eap.c revision 1.99 1 /* $NetBSD: eap.c,v 1.99 2019/03/16 12:09:58 isaki Exp $ */
2 /* $OpenBSD: eap.c,v 1.6 1999/10/05 19:24:42 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1998, 1999, 2002, 2008 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Lennart Augustsson <augustss (at) NetBSD.org>, Charles M. Hannum,
10 * Antti Kantee <pooka (at) NetBSD.org>, and Andrew Doran.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Debugging: Andreas Gustafsson <gson (at) araneus.fi>
36 * Testing: Chuck Cranor <chuck (at) maria.wustl.edu>
37 * Phil Nelson <phil (at) cs.wwu.edu>
38 *
39 * ES1371/AC97: Ezra Story <ezy (at) panix.com>
40 */
41
42 /*
43 * Ensoniq ES1370 + AK4531 and ES1371/ES1373 + AC97
44 *
45 * Documentation links:
46 *
47 * ftp://ftp.alsa-project.org/pub/manuals/ensoniq/ (ES1370 and 1371 datasheets)
48 * http://web.archive.org/web/20040622012936/http://www.corbac.com/Data/Misc/es1373.ps.gz
49 * ftp://ftp.alsa-project.org/pub/manuals/asahi_kasei/4531.pdf
50 * ftp://download.intel.com/ial/scalableplatforms/audio/ac97r21.pdf
51 */
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: eap.c,v 1.99 2019/03/16 12:09:58 isaki Exp $");
55
56 #include "midi.h"
57 #include "joy_eap.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/fcntl.h>
63 #include <sys/kmem.h>
64 #include <sys/device.h>
65 #include <sys/proc.h>
66 #include <sys/select.h>
67 #include <sys/mutex.h>
68 #include <sys/bus.h>
69 #include <sys/audioio.h>
70
71 #include <dev/audio_if.h>
72 #include <dev/midi_if.h>
73 #include <dev/audiovar.h>
74 #include <dev/mulaw.h>
75 #include <dev/auconv.h>
76
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/eapreg.h>
79 #include <dev/pci/eapvar.h>
80
81 #define PCI_CBIO 0x10
82
83 /* Debug */
84 #ifdef AUDIO_DEBUG
85 #define DPRINTF(x) if (eapdebug) printf x
86 #define DPRINTFN(n,x) if (eapdebug>(n)) printf x
87 int eapdebug = 0;
88 #else
89 #define DPRINTF(x)
90 #define DPRINTFN(n,x)
91 #endif
92
93 static int eap_match(device_t, cfdata_t, void *);
94 static void eap_attach(device_t, device_t, void *);
95 static int eap_detach(device_t, int);
96 static int eap_intr(void *);
97
98 static int eap_allocmem(struct eap_softc *, size_t, size_t,
99 struct eap_dma *);
100 static int eap_freemem(struct eap_softc *, struct eap_dma *);
101
102 #define EWRITE1(sc, r, x) bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x))
103 #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
104 #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
105 #define EREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r))
106 #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
107 #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
108
109 CFATTACH_DECL_NEW(eap, sizeof(struct eap_softc),
110 eap_match, eap_attach, eap_detach, NULL);
111
112 static int eap_open(void *, int);
113 static int eap_query_encoding(void *, struct audio_encoding *);
114 static int eap_set_params(void *, int, int, audio_params_t *,
115 audio_params_t *, stream_filter_list_t *,
116 stream_filter_list_t *);
117 static int eap_round_blocksize(void *, int, int, const audio_params_t *);
118 static int eap_trigger_output(void *, void *, void *, int,
119 void (*)(void *), void *,
120 const audio_params_t *);
121 static int eap_trigger_input(void *, void *, void *, int,
122 void (*)(void *), void *,
123 const audio_params_t *);
124 static int eap_halt_output(void *);
125 static int eap_halt_input(void *);
126 static void eap1370_write_codec(struct eap_softc *, int, int);
127 static int eap_getdev(void *, struct audio_device *);
128 static int eap1370_mixer_set_port(void *, mixer_ctrl_t *);
129 static int eap1370_mixer_get_port(void *, mixer_ctrl_t *);
130 static int eap1371_mixer_set_port(void *, mixer_ctrl_t *);
131 static int eap1371_mixer_get_port(void *, mixer_ctrl_t *);
132 static int eap1370_query_devinfo(void *, mixer_devinfo_t *);
133 static void *eap_malloc(void *, int, size_t);
134 static void eap_free(void *, void *, size_t);
135 static size_t eap_round_buffersize(void *, int, size_t);
136 static paddr_t eap_mappage(void *, void *, off_t, int);
137 static int eap_get_props(void *);
138 static void eap1370_set_mixer(struct eap_softc *, int, int);
139 static uint32_t eap1371_src_wait(struct eap_softc *);
140 static void eap1371_set_adc_rate(struct eap_softc *, int);
141 static void eap1371_set_dac_rate(struct eap_instance *, int);
142 static int eap1371_src_read(struct eap_softc *, int);
143 static void eap1371_src_write(struct eap_softc *, int, int);
144 static int eap1371_query_devinfo(void *, mixer_devinfo_t *);
145
146 static int eap1371_attach_codec(void *, struct ac97_codec_if *);
147 static int eap1371_read_codec(void *, uint8_t, uint16_t *);
148 static int eap1371_write_codec(void *, uint8_t, uint16_t );
149 static int eap1371_reset_codec(void *);
150 static void eap_get_locks(void *, kmutex_t **, kmutex_t **);
151
152 #if NMIDI > 0
153 static void eap_midi_close(void *);
154 static void eap_midi_getinfo(void *, struct midi_info *);
155 static int eap_midi_open(void *, int, void (*)(void *, int),
156 void (*)(void *), void *);
157 static int eap_midi_output(void *, int);
158 static void eap_uart_txrdy(struct eap_softc *);
159 #endif
160
161 static const struct audio_hw_if eap1370_hw_if = {
162 .open = eap_open,
163 .query_encoding = eap_query_encoding,
164 .set_params = eap_set_params,
165 .round_blocksize = eap_round_blocksize,
166 .halt_output = eap_halt_output,
167 .halt_input = eap_halt_input,
168 .getdev = eap_getdev,
169 .set_port = eap1370_mixer_set_port,
170 .get_port = eap1370_mixer_get_port,
171 .query_devinfo = eap1370_query_devinfo,
172 .allocm = eap_malloc,
173 .freem = eap_free,
174 .round_buffersize = eap_round_buffersize,
175 .mappage = eap_mappage,
176 .get_props = eap_get_props,
177 .trigger_output = eap_trigger_output,
178 .trigger_input = eap_trigger_input,
179 .get_locks = eap_get_locks,
180 };
181
182 static const struct audio_hw_if eap1371_hw_if = {
183 .open = eap_open,
184 .query_encoding = eap_query_encoding,
185 .set_params = eap_set_params,
186 .round_blocksize = eap_round_blocksize,
187 .halt_output = eap_halt_output,
188 .halt_input = eap_halt_input,
189 .getdev = eap_getdev,
190 .set_port = eap1371_mixer_set_port,
191 .get_port = eap1371_mixer_get_port,
192 .query_devinfo = eap1371_query_devinfo,
193 .allocm = eap_malloc,
194 .freem = eap_free,
195 .round_buffersize = eap_round_buffersize,
196 .mappage = eap_mappage,
197 .get_props = eap_get_props,
198 .trigger_output = eap_trigger_output,
199 .trigger_input = eap_trigger_input,
200 .get_locks = eap_get_locks,
