap_set_params,
245 eap_round_blocksize,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 eap_halt_output,
252 eap_halt_input,
253 NULL,
254 eap_getdev,
255 NULL,
256 eap1370_mixer_set_port,
257 eap1370_mixer_get_port,
258 eap1370_query_devinfo,
259 eap_malloc,
260 eap_free,
261 eap_round_buffersize,
262 eap_mappage,
263 eap_get_props,
264 eap_trigger_output,
265 eap_trigger_input,
266 NULL,
267 NULL,
268 eap_get_locks,
269 };
270
271 static const struct audio_hw_if eap1371_hw_if = {
272 eap_open,
273 NULL, /* close */
274 NULL,
275 eap_query_encoding,
276 eap_set_params,
277 eap_round_blocksize,
278 NULL,
279 NULL,
280 NULL,
281 NULL,
282 NULL,
283 eap_halt_output,
284 eap_halt_input,
285 NULL,
286 eap_getdev,
287 NULL,
288 eap1371_mixer_set_port,
289 eap1371_mixer_get_port,
290 eap1371_query_devinfo,
291 eap_malloc,
292 eap_free,
293 eap_round_buffersize,
294 eap_mappage,
295 eap_get_props,
296 eap_trigger_output,
297 eap_trigger_input,
298 NULL,
299 NULL,
300 eap_get_locks,
301 };
302
303 #if NMIDI > 0
304 static const struct midi_hw_if eap_midi_hw_if = {
305 eap_midi_open,
306 eap_midi_close,
307 eap_midi_output,
308 eap_midi_getinfo,
309 0, /* ioctl */
310 eap_get_locks,
311 };
312 #endif
313
314 static struct audio_device eap_device = {
315 "Ensoniq AudioPCI",
316 "",
317 "eap"
318 };
319
320 #define EAP_NFORMATS 4
321 static const struct audio_format eap_formats[EAP_NFORMATS] = {
322 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
323 2, AUFMT_STEREO, 0, {4000, 48000}},
324 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
325 1, AUFMT_MONAURAL, 0, {4000, 48000}},
326 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
327 2, AUFMT_STEREO, 0, {4000, 48000}},
328 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
329 1, AUFMT_MONAURAL, 0, {4000, 48000}},
330 };
331
332 static int
333 eap_match(device_t parent, cfdata_t match, void *aux)
334 {
335 struct pci_attach_args *pa;
336
337 pa = (struct pci_attach_args *)aux;
338 switch (PCI_VENDOR(pa->pa_id)) {
339 case PCI_VENDOR_CREATIVELABS:
340 switch (PCI_PRODUCT(pa->pa_id)) {
341 case PCI_PRODUCT_CREATIVELABS_EV1938:
342 return 1;
343 }
344 break;
345 case PCI_VENDOR_ENSONIQ:
346 switch (PCI_PRODUCT(pa->pa_id)) {
347 case PCI_PRODUCT_ENSONIQ_AUDIOPCI:
348 case PCI_PRODUCT_ENSONIQ_AUDIOPCI97:
349 case PCI_PRODUCT_ENSONIQ_CT5880:
350 return 1;
351 }
352 break;
353 }
354
355 return 0;
356 }
357
358 static void
359 eap1370_write_codec(struct eap_softc *sc, int a, int d)
360 {
361 int icss, to;
362
363 to = EAP_WRITE_TIMEOUT;
364 do {
365 icss = EREAD4(sc, EAP_ICSS);
366 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
367 if (!to--) {
368 printf("eap: timeout writing to codec\n");
369 return;
370 }
371 } while(icss & EAP_CWRIP); /* XXX could use CSTAT here */
372 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
373 }
374
375 /*
376 * Reading and writing the CODEC is very convoluted. This mimics the
377 * FreeBSD and Linux drivers.
378 */
379
380 static inline void
381 eap1371_ready_codec(struct eap_softc *sc, uint8_t a, uint32_t wd)
382 {
383 int to;
384 uint32_t src, t;
385
386 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
387 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
388 break;
389 delay(1);
390 }
391 if (to >= EAP_WRITE_TIMEOUT)
392 aprint_error_dev(sc->sc_dev,
393 "eap1371_ready_codec timeout 1\n");
394
395 mutex_spin_enter(&sc->sc_intr_lock);
396 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
397 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
398
399 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
400 t = EREAD4(sc, E1371_SRC);
401 if ((t & E1371_SRC_STATE_MASK) == 0)
402 break;
403 delay(1);
404 }
405 if (to >= EAP_READ_TIMEOUT)
406 aprint_error_dev(sc->sc_dev,
407 "eap1371_ready_codec timeout 2\n");
408
409 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
410 t = EREAD4(sc, E1371_SRC);
411 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
412 break;
413 delay(1);
414 }
415 if (to >= EAP_READ_TIMEOUT)
416 aprint_error_dev(sc->sc_dev,
417 "eap1371_ready_codec timeout 3\n");
418
419 EWRITE4(sc, E1371_CODEC, wd);
420
421 eap1371_src_wait(sc);
422 EWRITE4(sc, E1371_SRC, src);
423
424 mutex_spin_exit(&sc->sc_intr_lock);
425 }
426
427 static int
428 eap1371_read_codec(void *sc_, uint8_t a, uint16_t *d)
429 {
430 struct eap_softc *sc;
431 int to;
432 uint32_t t;
433
434 sc = sc_;
435 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, 0) | E1371_CODEC_READ);
436
437 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
438 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
439 break;
440 }
441 if (to > EAP_WRITE_TIMEOUT)
442 aprint_error_dev(sc->sc_dev,
443 "eap1371_read_codec timeout 1\n");
444
445 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
446 t = EREAD4(sc, E1371_CODEC);
447 if (t & E1371_CODEC_VALID)
448 break;
449 }
450 if (to > EAP_WRITE_TIMEOUT)
451 aprint_error_dev(sc->sc_dev, "eap1371_read_codec timeout 2\n");
452
453 *d = (uint16_t)t;
454
455 DPRINTFN(10, ("eap1371: reading codec (%x) = %x\n", a, *d));
456
457 return 0;
458 }
459
460 static int
461 eap1371_write_codec(void *sc_, uint8_t a, uint16_t d)
462 {
463 struct eap_softc *sc;
464
465 sc = sc_;
466 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, d));
467
468 DPRINTFN(10, ("eap1371: writing codec %x --> %x\n", d, a));
469
470 return 0;
471 }
472
473 static uint32_t
474 eap1371_src_wait(struct eap_softc *sc)
475 {
476 int to;
477 u_int32_t src;
478
479 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
480 src = EREAD4(sc, E1371_SRC);
481 if (!(src & E1371_SRC_RBUSY))
482 return src;
483 delay(1);
484 }
485 aprint_error_dev(sc->sc_dev, "eap1371_src_wait timeout\n");
486 return src;
487 }
488
489 static int
490 eap1371_src_read(struct eap_softc *sc, int a)
491 {
492 int to;
493 uint32_t src, t;
494
495 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
496 src |= E1371_SRC_ADDR(a);
497 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
498
499 t = eap1371_src_wait(sc);
500 if ((t & E1371_SRC_STATE_MASK) != E1371_SRC_STATE_OK) {
501 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
502 t = EREAD4(sc, E1371_SRC);
503 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
504 break;
505 delay(1);
506 }
507 }
508
509 EWRITE4(sc, E1371_SRC, src);
510
511 return t & E1371_SRC_DATAMASK;
512 }
513
514 static void
515 eap1371_src_write(struct eap_softc *sc, int a, int d)
516 {
517 uint32_t r;
518
519 r = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
520 r |= E1371_SRC_RAMWE | E1371_SRC_ADDR(a) | E1371_SRC_DATA(d);
521 EWRITE4(sc, E1371_SRC, r);
522 }
523
524 static void
525 eap1371_set_adc_rate(struct eap_softc *sc, int rate)
526 {
527 int freq, n, truncm;
528 int out;
529
530 /* Whatever, it works, so I'll leave it :) */
531
532 if (rate > 48000)
533 rate = 48000;
534 if (rate < 4000)
535 rate = 4000;
536 n = rate / 3000;
537 if ((1 << n) & SRC_MAGIC)
538 n--;
539 truncm = ((21 * n) - 1) | 1;
540 freq = ((48000 << 15) / rate) * n;
541 if (rate >= 24000) {
542 if (truncm > 239)
543 truncm = 239;
544 out = ESRC_SET_TRUNC((239 - truncm) / 2);
