eap.c revision 1.98 1 /* $NetBSD: eap.c,v 1.98 2018/12/09 11:14:02 jdolecek Exp $ */
2 /* $OpenBSD: eap.c,v 1.6 1999/10/05 19:24:42 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1998, 1999, 2002, 2008 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Lennart Augustsson <augustss (at) NetBSD.org>, Charles M. Hannum,
10 * Antti Kantee <pooka (at) NetBSD.org>, and Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
36 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
37 * Phil Nelson <phil (at) cs.wwu.edu>
38 *
39 * ES1371/AC97: Ezra Story <ezy (at) panix.com>
40 */
41
42 /*
43 * Ensoniq ES1370 + AK4531 and ES1371/ES1373 + AC97
44 *
45 * Documentation links:
46 *
47 * ftp://ftp.alsa-project.org/pub/manuals/ensoniq/ (ES1370 and 1371 datasheets)
48 * http://web.archive.org/web/20040622012936/http://www.corbac.com/Data/Misc/es1373.ps.gz
49 * ftp://ftp.alsa-project.org/pub/manuals/asahi_kasei/4531.pdf
50 * ftp://download.intel.com/ial/scalableplatforms/audio/ac97r21.pdf
51 */
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: eap.c,v 1.98 2018/12/09 11:14:02 jdolecek Exp $");
55
56 #include "midi.h"
57 #include "joy_eap.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/fcntl.h>
63 #include <sys/kmem.h>
64 #include <sys/device.h>
65 #include <sys/proc.h>
66 #include <sys/select.h>
67 #include <sys/mutex.h>
68 #include <sys/bus.h>
69 #include <sys/audioio.h>
70
71 #include <dev/audio_if.h>
72 #include <dev/midi_if.h>
73 #include <dev/audiovar.h>
74 #include <dev/mulaw.h>
75 #include <dev/auconv.h>
76
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/eapreg.h>
79 #include <dev/pci/eapvar.h>
80
81 #define PCI_CBIO 0x10
82
83 /* Debug */
84 #ifdef AUDIO_DEBUG
85 #define DPRINTF(x) if (eapdebug) printf x
86 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
87 int eapdebug = 0;
88 #else
89 #define DPRINTF(x)
90 #define DPRINTFN(n,x)
91 #endif
92
93 static int eap_match(device_t, cfdata_t, void *);
94 static void eap_attach(device_t, device_t, void *);
95 static int eap_detach(device_t, int);
96 static int eap_intr(void *);
97
98 static int eap_allocmem(struct eap_softc *, size_t, size_t,
99 struct eap_dma *);
100 static int eap_freemem(struct eap_softc *, struct eap_dma *);
101
102 #define EWRITE1(sc, r, x) bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x))
103 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
104 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
105 #define EREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r))
106 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
107 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
108
109 CFATTACH_DECL_NEW(eap, sizeof(struct eap_softc),
110 eap_match, eap_attach, eap_detach, NULL);
111
112 static int eap_open(void *, int);
113 static int eap_query_encoding(void *, struct audio_encoding *);
114 static int eap_set_params(void *, int, int, audio_params_t *,
115 audio_params_t *, stream_filter_list_t *,
116 stream_filter_list_t *);
117 static int eap_round_blocksize(void *, int, int, const audio_params_t *);
118 static int eap_trigger_output(void *, void *, void *, int,
119 void (*)(void *), void *,
120 const audio_params_t *);
121 static int eap_trigger_input(void *, void *, void *, int,
122 void (*)(void *), void *,
123 const audio_params_t *);
124 static int eap_halt_output(void *);
125 static int eap_halt_input(void *);
126 static void eap1370_write_codec(struct eap_softc *, int, int);
127 static int eap_getdev(void *, struct audio_device *);
128 static int eap1370_mixer_set_port(void *, mixer_ctrl_t *);
129 static int eap1370_mixer_get_port(void *, mixer_ctrl_t *);
130 static int eap1371_mixer_set_port(void *, mixer_ctrl_t *);
131 static int eap1371_mixer_get_port(void *, mixer_ctrl_t *);
132 static int eap1370_query_devinfo(void *, mixer_devinfo_t *);
133 static void *eap_malloc(void *, int, size_t);
134 static void eap_free(void *, void *, size_t);
135 static size_t eap_round_buffersize(void *, int, size_t);
136 static paddr_t eap_mappage(void *, void *, off_t, int);
137 static int eap_get_props(void *);
138 static void eap1370_set_mixer(struct eap_softc *, int, int);
139 static uint32_t eap1371_src_wait(struct eap_softc *);
140 static void eap1371_set_adc_rate(struct eap_softc *, int);
141 static void eap1371_set_dac_rate(struct eap_instance *, int);
142 static int eap1371_src_read(struct eap_softc *, int);
143 static void eap1371_src_write(struct eap_softc *, int, int);
144 static int eap1371_query_devinfo(void *, mixer_devinfo_t *);
145
146 static int eap1371_attach_codec(void *, struct ac97_codec_if *);
147 static int eap1371_read_codec(void *, uint8_t, uint16_t *);
148 static int eap1371_write_codec(void *, uint8_t, uint16_t );
149 static int eap1371_reset_codec(void *);
150 static void eap_get_locks(void *, kmutex_t **, kmutex_t **);
151
152 #if NMIDI > 0
153 static void eap_midi_close(void *);
154 static void eap_midi_getinfo(void *, struct midi_info *);
155 static int eap_midi_open(void *, int, void (*)(void *, int),
156 void (*)(void *), void *);
157 static int eap_midi_output(void *, int);
158 static void eap_uart_txrdy(struct eap_softc *);
159 #endif
160
161 static const struct audio_hw_if eap1370_hw_if = {
162 eap_open,
163 NULL, /* close */
164 NULL,
165 eap_query_encoding,
166 eap_set_params,
167 eap_round_blocksize,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 eap_halt_output,
174 eap_halt_input,
175 NULL,
176 eap_getdev,
177 NULL,
178 eap1370_mixer_set_port,
179 eap1370_mixer_get_port,
180 eap1370_query_devinfo,
181 eap_malloc,
182 eap_free,
183 eap_round_buffersize,
184 eap_mappage,
185 eap_get_props,
186 eap_trigger_output,
187 eap_trigger_input,
188 NULL,
189 eap_get_locks,
190 };
191
192 static const struct audio_hw_if eap1371_hw_if = {
193 eap_open,
194 NULL, /* close */
195 NULL,
196 eap_query_encoding,
197 eap_set_params,
198 eap_round_blocksize,
199 NULL,
200 NULL,
201 NULL,
202 NULL,
203 NULL,
204 eap_halt_output,
205 eap_halt_input,
206 NULL,
207 eap_getdev,
208 NULL,
209 eap1371_mixer_set_port,
210 eap1371_mixer_get_port,
211 eap1371_query_devinfo,
212 eap_malloc,
213 eap_free,
214 eap_round_buffersize,
215 eap_mappage,
216 eap_get_props,
217 eap_trigger_output,
218 eap_trigger_input,
219 NULL,
220 eap_get_locks,
221 };
222
223 #if NMIDI > 0
224 static const struct midi_hw_if eap_midi_hw_if = {
225 eap_midi_open,
226 eap_midi_close,
227 eap_midi_output,
228 eap_midi_getinfo,
229 0, /* ioctl */
230 eap_get_locks,
231 };
232 #endif
233
234 static struct audio_device eap_device = {
235 "Ensoniq AudioPCI",
236 "",
237 "eap"
238 };
239
240 #define EAP_NFORMATS 4
241 static const struct audio_format eap_formats[EAP_NFORMATS] = {
242 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
243 2, AUFMT_STEREO, 0, {4000, 48000}},
244 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
245 1, AUFMT_MONAURAL, 0, {4000, 48000}},
246 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
247 2, AUFMT_STEREO, 0, {4000, 48000}},
248 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
249 1, AUFMT_MONAURAL, 0, {4000, 48000}},
250 };
251
252 static int
253 eap_match(device_t parent, cfdata_t match, void *aux)
254 {
255 struct pci_attach_args *pa;
256
257 pa = (struct pci_attach_args *)aux;
258 switch (PCI_VENDOR(pa->pa_id)) {
259 case PCI_VENDOR_CREATIVELABS:
260 switch (PCI_PRODUCT(pa->pa_id)) {
261 case PCI_PRODUCT_CREATIVELABS_EV1938:
262 return 1;
263 }
264 break;
265 case PCI_VENDOR_ENSONIQ:
266 switch (PCI_PRODUCT(pa->pa_id)) {
267 case PCI_PRODUCT_ENSONIQ_AUDIOPCI:
268 case PCI_PRODUCT_ENSONIQ_AUDIOPCI97:
269 case PCI_PRODUCT_ENSONIQ_CT5880:
270 return 1;
271 }
272 break;
273 }
274
275 return 0;
276 }
277
278 static void
279 eap1370_write_codec(struct eap_softc *sc, int a, int d)
280 {
281 int icss, to;
282
283 to = EAP_WRITE_TIMEOUT;
284 do {
285 icss = EREAD4(sc, EAP_ICSS);
286 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
287 if (!to--) {
288 printf("eap: timeout writing to codec\n");
289 return;
290 }
291 } while(icss & EAP_CWRIP); /* XXX could use CSTAT here */
292 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
293 }
294
295 /*
296 * Reading and writing the CODEC is very convoluted. This mimics the
297 * FreeBSD and Linux drivers.