201 };
202
203 #if NMIDI > 0
204 static const struct midi_hw_if eap_midi_hw_if = {
205 eap_midi_open,
206 eap_midi_close,
207 eap_midi_output,
208 eap_midi_getinfo,
209 0, /* ioctl */
210 eap_get_locks,
211 };
212 #endif
213
214 static struct audio_device eap_device = {
215 "Ensoniq AudioPCI",
216 "",
217 "eap"
218 };
219
220 #define EAP_NFORMATS 4
221 static const struct audio_format eap_formats[EAP_NFORMATS] = {
222 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
223 2, AUFMT_STEREO, 0, {4000, 48000}},
224 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
225 1, AUFMT_MONAURAL, 0, {4000, 48000}},
226 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
227 2, AUFMT_STEREO, 0, {4000, 48000}},
228 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
229 1, AUFMT_MONAURAL, 0, {4000, 48000}},
230 };
231
232 static int
233 eap_match(device_t parent, cfdata_t match, void *aux)
234 {
235 struct pci_attach_args *pa;
236
237 pa = (struct pci_attach_args *)aux;
238 switch (PCI_VENDOR(pa->pa_id)) {
239 case PCI_VENDOR_CREATIVELABS:
240 switch (PCI_PRODUCT(pa->pa_id)) {
241 case PCI_PRODUCT_CREATIVELABS_EV1938:
242 return 1;
243 }
244 break;
245 case PCI_VENDOR_ENSONIQ:
246 switch (PCI_PRODUCT(pa->pa_id)) {
247 case PCI_PRODUCT_ENSONIQ_AUDIOPCI:
248 case PCI_PRODUCT_ENSONIQ_AUDIOPCI97:
249 case PCI_PRODUCT_ENSONIQ_CT5880:
250 return 1;
251 }
252 break;
253 }
254
255 return 0;
256 }
257
258 static void
259 eap1370_write_codec(struct eap_softc *sc, int a, int d)
260 {
261 int icss, to;
262
263 to = EAP_WRITE_TIMEOUT;
264 do {
265 icss = EREAD4(sc, EAP_ICSS);
266 DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
267 if (!to--) {
268 printf("eap: timeout writing to codec\n");
269 return;
270 }
271 } while(icss & EAP_CWRIP); /* XXX could use CSTAT here */
272 EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
273 }
274
275 /*
276 * Reading and writing the CODEC is very convoluted. This mimics the
277 * FreeBSD and Linux drivers.
278 */
279
280 static inline void
281 eap1371_ready_codec(struct eap_softc *sc, uint8_t a, uint32_t wd)
282 {
283 int to;
284 uint32_t src, t;
285
286 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
287 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
288 break;
289 delay(1);
290 }
291 if (to >= EAP_WRITE_TIMEOUT)
292 aprint_error_dev(sc->sc_dev,
293 "eap1371_ready_codec timeout 1\n");
294
295 mutex_spin_enter(&sc->sc_intr_lock);
296 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
297 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
298
299 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
300 t = EREAD4(sc, E1371_SRC);
301 if ((t & E1371_SRC_STATE_MASK) == 0)
302 break;
303 delay(1);
304 }
305 if (to >= EAP_READ_TIMEOUT)
306 aprint_error_dev(sc->sc_dev,
307 "eap1371_ready_codec timeout 2\n");
308
309 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
310 t = EREAD4(sc, E1371_SRC);
311 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
312 break;
313 delay(1);
314 }
315 if (to >= EAP_READ_TIMEOUT)
316 aprint_error_dev(sc->sc_dev,
317 "eap1371_ready_codec timeout 3\n");
318
319 EWRITE4(sc, E1371_CODEC, wd);
320
321 eap1371_src_wait(sc);
322 EWRITE4(sc, E1371_SRC, src);
323
324 mutex_spin_exit(&sc->sc_intr_lock);
325 }
326
327 static int
328 eap1371_read_codec(void *sc_, uint8_t a, uint16_t *d)
329 {
330 struct eap_softc *sc;
331 int to;
332 uint32_t t;
333
334 sc = sc_;
335 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, 0) | E1371_CODEC_READ);
336
337 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
338 if (!(EREAD4(sc, E1371_CODEC) & E1371_CODEC_WIP))
339 break;
340 }
341 if (to > EAP_WRITE_TIMEOUT)
342 aprint_error_dev(sc->sc_dev,
343 "eap1371_read_codec timeout 1\n");
344
345 for (to = 0; to < EAP_WRITE_TIMEOUT; to++) {
346 t = EREAD4(sc, E1371_CODEC);
347 if (t & E1371_CODEC_VALID)
348 break;
349 }
350 if (to > EAP_WRITE_TIMEOUT)
351 aprint_error_dev(sc->sc_dev, "eap1371_read_codec timeout 2\n");
352
353 *d = (uint16_t)t;
354
355 DPRINTFN(10, ("eap1371: reading codec (%x) = %x\n", a, *d));
356
357 return 0;
358 }
359
360 static int
361 eap1371_write_codec(void *sc_, uint8_t a, uint16_t d)
362 {
363 struct eap_softc *sc;
364
365 sc = sc_;
366 eap1371_ready_codec(sc, a, E1371_SET_CODEC(a, d));
367
368 DPRINTFN(10, ("eap1371: writing codec %x --> %x\n", d, a));
369
370 return 0;
371 }
372
373 static uint32_t
374 eap1371_src_wait(struct eap_softc *sc)
375 {
376 int to;
377 u_int32_t src;
378
379 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
380 src = EREAD4(sc, E1371_SRC);
381 if (!(src & E1371_SRC_RBUSY))
382 return src;
383 delay(1);
384 }
385 aprint_error_dev(sc->sc_dev, "eap1371_src_wait timeout\n");
386 return src;
387 }
388
389 static int
390 eap1371_src_read(struct eap_softc *sc, int a)
391 {
392 int to;
393 uint32_t src, t;
394
395 src = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
396 src |= E1371_SRC_ADDR(a);
397 EWRITE4(sc, E1371_SRC, src | E1371_SRC_STATE_OK);
398
399 t = eap1371_src_wait(sc);
400 if ((t & E1371_SRC_STATE_MASK) != E1371_SRC_STATE_OK) {
401 for (to = 0; to < EAP_READ_TIMEOUT; to++) {
402 t = EREAD4(sc, E1371_SRC);
403 if ((t & E1371_SRC_STATE_MASK) == E1371_SRC_STATE_OK)
404 break;
405 delay(1);
406 }
407 }
408
409 EWRITE4(sc, E1371_SRC, src);
410
411 return t & E1371_SRC_DATAMASK;
412 }
413
414 static void
415 eap1371_src_write(struct eap_softc *sc, int a, int d)
416 {
417 uint32_t r;
418
419 r = eap1371_src_wait(sc) & E1371_SRC_CTLMASK;
420 r |= E1371_SRC_RAMWE | E1371_SRC_ADDR(a) | E1371_SRC_DATA(d);
421 EWRITE4(sc, E1371_SRC, r);
422 }
423
424 static void
425 eap1371_set_adc_rate(struct eap_softc *sc, int rate)
426 {
427 int freq, n, truncm;
428 int out;
429
430 /* Whatever, it works, so I'll leave it :) */
431
432 if (rate > 48000)
433 rate = 48000;
434 if (rate < 4000)
435 rate = 4000;
436 n = rate / 3000;
437 if ((1 << n) & SRC_MAGIC)
438 n--;
439 truncm = ((21 * n) - 1) | 1;
440 freq = ((48000 << 15) / rate) * n;
441 if (rate >= 24000) {
442 if (truncm > 239)
443 truncm = 239;
444 out = ESRC_SET_TRUNC((239 - truncm) / 2);
445 } else {
446 if (truncm > 119)
447 truncm = 119;
448 out = ESRC_SMF | ESRC_SET_TRUNC((119 - truncm) / 2);
449 }
450 out |= ESRC_SET_N(n);
451 mutex_spin_enter(&sc->sc_intr_lock);
452 eap1371_src_write(sc, ESRC_ADC+ESRC_TRUNC_N, out);
453
454 out = eap1371_src_read(sc, ESRC_ADC+ESRC_IREGS) & 0xff;
455 eap1371_src_write(sc, ESRC_ADC+ESRC_IREGS, out |
456 ESRC_SET_VFI(freq >> 15));
457 eap1371_src_write(sc, ESRC_ADC+ESRC_VFF, freq & 0x7fff);
458 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(n));