545 } else {
546 if (truncm > 119)
547 truncm = 119;
548 out = ESRC_SMF | ESRC_SET_TRUNC((119 - truncm) / 2);
549 }
550 out |= ESRC_SET_N(n);
551 mutex_spin_enter(&sc->sc_intr_lock);
552 eap1371_src_write(sc, ESRC_ADC+ESRC_TRUNC_N, out);
553
554 out = eap1371_src_read(sc, ESRC_ADC+ESRC_IREGS) & 0xff;
555 eap1371_src_write(sc, ESRC_ADC+ESRC_IREGS, out |
556 ESRC_SET_VFI(freq >> 15));
557 eap1371_src_write(sc, ESRC_ADC+ESRC_VFF, freq & 0x7fff);
558 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(n));
559 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(n));
560 mutex_spin_exit(&sc->sc_intr_lock);
561 }
562
563 static void
564 eap1371_set_dac_rate(struct eap_instance *ei, int rate)
565 {
566 struct eap_softc *sc;
567 int dac;
568 int freq, r;
569
570 DPRINTFN(2, ("eap1371_set_dac_date: set rate for %d\n", ei->index));
571 sc = device_private(ei->parent);
572 dac = ei->index == EAP_DAC1 ? ESRC_DAC1 : ESRC_DAC2;
573
574 /* Whatever, it works, so I'll leave it :) */
575
576 if (rate > 48000)
577 rate = 48000;
578 if (rate < 4000)
579 rate = 4000;
580 freq = ((rate << 15) + 1500) / 3000;
581
582 mutex_spin_enter(&sc->sc_intr_lock);
583 eap1371_src_wait(sc);
584 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
585 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
586 r |= ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2;
587 EWRITE4(sc, E1371_SRC, r);
588 r = eap1371_src_read(sc, dac + ESRC_IREGS) & 0x00ff;
589 eap1371_src_write(sc, dac + ESRC_IREGS, r | ((freq >> 5) & 0xfc00));
590 eap1371_src_write(sc, dac + ESRC_VFF, freq & 0x7fff);
591 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
592 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
593 r &= ~(ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2);
594 EWRITE4(sc, E1371_SRC, r);
595 mutex_spin_exit(&sc->sc_intr_lock);
596 }
597
598 static void
599 eap_attach(device_t parent, device_t self, void *aux)
600 {
601 struct eap_softc *sc;
602 struct pci_attach_args *pa;
603 pci_chipset_tag_t pc;
604 const struct audio_hw_if *eap_hw_if;
605 char const *intrstr;
606 pci_intr_handle_t ih;
607 pcireg_t csr;
608 char devinfo[256];
609 mixer_ctrl_t ctl;
610 int i;
611 int revision, ct5880;
612 const char *revstr;
613 #if NJOY_EAP > 0
614 struct eap_gameport_args gpargs;
615 #endif
616
617 sc = device_private(self);
618 sc->sc_dev = self;
619 pa = (struct pci_attach_args *)aux;
620 pc = pa->pa_pc;
621 revstr = "";
622 aprint_naive(": Audio controller\n");
623
624 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
625 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
626
627 /* Stash this away for detach */
628 sc->sc_pc = pc;
629
630 /* Flag if we're "creative" */
631 sc->sc_1371 = !(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
632 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI);
633
634 /*
635 * The vendor and product ID's are quite "interesting". Just
636 * trust the following and be happy.
637 */
638 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
639 revision = PCI_REVISION(pa->pa_class);
640 ct5880 = 0;
641 if (sc->sc_1371) {
642 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
643 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_CT5880) {
644 ct5880 = 1;
645 switch (revision) {
646 case EAP_CT5880_C: revstr = "CT5880-C "; break;
647 case EAP_CT5880_D: revstr = "CT5880-D "; break;
648 case EAP_CT5880_E: revstr = "CT5880-E "; break;
649 }
650 } else {
651 switch (revision) {
652 case EAP_EV1938_A: revstr = "EV1938-A "; break;
653 case EAP_ES1373_A: revstr = "ES1373-A "; break;
654 case EAP_ES1373_B: revstr = "ES1373-B "; break;
655 case EAP_CT5880_A: revstr = "CT5880-A "; ct5880=1;break;
656 case EAP_ES1373_8: revstr = "ES1373-8" ; ct5880=1;break;
657 case EAP_ES1371_B: revstr = "ES1371-B "; break;
658 }
659 }
660 }
661 aprint_normal(": %s %s(rev. 0x%02x)\n", devinfo, revstr, revision);
662
663 /* Map I/O register */
664 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
665 &sc->iot, &sc->ioh, NULL, &sc->iosz)) {
666 aprint_error_dev(sc->sc_dev, "can't map i/o space\n");
667 return;
668 }
669
670 sc->sc_dmatag = pa->pa_dmat;
671
672 /* Enable the device. */
673 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
674 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
675 csr | PCI_COMMAND_MASTER_ENABLE);
676
677 /* Map and establish the interrupt. */
678 if (pci_intr_map(pa, &ih)) {
679 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
680 return;
681 }
682 intrstr = pci_intr_string(pc, ih);
683 sc->sc_ih = pci_intr_establish(pc, ih, IPL_SCHED, eap_intr, sc);
684 if (sc->sc_ih == NULL) {
685 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
686 if (intrstr != NULL)
687 aprint_error(" at %s", intrstr);
688 aprint_error("\n");
689 return;
690 }
691 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
692
693 sc->sc_ei[EAP_I1].parent = self;
694 sc->sc_ei[EAP_I1].index = EAP_DAC2;
695 sc->sc_ei[EAP_I2].parent = self;
696 sc->sc_ei[EAP_I2].index = EAP_DAC1;
697
698 if (!sc->sc_1371) {
699 /* Enable interrupts and looping mode. */
700 /* enable the parts we need */
701 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
702 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN);
703
704 /* reset codec */
705 /* normal operation */
706 /* select codec clocks */
707 eap1370_write_codec(sc, AK_RESET, AK_PD);
708 eap1370_write_codec(sc, AK_RESET, AK_PD | AK_NRST);
709 eap1370_write_codec(sc, AK_CS, 0x0);
710
711 eap_hw_if = &eap1370_hw_if;
712
713 /* Enable all relevant mixer switches. */
714 ctl.dev = EAP_INPUT_SOURCE;
715 ctl.type = AUDIO_MIXER_SET;
716 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL |
717 1 << EAP_CD_VOL | 1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL |
718 1 << EAP_MIC_VOL;
719 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
720
721 ctl.type = AUDIO_MIXER_VALUE;
722 ctl.un.value.num_channels = 1;
723 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL;
724 ctl.dev++) {
725 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
726 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
727 }
728 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
729 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
730 ctl.dev = EAP_MIC_PREAMP;
731 ctl.type = AUDIO_MIXER_ENUM;
732 ctl.un.ord = 0;
733 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
734 ctl.dev = EAP_RECORD_SOURCE;
735 ctl.type = AUDIO_MIXER_SET;
736 ctl.un.mask = 1 << EAP_MIC_VOL;
737 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
738 } else {
739 /* clean slate */
740
741 EWRITE4(sc, EAP_SIC, 0);
742 EWRITE4(sc, EAP_ICSC, 0);
743 EWRITE4(sc, E1371_LEGACY, 0);
744
745 if (ct5880) {
746 EWRITE4(sc, EAP_ICSS, EAP_CT5880_AC97_RESET);
747 /* Let codec wake up */
748 delay(20000);
749 }
750
751 /* Reset from es1371's perspective */
752 EWRITE4(sc, EAP_ICSC, E1371_SYNC_RES);
753 delay(20);
754 EWRITE4(sc, EAP_ICSC, 0);
755
756 /*
757 * Must properly reprogram sample rate converter,
758 * or it locks up. Set some defaults for the life of the
759 * machine, and set up a sb default sample rate.