298 */
299
300 static inline void
301 eap1371_ready_codec(struct eap_softc *sc, uint8_t a, uint32_t wd)
302 {
303 int to;
304 uint32_t src, t;
305
306 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
307 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
308 break;
309 delay(1);
310 }
311 if (to >= EAP_WRITE_TIMEOUT)
312 aprint_error_dev(sc->sc_dev,
313 "eap1371_ready_codec timeout 1\n");
314
315 mutex_spin_enter(&sc->sc_intr_lock);
316 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
317 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
318
319 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
320 t = EREAD4(sc, E1371_SRC);
321 if ((t & E1371_SRC_STATE_MASK) == 0)
322 break;
323 delay(1);
324 }
325 if (to >= EAP_READ_TIMEOUT)
326 aprint_error_dev(sc->sc_dev,
327 "eap1371_ready_codec timeout 2\n");
328
329 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
330 t = EREAD4(sc, E1371_SRC);
331 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
332 break;
333 delay(1);
334 }
335 if (to >= EAP_READ_TIMEOUT)
336 aprint_error_dev(sc->sc_dev,
337 "eap1371_ready_codec timeout 3\n");
338
339 EWRITE4(sc, E1371_CODEC, wd);
340
341 eap1371_src_wait(sc);
342 EWRITE4(sc, E1371_SRC, src);
343
344 mutex_spin_exit(&sc->sc_intr_lock);
345 }
346
347 static int
348 eap1371_read_codec(void *sc_, uint8_t a, uint16_t *d)
349 {
350 struct eap_softc *sc;
351 int to;
352 uint32_t t;
353
354 sc = sc_;
355 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, 0) | E1371_CODEC_READ);
356
357 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
358 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
359 break;
360 }
361 if (to > EAP_WRITE_TIMEOUT)
362 aprint_error_dev(sc->sc_dev,
363 "eap1371_read_codec timeout 1\n");
364
365 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
366 t = EREAD4(sc, E1371_CODEC);
367 if (t & E1371_CODEC_VALID)
368 break;
369 }
370 if (to > EAP_WRITE_TIMEOUT)
371 aprint_error_dev(sc->sc_dev, "eap1371_read_codec timeout 2\n");
372
373 *d = (uint16_t)t;
374
375 DPRINTFN(10, ("eap1371: reading codec (%x) = %x\n", a, *d));
376
377 return 0;
378 }
379
380 static int
381 eap1371_write_codec(void *sc_, uint8_t a, uint16_t d)
382 {
383 struct eap_softc *sc;
384
385 sc = sc_;
386 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, d));
387
388 DPRINTFN(10, ("eap1371: writing codec %x --> %x\n", d, a));
389
390 return 0;
391 }
392
393 static uint32_t
394 eap1371_src_wait(struct eap_softc *sc)
395 {
396 int to;
397 u_int32_t src;
398
399 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
400 src = EREAD4(sc, E1371_SRC);
401 if (!(src & E1371_SRC_RBUSY))
402 return src;
403 delay(1);
404 }
405 aprint_error_dev(sc->sc_dev, "eap1371_src_wait timeout\n");
406 return src;
407 }
408
409 static int
410 eap1371_src_read(struct eap_softc *sc, int a)
411 {
412 int to;
413 uint32_t src, t;
414
415 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
416 src |= E1371_SRC_ADDR(a);
417 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
418
419 t = eap1371_src_wait(sc);
420 if ((t & E1371_SRC_STATE_MASK) != E1371_SRC_STATE_OK) {
421 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
422 t = EREAD4(sc, E1371_SRC);
423 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
424 break;
425 delay(1);
426 }
427 }
428
429 EWRITE4(sc, E1371_SRC, src);
430
431 return t & E1371_SRC_DATAMASK;
432 }
433
434 static void
435 eap1371_src_write(struct eap_softc *sc, int a, int d)
436 {
437 uint32_t r;
438
439 r = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
440 r |= E1371_SRC_RAMWE | E1371_SRC_ADDR(a) | E1371_SRC_DATA(d);
441 EWRITE4(sc, E1371_SRC, r);
442 }
443
444 static void
445 eap1371_set_adc_rate(struct eap_softc *sc, int rate)
446 {
447 int freq, n, truncm;
448 int out;
449
450 /* Whatever, it works, so I'll leave it :) */
451
452 if (rate > 48000)
453 rate = 48000;
454 if (rate < 4000)
455 rate = 4000;
456 n = rate / 3000;
457 if ((1 << n) & SRC_MAGIC)
458 n--;
459 truncm = ((21 * n) - 1) | 1;
460 freq = ((48000 << 15) / rate) * n;
461 if (rate >= 24000) {
462 if (truncm > 239)
463 truncm = 239;
464 out = ESRC_SET_TRUNC((239 - truncm) / 2);
465 } else {
466 if (truncm > 119)
467 truncm = 119;
468 out = ESRC_SMF | ESRC_SET_TRUNC((119 - truncm) / 2);
469 }
470 out |= ESRC_SET_N(n);
471 mutex_spin_enter(&sc->sc_intr_lock);
472 eap1371_src_write(sc, ESRC_ADC+ESRC_TRUNC_N, out);
473
474 out = eap1371_src_read(sc, ESRC_ADC+ESRC_IREGS) & 0xff;
475 eap1371_src_write(sc, ESRC_ADC+ESRC_IREGS, out |
476 ESRC_SET_VFI(freq >> 15));
477 eap1371_src_write(sc, ESRC_ADC+ESRC_VFF, freq & 0x7fff);
478 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(n));
479 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(n));
480 mutex_spin_exit(&sc->sc_intr_lock);
481 }
482
483 static void
484 eap1371_set_dac_rate(struct eap_instance *ei, int rate)
485 {
486 struct eap_softc *sc;
487 int dac;
488 int freq, r;
489
490 DPRINTFN(2, ("eap1371_set_dac_date: set rate for %d\n", ei->index));
491 sc = device_private(ei->parent);
492 dac = ei->index == EAP_DAC1 ? ESRC_DAC1 : ESRC_DAC2;
493
494 /* Whatever, it works, so I'll leave it :) */
495
496 if (rate > 48000)
497 rate = 48000;
498 if (rate < 4000)
499 rate = 4000;
500 freq = ((rate << 15) + 1500) / 3000;
501
502 mutex_spin_enter(&sc->sc_intr_lock);
503 eap1371_src_wait(sc);
504 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
505 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
506 r |= ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2;
507 EWRITE4(sc, E1371_SRC, r);
508 r = eap1371_src_read(sc, dac + ESRC_IREGS) & 0x00ff;
509 eap1371_src_write(sc, dac + ESRC_IREGS, r | ((freq >> 5) & 0xfc00));
510 eap1371_src_write(sc, dac + ESRC_VFF, freq & 0x7fff);
511 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
512 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
513 r &= ~(ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2);
514 EWRITE4(sc, E1371_SRC, r);
515 mutex_spin_exit(&sc->sc_intr_lock);
516 }
517
518 static void
519 eap_attach(device_t parent, device_t self, void *aux)
520 {
521 struct eap_softc *sc;
522 struct pci_attach_args *pa;
523 pci_chipset_tag_t pc;
524 const struct audio_hw_if *eap_hw_if;
525 char const *intrstr;
526 pci_intr_handle_t ih;
527 pcireg_t csr;
528 char devinfo[256];
529 mixer_ctrl_t ctl;
530 int i;
531 int revision, ct5880;
532 const char *revstr;
533 #if NJOY_EAP > 0
534 struct eap_gameport_args gpargs;
535 #endif
536 char intrbuf[PCI_INTRSTR_LEN];
537
538 sc = device_private(self);
539 sc->sc_dev = self;
540 pa = (struct pci_attach_args *)aux;
541 pc = pa->pa_pc;
542 revstr = "";
543 aprint_naive(": Audio controller\n");
544
545 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
546 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
547
548 /* Stash this away for detach */
549 sc->sc_pc = pc;
550
551 /* Flag if we're "creative" */
552 sc->sc_1371 = !(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
553 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI);
554
555 /*
556 * The vendor and product ID's are quite "interesting". Just
557 * trust the following and be happy.