459 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(n));
460 mutex_spin_exit(&sc->sc_intr_lock);
461 }
462
463 static void
464 eap1371_set_dac_rate(struct eap_instance *ei, int rate)
465 {
466 struct eap_softc *sc;
467 int dac;
468 int freq, r;
469
470 DPRINTFN(2, ("eap1371_set_dac_date: set rate for %d\n", ei->index));
471 sc = device_private(ei->parent);
472 dac = ei->index == EAP_DAC1 ? ESRC_DAC1 : ESRC_DAC2;
473
474 /* Whatever, it works, so I'll leave it :) */
475
476 if (rate > 48000)
477 rate = 48000;
478 if (rate < 4000)
479 rate = 4000;
480 freq = ((rate << 15) + 1500) / 3000;
481
482 mutex_spin_enter(&sc->sc_intr_lock);
483 eap1371_src_wait(sc);
484 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
485 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
486 r |= ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2;
487 EWRITE4(sc, E1371_SRC, r);
488 r = eap1371_src_read(sc, dac + ESRC_IREGS) & 0x00ff;
489 eap1371_src_write(sc, dac + ESRC_IREGS, r | ((freq >> 5) & 0xfc00));
490 eap1371_src_write(sc, dac + ESRC_VFF, freq & 0x7fff);
491 r = EREAD4(sc, E1371_SRC) & (E1371_SRC_DISABLE |
492 E1371_SRC_DISP2 | E1371_SRC_DISP1 | E1371_SRC_DISREC);
493 r &= ~(ei->index == EAP_DAC1 ? E1371_SRC_DISP1 : E1371_SRC_DISP2);
494 EWRITE4(sc, E1371_SRC, r);
495 mutex_spin_exit(&sc->sc_intr_lock);
496 }
497
498 static void
499 eap_attach(device_t parent, device_t self, void *aux)
500 {
501 struct eap_softc *sc;
502 struct pci_attach_args *pa;
503 pci_chipset_tag_t pc;
504 const struct audio_hw_if *eap_hw_if;
505 char const *intrstr;
506 pci_intr_handle_t ih;
507 pcireg_t csr;
508 char devinfo[256];
509 mixer_ctrl_t ctl;
510 int i;
511 int revision, ct5880;
512 const char *revstr;
513 #if NJOY_EAP > 0
514 struct eap_gameport_args gpargs;
515 #endif
516 char intrbuf[PCI_INTRSTR_LEN];
517
518 sc = device_private(self);
519 sc->sc_dev = self;
520 pa = (struct pci_attach_args *)aux;
521 pc = pa->pa_pc;
522 revstr = "";
523 aprint_naive(": Audio controller\n");
524
525 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
526 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
527
528 /* Stash this away for detach */
529 sc->sc_pc = pc;
530
531 /* Flag if we're "creative" */
532 sc->sc_1371 = !(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
533 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_AUDIOPCI);
534
535 /*
536 * The vendor and product ID's are quite "interesting". Just
537 * trust the following and be happy.
538 */
539 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
540 revision = PCI_REVISION(pa->pa_class);
541 ct5880 = 0;
542 if (sc->sc_1371) {
543 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ENSONIQ &&
544 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ENSONIQ_CT5880) {
545 ct5880 = 1;
546 switch (revision) {
547 case EAP_CT5880_C: revstr = "CT5880-C "; break;
548 case EAP_CT5880_D: revstr = "CT5880-D "; break;
549 case EAP_CT5880_E: revstr = "CT5880-E "; break;
550 }
551 } else {
552 switch (revision) {
553 case EAP_EV1938_A: revstr = "EV1938-A "; break;
554 case EAP_ES1373_A: revstr = "ES1373-A "; break;
555 case EAP_ES1373_B: revstr = "ES1373-B "; break;
556 case EAP_CT5880_A: revstr = "CT5880-A "; ct5880=1;break;
557 case EAP_ES1373_8: revstr = "ES1373-8" ; ct5880=1;break;
558 case EAP_ES1371_B: revstr = "ES1371-B "; break;
559 }
560 }
561 }
562 aprint_normal(": %s %s(rev. 0x%02x)\n", devinfo, revstr, revision);
563
564 /* Map I/O register */
565 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
566 &sc->iot, &sc->ioh, NULL, &sc->iosz)) {
567 aprint_error_dev(sc->sc_dev, "can't map i/o space\n");
568 return;
569 }
570
571 sc->sc_dmatag = pa->pa_dmat;
572
573 /* Enable the device. */
574 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
575 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
576 csr | PCI_COMMAND_MASTER_ENABLE);
577
578 /* Map and establish the interrupt. */
579 if (pci_intr_map(pa, &ih)) {
580 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
581 return;
582 }
583 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
584 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_AUDIO, eap_intr, sc,
585 device_xname(self));
586 if (sc->sc_ih == NULL) {
587 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
588 if (intrstr != NULL)
589 aprint_error(" at %s", intrstr);
590 aprint_error("\n");
591 return;
592 }
593 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
594
595 sc->sc_ei[EAP_I1].parent = self;
596 sc->sc_ei[EAP_I1].index = EAP_DAC2;
597 sc->sc_ei[EAP_I2].parent = self;
598 sc->sc_ei[EAP_I2].index = EAP_DAC1;
599
600 if (!sc->sc_1371) {
601 /* Enable interrupts and looping mode. */
602 /* enable the parts we need */
603 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
604 EWRITE4(sc, EAP_ICSC, EAP_CDC_EN);
605
606 /* reset codec */
607 /* normal operation */
608 /* select codec clocks */
609 eap1370_write_codec(sc, AK_RESET, AK_PD);
610 eap1370_write_codec(sc, AK_RESET, AK_PD | AK_NRST);
611 eap1370_write_codec(sc, AK_CS, 0x0);
612
613 eap_hw_if = &eap1370_hw_if;
614
615 /* Enable all relevant mixer switches. */
616 ctl.dev = EAP_INPUT_SOURCE;
617 ctl.type = AUDIO_MIXER_SET;
618 ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL |
619 1 << EAP_CD_VOL | 1 << EAP_LINE_VOL |
620 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
621 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
622
623 ctl.type = AUDIO_MIXER_VALUE;
624 ctl.un.value.num_channels = 1;
625 for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL;
626 ctl.dev++) {
627 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
628 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
629 }
630 ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
631 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
632 ctl.dev = EAP_MIC_PREAMP;
633 ctl.type = AUDIO_MIXER_ENUM;
634 ctl.un.ord = 0;
635 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
636 ctl.dev = EAP_RECORD_SOURCE;
637 ctl.type = AUDIO_MIXER_SET;
638 ctl.un.mask = 1 << EAP_MIC_VOL;
639 eap_hw_if->set_port(&sc->sc_ei[EAP_I1], &ctl);
640 } else {
641 /* clean slate */
642
643 EWRITE4(sc, EAP_SIC, 0);
644 EWRITE4(sc, EAP_ICSC, 0);
645 EWRITE4(sc, E1371_LEGACY, 0);
646
647 if (ct5880) {
648 EWRITE4(sc, EAP_ICSS, EAP_CT5880_AC97_RESET);
649 /* Let codec wake up */
650 delay(20000);
651 }
652
653 /* Reset from es1371's perspective */
654 EWRITE4(sc, EAP_ICSC, E1371_SYNC_RES);
655 delay(20);
656 EWRITE4(sc, EAP_ICSC, 0);
657
658 /*
659 * Must properly reprogram sample rate converter,
660 * or it locks up. Set some defaults for the life of the
661 * machine, and set up a sb default sample rate.