760 */
761 EWRITE4(sc, E1371_SRC, E1371_SRC_DISABLE);
762 for (i = 0; i < 0x80; i++)
763 eap1371_src_write(sc, i, 0);
764 eap1371_src_write(sc, ESRC_DAC1+ESRC_TRUNC_N, ESRC_SET_N(16));
765 eap1371_src_write(sc, ESRC_DAC2+ESRC_TRUNC_N, ESRC_SET_N(16));
766 eap1371_src_write(sc, ESRC_DAC1+ESRC_IREGS, ESRC_SET_VFI(16));
767 eap1371_src_write(sc, ESRC_DAC2+ESRC_IREGS, ESRC_SET_VFI(16));
768 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(16));
769 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(16));
770 eap1371_src_write(sc, ESRC_DAC1_VOLL, ESRC_SET_DAC_VOLI(1));
771 eap1371_src_write(sc, ESRC_DAC1_VOLR, ESRC_SET_DAC_VOLI(1));
772 eap1371_src_write(sc, ESRC_DAC2_VOLL, ESRC_SET_DAC_VOLI(1));
773 eap1371_src_write(sc, ESRC_DAC2_VOLR, ESRC_SET_DAC_VOLI(1));
774 eap1371_set_adc_rate(sc, 22050);
775 eap1371_set_dac_rate(&sc->sc_ei[0], 22050);
776 eap1371_set_dac_rate(&sc->sc_ei[1], 22050);
777
778 EWRITE4(sc, E1371_SRC, 0);
779
780 /* Reset codec */
781
782 /* Interrupt enable */
783 sc->host_if.arg = sc;
784 sc->host_if.attach = eap1371_attach_codec;
785 sc->host_if.read = eap1371_read_codec;
786 sc->host_if.write = eap1371_write_codec;
787 sc->host_if.reset = eap1371_reset_codec;
788
789 if (ac97_attach(&sc->host_if, self, &sc->sc_lock) == 0) {
790 /* Interrupt enable */
791 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
792 } else
793 return;
794
795 eap_hw_if = &eap1371_hw_if;
796 }
797
798 sc->sc_ei[EAP_I1].ei_audiodev =
799 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I1], sc->sc_dev);
800
801 #ifdef EAP_USE_BOTH_DACS
802 aprint_normal_dev(self, "attaching secondary DAC\n");
803 sc->sc_ei[EAP_I2].ei_audiodev =
804 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I2], sc->sc_dev);
805 #endif
806
807 #if NMIDI > 0
808 sc->sc_mididev = midi_attach_mi(&eap_midi_hw_if, sc, sc->sc_dev);
809 #endif
810
811 #if NJOY_EAP > 0
812 if (sc->sc_1371) {
813 gpargs.gpa_iot = sc->iot;
814 gpargs.gpa_ioh = sc->ioh;
815 sc->sc_gameport = eap_joy_attach(sc->sc_dev, &gpargs);
816 }
817 #endif
818 }
819
820 static int
821 eap_detach(device_t self, int flags)
822 {
823 struct eap_softc *sc;
824 int res;
825 #if NJOY_EAP > 0
826 struct eap_gameport_args gpargs;
827
828 sc = device_private(self);
829 if (sc->sc_gameport) {
830 gpargs.gpa_iot = sc->iot;
831 gpargs.gpa_ioh = sc->ioh;
832 res = eap_joy_detach(sc->sc_gameport, &gpargs);
833 if (res)
834 return res;
835 }
836 #else
837 sc = device_private(self);
838 #endif
839 #if NMIDI > 0
840 if (sc->sc_mididev != NULL) {
841 res = config_detach(sc->sc_mididev, 0);
842 if (res)
843 return res;
844 }
845 #endif
846 #ifdef EAP_USE_BOTH_DACS
847 if (sc->sc_ei[EAP_I2].ei_audiodev != NULL) {
848 res = config_detach(sc->sc_ei[EAP_I2].ei_audiodev, 0);
849 if (res)
850 return res;
851 }
852 #endif
853 if (sc->sc_ei[EAP_I1].ei_audiodev != NULL) {
854 res = config_detach(sc->sc_ei[EAP_I1].ei_audiodev, 0);
855 if (res)
856 return res;
857 }
858
859 bus_space_unmap(sc->iot, sc->ioh, sc->iosz);
860 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
861 mutex_destroy(&sc->sc_lock);
862 mutex_destroy(&sc->sc_intr_lock);
863
864 return 0;
865 }
866
867 static int
868 eap1371_attach_codec(void *sc_, struct ac97_codec_if *codec_if)
869 {
870 struct eap_softc *sc;
871
872 sc = sc_;
873 sc->codec_if = codec_if;
874 return 0;
875 }
876
877 static int
878 eap1371_reset_codec(void *sc_)
879 {
880 struct eap_softc *sc;
881 uint32_t icsc;
882
883 sc = sc_;
884 mutex_spin_enter(&sc->sc_intr_lock);
885 icsc = EREAD4(sc, EAP_ICSC);
886 EWRITE4(sc, EAP_ICSC, icsc | E1371_SYNC_RES);
887 delay(20);
888 EWRITE4(sc, EAP_ICSC, icsc & ~E1371_SYNC_RES);
889 delay(1);
890 mutex_spin_exit(&sc->sc_intr_lock);
891
892 return 0;
893 }
894
895 static int
896 eap_intr(void *p)
897 {
898 struct eap_softc *sc;
899 uint32_t intr, sic;
900
901 sc = p;
902 mutex_spin_enter(&sc->sc_intr_lock);
903 intr = EREAD4(sc, EAP_ICSS);
904 if (!(intr & EAP_INTR)) {
905 mutex_spin_exit(&sc->sc_intr_lock);
906 return 0;
907 }
908 sic = EREAD4(sc, EAP_SIC);
909 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
910 if (intr & EAP_I_ADC) {
911 #if 0
912 /*
913 * XXX This is a hack!