558 */
559 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
560 revision = PCI_REVISION(pa->pa_class);
561 ct5880 = 0;
562 if (sc->sc_1371) {
563 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
564 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_CT5880) {
565 ct5880 = 1;
566 switch (revision) {
567 case EAP_CT5880_C: revstr = "CT5880-C "; break;
568 case EAP_CT5880_D: revstr = "CT5880-D "; break;
569 case EAP_CT5880_E: revstr = "CT5880-E "; break;
570 }
571 } else {
572 switch (revision) {
573 case EAP_EV1938_A: revstr = "EV1938-A "; break;
574 case EAP_ES1373_A: revstr = "ES1373-A "; break;
575 case EAP_ES1373_B: revstr = "ES1373-B "; break;
576 case EAP_CT5880_A: revstr = "CT5880-A "; ct5880=1;break;
577 case EAP_ES1373_8: revstr = "ES1373-8" ; ct5880=1;break;
578 case EAP_ES1371_B: revstr = "ES1371-B "; break;
579 }
580 }
581 }
582 aprint_normal(": %s %s(rev. 0x%02x)\n", devinfo, revstr, revision);
583
584 /* Map I/O register */
585 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
586 &sc->iot, &sc->ioh, NULL, &sc->iosz)) {
587 aprint_error_dev(sc->sc_dev, "can't map i/o space\n");
588 return;
589 }
590
591 sc->sc_dmatag = pa->pa_dmat;
592
593 /* Enable the device. */
594 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
596 csr | PCI_COMMAND_MASTER_ENABLE);
597
598 /* Map and establish the interrupt. */
599 if (pci_intr_map(pa, &ih)) {
600 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
601 return;
602 }
603 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
604 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_AUDIO, eap_intr, sc,
605 device_xname(self));
606 if (sc->sc_ih == NULL) {
607 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
608 if (intrstr != NULL)
609 aprint_error(" at %s", intrstr);
610 aprint_error("\n");
611 return;
612 }
613 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
614
615 sc->sc_ei[EAP_I1].parent = self;
616 sc->sc_ei[EAP_I1].index = EAP_DAC2;
617 sc->sc_ei[EAP_I2].parent = self;
618 sc->sc_ei[EAP_I2].index = EAP_DAC1;
619
620 if (!sc->sc_1371) {
621 /* Enable interrupts and looping mode. */
622 /* enable the parts we need */
623 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
624 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN);
625
626 /* reset codec */
627 /* normal operation */
628 /* select codec clocks */
629 eap1370_write_codec(sc, AK_RESET, AK_PD);
630 eap1370_write_codec(sc, AK_RESET, AK_PD | AK_NRST);
631 eap1370_write_codec(sc, AK_CS, 0x0);
632
633 eap_hw_if = &eap1370_hw_if;
634
635 /* Enable all relevant mixer switches. */
636 ctl.dev = EAP_INPUT_SOURCE;
637 ctl.type = AUDIO_MIXER_SET;
638 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL |
639 1 << EAP_CD_VOL | 1 << EAP_LINE_VOL |
640 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
641 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
642
643 ctl.type = AUDIO_MIXER_VALUE;
644 ctl.un.value.num_channels = 1;
645 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL;
646 ctl.dev++) {
647 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
648 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
649 }
650 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
651 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
652 ctl.dev = EAP_MIC_PREAMP;
653 ctl.type = AUDIO_MIXER_ENUM;
654 ctl.un.ord = 0;
655 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
656 ctl.dev = EAP_RECORD_SOURCE;
657 ctl.type = AUDIO_MIXER_SET;
658 ctl.un.mask = 1 << EAP_MIC_VOL;
659 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
660 } else {
661 /* clean slate */
662
663 EWRITE4(sc, EAP_SIC, 0);
664 EWRITE4(sc, EAP_ICSC, 0);
665 EWRITE4(sc, E1371_LEGACY, 0);
666
667 if (ct5880) {
668 EWRITE4(sc, EAP_ICSS, EAP_CT5880_AC97_RESET);
669 /* Let codec wake up */
670 delay(20000);
671 }
672
673 /* Reset from es1371's perspective */
674 EWRITE4(sc, EAP_ICSC, E1371_SYNC_RES);
675 delay(20);
676 EWRITE4(sc, EAP_ICSC, 0);
677
678 /*
679 * Must properly reprogram sample rate converter,
680 * or it locks up. Set some defaults for the life of the
681 * machine, and set up a sb default sample rate.