662 */
663 EWRITE4(sc, E1371_SRC, E1371_SRC_DISABLE);
664 for (i = 0; i < 0x80; i++)
665 eap1371_src_write(sc, i, 0);
666 eap1371_src_write(sc, ESRC_DAC1+ESRC_TRUNC_N, ESRC_SET_N(16));
667 eap1371_src_write(sc, ESRC_DAC2+ESRC_TRUNC_N, ESRC_SET_N(16));
668 eap1371_src_write(sc, ESRC_DAC1+ESRC_IREGS, ESRC_SET_VFI(16));
669 eap1371_src_write(sc, ESRC_DAC2+ESRC_IREGS, ESRC_SET_VFI(16));
670 eap1371_src_write(sc, ESRC_ADC_VOLL, ESRC_SET_ADC_VOL(16));
671 eap1371_src_write(sc, ESRC_ADC_VOLR, ESRC_SET_ADC_VOL(16));
672 eap1371_src_write(sc, ESRC_DAC1_VOLL, ESRC_SET_DAC_VOLI(1));
673 eap1371_src_write(sc, ESRC_DAC1_VOLR, ESRC_SET_DAC_VOLI(1));
674 eap1371_src_write(sc, ESRC_DAC2_VOLL, ESRC_SET_DAC_VOLI(1));
675 eap1371_src_write(sc, ESRC_DAC2_VOLR, ESRC_SET_DAC_VOLI(1));
676 eap1371_set_adc_rate(sc, 22050);
677 eap1371_set_dac_rate(&sc->sc_ei[0], 22050);
678 eap1371_set_dac_rate(&sc->sc_ei[1], 22050);
679
680 EWRITE4(sc, E1371_SRC, 0);
681
682 /* Reset codec */
683
684 /* Interrupt enable */
685 sc->host_if.arg = sc;
686 sc->host_if.attach = eap1371_attach_codec;
687 sc->host_if.read = eap1371_read_codec;
688 sc->host_if.write = eap1371_write_codec;
689 sc->host_if.reset = eap1371_reset_codec;
690
691 if (ac97_attach(&sc->host_if, self, &sc->sc_lock) == 0) {
692 /* Interrupt enable */
693 EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
694 } else
695 return;
696
697 eap_hw_if = &eap1371_hw_if;
698 }
699
700 sc->sc_ei[EAP_I1].ei_audiodev =
701 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I1], sc->sc_dev);
702
703 #ifdef EAP_USE_BOTH_DACS
704 aprint_normal_dev(self, "attaching secondary DAC\n");
705 sc->sc_ei[EAP_I2].ei_audiodev =
706 audio_attach_mi(eap_hw_if, &sc->sc_ei[EAP_I2], sc->sc_dev);
707 #endif
708
709 #if NMIDI > 0
710 sc->sc_mididev = midi_attach_mi(&eap_midi_hw_if, sc, sc->sc_dev);
711 #endif
712
713 #if NJOY_EAP > 0
714 if (sc->sc_1371) {
715 gpargs.gpa_iot = sc->iot;
716 gpargs.gpa_ioh = sc->ioh;
717 sc->sc_gameport = eap_joy_attach(sc->sc_dev, &gpargs);
718 }
719 #endif
720 }
721
722 static int
723 eap_detach(device_t self, int flags)
724 {
725 struct eap_softc *sc;
726 int res;
727 #if NJOY_EAP > 0
728 struct eap_gameport_args gpargs;
729
730 sc = device_private(self);
731 if (sc->sc_gameport) {
732 gpargs.gpa_iot = sc->iot;
733 gpargs.gpa_ioh = sc->ioh;
734 res = eap_joy_detach(sc->sc_gameport, &gpargs);
735 if (res)
736 return res;
737 }
738 #else
739 sc = device_private(self);
740 #endif
741 #if NMIDI > 0
742 if (sc->sc_mididev != NULL) {
743 res = config_detach(sc->sc_mididev, 0);
744 if (res)
745 return res;
746 }
747 #endif
748 #ifdef EAP_USE_BOTH_DACS
749 if (sc->sc_ei[EAP_I2].ei_audiodev != NULL) {
750 res = config_detach(sc->sc_ei[EAP_I2].ei_audiodev, 0);
751 if (res)
752 return res;
753 }
754 #endif
755 if (sc->sc_ei[EAP_I1].ei_audiodev != NULL) {
756 res = config_detach(sc->sc_ei[EAP_I1].ei_audiodev, 0);
757 if (res)
758 return res;
759 }
760
761 bus_space_unmap(sc->iot, sc->ioh, sc->iosz);
762 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
763 mutex_destroy(&sc->sc_lock);
764 mutex_destroy(&sc->sc_intr_lock);
765
766 return 0;
767 }
768
769 static int
770 eap1371_attach_codec(void *sc_, struct ac97_codec_if *codec_if)
771 {
772 struct eap_softc *sc;
773
774 sc = sc_;
775 sc->codec_if = codec_if;
776 return 0;
777 }
778
779 static int
780 eap1371_reset_codec(void *sc_)
781 {
782 struct eap_softc *sc;
783 uint32_t icsc;
784
785 sc = sc_;
786 mutex_spin_enter(&sc->sc_intr_lock);
787 icsc = EREAD4(sc, EAP_ICSC);
788 EWRITE4(sc, EAP_ICSC, icsc | E1371_SYNC_RES);
789 delay(20);
790 EWRITE4(sc, EAP_ICSC, icsc & ~E1371_SYNC_RES);
791 delay(1);
792 mutex_spin_exit(&sc->sc_intr_lock);
793
794 return 0;
795 }
796
797 static int
798 eap_intr(void *p)
799 {
800 struct eap_softc *sc;
801 uint32_t intr, sic;
802
803 sc = p;
804 mutex_spin_enter(&sc->sc_intr_lock);
805 intr = EREAD4(sc, EAP_ICSS);
806 if (!(intr & EAP_INTR)) {
807 mutex_spin_exit(&sc->sc_intr_lock);
808 return 0;
809 }
810 sic = EREAD4(sc, EAP_SIC);
811 DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
812 if (intr & EAP_I_ADC) {
813 #if 0
814 /*
815 * XXX This is a hack!