914 * The EAP chip sometimes generates the recording interrupt
915 * while it is still transferring the data. To make sure
916 * it has all arrived we busy wait until the count is right.
917 * The transfer we are waiting for is 8 longwords.
918 */
919 int s, nw, n;
920 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
921 s = EREAD4(sc, EAP_ADC_CSR);
922 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
923 n = 0;
924 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
925 delay(10);
926 if (++n > 100) {
927 printf("eapintr: DMA fix timeout");
928 break;
929 }
930 }
931 /* Continue with normal interrupt handling. */
932 #endif
933 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
934 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
935 if (sc->sc_rintr)
936 sc->sc_rintr(sc->sc_rarg);
937 }
938
939 if (intr & EAP_I_DAC2) {
940 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
941 EWRITE4(sc, EAP_SIC, sic | EAP_P2_INTR_EN);
942 if (sc->sc_ei[EAP_DAC2].ei_pintr)
943 sc->sc_ei[EAP_DAC2].ei_pintr(sc->sc_ei[EAP_DAC2].ei_parg);
944 }
945
946 if (intr & EAP_I_DAC1) {
947 EWRITE4(sc, EAP_SIC, sic & ~EAP_P1_INTR_EN);
948 EWRITE4(sc, EAP_SIC, sic | EAP_P1_INTR_EN);
949 if (sc->sc_ei[EAP_DAC1].ei_pintr)
950 sc->sc_ei[EAP_DAC1].ei_pintr(sc->sc_ei[EAP_DAC1].ei_parg);
951 }
952
953 if (intr & EAP_I_MCCB)
954 panic("eap_intr: unexpected MCCB interrupt");
955 #if NMIDI > 0
956 if (intr & EAP_I_UART) {
957 uint8_t ustat;
958 uint32_t data;
959
960 ustat = EREAD1(sc, EAP_UART_STATUS);
961
962 if (ustat & EAP_US_RXINT) {
963 while (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXRDY) {
964 data = EREAD1(sc, EAP_UART_DATA);
965 sc->sc_iintr(sc->sc_arg, data);
966 }
967 }
968
969 if (ustat & EAP_US_TXINT)
970 eap_uart_txrdy(sc);
971 }
972 #endif
973 mutex_spin_exit(&sc->sc_intr_lock);
974 return 1;
975 }
976
977 static int
978 eap_allocmem(struct eap_softc *sc, size_t size, size_t align, struct eap_dma *p)
979 {
980 int error;
981
982 p->size = size;
983 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
984 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
985 &p->nsegs, BUS_DMA_WAITOK);
986 if (error)
987 return error;
988
989 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
990 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
991 if (error)
992 goto free;
993
994 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
995 0, BUS_DMA_WAITOK, &p->map);
996 if (error)
997 goto unmap;
998
999 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
1000 BUS_DMA_WAITOK);
1001 if (error)
1002 goto destroy;
1003 return (0);
1004
1005 destroy:
1006 bus_dmamap_destroy(sc->sc_dmatag, p->map);
1007 unmap:
1008 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
1009 free:
1010 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
1011 return error;
1012 }
1013
1014 static int
1015 eap_freemem(struct eap_softc *sc, struct eap_dma *p)
1016 {
1017
1018 bus_dmamap_unload(sc->sc_dmatag, p->map);
1019 bus_dmamap_destroy(sc->sc_dmatag, p->map);
1020 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
1021 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
1022 return 0;
1023 }
1024
1025 static int
1026 eap_open(void *addr, int flags)
1027 {
1028 struct eap_instance *ei;
1029
1030 ei = addr;
1031 /* there is only one ADC */
1032 if (ei->index == EAP_I2 && flags & FREAD)
1033 return EOPNOTSUPP;
1034
1035 return 0;
1036 }
1037
1038 static int
1039 eap_query_encoding(void *addr, struct audio_encoding *fp)
1040 {
1041
1042 switch (fp->index) {
1043 case 0:
1044 strcpy(fp->name, AudioEulinear);
1045 fp->encoding = AUDIO_ENCODING_ULINEAR;
1046 fp->precision = 8;
1047 fp->flags = 0;
1048 return 0;
1049 case 1:
1050 strcpy(fp->name, AudioEmulaw);
1051 fp->encoding = AUDIO_ENCODING_ULAW;
1052 fp->precision = 8;
1053 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1054 return 0;
1055 case 2:
1056 strcpy(fp->name, AudioEalaw);
1057 fp->encoding = AUDIO_ENCODING_ALAW;
1058 fp->precision = 8;
1059 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1060 return 0;
1061 case 3:
1062 strcpy(fp->name, AudioEslinear);
1063 fp->encoding = AUDIO_ENCODING_SLINEAR;
1064 fp->precision = 8;
1065 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1066 return 0;
1067 case 4:
1068 strcpy(fp->name, AudioEslinear_le);
1069 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1070 fp->precision = 16;
1071 fp->flags = 0;
1072 return 0;
1073 case 5:
1074 strcpy(fp->name, AudioEulinear_le);
1075 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1076 fp->precision = 16;
1077 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1078 return 0;
1079 case 6:
1080 strcpy(fp->name, AudioEslinear_be);
1081 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1082 fp->precision = 16;
1083 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1084 return 0;
1085 case 7:
1086 strcpy(fp->name, AudioEulinear_be);
1087 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1088 fp->precision = 16;
1089 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1090 return 0;
1091 default:
1092 return EINVAL;
1093 }
1094 }
1095
1096 static int
1097 eap_set_params(void *addr, int setmode, int usemode,
1098 audio_params_t *play, audio_params_t *rec,
1099 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1100 {
1101 struct eap_instance *ei;
1102 struct eap_softc *sc;
1103 struct audio_params *p;
1104 stream_filter_list_t *fil;
1105 int mode, i;
1106 uint32_t div;
1107
1108 ei = addr;
1109 sc = device_private(ei->parent);
1110 /*
1111 * The es1370 only has one clock, so make the sample rates match.
1112 * This only applies for ADC/DAC2. The FM DAC is handled below.