682 */
683 EWRITE4(sc, E1371_SRC, E1371_SRC_DISABLE);
684 for (i = 0; i < 0x80; i++)
685 eap1371_src_write(sc, i, 0);
686 eap1371_src_write(sc, ESRC_DAC1+ESRC_TRUNC_N, ESRC_SET_N(16));
687 eap1371_src_write(sc, ESRC_DAC2+ESRC_TRUNC_N, ESRC_SET_N(16));
688 eap1371_src_write(sc, ESRC_DAC1+ESRC_IREGS, ESRC_SET_VFI(16));
689 eap1371_src_write(sc, ESRC_DAC2+ESRC_IREGS, ESRC_SET_VFI(16));
690 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(16));
691 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(16));
692 eap1371_src_write(sc, ESRC_DAC1_VOLL, ESRC_SET_DAC_VOLI(1));
693 eap1371_src_write(sc, ESRC_DAC1_VOLR, ESRC_SET_DAC_VOLI(1));
694 eap1371_src_write(sc, ESRC_DAC2_VOLL, ESRC_SET_DAC_VOLI(1));
695 eap1371_src_write(sc, ESRC_DAC2_VOLR, ESRC_SET_DAC_VOLI(1));
696 eap1371_set_adc_rate(sc, 22050);
697 eap1371_set_dac_rate(&sc->sc_ei[0], 22050);
698 eap1371_set_dac_rate(&sc->sc_ei[1], 22050);
699
700 EWRITE4(sc, E1371_SRC, 0);
701
702 /* Reset codec */
703
704 /* Interrupt enable */
705 sc->host_if.arg = sc;
706 sc->host_if.attach = eap1371_attach_codec;
707 sc->host_if.read = eap1371_read_codec;
708 sc->host_if.write = eap1371_write_codec;
709 sc->host_if.reset = eap1371_reset_codec;
710
711 if (ac97_attach(&sc->host_if, self, &sc->sc_lock) == 0) {
712 /* Interrupt enable */
713 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
714 } else
715 return;
716
717 eap_hw_if = &eap1371_hw_if;
718 }
719
720 sc->sc_ei[EAP_I1].ei_audiodev =
721 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I1], sc->sc_dev);
722
723 #ifdef EAP_USE_BOTH_DACS
724 aprint_normal_dev(self, "attaching secondary DAC\n");
725 sc->sc_ei[EAP_I2].ei_audiodev =
726 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I2], sc->sc_dev);
727 #endif
728
729 #if NMIDI > 0
730 sc->sc_mididev = midi_attach_mi(&eap_midi_hw_if, sc, sc->sc_dev);
731 #endif
732
733 #if NJOY_EAP > 0
734 if (sc->sc_1371) {
735 gpargs.gpa_iot = sc->iot;
736 gpargs.gpa_ioh = sc->ioh;
737 sc->sc_gameport = eap_joy_attach(sc->sc_dev, &gpargs);
738 }
739 #endif
740 }
741
742 static int
743 eap_detach(device_t self, int flags)
744 {
745 struct eap_softc *sc;
746 int res;
747 #if NJOY_EAP > 0
748 struct eap_gameport_args gpargs;
749
750 sc = device_private(self);
751 if (sc->sc_gameport) {
752 gpargs.gpa_iot = sc->iot;
753 gpargs.gpa_ioh = sc->ioh;
754 res = eap_joy_detach(sc->sc_gameport, &gpargs);
755 if (res)
756 return res;
757 }
758 #else
759 sc = device_private(self);
760 #endif
761 #if NMIDI > 0
762 if (sc->sc_mididev != NULL) {
763 res = config_detach(sc->sc_mididev, 0);
764 if (res)
765 return res;
766 }
767 #endif
768 #ifdef EAP_USE_BOTH_DACS
769 if (sc->sc_ei[EAP_I2].ei_audiodev != NULL) {
770 res = config_detach(sc->sc_ei[EAP_I2].ei_audiodev, 0);
771 if (res)
772 return res;
773 }
774 #endif
775 if (sc->sc_ei[EAP_I1].ei_audiodev != NULL) {
776 res = config_detach(sc->sc_ei[EAP_I1].ei_audiodev, 0);
777 if (res)
778 return res;
779 }
780
781 bus_space_unmap(sc->iot, sc->ioh, sc->iosz);
782 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
783 mutex_destroy(&sc->sc_lock);
784 mutex_destroy(&sc->sc_intr_lock);
785
786 return 0;
787 }
788
789 static int
790 eap1371_attach_codec(void *sc_, struct ac97_codec_if *codec_if)
791 {
792 struct eap_softc *sc;
793
794 sc = sc_;
795 sc->codec_if = codec_if;
796 return 0;
797 }
798
799 static int
800 eap1371_reset_codec(void *sc_)
801 {
802 struct eap_softc *sc;
803 uint32_t icsc;
804
805 sc = sc_;
806 mutex_spin_enter(&sc->sc_intr_lock);
807 icsc = EREAD4(sc, EAP_ICSC);
808 EWRITE4(sc, EAP_ICSC, icsc | E1371_SYNC_RES);
809 delay(20);
810 EWRITE4(sc, EAP_ICSC, icsc & ~E1371_SYNC_RES);
811 delay(1);
812 mutex_spin_exit(&sc->sc_intr_lock);
813
814 return 0;
815 }
816
817 static int
818 eap_intr(void *p)
819 {
820 struct eap_softc *sc;
821 uint32_t intr, sic;
822
823 sc = p;
824 mutex_spin_enter(&sc->sc_intr_lock);
825 intr = EREAD4(sc, EAP_ICSS);
826 if (!(intr & EAP_INTR)) {
827 mutex_spin_exit(&sc->sc_intr_lock);
828 return 0;
829 }
830 sic = EREAD4(sc, EAP_SIC);
831 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
832 if (intr & EAP_I_ADC) {
833 #if 0
834 /*
835 * XXX This is a hack!
836 * The EAP chip sometimes generates the recording interrupt
837 * while it is still transferring the data. To make sure
838 * it has all arrived we busy wait until the count is right.
839 * The transfer we are waiting for is 8 longwords.
840 */
841 int s, nw, n;
842 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
843 s = EREAD4(sc, EAP_ADC_CSR);
844 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
845 n = 0;
846 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
847 delay(10);
848 if (++n > 100) {
849 printf("eapintr: DMA fix timeout");
850 break;
851 }
852 }
853 /* Continue with normal interrupt handling. */
854 #endif
855 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
856 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
857 if (sc->sc_rintr)
858 sc->sc_rintr(sc->sc_rarg);
859 }
860
861 if (intr & EAP_I_DAC2) {
862 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
863 EWRITE4(sc, EAP_SIC, sic | EAP_P2_INTR_EN);
864 if (sc->sc_ei[EAP_DAC2].ei_pintr)
865 sc->sc_ei[EAP_DAC2].ei_pintr(sc->sc_ei[EAP_DAC2].ei_parg);
866 }
867
868 if (intr & EAP_I_DAC1) {
869 EWRITE4(sc, EAP_SIC, sic & ~EAP_P1_INTR_EN);
870 EWRITE4(sc, EAP_SIC, sic | EAP_P1_INTR_EN);
871 if (sc->sc_ei[EAP_DAC1].ei_pintr)
872 sc->sc_ei[EAP_DAC1].ei_pintr(sc->sc_ei[EAP_DAC1].ei_parg);
873 }
874
875 if (intr & EAP_I_MCCB)
876 panic("eap_intr: unexpected MCCB interrupt");
877 #if NMIDI > 0
878 if (intr & EAP_I_UART) {
879 uint8_t ustat;
880 uint32_t data;
881
882 ustat = EREAD1(sc, EAP_UART_STATUS);
883
884 if (ustat & EAP_US_RXINT) {
885 while (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXRDY) {
886 data = EREAD1(sc, EAP_UART_DATA);
887 sc->sc_iintr(sc->sc_arg, data);
888 }
889 }
890
891 if (ustat & EAP_US_TXINT)
892 eap_uart_txrdy(sc);
893 }
894 #endif
895 mutex_spin_exit(&sc->sc_intr_lock);
896 return 1;
897 }
898
899 static int
900 eap_allocmem(struct eap_softc *sc, size_t size, size_t align, struct eap_dma *p)
901 {
902 int error;
903
904 p->size = size;
905 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
906 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
907 &p->nsegs, BUS_DMA_WAITOK);
908 if (error)
909 return error;
910
911 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
912 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
913 if (error)
914 goto free;
915
916 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
917 0, BUS_DMA_WAITOK, &p->map);
918 if (error)
919 goto unmap;
920
921 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
922 BUS_DMA_WAITOK);
923 if (error)
924 goto destroy;
925 return (0);
926
927 destroy:
928 bus_dmamap_destroy(sc->sc_dmatag, p->map);
929 unmap:
930 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
931 free:
932 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
933 return error;
934 }
935
936 static int
937 eap_freemem(struct eap_softc *sc, struct eap_dma *p)
938 {
939
940 bus_dmamap_unload(sc->sc_dmatag, p->map);
941 bus_dmamap_destroy(sc->sc_dmatag, p->map);
942 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
943 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
944 return 0;
945 }
946
947 static int
948 eap_open(void *addr, int flags)
949 {
950 struct eap_instance *ei;
951
952 ei = addr;
953 /* there is only one ADC */
954 if (ei->index == EAP_I2 && flags & FREAD)
955 return EOPNOTSUPP;
956
957 return 0;
958 }
959
960 static int
961 eap_query_encoding(void *addr, struct audio_encoding *fp)
962 {
963
964 switch (fp->index) {
965 case 0:
966 strcpy(fp->name, AudioEulinear);
967 fp->encoding = AUDIO_ENCODING_ULINEAR;
968 fp->precision = 8;
969 fp->flags = 0;
970 return 0;
971 case 1:
972 strcpy(fp->name, AudioEmulaw);
973 fp->encoding = AUDIO_ENCODING_ULAW;
974 fp->precision = 8;
975 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
976 return 0;
977 case 2:
978 strcpy(fp->name, AudioEalaw);
979 fp->encoding = AUDIO_ENCODING_ALAW;
980 fp->precision = 8;
981 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
982 return 0;
983 case 3:
984 strcpy(fp->name, AudioEslinear);
985 fp->encoding = AUDIO_ENCODING_SLINEAR;
986 fp->precision = 8;
987 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
988 return 0;
989 case 4:
990 strcpy(fp->name, AudioEslinear_le);
991 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
992 fp->precision = 16;
993 fp->flags = 0;
994 return 0;
995 case 5:
996 strcpy(fp->name, AudioEulinear_le);
997 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
998 fp->precision = 16;
999 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1000 return 0;
1001 case 6:
1002 strcpy(fp->name, AudioEslinear_be);
1003 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1004 fp->precision = 16;
1005 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1006 return 0;
1007 case 7:
1008 strcpy(fp->name, AudioEulinear_be);
1009 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1010 fp->precision = 16;
1011 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1012 return 0;
1013 default:
1014 return EINVAL;
1015 }
1016 }
1017
1018 static int
1019 eap_set_params(void *addr, int setmode, int usemode,
1020 audio_params_t *play, audio_params_t *rec,
1021 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1022 {
1023 struct eap_instance *ei;
1024 struct eap_softc *sc;
1025 struct audio_params *p;
1026 stream_filter_list_t *fil;
1027 int mode, i;
1028 uint32_t div;
1029
1030 ei = addr;
1031 sc = device_private(ei->parent);
1032 /*
1033 * The es1370 only has one clock, so make the sample rates match.