816 * The EAP chip sometimes generates the recording interrupt
817 * while it is still transferring the data. To make sure
818 * it has all arrived we busy wait until the count is right.
819 * The transfer we are waiting for is 8 longwords.
820 */
821 int s, nw, n;
822 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
823 s = EREAD4(sc, EAP_ADC_CSR);
824 nw = ((s & 0xffff) + 1) >> 2; /* # of words in DMA */
825 n = 0;
826 while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
827 delay(10);
828 if (++n > 100) {
829 printf("eapintr: DMA fix timeout");
830 break;
831 }
832 }
833 /* Continue with normal interrupt handling. */
834 #endif
835 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
836 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
837 if (sc->sc_rintr)
838 sc->sc_rintr(sc->sc_rarg);
839 }
840
841 if (intr & EAP_I_DAC2) {
842 EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
843 EWRITE4(sc, EAP_SIC, sic | EAP_P2_INTR_EN);
844 if (sc->sc_ei[EAP_DAC2].ei_pintr)
845 sc->sc_ei[EAP_DAC2].ei_pintr(sc->sc_ei[EAP_DAC2].ei_parg);
846 }
847
848 if (intr & EAP_I_DAC1) {
849 EWRITE4(sc, EAP_SIC, sic & ~EAP_P1_INTR_EN);
850 EWRITE4(sc, EAP_SIC, sic | EAP_P1_INTR_EN);
851 if (sc->sc_ei[EAP_DAC1].ei_pintr)
852 sc->sc_ei[EAP_DAC1].ei_pintr(sc->sc_ei[EAP_DAC1].ei_parg);
853 }
854
855 if (intr & EAP_I_MCCB)
856 panic("eap_intr: unexpected MCCB interrupt");
857 #if NMIDI > 0
858 if (intr & EAP_I_UART) {
859 uint8_t ustat;
860 uint32_t data;
861
862 ustat = EREAD1(sc, EAP_UART_STATUS);
863
864 if (ustat & EAP_US_RXINT) {
865 while (EREAD1(sc, EAP_UART_STATUS) & EAP_US_RXRDY) {
866 data = EREAD1(sc, EAP_UART_DATA);
867 sc->sc_iintr(sc->sc_arg, data);
868 }
869 }
870
871 if (ustat & EAP_US_TXINT)
872 eap_uart_txrdy(sc);
873 }
874 #endif
875 mutex_spin_exit(&sc->sc_intr_lock);
876 return 1;
877 }
878
879 static int
880 eap_allocmem(struct eap_softc *sc, size_t size, size_t align, struct eap_dma *p)
881 {
882 int error;
883
884 p->size = size;
885 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
886 p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
887 &p->nsegs, BUS_DMA_WAITOK);
888 if (error)
889 return error;
890
891 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
892 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
893 if (error)
894 goto free;
895
896 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
897 0, BUS_DMA_WAITOK, &p->map);
898 if (error)
899 goto unmap;
900
901 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
902 BUS_DMA_WAITOK);
903 if (error)
904 goto destroy;
905 return (0);
906
907 destroy:
908 bus_dmamap_destroy(sc->sc_dmatag, p->map);
909 unmap:
910 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
911 free:
912 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
913 return error;
914 }
915
916 static int
917 eap_freemem(struct eap_softc *sc, struct eap_dma *p)
918 {
919
920 bus_dmamap_unload(sc->sc_dmatag, p->map);
921 bus_dmamap_destroy(sc->sc_dmatag, p->map);
922 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
923 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
924 return 0;
925 }
926
927 static int
928 eap_open(void *addr, int flags)
929 {
930 struct eap_instance *ei;
931
932 ei = addr;
933 /* there is only one ADC */
934 if (ei->index == EAP_I2 && flags & FREAD)
935 return EOPNOTSUPP;
936
937 return 0;
938 }
939
940 static int
941 eap_query_encoding(void *addr, struct audio_encoding *fp)
942 {
943
944 switch (fp->index) {
945 case 0:
946 strcpy(fp->name, AudioEulinear);
947 fp->encoding = AUDIO_ENCODING_ULINEAR;
948 fp->precision = 8;
949 fp->flags = 0;
950 return 0;
951 case 1:
952 strcpy(fp->name, AudioEmulaw);
953 fp->encoding = AUDIO_ENCODING_ULAW;
954 fp->precision = 8;
955 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
956 return 0;
957 case 2:
958 strcpy(fp->name, AudioEalaw);
959 fp->encoding = AUDIO_ENCODING_ALAW;
960 fp->precision = 8;
961 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
962 return 0;
963 case 3:
964 strcpy(fp->name, AudioEslinear);
965 fp->encoding = AUDIO_ENCODING_SLINEAR;
966 fp->precision = 8;
967 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
968 return 0;
969 case 4:
970 strcpy(fp->name, AudioEslinear_le);
971 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
972 fp->precision = 16;
973 fp->flags = 0;
974 return 0;
975 case 5:
976 strcpy(fp->name, AudioEulinear_le);
977 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
978 fp->precision = 16;
979 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
980 return 0;
981 case 6:
982 strcpy(fp->name, AudioEslinear_be);
983 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
984 fp->precision = 16;
985 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
986 return 0;
987 case 7:
988 strcpy(fp->name, AudioEulinear_be);
989 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
990 fp->precision = 16;
991 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
992 return 0;
993 default:
994 return EINVAL;
995 }
996 }
997
998 static int
999 eap_set_params(void *addr, int setmode, int usemode,
1000 audio_params_t *play, audio_params_t *rec,
1001 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1002 {
1003 struct eap_instance *ei;
1004 struct eap_softc *sc;
1005 struct audio_params *p;
1006 stream_filter_list_t *fil;
1007 int mode, i;
1008 uint32_t div;
1009
1010 ei = addr;
1011 sc = device_private(ei->parent);
1012 /*
1013 * The es1370 only has one clock, so make the sample rates match.
1014 * This only applies for ADC/DAC2. The FM DAC is handled below.