1113 */
1114 if (!sc->sc_1371 && ei->index == EAP_DAC2) {
1115 if (play->sample_rate != rec->sample_rate &&
1116 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1117 if (setmode == AUMODE_PLAY) {
1118 rec->sample_rate = play->sample_rate;
1119 setmode |= AUMODE_RECORD;
1120 } else if (setmode == AUMODE_RECORD) {
1121 play->sample_rate = rec->sample_rate;
1122 setmode |= AUMODE_PLAY;
1123 } else
1124 return EINVAL;
1125 }
1126 }
1127
1128 for (mode = AUMODE_RECORD; mode != -1;
1129 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1130 if ((setmode & mode) == 0)
1131 continue;
1132
1133 p = mode == AUMODE_PLAY ? play : rec;
1134
1135 if (p->sample_rate < 4000 || p->sample_rate > 48000 ||
1136 (p->precision != 8 && p->precision != 16) ||
1137 (p->channels != 1 && p->channels != 2))
1138 return EINVAL;
1139
1140 fil = mode == AUMODE_PLAY ? pfil : rfil;
1141 i = auconv_set_converter(eap_formats, EAP_NFORMATS,
1142 mode, p, FALSE, fil);
1143 if (i < 0)
1144 return EINVAL;
1145 }
1146
1147 if (sc->sc_1371) {
1148 eap1371_set_dac_rate(ei, play->sample_rate);
1149 eap1371_set_adc_rate(sc, rec->sample_rate);
1150 } else if (ei->index == EAP_DAC2) {
1151 /* Set the speed */
1152 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
1153 EREAD4(sc, EAP_ICSC)));
1154 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
1155 /*
1156 * XXX
1157 * The -2 isn't documented, but seemed to make the wall
1158 * time match
1159 * what I expect. - mycroft
1160 */
1161 if (usemode == AUMODE_RECORD)
1162 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1163 rec->sample_rate - 2);
1164 else
1165 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1166 play->sample_rate - 2);
1167 #if 0
1168 div |= EAP_CCB_INTRM;
1169 #else
1170 /*
1171 * It is not obvious how to acknowledge MCCB interrupts, so
1172 * we had better not enable them.
1173 */
1174 #endif
1175 EWRITE4(sc, EAP_ICSC, div);
1176 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1177 } else {
1178 /*
1179 * The FM DAC has only a few fixed-frequency choises, so
1180 * pick out the best candidate.
1181 */
1182 div = EREAD4(sc, EAP_ICSC);
1183 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n", div));
1184
1185 div &= ~EAP_WTSRSEL;
1186 if (play->sample_rate < 8268)
1187 div |= EAP_WTSRSEL_5;
1188 else if (play->sample_rate < 16537)
1189 div |= EAP_WTSRSEL_11;
1190 else if (play->sample_rate < 33075)
1191 div |= EAP_WTSRSEL_22;
1192 else
1193 div |= EAP_WTSRSEL_44;
1194
1195 EWRITE4(sc, EAP_ICSC, div);
1196 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1197 }
1198
1199 return 0;
1200 }
1201
1202 static int
1203 eap_round_blocksize(void *addr, int blk, int mode,
1204 const audio_params_t *param)
1205 {
1206
1207 return blk & -32; /* keep good alignment */
1208 }
1209
1210 static int
1211 eap_trigger_output(
1212 void *addr,
1213 void *start,
1214 void *end,
1215 int blksize,
1216 void (*intr)(void *),
1217 void *arg,
1218 const audio_params_t *param)
1219 {
1220 struct eap_instance *ei;
1221 struct eap_softc *sc;
1222 struct eap_dma *p;
1223 uint32_t icsc, sic;
1224 int sampshift;
1225
1226 ei = addr;
1227 sc = device_private(ei->parent);
1228 #ifdef DIAGNOSTIC
1229 if (ei->ei_prun)
1230 panic("eap_trigger_output: already running");
1231 ei->ei_prun = 1;
1232 #endif
1233
1234 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p "
1235 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1236 ei->ei_pintr = intr;
1237 ei->ei_parg = arg;
1238
1239 sic = EREAD4(sc, EAP_SIC);
1240 sic &= ~(EAP_S_EB(ei->index) | EAP_S_MB(ei->index) | EAP_INC_BITS);
1241
1242 if (ei->index == EAP_DAC2)
1243 sic |= EAP_SET_P2_ST_INC(0)
1244 | EAP_SET_P2_END_INC(param->precision / 8);
1245
1246 sampshift = 0;
1247 if (param->precision == 16) {
1248 sic |= EAP_S_EB(ei->index);
1249 sampshift++;
1250 }
1251 if (param->channels == 2) {
1252 sic |= EAP_S_MB(ei->index);
1253 sampshift++;
1254 }
1255 EWRITE4(sc, EAP_SIC, sic & ~EAP_P_INTR_EN(ei->index));
1256 EWRITE4(sc, EAP_SIC, sic | EAP_P_INTR_EN(ei->index));
1257
1258 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1259 continue;
1260 if (!p) {
1261 printf("eap_trigger_output: bad addr %p\n", start);
1262 return EINVAL;
1263 }
1264
1265 if (ei->index == EAP_DAC2) {
1266 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
1267 (int)DMAADDR(p),
1268 (int)EAP_SET_SIZE(0,
1269 (((char *)end - (char *)start) >> 2) - 1)));
1270 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1271 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
1272 EWRITE4(sc, EAP_DAC2_SIZE,
1273 EAP_SET_SIZE(0,
1274 ((char *)end - (char *)start) >> 2) - 1);
1275 EWRITE4(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
1276 } else if (ei->index == EAP_DAC1) {
1277 DPRINTF(("eap_trigger_output: DAC1_ADDR=0x%x, DAC1_SIZE=0x%x\n",
1278 (int)DMAADDR(p),
1279 (int)EAP_SET_SIZE(0,
1280 (((char *)end - (char *)start) >> 2) - 1)));
1281 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1282 EWRITE4(sc, EAP_DAC1_ADDR, DMAADDR(p));
1283 EWRITE4(sc, EAP_DAC1_SIZE,
1284 EAP_SET_SIZE(0,
1285 ((char *)end - (char *)start) >> 2) - 1);
1286 EWRITE4(sc, EAP_DAC1_CSR, (blksize >> sampshift) - 1);
1287 }
1288 #ifdef DIAGNOSTIC
1289 else
1290 panic("eap_trigger_output: impossible instance %d", ei->index);
1291 #endif
1292
1293 if (sc->sc_1371)
1294 EWRITE4(sc, E1371_SRC, 0);
1295
1296 icsc = EREAD4(sc, EAP_ICSC);
1297 icsc |= EAP_DAC_EN(ei->index);
1298 EWRITE4(sc, EAP_ICSC, icsc);
1299
1300 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
1301
1302 return 0;
1303 }
1304
1305 static int
1306 eap_trigger_input(
1307 void *addr,
1308 void *start,
1309 void *end,
1310 int blksize,
1311 void (*intr)(void *),
1312 void *arg,
1313 const audio_params_t *param)
1314 {
1315 struct eap_instance *ei;
1316 struct eap_softc *sc;
1317 struct eap_dma *p;
1318 uint32_t icsc, sic;
1319 int sampshift;
1320
1321 ei = addr;
1322 sc = device_private(ei->parent);
1323 #ifdef DIAGNOSTIC
1324 if (sc->sc_rrun)
1325 panic("eap_trigger_input: already running");
1326 sc->sc_rrun = 1;
1327 #endif
1328
1329 DPRINTFN(1, ("eap_trigger_input: ei=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1330 addr, start, end, blksize, intr, arg));