1034 * This only applies for ADC/DAC2. The FM DAC is handled below.
1035 */
1036 if (!sc->sc_1371 && ei->index == EAP_DAC2) {
1037 if (play->sample_rate != rec->sample_rate &&
1038 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1039 if (setmode == AUMODE_PLAY) {
1040 rec->sample_rate = play->sample_rate;
1041 setmode |= AUMODE_RECORD;
1042 } else if (setmode == AUMODE_RECORD) {
1043 play->sample_rate = rec->sample_rate;
1044 setmode |= AUMODE_PLAY;
1045 } else
1046 return EINVAL;
1047 }
1048 }
1049
1050 for (mode = AUMODE_RECORD; mode != -1;
1051 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1052 if ((setmode & mode) == 0)
1053 continue;
1054
1055 p = mode == AUMODE_PLAY ? play : rec;
1056
1057 if (p->sample_rate < 4000 || p->sample_rate > 48000 ||
1058 (p->precision != 8 && p->precision != 16) ||
1059 (p->channels != 1 && p->channels != 2))
1060 return EINVAL;
1061
1062 fil = mode == AUMODE_PLAY ? pfil : rfil;
1063 i = auconv_set_converter(eap_formats, EAP_NFORMATS,
1064 mode, p, FALSE, fil);
1065 if (i < 0)
1066 return EINVAL;
1067 }
1068
1069 if (sc->sc_1371) {
1070 eap1371_set_dac_rate(ei, play->sample_rate);
1071 eap1371_set_adc_rate(sc, rec->sample_rate);
1072 } else if (ei->index == EAP_DAC2) {
1073 /* Set the speed */
1074 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
1075 EREAD4(sc, EAP_ICSC)));
1076 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
1077 /*
1078 * XXX
1079 * The -2 isn't documented, but seemed to make the wall
1080 * time match
1081 * what I expect. - mycroft
1082 */
1083 if (usemode == AUMODE_RECORD)
1084 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1085 rec->sample_rate - 2);
1086 else
1087 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1088 play->sample_rate - 2);
1089 #if 0
1090 div |= EAP_CCB_INTRM;
1091 #else
1092 /*
1093 * It is not obvious how to acknowledge MCCB interrupts, so
1094 * we had better not enable them.
1095 */
1096 #endif
1097 EWRITE4(sc, EAP_ICSC, div);
1098 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1099 } else {
1100 /*
1101 * The FM DAC has only a few fixed-frequency choises, so
1102 * pick out the best candidate.
1103 */
1104 div = EREAD4(sc, EAP_ICSC);
1105 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n", div));
1106
1107 div &= ~EAP_WTSRSEL;
1108 if (play->sample_rate < 8268)
1109 div |= EAP_WTSRSEL_5;
1110 else if (play->sample_rate < 16537)
1111 div |= EAP_WTSRSEL_11;
1112 else if (play->sample_rate < 33075)
1113 div |= EAP_WTSRSEL_22;
1114 else
1115 div |= EAP_WTSRSEL_44;
1116
1117 EWRITE4(sc, EAP_ICSC, div);
1118 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1119 }
1120
1121 return 0;
1122 }
1123
1124 static int
1125 eap_round_blocksize(void *addr, int blk, int mode,
1126 const audio_params_t *param)
1127 {
1128
1129 return blk & -32; /* keep good alignment */
1130 }
1131
1132 static int
1133 eap_trigger_output(
1134 void *addr,
1135 void *start,
1136 void *end,
1137 int blksize,
1138 void (*intr)(void *),
1139 void *arg,
1140 const audio_params_t *param)
1141 {
1142 struct eap_instance *ei;
1143 struct eap_softc *sc;
1144 struct eap_dma *p;
1145 uint32_t icsc, sic;
1146 int sampshift;
1147
1148 ei = addr;
1149 sc = device_private(ei->parent);
1150 #ifdef DIAGNOSTIC
1151 if (ei->ei_prun)
1152 panic("eap_trigger_output: already running");
1153 ei->ei_prun = 1;
1154 #endif
1155
1156 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p "
1157 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1158 ei->ei_pintr = intr;
1159 ei->ei_parg = arg;
1160
1161 sic = EREAD4(sc, EAP_SIC);
1162 sic &= ~(EAP_S_EB(ei->index) | EAP_S_MB(ei->index) | EAP_INC_BITS);
1163
1164 if (ei->index == EAP_DAC2)
1165 sic |= EAP_SET_P2_ST_INC(0)
1166 | EAP_SET_P2_END_INC(param->precision / 8);
1167
1168 sampshift = 0;
1169 if (param->precision == 16) {
1170 sic |= EAP_S_EB(ei->index);
1171 sampshift++;
1172 }
1173 if (param->channels == 2) {
1174 sic |= EAP_S_MB(ei->index);
1175 sampshift++;
1176 }
1177 EWRITE4(sc, EAP_SIC, sic & ~EAP_P_INTR_EN(ei->index));
1178 EWRITE4(sc, EAP_SIC, sic | EAP_P_INTR_EN(ei->index));
1179
1180 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1181 continue;
1182 if (!p) {
1183 printf("eap_trigger_output: bad addr %p\n", start);
1184 return EINVAL;
1185 }
1186
1187 if (ei->index == EAP_DAC2) {
1188 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
1189 (int)DMAADDR(p),
1190 (int)EAP_SET_SIZE(0,
1191 (((char *)end - (char *)start) >> 2) - 1)));
1192 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1193 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
1194 EWRITE4(sc, EAP_DAC2_SIZE,
1195 EAP_SET_SIZE(0,
1196 ((char *)end - (char *)start) >> 2) - 1);
1197 EWRITE4(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
1198 } else if (ei->index == EAP_DAC1) {
1199 DPRINTF(("eap_trigger_output: DAC1_ADDR=0x%x, DAC1_SIZE=0x%x\n",
1200 (int)DMAADDR(p),
1201 (int)EAP_SET_SIZE(0,
1202 (((char *)end - (char *)start) >> 2) - 1)));
1203 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1204 EWRITE4(sc, EAP_DAC1_ADDR, DMAADDR(p));
1205 EWRITE4(sc, EAP_DAC1_SIZE,
1206 EAP_SET_SIZE(0,
1207 ((char *)end - (char *)start) >> 2) - 1);
1208 EWRITE4(sc, EAP_DAC1_CSR, (blksize >> sampshift) - 1);
1209 }
1210 #ifdef DIAGNOSTIC
1211 else
1212 panic("eap_trigger_output: impossible instance %d", ei->index);
1213 #endif
1214
1215 if (sc->sc_1371)
1216 EWRITE4(sc, E1371_SRC, 0);
1217
1218 icsc = EREAD4(sc, EAP_ICSC);
1219 icsc |= EAP_DAC_EN(ei->index);
1220 EWRITE4(sc, EAP_ICSC, icsc);
1221
1222 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
1223
1224 return 0;
1225 }
1226
1227 static int
1228 eap_trigger_input(
1229 void *addr,
1230 void *start,
1231 void *end,
1232 int blksize,
1233 void (*intr)(void *),
1234 void *arg,
1235 const audio_params_t *param)
1236 {
1237 struct eap_instance *ei;
1238 struct eap_softc *sc;
1239 struct eap_dma *p;
1240 uint32_t icsc, sic;
1241 int sampshift;
1242
1243 ei = addr;
1244 sc = device_private(ei->parent);
1245 #ifdef DIAGNOSTIC
1246 if (sc->sc_rrun)
1247 panic("eap_trigger_input: already running");
1248 sc->sc_rrun = 1;
1249 #endif
1250