1015 */
1016 if (!sc->sc_1371 && ei->index == EAP_DAC2) {
1017 if (play->sample_rate != rec->sample_rate &&
1018 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1019 if (setmode == AUMODE_PLAY) {
1020 rec->sample_rate = play->sample_rate;
1021 setmode |= AUMODE_RECORD;
1022 } else if (setmode == AUMODE_RECORD) {
1023 play->sample_rate = rec->sample_rate;
1024 setmode |= AUMODE_PLAY;
1025 } else
1026 return EINVAL;
1027 }
1028 }
1029
1030 for (mode = AUMODE_RECORD; mode != -1;
1031 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1032 if ((setmode & mode) == 0)
1033 continue;
1034
1035 p = mode == AUMODE_PLAY ? play : rec;
1036
1037 if (p->sample_rate < 4000 || p->sample_rate > 48000 ||
1038 (p->precision != 8 && p->precision != 16) ||
1039 (p->channels != 1 && p->channels != 2))
1040 return EINVAL;
1041
1042 fil = mode == AUMODE_PLAY ? pfil : rfil;
1043 i = auconv_set_converter(eap_formats, EAP_NFORMATS,
1044 mode, p, FALSE, fil);
1045 if (i < 0)
1046 return EINVAL;
1047 }
1048
1049 if (sc->sc_1371) {
1050 eap1371_set_dac_rate(ei, play->sample_rate);
1051 eap1371_set_adc_rate(sc, rec->sample_rate);
1052 } else if (ei->index == EAP_DAC2) {
1053 /* Set the speed */
1054 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
1055 EREAD4(sc, EAP_ICSC)));
1056 div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
1057 /*
1058 * XXX
1059 * The -2 isn't documented, but seemed to make the wall
1060 * time match
1061 * what I expect. - mycroft
1062 */
1063 if (usemode == AUMODE_RECORD)
1064 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1065 rec->sample_rate - 2);
1066 else
1067 div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ /
1068 play->sample_rate - 2);
1069 #if 0
1070 div |= EAP_CCB_INTRM;
1071 #else
1072 /*
1073 * It is not obvious how to acknowledge MCCB interrupts, so
1074 * we had better not enable them.
1075 */
1076 #endif
1077 EWRITE4(sc, EAP_ICSC, div);
1078 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1079 } else {
1080 /*
1081 * The FM DAC has only a few fixed-frequency choises, so
1082 * pick out the best candidate.
1083 */
1084 div = EREAD4(sc, EAP_ICSC);
1085 DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n", div));
1086
1087 div &= ~EAP_WTSRSEL;
1088 if (play->sample_rate < 8268)
1089 div |= EAP_WTSRSEL_5;
1090 else if (play->sample_rate < 16537)
1091 div |= EAP_WTSRSEL_11;
1092 else if (play->sample_rate < 33075)
1093 div |= EAP_WTSRSEL_22;
1094 else
1095 div |= EAP_WTSRSEL_44;
1096
1097 EWRITE4(sc, EAP_ICSC, div);
1098 DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
1099 }
1100
1101 return 0;
1102 }
1103
1104 static int
1105 eap_round_blocksize(void *addr, int blk, int mode,
1106 const audio_params_t *param)
1107 {
1108
1109 return blk & -32; /* keep good alignment */
1110 }
1111
1112 static int
1113 eap_trigger_output(
1114 void *addr,
1115 void *start,
1116 void *end,
1117 int blksize,
1118 void (*intr)(void *),
1119 void *arg,
1120 const audio_params_t *param)
1121 {
1122 struct eap_instance *ei;
1123 struct eap_softc *sc;
1124 struct eap_dma *p;
1125 uint32_t icsc, sic;
1126 int sampshift;
1127
1128 ei = addr;
1129 sc = device_private(ei->parent);
1130 #ifdef DIAGNOSTIC
1131 if (ei->ei_prun)
1132 panic("eap_trigger_output: already running");
1133 ei->ei_prun = 1;
1134 #endif
1135
1136 DPRINTFN(1, ("eap_trigger_output: sc=%p start=%p end=%p "
1137 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1138 ei->ei_pintr = intr;
1139 ei->ei_parg = arg;
1140
1141 sic = EREAD4(sc, EAP_SIC);
1142 sic &= ~(EAP_S_EB(ei->index) | EAP_S_MB(ei->index) | EAP_INC_BITS);
1143
1144 if (ei->index == EAP_DAC2)
1145 sic |= EAP_SET_P2_ST_INC(0)
1146 | EAP_SET_P2_END_INC(param->precision / 8);
1147
1148 sampshift = 0;
1149 if (param->precision == 16) {
1150 sic |= EAP_S_EB(ei->index);
1151 sampshift++;
1152 }
1153 if (param->channels == 2) {
1154 sic |= EAP_S_MB(ei->index);
1155 sampshift++;
1156 }
1157 EWRITE4(sc, EAP_SIC, sic & ~EAP_P_INTR_EN(ei->index));
1158 EWRITE4(sc, EAP_SIC, sic | EAP_P_INTR_EN(ei->index));
1159
1160 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1161 continue;
1162 if (!p) {
1163 printf("eap_trigger_output: bad addr %p\n", start);
1164 return EINVAL;
1165 }
1166
1167 if (ei->index == EAP_DAC2) {
1168 DPRINTF(("eap_trigger_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
1169 (int)DMAADDR(p),
1170 (int)EAP_SET_SIZE(0,
1171 (((char *)end - (char *)start) >> 2) - 1)));
1172 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1173 EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
1174 EWRITE4(sc, EAP_DAC2_SIZE,
1175 EAP_SET_SIZE(0,
1176 ((char *)end - (char *)start) >> 2) - 1);
1177 EWRITE4(sc, EAP_DAC2_CSR, (blksize >> sampshift) - 1);
1178 } else if (ei->index == EAP_DAC1) {
1179 DPRINTF(("eap_trigger_output: DAC1_ADDR=0x%x, DAC1_SIZE=0x%x\n",
1180 (int)DMAADDR(p),
1181 (int)EAP_SET_SIZE(0,
1182 (((char *)end - (char *)start) >> 2) - 1)));
1183 EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
1184 EWRITE4(sc, EAP_DAC1_ADDR, DMAADDR(p));
1185 EWRITE4(sc, EAP_DAC1_SIZE,
1186 EAP_SET_SIZE(0,
1187 ((char *)end - (char *)start) >> 2) - 1);
1188 EWRITE4(sc, EAP_DAC1_CSR, (blksize >> sampshift) - 1);
1189 }
1190 #ifdef DIAGNOSTIC
1191 else
1192 panic("eap_trigger_output: impossible instance %d", ei->index);
1193 #endif
1194
1195 if (sc->sc_1371)
1196 EWRITE4(sc, E1371_SRC, 0);
1197
1198 icsc = EREAD4(sc, EAP_ICSC);
1199 icsc |= EAP_DAC_EN(ei->index);
1200 EWRITE4(sc, EAP_ICSC, icsc);
1201
1202 DPRINTFN(1, ("eap_trigger_output: set ICSC = 0x%08x\n", icsc));
1203
1204 return 0;
1205 }
1206
1207 static int