1331 sc->sc_rintr = intr;
1332 sc->sc_rarg = arg;
1333
1334 sic = EREAD4(sc, EAP_SIC);
1335 sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
1336 sampshift = 0;
1337 if (param->precision == 16) {
1338 sic |= EAP_R1_S_EB;
1339 sampshift++;
1340 }
1341 if (param->channels == 2) {
1342 sic |= EAP_R1_S_MB;
1343 sampshift++;
1344 }
1345 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
1346 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
1347
1348 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1349 continue;
1350 if (!p) {
1351 printf("eap_trigger_input: bad addr %p\n", start);
1352 return (EINVAL);
1353 }
1354
1355 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
1356 (int)DMAADDR(p),
1357 (int)EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1358 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
1359 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
1360 EWRITE4(sc, EAP_ADC_SIZE,
1361 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1362
1363 EWRITE4(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
1364
1365 if (sc->sc_1371)
1366 EWRITE4(sc, E1371_SRC, 0);
1367
1368 icsc = EREAD4(sc, EAP_ICSC);
1369 icsc |= EAP_ADC_EN;
1370 EWRITE4(sc, EAP_ICSC, icsc);
1371
1372 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
1373
1374 return 0;
1375 }
1376
1377 static int
1378 eap_halt_output(void *addr)
1379 {
1380 struct eap_instance *ei;
1381 struct eap_softc *sc;
1382 uint32_t icsc;
1383
1384 DPRINTF(("eap: eap_halt_output\n"));
1385 ei = addr;
1386 sc = device_private(ei->parent);
1387 icsc = EREAD4(sc, EAP_ICSC);
1388 EWRITE4(sc, EAP_ICSC, icsc & ~(EAP_DAC_EN(ei->index)));
1389 ei->ei_pintr = 0;
1390 #ifdef DIAGNOSTIC
1391 ei->ei_prun = 0;
1392 #endif
1393
1394 return 0;
1395 }
1396
1397 static int
1398 eap_halt_input(void *addr)
1399 {
1400 struct eap_instance *ei;
1401 struct eap_softc *sc;
1402 uint32_t icsc;
1403
1404 #define EAP_USE_FMDAC_ALSO
1405 DPRINTF(("eap: eap_halt_input\n"));
1406 ei = addr;
1407 sc = device_private(ei->parent);
1408 icsc = EREAD4(sc, EAP_ICSC);
1409 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1410 sc->sc_rintr = 0;
1411 #ifdef DIAGNOSTIC
1412 sc->sc_rrun = 0;
1413 #endif
1414
1415 return 0;
1416 }
1417
1418 static int
1419 eap_getdev(void *addr, struct audio_device *retp)
1420 {
1421
1422 *retp = eap_device;
1423 return 0;
1424 }
1425
1426 static int
1427 eap1371_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1428 {
1429 struct eap_instance *ei;
1430 struct eap_softc *sc;
1431
1432 ei = addr;
1433 sc = device_private(ei->parent);
1434 return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
1435 }
1436
1437 static int
1438 eap1371_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1439 {
1440 struct eap_instance *ei;
1441 struct eap_softc *sc;
1442
1443 ei = addr;
1444 sc = device_private(ei->parent);
1445 return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
1446 }
1447
1448 static int
1449 eap1371_query_devinfo(void *addr, mixer_devinfo_t *dip)
1450 {
1451 struct eap_instance *ei;
1452 struct eap_softc *sc;
1453
1454 ei = addr;
1455 sc = device_private(ei->parent);
1456 return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip);
1457 }
1458
1459 static void
1460 eap1370_set_mixer(struct eap_softc *sc, int a, int d)
1461 {
1462 eap1370_write_codec(sc, a, d);
1463
1464 sc->sc_port[a] = d;
1465 DPRINTFN(1, ("eap1370_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
1466 }
1467
1468 static int
1469 eap1370_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1470 {
1471 struct eap_instance *ei;
1472 struct eap_softc *sc;
1473 int lval, rval, l, r, la, ra;
1474 int l1, r1, l2, r2, m, o1, o2;
1475
1476 ei = addr;
1477 sc = device_private(ei->parent);
1478 if (cp->dev == EAP_RECORD_SOURCE) {
1479 if (cp->type != AUDIO_MIXER_SET)
1480 return EINVAL;
1481 m = sc->sc_record_source = cp->un.mask;
1482 l1 = l2 = r1 = r2 = 0;
1483 if (m & (1 << EAP_VOICE_VOL))
1484 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
1485 if (m & (1 << EAP_FM_VOL))
1486 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
1487 if (m & (1 << EAP_CD_VOL))
1488 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
1489 if (m & (1 << EAP_LINE_VOL))
1490 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
1491 if (m & (1 << EAP_AUX_VOL))
1492 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
1493 if (m & (1 << EAP_MIC_VOL))
1494 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
1495 eap1370_set_mixer(sc, AK_IN_MIXER1_L, l1);
1496 eap1370_set_mixer(sc, AK_IN_MIXER1_R, r1);
1497 eap1370_set_mixer(sc, AK_IN_MIXER2_L, l2);
1498 eap1370_set_mixer(sc, AK_IN_MIXER2_R, r2);
1499 return 0;
1500 }
1501 if (cp->dev == EAP_INPUT_SOURCE) {
1502 if (cp->type != AUDIO_MIXER_SET)
1503 return EINVAL;
1504 m = sc->sc_input_source = cp->un.mask;
1505 o1 = o2 = 0;
1506 if (m & (1 << EAP_VOICE_VOL))
1507 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
1508 if (m & (1 << EAP_FM_VOL))
1509 o1 |= AK_M_FM_L | AK_M_FM_R;
1510 if (m & (1 << EAP_CD_VOL))
1511 o1 |= AK_M_CD_L | AK_M_CD_R;
1512 if (m & (1 << EAP_LINE_VOL))
1513 o1 |= AK_M_LINE_L | AK_M_LINE_R;
1514 if (m & (1 << EAP_AUX_VOL))
1515 o2 |= AK_M_AUX_L | AK_M_AUX_R;
1516 if (m & (1 << EAP_MIC_VOL))
1517 o1 |= AK_M_MIC;
1518 eap1370_set_mixer(sc, AK_OUT_MIXER1, o1);
1519 eap1370_set_mixer(sc, AK_OUT_MIXER2, o2);
1520 return 0;
1521 }
1522 if (cp->dev == EAP_MIC_PREAMP) {
1523 if (cp->type != AUDIO_MIXER_ENUM)
1524 return EINVAL;
1525 if (cp->un.ord != 0 && cp->un.ord != 1)
1526 return EINVAL;
1527 sc->sc_mic_preamp = cp->un.ord;
1528 eap1370_set_mixer(sc, AK_MGAIN, cp->un.ord);
1529 return 0;
1530 }
1531 if (cp->type != AUDIO_MIXER_VALUE)
1532 return EINVAL;
1533 if (cp->un.value.num_channels == 1)
1534 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1535 else if (cp->un.value.num_channels == 2) {
1536 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1537 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1538 } else
1539 return EINVAL;
1540 ra = -1;
1541 switch (cp->dev) {
1542 case EAP_MASTER_VOL:
1543 l = VOL_TO_ATT5(lval);
1544 r = VOL_TO_ATT5(rval);
1545 la = AK_MASTER_L;
1546 ra = AK_MASTER_R;
1547 break;
1548 case EAP_MIC_VOL:
1549 if (cp->un.value.num_channels != 1)
1550 return EINVAL;
1551 la = AK_MIC;
1552 goto lr;
1553 case EAP_VOICE_VOL:
1554 la = AK_VOICE_L;
1555 ra = AK_VOICE_R;
1556 goto lr;
1557 case EAP_FM_VOL:
1558 la = AK_FM_L;
1559 ra = AK_FM_R;
1560 goto lr;
1561 case EAP_CD_VOL:
1562 la = AK_CD_L;
1563 ra = AK_CD_R;
1564 goto lr;
1565 case EAP_LINE_VOL:
1566 la = AK_LINE_L;
1567 ra = AK_LINE_R;
1568 goto lr;
1569 case EAP_AUX_VOL:
1570 la = AK_AUX_L;
1571 ra = AK_AUX_R;
1572 lr:
1573 l = VOL_TO_GAIN5(lval);
1574 r = VOL_TO_GAIN5(rval);
1575 break;
1576 default:
1577 return EINVAL;
1578 }
1579 eap1370_set_mixer(sc, la, l);
1580 if (ra >= 0) {
1581 eap1370_set_mixer(sc, ra, r);
1582 }
1583 return 0;
1584 }
1585
1586 static int
1587 eap1370_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1588 {
1589 struct eap_instance *ei;
1590 struct eap_softc *sc;
1591 int la, ra, l, r;
1592
1593 ei = addr;
1594 sc = device_private(ei->parent);
1595 switch (cp->dev) {
1596 case EAP_RECORD_SOURCE:
1597 if (cp->type != AUDIO_MIXER_SET)
1598 return EINVAL;
1599 cp->un.mask = sc->sc_record_source;
1600 return 0;
1601 case EAP_INPUT_SOURCE:
1602 if (cp->type != AUDIO_MIXER_SET)
1603 return EINVAL;
1604 cp->un.mask = sc->sc_input_source;
1605 return 0;
1606 case EAP_MIC_PREAMP:
1607 if (cp->type != AUDIO_MIXER_ENUM)
1608 return EINVAL;
1609 cp->un.ord = sc->sc_mic_preamp;
1610 return 0;
1611 case EAP_MASTER_VOL:
1612 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1613 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1614 break;
1615 case EAP_MIC_VOL:
1616 if (cp->un.value.num_channels != 1)
1617 return EINVAL;
1618 la = ra = AK_MIC;
1619 goto lr;
1620 case EAP_VOICE_VOL:
1621 la = AK_VOICE_L;
1622 ra = AK_VOICE_R;
1623 goto lr;
1624 case EAP_FM_VOL:
1625 la = AK_FM_L;
1626 ra = AK_FM_R;
1627 goto lr;
1628 case EAP_CD_VOL:
1629 la = AK_CD_L;
1630 ra = AK_CD_R;
1631 goto lr;
1632 case EAP_LINE_VOL:
1633 la = AK_LINE_L;
1634 ra = AK_LINE_R;
1635 goto lr;
1636 case EAP_AUX_VOL:
1637 la = AK_AUX_L;
1638 ra = AK_AUX_R;
1639 lr:
1640 l = GAIN5_TO_VOL(sc->sc_port[la]);
1641 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1642 break;
1643 default:
1644 return EINVAL;
1645 }
1646 if (cp->un.value.num_channels == 1)
1647 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1648 else if (cp->un.value.num_channels == 2) {
1649 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1650 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1651 } else
1652 return EINVAL;
1653 return 0;
1654 }
1655
1656 static int
1657 eap1370_query_devinfo(void *addr, mixer_devinfo_t *dip)
1658 {
1659
1660 switch (dip->index) {
1661 case EAP_MASTER_VOL:
1662 dip->type = AUDIO_MIXER_VALUE;
1663 dip->mixer_class = EAP_OUTPUT_CLASS;
1664 dip->prev = dip->next = AUDIO_MIXER_LAST;
1665 strcpy(dip->label.name, AudioNmaster);
1666 dip->un.v.num_channels = 2;
1667 dip->un.v.delta = 8;
1668 strcpy(dip->un.v.units.name, AudioNvolume);
1669 return 0;
1670 case EAP_VOICE_VOL:
1671 dip->type = AUDIO_MIXER_VALUE;
1672 dip->mixer_class = EAP_INPUT_CLASS;
1673 dip->prev = AUDIO_MIXER_LAST;
1674 dip->next = AUDIO_MIXER_LAST;
1675 strcpy(dip->label.name, AudioNdac);
1676 dip->un.v.num_channels = 2;
1677 dip->un.v.delta = 8;
1678 strcpy(dip->un.v.units.name, AudioNvolume);
1679 return 0;
1680 case EAP_FM_VOL:
1681 dip->type = AUDIO_MIXER_VALUE;
1682 dip->mixer_class = EAP_INPUT_CLASS;
1683 dip->prev = AUDIO_MIXER_LAST;
1684 dip->next = AUDIO_MIXER_LAST;
1685 strcpy(dip->label.name, AudioNfmsynth);
1686 dip->un.v.num_channels = 2;
1687 dip->un.v.delta = 8;
1688 strcpy(dip->un.v.units.name, AudioNvolume);
1689 return 0;
1690 case EAP_CD_VOL:
1691 dip->type = AUDIO_MIXER_VALUE;
1692 dip->mixer_class = EAP_INPUT_CLASS;
1693 dip->prev = AUDIO_MIXER_LAST;
1694 dip->next = AUDIO_MIXER_LAST;
1695 strcpy(dip->label.name, AudioNcd);
1696 dip->un.v.num_channels = 2;
1697 dip->un.v.delta = 8;
1698 strcpy(dip->un.v.units.name, AudioNvolume);
1699 return 0;
1700 case EAP_LINE_VOL:
1701 dip->type = AUDIO_MIXER_VALUE;
1702 dip->mixer_class = EAP_INPUT_CLASS;
1703 dip->prev = AUDIO_MIXER_LAST;
1704 dip->next = AUDIO_MIXER_LAST;
1705 strcpy(dip->label.name, AudioNline);
1706 dip->un.v.num_channels = 2;
1707 dip->un.v.delta = 8;
1708 strcpy(dip->un.v.units.name, AudioNvolume);
1709 return 0;
1710 case EAP_AUX_VOL:
1711 dip->type = AUDIO_MIXER_VALUE;
1712 dip->mixer_class = EAP_INPUT_CLASS;
1713 dip->prev = AUDIO_MIXER_LAST;
1714 dip->next = AUDIO_MIXER_LAST;
1715 strcpy(dip->label.name, AudioNaux);
1716 dip->un.v.num_channels = 2;
1717 dip->un.v.delta = 8;
1718 strcpy(dip->un.v.units.name, AudioNvolume);
1719 return 0;
1720 case EAP_MIC_VOL:
1721 dip->type = AUDIO_MIXER_VALUE;
1722 dip->mixer_class = EAP_INPUT_CLASS;
1723 dip->prev = AUDIO_MIXER_LAST;
1724 dip->next = EAP_MIC_PREAMP;
1725 strcpy(dip->label.name, AudioNmicrophone);
1726 dip->un.v.num_channels = 1;
1727 dip->un.v.delta = 8;
1728 strcpy(dip->un.v.units.name, AudioNvolume);
1729 return 0;
1730 case EAP_RECORD_SOURCE:
1731 dip->mixer_class = EAP_RECORD_CLASS;
1732 dip->prev = dip->next = AUDIO_MIXER_LAST;
1733 strcpy(dip->label.name, AudioNsource);
1734 dip->type = AUDIO_MIXER_SET;
1735 dip->un.s.num_mem = 6;
1736 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1737 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1738 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1739 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1740 strcpy(dip->un.s.member[2].label.name, AudioNline);
1741 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1742 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1743 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1744 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1745 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1746 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1747 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1748 return 0;
1749 case EAP_INPUT_SOURCE:
1750 dip->mixer_class = EAP_INPUT_CLASS;