1251 DPRINTFN(1, ("eap_trigger_input: ei=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1252 addr, start, end, blksize, intr, arg));
1253 sc->sc_rintr = intr;
1254 sc->sc_rarg = arg;
1255
1256 sic = EREAD4(sc, EAP_SIC);
1257 sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
1258 sampshift = 0;
1259 if (param->precision == 16) {
1260 sic |= EAP_R1_S_EB;
1261 sampshift++;
1262 }
1263 if (param->channels == 2) {
1264 sic |= EAP_R1_S_MB;
1265 sampshift++;
1266 }
1267 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
1268 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
1269
1270 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1271 continue;
1272 if (!p) {
1273 printf("eap_trigger_input: bad addr %p\n", start);
1274 return (EINVAL);
1275 }
1276
1277 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
1278 (int)DMAADDR(p),
1279 (int)EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1280 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
1281 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
1282 EWRITE4(sc, EAP_ADC_SIZE,
1283 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1284
1285 EWRITE4(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
1286
1287 if (sc->sc_1371)
1288 EWRITE4(sc, E1371_SRC, 0);
1289
1290 icsc = EREAD4(sc, EAP_ICSC);
1291 icsc |= EAP_ADC_EN;
1292 EWRITE4(sc, EAP_ICSC, icsc);
1293
1294 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
1295
1296 return 0;
1297 }
1298
1299 static int
1300 eap_halt_output(void *addr)
1301 {
1302 struct eap_instance *ei;
1303 struct eap_softc *sc;
1304 uint32_t icsc;
1305
1306 DPRINTF(("eap: eap_halt_output\n"));
1307 ei = addr;
1308 sc = device_private(ei->parent);
1309 icsc = EREAD4(sc, EAP_ICSC);
1310 EWRITE4(sc, EAP_ICSC, icsc & ~(EAP_DAC_EN(ei->index)));
1311 ei->ei_pintr = 0;
1312 #ifdef DIAGNOSTIC
1313 ei->ei_prun = 0;
1314 #endif
1315
1316 return 0;
1317 }
1318
1319 static int
1320 eap_halt_input(void *addr)
1321 {
1322 struct eap_instance *ei;
1323 struct eap_softc *sc;
1324 uint32_t icsc;
1325
1326 #define EAP_USE_FMDAC_ALSO
1327 DPRINTF(("eap: eap_halt_input\n"));
1328 ei = addr;
1329 sc = device_private(ei->parent);
1330 icsc = EREAD4(sc, EAP_ICSC);
1331 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1332 sc->sc_rintr = 0;
1333 #ifdef DIAGNOSTIC
1334 sc->sc_rrun = 0;
1335 #endif
1336
1337 return 0;
1338 }
1339
1340 static int
1341 eap_getdev(void *addr, struct audio_device *retp)
1342 {
1343
1344 *retp = eap_device;
1345 return 0;
1346 }
1347
1348 static int
1349 eap1371_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1350 {
1351 struct eap_instance *ei;
1352 struct eap_softc *sc;
1353
1354 ei = addr;
1355 sc = device_private(ei->parent);
1356 return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
1357 }
1358
1359 static int
1360 eap1371_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1361 {
1362 struct eap_instance *ei;
1363 struct eap_softc *sc;
1364
1365 ei = addr;
1366 sc = device_private(ei->parent);
1367 return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
1368 }
1369
1370 static int
1371 eap1371_query_devinfo(void *addr, mixer_devinfo_t *dip)
1372 {
1373 struct eap_instance *ei;
1374 struct eap_softc *sc;
1375
1376 ei = addr;
1377 sc = device_private(ei->parent);
1378 return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip);
1379 }
1380
1381 static void
1382 eap1370_set_mixer(struct eap_softc *sc, int a, int d)
1383 {
1384 eap1370_write_codec(sc, a, d);
1385
1386 sc->sc_port[a] = d;
1387 DPRINTFN(1, ("eap1370_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
1388 }
1389
1390 static int
1391 eap1370_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1392 {
1393 struct eap_instance *ei;
1394 struct eap_softc *sc;
1395 int lval, rval, l, r, la, ra;
1396 int l1, r1, l2, r2, m, o1, o2;
1397
1398 ei = addr;
1399 sc = device_private(ei->parent);
1400 if (cp->dev == EAP_RECORD_SOURCE) {
1401 if (cp->type != AUDIO_MIXER_SET)
1402 return EINVAL;
1403 m = sc->sc_record_source = cp->un.mask;
1404 l1 = l2 = r1 = r2 = 0;
1405 if (m & (1 << EAP_VOICE_VOL))
1406 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
1407 if (m & (1 << EAP_FM_VOL))
1408 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
1409 if (m & (1 << EAP_CD_VOL))
1410 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
1411 if (m & (1 << EAP_LINE_VOL))
1412 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
1413 if (m & (1 << EAP_AUX_VOL))
1414 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
1415 if (m & (1 << EAP_MIC_VOL))
1416 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
1417 eap1370_set_mixer(sc, AK_IN_MIXER1_L, l1);
1418 eap1370_set_mixer(sc, AK_IN_MIXER1_R, r1);
1419 eap1370_set_mixer(sc, AK_IN_MIXER2_L, l2);
1420 eap1370_set_mixer(sc, AK_IN_MIXER2_R, r2);
1421 return 0;
1422 }
1423 if (cp->dev == EAP_INPUT_SOURCE) {
1424 if (cp->type != AUDIO_MIXER_SET)
1425 return EINVAL;
1426 m = sc->sc_input_source = cp->un.mask;
1427 o1 = o2 = 0;
1428 if (m & (1 << EAP_VOICE_VOL))
1429 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
1430 if (m & (1 << EAP_FM_VOL))
1431 o1 |= AK_M_FM_L | AK_M_FM_R;
1432 if (m & (1 << EAP_CD_VOL))
1433 o1 |= AK_M_CD_L | AK_M_CD_R;
1434 if (m & (1 << EAP_LINE_VOL))
1435 o1 |= AK_M_LINE_L | AK_M_LINE_R;
1436 if (m & (1 << EAP_AUX_VOL))
1437 o2 |= AK_M_AUX_L | AK_M_AUX_R;
1438 if (m & (1 << EAP_MIC_VOL))
1439 o1 |= AK_M_MIC;
1440 eap1370_set_mixer(sc, AK_OUT_MIXER1, o1);
1441 eap1370_set_mixer(sc, AK_OUT_MIXER2, o2);
1442 return 0;
1443 }
1444 if (cp->dev == EAP_MIC_PREAMP) {
1445 if (cp->type != AUDIO_MIXER_ENUM)
1446 return EINVAL;
1447 if (cp->un.ord != 0 && cp->un.ord != 1)
1448 return EINVAL;
1449 sc->sc_mic_preamp = cp->un.ord;
1450 eap1370_set_mixer(sc, AK_MGAIN, cp->un.ord);
1451 return 0;
1452 }
1453 if (cp->type != AUDIO_MIXER_VALUE)
1454 return EINVAL;
1455 if (cp->un.value.num_channels == 1)
1456 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1457 else if (cp->un.value.num_channels == 2) {
1458 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1459 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1460 } else
1461 return EINVAL;
1462 ra = -1;