1208 eap_trigger_input(
1209 void *addr,
1210 void *start,
1211 void *end,
1212 int blksize,
1213 void (*intr)(void *),
1214 void *arg,
1215 const audio_params_t *param)
1216 {
1217 struct eap_instance *ei;
1218 struct eap_softc *sc;
1219 struct eap_dma *p;
1220 uint32_t icsc, sic;
1221 int sampshift;
1222
1223 ei = addr;
1224 sc = device_private(ei->parent);
1225 #ifdef DIAGNOSTIC
1226 if (sc->sc_rrun)
1227 panic("eap_trigger_input: already running");
1228 sc->sc_rrun = 1;
1229 #endif
1230
1231 DPRINTFN(1, ("eap_trigger_input: ei=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1232 addr, start, end, blksize, intr, arg));
1233 sc->sc_rintr = intr;
1234 sc->sc_rarg = arg;
1235
1236 sic = EREAD4(sc, EAP_SIC);
1237 sic &= ~(EAP_R1_S_EB | EAP_R1_S_MB);
1238 sampshift = 0;
1239 if (param->precision == 16) {
1240 sic |= EAP_R1_S_EB;
1241 sampshift++;
1242 }
1243 if (param->channels == 2) {
1244 sic |= EAP_R1_S_MB;
1245 sampshift++;
1246 }
1247 EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
1248 EWRITE4(sc, EAP_SIC, sic | EAP_R1_INTR_EN);
1249
1250 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
1251 continue;
1252 if (!p) {
1253 printf("eap_trigger_input: bad addr %p\n", start);
1254 return (EINVAL);
1255 }
1256
1257 DPRINTF(("eap_trigger_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
1258 (int)DMAADDR(p),
1259 (int)EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1)));
1260 EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
1261 EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
1262 EWRITE4(sc, EAP_ADC_SIZE,
1263 EAP_SET_SIZE(0, (((char *)end - (char *)start) >> 2) - 1));
1264
1265 EWRITE4(sc, EAP_ADC_CSR, (blksize >> sampshift) - 1);
1266
1267 if (sc->sc_1371)
1268 EWRITE4(sc, E1371_SRC, 0);
1269
1270 icsc = EREAD4(sc, EAP_ICSC);
1271 icsc |= EAP_ADC_EN;
1272 EWRITE4(sc, EAP_ICSC, icsc);
1273
1274 DPRINTFN(1, ("eap_trigger_input: set ICSC = 0x%08x\n", icsc));
1275
1276 return 0;
1277 }
1278
1279 static int
1280 eap_halt_output(void *addr)
1281 {
1282 struct eap_instance *ei;
1283 struct eap_softc *sc;
1284 uint32_t icsc;
1285
1286 DPRINTF(("eap: eap_halt_output\n"));
1287 ei = addr;
1288 sc = device_private(ei->parent);
1289 icsc = EREAD4(sc, EAP_ICSC);
1290 EWRITE4(sc, EAP_ICSC, icsc & ~(EAP_DAC_EN(ei->index)));
1291 ei->ei_pintr = 0;
1292 #ifdef DIAGNOSTIC
1293 ei->ei_prun = 0;
1294 #endif
1295
1296 return 0;
1297 }
1298
1299 static int
1300 eap_halt_input(void *addr)
1301 {
1302 struct eap_instance *ei;
1303 struct eap_softc *sc;
1304 uint32_t icsc;
1305
1306 #define EAP_USE_FMDAC_ALSO
1307 DPRINTF(("eap: eap_halt_input\n"));
1308 ei = addr;
1309 sc = device_private(ei->parent);
1310 icsc = EREAD4(sc, EAP_ICSC);
1311 EWRITE4(sc, EAP_ICSC, icsc & ~EAP_ADC_EN);
1312 sc->sc_rintr = 0;
1313 #ifdef DIAGNOSTIC
1314 sc->sc_rrun = 0;
1315 #endif
1316
1317 return 0;
1318 }
1319
1320 static int
1321 eap_getdev(void *addr, struct audio_device *retp)
1322 {
1323
1324 *retp = eap_device;
1325 return 0;
1326 }
1327
1328 static int
1329 eap1371_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1330 {
1331 struct eap_instance *ei;
1332 struct eap_softc *sc;
1333
1334 ei = addr;
1335 sc = device_private(ei->parent);
1336 return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
1337 }
1338
1339 static int
1340 eap1371_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1341 {
1342 struct eap_instance *ei;
1343 struct eap_softc *sc;
1344
1345 ei = addr;
1346 sc = device_private(ei->parent);
1347 return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
1348 }
1349
1350 static int
1351 eap1371_query_devinfo(void *addr, mixer_devinfo_t *dip)
1352 {
1353 struct eap_instance *ei;
1354 struct eap_softc *sc;
1355
1356 ei = addr;
1357 sc = device_private(ei->parent);
1358 return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip);
1359 }
1360
1361 static void
1362 eap1370_set_mixer(struct eap_softc *sc, int a, int d)
1363 {
1364 eap1370_write_codec(sc, a, d);
1365
1366 sc->sc_port[a] = d;
1367 DPRINTFN(1, ("eap1370_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
1368 }
1369
1370 static int
1371 eap1370_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1372 {
1373 struct eap_instance *ei;
1374 struct eap_softc *sc;
1375 int lval, rval, l, r, la, ra;
1376 int l1, r1, l2, r2, m, o1, o2;
1377
1378 ei = addr;
1379 sc = device_private(ei->parent);
1380 if (cp->dev == EAP_RECORD_SOURCE) {
1381 if (cp->type != AUDIO_MIXER_SET)
1382 return EINVAL;
1383 m = sc->sc_record_source = cp->un.mask;
1384 l1 = l2 = r1 = r2 = 0;
1385 if (m & (1 << EAP_VOICE_VOL))
1386 l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
1387 if (m & (1 << EAP_FM_VOL))
1388 l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
1389 if (m & (1 << EAP_CD_VOL))
1390 l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
1391 if (m & (1 << EAP_LINE_VOL))
1392 l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
1393 if (m & (1 << EAP_AUX_VOL))
1394 l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
1395 if (m & (1 << EAP_MIC_VOL))
1396 l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
1397 eap1370_set_mixer(sc, AK_IN_MIXER1_L, l1);
1398 eap1370_set_mixer(sc, AK_IN_MIXER1_R, r1);
1399 eap1370_set_mixer(sc, AK_IN_MIXER2_L, l2);
1400 eap1370_set_mixer(sc, AK_IN_MIXER2_R, r2);
1401 return 0;
1402 }
1403 if (cp->dev == EAP_INPUT_SOURCE) {
1404 if (cp->type != AUDIO_MIXER_SET)
1405 return EINVAL;
1406 m = sc->sc_input_source = cp->un.mask;
1407 o1 = o2 = 0;
1408 if (m & (1 << EAP_VOICE_VOL))
1409 o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
1410 if (m & (1 << EAP_FM_VOL))