1751 dip->prev = dip->next = AUDIO_MIXER_LAST;
1752 strcpy(dip->label.name, AudioNsource);
1753 dip->type = AUDIO_MIXER_SET;
1754 dip->un.s.num_mem = 6;
1755 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1756 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1757 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1758 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1759 strcpy(dip->un.s.member[2].label.name, AudioNline);
1760 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1761 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1762 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1763 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1764 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1765 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1766 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1767 return 0;
1768 case EAP_MIC_PREAMP:
1769 dip->type = AUDIO_MIXER_ENUM;
1770 dip->mixer_class = EAP_INPUT_CLASS;
1771 dip->prev = EAP_MIC_VOL;
1772 dip->next = AUDIO_MIXER_LAST;
1773 strcpy(dip->label.name, AudioNpreamp);
1774 dip->un.e.num_mem = 2;
1775 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1776 dip->un.e.member[0].ord = 0;
1777 strcpy(dip->un.e.member[1].label.name, AudioNon);
1778 dip->un.e.member[1].ord = 1;
1779 return 0;
1780 case EAP_OUTPUT_CLASS:
1781 dip->type = AUDIO_MIXER_CLASS;
1782 dip->mixer_class = EAP_OUTPUT_CLASS;
1783 dip->next = dip->prev = AUDIO_MIXER_LAST;
1784 strcpy(dip->label.name, AudioCoutputs);
1785 return 0;
1786 case EAP_RECORD_CLASS:
1787 dip->type = AUDIO_MIXER_CLASS;
1788 dip->mixer_class = EAP_RECORD_CLASS;
1789 dip->next = dip->prev = AUDIO_MIXER_LAST;
1790 strcpy(dip->label.name, AudioCrecord);
1791 return 0;
1792 case EAP_INPUT_CLASS:
1793 dip->type = AUDIO_MIXER_CLASS;
1794 dip->mixer_class = EAP_INPUT_CLASS;
1795 dip->next = dip->prev = AUDIO_MIXER_LAST;
1796 strcpy(dip->label.name, AudioCinputs);
1797 return 0;
1798 }
1799 return ENXIO;
1800 }
1801
1802 static void *
1803 eap_malloc(void *addr, int direction, size_t size,
1804 struct malloc_type *pool, int flags)
1805 {
1806 struct eap_instance *ei;
1807 struct eap_softc *sc;
1808 struct eap_dma *p;
1809 int error;
1810
1811 p = malloc(sizeof(*p), pool, flags);
1812 if (!p)
1813 return NULL;
1814 ei = addr;
1815 sc = device_private(ei->parent);
1816 error = eap_allocmem(sc, size, 16, p);
1817 if (error) {
1818 free(p, pool);
1819 return NULL;
1820 }
1821 p->next = sc->sc_dmas;
1822 sc->sc_dmas = p;
1823 return KERNADDR(p);
1824 }
1825
1826 static void
1827 eap_free(void *addr, void *ptr, struct malloc_type *pool)
1828 {
1829 struct eap_instance *ei;
1830 struct eap_softc *sc;
1831 struct eap_dma **pp, *p;
1832
1833 ei = addr;
1834 sc = device_private(ei->parent);
1835 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1836 if (KERNADDR(p) == ptr) {
1837 eap_freemem(sc, p);
1838 *pp = p->next;
1839 free(p, pool);
1840 return;
1841 }
1842 }
1843 }
1844
1845 static size_t
1846 eap_round_buffersize(void *addr, int direction, size_t size)
1847 {
1848
1849 return size;
1850 }
1851
1852 static paddr_t
1853 eap_mappage(void *addr, void *mem, off_t off, int prot)
1854 {
1855 struct eap_instance *ei;
1856 struct eap_softc *sc;
1857 struct eap_dma *p;
1858
1859 if (off < 0)
1860 return -1;
1861 ei = addr;
1862 sc = device_private(ei->parent);
1863 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1864 continue;
1865 if (!p)
1866 return -1;
1867
1868 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1869 off, prot, BUS_DMA_WAITOK);
1870 }
1871
1872 static int
1873 eap_get_props(void *addr)
1874 {
1875
1876 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1877 AUDIO_PROP_FULLDUPLEX;
1878 }
1879
1880 static void
1881 eap_get_locks(void *addr, kmutex_t **intr, kmutex_t **proc)
1882 {
1883 struct eap_instance *ei;
1884 struct eap_softc *sc;
1885
1886 ei = addr;
1887 sc = device_private(ei->parent);
1888 *intr = &sc->sc_intr_lock;
1889 *proc = &sc->sc_lock;
1890 }
1891
1892 #if NMIDI > 0
1893 static int
1894 eap_midi_open(void *addr, int flags,
1895 void (*iintr)(void *, int),
1896 void (*ointr)(void *),
1897 void *arg)
1898 {
1899 struct eap_softc *sc;
1900 uint8_t uctrl;
1901
1902 sc = addr;
1903 sc->sc_arg = arg;
1904
1905 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) | EAP_UART_EN);
1906 uctrl = 0;
1907 if (flags & FREAD) {
1908 uctrl |= EAP_UC_RXINTEN;
1909 sc->sc_iintr = iintr;
1910 }
1911 if (flags & FWRITE)
1912 sc->sc_ointr = ointr;
1913 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1914
1915 return 0;
1916 }
1917
1918 static void
1919 eap_midi_close(void *addr)
1920 {
1921 struct eap_softc *sc;
1922
1923 sc = addr;
1924 tsleep(sc, PWAIT, "eapclm", hz/10); /* give uart a chance to drain */
1925 EWRITE1(sc, EAP_UART_CONTROL, 0);
1926 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) & ~EAP_UART_EN);
1927
1928 sc->sc_iintr = 0;
1929 sc->sc_ointr = 0;
1930 }
1931
1932 static int
1933 eap_midi_output(void *addr, int d)
1934 {
1935 struct eap_softc *sc;
1936 uint8_t uctrl;
1937
1938 sc = addr;
1939 EWRITE1(sc, EAP_UART_DATA, d);
1940
1941 uctrl = EAP_UC_TXINTEN;
1942 if (sc->sc_iintr)
1943 uctrl |= EAP_UC_RXINTEN;
1944 /*
1945 * This is a write-only register, so we have to remember the right
1946 * value of RXINTEN as well as setting TXINTEN. But if we are open
1947 * for reading, it will always be correct to set RXINTEN here; only
1948 * during service of a receive interrupt could it be momentarily
1949 * toggled off, and whether we got here from the top half or from
1950 * an interrupt, that won't be the current state.
1951 */
1952 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1953 return 0;
1954 }
1955
1956 static void
1957 eap_midi_getinfo(void *addr, struct midi_info *mi)
1958 {
1959 mi->name = "AudioPCI MIDI UART";
1960 mi->props = MIDI_PROP_CAN_INPUT | MIDI_PROP_OUT_INTR;
1961 }
1962
1963 static void
1964 eap_uart_txrdy(struct eap_softc *sc)
1965 {
1966 uint8_t uctrl;
1967 uctrl = 0;
1968 if (sc->sc_iintr)
1969 uctrl = EAP_UC_RXINTEN;
1970 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1971 sc->sc_ointr(sc->sc_arg);
1972 }
1973
1974 #endif
1975