1463 switch (cp->dev) {
1464 case EAP_MASTER_VOL:
1465 l = VOL_TO_ATT5(lval);
1466 r = VOL_TO_ATT5(rval);
1467 la = AK_MASTER_L;
1468 ra = AK_MASTER_R;
1469 break;
1470 case EAP_MIC_VOL:
1471 if (cp->un.value.num_channels != 1)
1472 return EINVAL;
1473 la = AK_MIC;
1474 goto lr;
1475 case EAP_VOICE_VOL:
1476 la = AK_VOICE_L;
1477 ra = AK_VOICE_R;
1478 goto lr;
1479 case EAP_FM_VOL:
1480 la = AK_FM_L;
1481 ra = AK_FM_R;
1482 goto lr;
1483 case EAP_CD_VOL:
1484 la = AK_CD_L;
1485 ra = AK_CD_R;
1486 goto lr;
1487 case EAP_LINE_VOL:
1488 la = AK_LINE_L;
1489 ra = AK_LINE_R;
1490 goto lr;
1491 case EAP_AUX_VOL:
1492 la = AK_AUX_L;
1493 ra = AK_AUX_R;
1494 lr:
1495 l = VOL_TO_GAIN5(lval);
1496 r = VOL_TO_GAIN5(rval);
1497 break;
1498 default:
1499 return EINVAL;
1500 }
1501 eap1370_set_mixer(sc, la, l);
1502 if (ra >= 0) {
1503 eap1370_set_mixer(sc, ra, r);
1504 }
1505 return 0;
1506 }
1507
1508 static int
1509 eap1370_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1510 {
1511 struct eap_instance *ei;
1512 struct eap_softc *sc;
1513 int la, ra, l, r;
1514
1515 ei = addr;
1516 sc = device_private(ei->parent);
1517 switch (cp->dev) {
1518 case EAP_RECORD_SOURCE:
1519 if (cp->type != AUDIO_MIXER_SET)
1520 return EINVAL;
1521 cp->un.mask = sc->sc_record_source;
1522 return 0;
1523 case EAP_INPUT_SOURCE:
1524 if (cp->type != AUDIO_MIXER_SET)
1525 return EINVAL;
1526 cp->un.mask = sc->sc_input_source;
1527 return 0;
1528 case EAP_MIC_PREAMP:
1529 if (cp->type != AUDIO_MIXER_ENUM)
1530 return EINVAL;
1531 cp->un.ord = sc->sc_mic_preamp;
1532 return 0;
1533 case EAP_MASTER_VOL:
1534 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1535 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1536 break;
1537 case EAP_MIC_VOL:
1538 if (cp->un.value.num_channels != 1)
1539 return EINVAL;
1540 la = ra = AK_MIC;
1541 goto lr;
1542 case EAP_VOICE_VOL:
1543 la = AK_VOICE_L;
1544 ra = AK_VOICE_R;
1545 goto lr;
1546 case EAP_FM_VOL:
1547 la = AK_FM_L;
1548 ra = AK_FM_R;
1549 goto lr;
1550 case EAP_CD_VOL:
1551 la = AK_CD_L;
1552 ra = AK_CD_R;
1553 goto lr;
1554 case EAP_LINE_VOL:
1555 la = AK_LINE_L;
1556 ra = AK_LINE_R;
1557 goto lr;
1558 case EAP_AUX_VOL:
1559 la = AK_AUX_L;
1560 ra = AK_AUX_R;
1561 lr:
1562 l = GAIN5_TO_VOL(sc->sc_port[la]);
1563 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1564 break;
1565 default:
1566 return EINVAL;
1567 }
1568 if (cp->un.value.num_channels == 1)
1569 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1570 else if (cp->un.value.num_channels == 2) {
1571 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1572 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1573 } else
1574 return EINVAL;
1575 return 0;
1576 }
1577
1578 static int
1579 eap1370_query_devinfo(void *addr, mixer_devinfo_t *dip)
1580 {
1581
1582 switch (dip->index) {
1583 case EAP_MASTER_VOL:
1584 dip->type = AUDIO_MIXER_VALUE;
1585 dip->mixer_class = EAP_OUTPUT_CLASS;
1586 dip->prev = dip->next = AUDIO_MIXER_LAST;
1587 strcpy(dip->label.name, AudioNmaster);
1588 dip->un.v.num_channels = 2;
1589 dip->un.v.delta = 8;
1590 strcpy(dip->un.v.units.name, AudioNvolume);
1591 return 0;
1592 case EAP_VOICE_VOL:
1593 dip->type = AUDIO_MIXER_VALUE;
1594 dip->mixer_class = EAP_INPUT_CLASS;
1595 dip->prev = AUDIO_MIXER_LAST;
1596 dip->next = AUDIO_MIXER_LAST;
1597 strcpy(dip->label.name, AudioNdac);
1598 dip->un.v.num_channels = 2;
1599 dip->un.v.delta = 8;
1600 strcpy(dip->un.v.units.name, AudioNvolume);
1601 return 0;
1602 case EAP_FM_VOL:
1603 dip->type = AUDIO_MIXER_VALUE;
1604 dip->mixer_class = EAP_INPUT_CLASS;
1605 dip->prev = AUDIO_MIXER_LAST;
1606 dip->next = AUDIO_MIXER_LAST;
1607 strcpy(dip->label.name, AudioNfmsynth);
1608 dip->un.v.num_channels = 2;
1609 dip->un.v.delta = 8;
1610 strcpy(dip->un.v.units.name, AudioNvolume);
1611 return 0;
1612 case EAP_CD_VOL:
1613 dip->type = AUDIO_MIXER_VALUE;
1614 dip->mixer_class = EAP_INPUT_CLASS;
1615 dip->prev = AUDIO_MIXER_LAST;
1616 dip->next = AUDIO_MIXER_LAST;
1617 strcpy(dip->label.name, AudioNcd);
1618 dip->un.v.num_channels = 2;
1619 dip->un.v.delta = 8;
1620 strcpy(dip->un.v.units.name, AudioNvolume);
1621 return 0;
1622 case EAP_LINE_VOL:
1623 dip->type = AUDIO_MIXER_VALUE;
1624 dip->mixer_class = EAP_INPUT_CLASS;
1625 dip->prev = AUDIO_MIXER_LAST;
1626 dip->next = AUDIO_MIXER_LAST;
1627 strcpy(dip->label.name, AudioNline);
1628 dip->un.v.num_channels = 2;
1629 dip->un.v.delta = 8;
1630 strcpy(dip->un.v.units.name, AudioNvolume);
1631 return 0;
1632 case EAP_AUX_VOL:
1633 dip->type = AUDIO_MIXER_VALUE;
1634 dip->mixer_class = EAP_INPUT_CLASS;
1635 dip->prev = AUDIO_MIXER_LAST;
1636 dip->next = AUDIO_MIXER_LAST;
1637 strcpy(dip->label.name, AudioNaux);
1638 dip->un.v.num_channels = 2;
1639 dip->un.v.delta = 8;
1640 strcpy(dip->un.v.units.name, AudioNvolume);
1641 return 0;
1642 case EAP_MIC_VOL:
1643 dip->type = AUDIO_MIXER_VALUE;
1644 dip->mixer_class = EAP_INPUT_CLASS;
1645 dip->prev = AUDIO_MIXER_LAST;
1646 dip->next = EAP_MIC_PREAMP;
1647 strcpy(dip->label.name, AudioNmicrophone);
1648 dip->un.v.num_channels = 1;
1649 dip->un.v.delta = 8;
1650 strcpy(dip->un.v.units.name, AudioNvolume);
1651 return 0;
1652 case EAP_RECORD_SOURCE:
1653 dip->mixer_class = EAP_RECORD_CLASS;
1654 dip->prev = dip->next = AUDIO_MIXER_LAST;
1655 strcpy(dip->label.name, AudioNsource);
1656 dip->type = AUDIO_MIXER_SET;
1657 dip->un.s.num_mem = 6;
1658 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1659 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1660 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1661 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1662 strcpy(dip->un.s.member[2].label.name, AudioNline);
1663 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1664 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1665 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1666 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1667 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1668 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1669 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1670 return 0;
1671 case EAP_INPUT_SOURCE:
1672 dip->mixer_class = EAP_INPUT_CLASS;
1673 dip->prev = dip->next = AUDIO_MIXER_LAST;
1674 strcpy(dip->label.name, AudioNsource);
1675 dip->type = AUDIO_MIXER_SET;
1676 dip->un.s.num_mem = 6;
1677 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1678 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1679 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1680 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1681 strcpy(dip->un.s.member[2].label.name, AudioNline);
1682 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1683 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1684 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1685 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1686 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1687 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1688 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1689 return 0;
1690 case EAP_MIC_PREAMP:
1691 dip->type = AUDIO_MIXER_ENUM;
1692 dip->mixer_class = EAP_INPUT_CLASS;
1693 dip->prev = EAP_MIC_VOL;
1694 dip->next = AUDIO_MIXER_LAST;
1695 strcpy(dip->label.name, AudioNpreamp);
1696 dip->un.e.num_mem = 2;
1697 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1698 dip->un.e.member[0].ord = 0;
1699 strcpy(dip->un.e.member[1].label.name, AudioNon);
1700 dip->un.e.member[1].ord = 1;
1701 return 0;
1702 case EAP_OUTPUT_CLASS:
1703 dip->type = AUDIO_MIXER_CLASS;
1704 dip->mixer_class = EAP_OUTPUT_CLASS;
1705 dip->next = dip->prev = AUDIO_MIXER_LAST;
1706 strcpy(dip->label.name, AudioCoutputs);
1707 return 0;
1708 case EAP_RECORD_CLASS:
1709 dip->type = AUDIO_MIXER_CLASS;
1710 dip->mixer_class = EAP_RECORD_CLASS;
1711 dip->next = dip->prev = AUDIO_MIXER_LAST;
1712 strcpy(dip->label.name, AudioCrecord);
1713 return 0;
1714 case EAP_INPUT_CLASS:
1715 dip->type = AUDIO_MIXER_CLASS;
1716 dip->mixer_class = EAP_INPUT_CLASS;
1717 dip->next = dip->prev = AUDIO_MIXER_LAST;
1718 strcpy(dip->label.name, AudioCinputs);
1719 return 0;
1720 }
1721 return ENXIO;
1722 }
1723
1724 static void *
1725 eap_malloc(void *addr, int direction, size_t size)
1726 {
1727 struct eap_instance *ei;
1728 struct eap_softc *sc;
1729 struct eap_dma *p;
1730 int error;
1731
1732 p = kmem_alloc(sizeof(*p), KM_SLEEP);
1733 ei = addr;
1734 sc = device_private(ei->parent);
1735 error = eap_allocmem(sc, size, 16, p);
1736 if (error) {
1737 kmem_free(p, sizeof(*p));
1738 return NULL;
1739 }
1740 p->next = sc->sc_dmas;
1741 sc->sc_dmas = p;
1742 return KERNADDR(p);
1743 }
1744
1745 static void
1746 eap_free(void *addr, void *ptr, size_t size)
1747 {
1748 struct eap_instance *ei;
1749 struct eap_softc *sc;
1750 struct eap_dma **pp, *p;
1751
1752 ei = addr;
1753 sc = device_private(ei->parent);
1754 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1755 if (KERNADDR(p) == ptr) {
1756 eap_freemem(sc, p);
1757 *pp = p->next;
1758 kmem_free(p, sizeof(*p));
1759 return;
1760 }
1761 }
1762 }
1763
1764 static size_t
1765 eap_round_buffersize(void *addr, int direction, size_t size)
1766 {
1767
1768 return size;
1769 }
1770
1771 static paddr_t
1772 eap_mappage(void *addr, void *mem, off_t off, int prot)
1773 {
1774 struct eap_instance *ei;
1775 struct eap_softc *sc;
1776 struct eap_dma *p;
1777
1778 if (off < 0)
1779 return -1;
1780 ei = addr;
1781 sc = device_private(ei->parent);
1782 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1783 continue;
1784 if (!p)
1785 return -1;
1786
1787 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1788 off, prot, BUS_DMA_WAITOK);
1789 }
1790
1791 static int
1792 eap_get_props(void *addr)
1793 {
1794
1795 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1796 AUDIO_PROP_FULLDUPLEX;
1797 }
1798
1799 static void
1800 eap_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1801 {
1802 struct eap_instance *ei;
1803 struct eap_softc *sc;
1804
1805 ei = addr;
1806 sc = device_private(ei->parent);
1807 *intr = &sc->sc_intr_lock;
1808 *thread = &sc->sc_lock;
1809 }
1810
1811 #if NMIDI > 0
1812 static int
1813 eap_midi_open(void *addr, int flags,
1814 void (*iintr)(void *, int),
1815 void (*ointr)(void *),
1816 void *arg)
1817 {
1818 struct eap_softc *sc;
1819 uint8_t uctrl;
1820
1821 sc = addr;
1822 sc->sc_arg = arg;
1823
1824 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) | EAP_UART_EN);
1825 uctrl = 0;
1826 if (flags & FREAD) {
1827 uctrl |= EAP_UC_RXINTEN;
1828 sc->sc_iintr = iintr;
1829 }
1830 if (flags & FWRITE)
1831 sc->sc_ointr = ointr;
1832 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1833
1834 return 0;
1835 }
1836
1837 static void
1838 eap_midi_close(void *addr)
1839 {
1840 struct eap_softc *sc;
1841
1842 sc = addr;
1843 /* give uart a chance to drain */
1844 (void)kpause("eapclm", false, hz/10, &sc->sc_intr_lock);
1845 EWRITE1(sc, EAP_UART_CONTROL, 0);
1846 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) & ~EAP_UART_EN);
1847
1848 sc->sc_iintr = 0;
1849 sc->sc_ointr = 0;
1850 }
1851
1852 static int
1853 eap_midi_output(void *addr, int d)
1854 {
1855 struct eap_softc *sc;
1856 uint8_t uctrl;
1857
1858 sc = addr;
1859 EWRITE1(sc, EAP_UART_DATA, d);
1860
1861 uctrl = EAP_UC_TXINTEN;
1862 if (sc->sc_iintr)
1863 uctrl |= EAP_UC_RXINTEN;
1864 /*
1865 * This is a write-only register, so we have to remember the right
1866 * value of RXINTEN as well as setting TXINTEN. But if we are open
1867 * for reading, it will always be correct to set RXINTEN here; only
1868 * during service of a receive interrupt could it be momentarily
1869 * toggled off, and whether we got here from the top half or from
1870 * an interrupt, that won't be the current state.
1871 */
1872 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1873 return 0;
1874 }
1875
1876 static void
1877 eap_midi_getinfo(void *addr, struct midi_info *mi)
1878 {
1879 mi->name = "AudioPCI MIDI UART";
1880 mi->props = MIDI_PROP_CAN_INPUT | MIDI_PROP_OUT_INTR;
1881 }
1882
1883 static void
1884 eap_uart_txrdy(struct eap_softc *sc)
1885 {
1886 uint8_t uctrl;
1887 uctrl = 0;
1888 if (sc->sc_iintr)
1889 uctrl = EAP_UC_RXINTEN;
1890 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1891 sc->sc_ointr(sc->sc_arg);
1892 }
1893
1894 #endif
1895