1411 o1 |= AK_M_FM_L | AK_M_FM_R;
1412 if (m & (1 << EAP_CD_VOL))
1413 o1 |= AK_M_CD_L | AK_M_CD_R;
1414 if (m & (1 << EAP_LINE_VOL))
1415 o1 |= AK_M_LINE_L | AK_M_LINE_R;
1416 if (m & (1 << EAP_AUX_VOL))
1417 o2 |= AK_M_AUX_L | AK_M_AUX_R;
1418 if (m & (1 << EAP_MIC_VOL))
1419 o1 |= AK_M_MIC;
1420 eap1370_set_mixer(sc, AK_OUT_MIXER1, o1);
1421 eap1370_set_mixer(sc, AK_OUT_MIXER2, o2);
1422 return 0;
1423 }
1424 if (cp->dev == EAP_MIC_PREAMP) {
1425 if (cp->type != AUDIO_MIXER_ENUM)
1426 return EINVAL;
1427 if (cp->un.ord != 0 && cp->un.ord != 1)
1428 return EINVAL;
1429 sc->sc_mic_preamp = cp->un.ord;
1430 eap1370_set_mixer(sc, AK_MGAIN, cp->un.ord);
1431 return 0;
1432 }
1433 if (cp->type != AUDIO_MIXER_VALUE)
1434 return EINVAL;
1435 if (cp->un.value.num_channels == 1)
1436 lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1437 else if (cp->un.value.num_channels == 2) {
1438 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1439 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1440 } else
1441 return EINVAL;
1442 ra = -1;
1443 switch (cp->dev) {
1444 case EAP_MASTER_VOL:
1445 l = VOL_TO_ATT5(lval);
1446 r = VOL_TO_ATT5(rval);
1447 la = AK_MASTER_L;
1448 ra = AK_MASTER_R;
1449 break;
1450 case EAP_MIC_VOL:
1451 if (cp->un.value.num_channels != 1)
1452 return EINVAL;
1453 la = AK_MIC;
1454 goto lr;
1455 case EAP_VOICE_VOL:
1456 la = AK_VOICE_L;
1457 ra = AK_VOICE_R;
1458 goto lr;
1459 case EAP_FM_VOL:
1460 la = AK_FM_L;
1461 ra = AK_FM_R;
1462 goto lr;
1463 case EAP_CD_VOL:
1464 la = AK_CD_L;
1465 ra = AK_CD_R;
1466 goto lr;
1467 case EAP_LINE_VOL:
1468 la = AK_LINE_L;
1469 ra = AK_LINE_R;
1470 goto lr;
1471 case EAP_AUX_VOL:
1472 la = AK_AUX_L;
1473 ra = AK_AUX_R;
1474 lr:
1475 l = VOL_TO_GAIN5(lval);
1476 r = VOL_TO_GAIN5(rval);
1477 break;
1478 default:
1479 return EINVAL;
1480 }
1481 eap1370_set_mixer(sc, la, l);
1482 if (ra >= 0) {
1483 eap1370_set_mixer(sc, ra, r);
1484 }
1485 return 0;
1486 }
1487
1488 static int
1489 eap1370_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1490 {
1491 struct eap_instance *ei;
1492 struct eap_softc *sc;
1493 int la, ra, l, r;
1494
1495 ei = addr;
1496 sc = device_private(ei->parent);
1497 switch (cp->dev) {
1498 case EAP_RECORD_SOURCE:
1499 if (cp->type != AUDIO_MIXER_SET)
1500 return EINVAL;
1501 cp->un.mask = sc->sc_record_source;
1502 return 0;
1503 case EAP_INPUT_SOURCE:
1504 if (cp->type != AUDIO_MIXER_SET)
1505 return EINVAL;
1506 cp->un.mask = sc->sc_input_source;
1507 return 0;
1508 case EAP_MIC_PREAMP:
1509 if (cp->type != AUDIO_MIXER_ENUM)
1510 return EINVAL;
1511 cp->un.ord = sc->sc_mic_preamp;
1512 return 0;
1513 case EAP_MASTER_VOL:
1514 l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
1515 r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
1516 break;
1517 case EAP_MIC_VOL:
1518 if (cp->un.value.num_channels != 1)
1519 return EINVAL;
1520 la = ra = AK_MIC;
1521 goto lr;
1522 case EAP_VOICE_VOL:
1523 la = AK_VOICE_L;
1524 ra = AK_VOICE_R;
1525 goto lr;
1526 case EAP_FM_VOL:
1527 la = AK_FM_L;
1528 ra = AK_FM_R;
1529 goto lr;
1530 case EAP_CD_VOL:
1531 la = AK_CD_L;
1532 ra = AK_CD_R;
1533 goto lr;
1534 case EAP_LINE_VOL:
1535 la = AK_LINE_L;
1536 ra = AK_LINE_R;
1537 goto lr;
1538 case EAP_AUX_VOL:
1539 la = AK_AUX_L;
1540 ra = AK_AUX_R;
1541 lr:
1542 l = GAIN5_TO_VOL(sc->sc_port[la]);
1543 r = GAIN5_TO_VOL(sc->sc_port[ra]);
1544 break;
1545 default:
1546 return EINVAL;
1547 }
1548 if (cp->un.value.num_channels == 1)
1549 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
1550 else if (cp->un.value.num_channels == 2) {
1551 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
1552 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
1553 } else
1554 return EINVAL;
1555 return 0;
1556 }
1557
1558 static int
1559 eap1370_query_devinfo(void *addr, mixer_devinfo_t *dip)
1560 {
1561
1562 switch (dip->index) {
1563 case EAP_MASTER_VOL:
1564 dip->type = AUDIO_MIXER_VALUE;
1565 dip->mixer_class = EAP_OUTPUT_CLASS;
1566 dip->prev = dip->next = AUDIO_MIXER_LAST;
1567 strcpy(dip->label.name, AudioNmaster);
1568 dip->un.v.num_channels = 2;
1569 dip->un.v.delta = 8;
1570 strcpy(dip->un.v.units.name, AudioNvolume);
1571 return 0;
1572 case EAP_VOICE_VOL:
1573 dip->type = AUDIO_MIXER_VALUE;
1574 dip->mixer_class = EAP_INPUT_CLASS;
1575 dip->prev = AUDIO_MIXER_LAST;
1576 dip->next = AUDIO_MIXER_LAST;
1577 strcpy(dip->label.name, AudioNdac);
1578 dip->un.v.num_channels = 2;
1579 dip->un.v.delta = 8;
1580 strcpy(dip->un.v.units.name, AudioNvolume);
1581 return 0;
1582 case EAP_FM_VOL:
1583 dip->type = AUDIO_MIXER_VALUE;
1584 dip->mixer_class = EAP_INPUT_CLASS;
1585 dip->prev = AUDIO_MIXER_LAST;
1586 dip->next = AUDIO_MIXER_LAST;
1587 strcpy(dip->label.name, AudioNfmsynth);
1588 dip->un.v.num_channels = 2;
1589 dip->un.v.delta = 8;
1590 strcpy(dip->un.v.units.name, AudioNvolume);
1591 return 0;
1592 case EAP_CD_VOL:
1593 dip->type = AUDIO_MIXER_VALUE;
1594 dip->mixer_class = EAP_INPUT_CLASS;
1595 dip->prev = AUDIO_MIXER_LAST;
1596 dip->next = AUDIO_MIXER_LAST;
1597 strcpy(dip->label.name, AudioNcd);
1598 dip->un.v.num_channels = 2;
1599 dip->un.v.delta = 8;
1600 strcpy(dip->un.v.units.name, AudioNvolume);
1601 return 0;
1602 case EAP_LINE_VOL:
1603 dip->type = AUDIO_MIXER_VALUE;
1604 dip->mixer_class = EAP_INPUT_CLASS;
1605 dip->prev = AUDIO_MIXER_LAST;
1606 dip->next = AUDIO_MIXER_LAST;
1607 strcpy(dip->label.name, AudioNline);
1608 dip->un.v.num_channels = 2;
1609 dip->un.v.delta = 8;
1610 strcpy(dip->un.v.units.name, AudioNvolume);
1611 return 0;
1612 case EAP_AUX_VOL:
1613 dip->type = AUDIO_MIXER_VALUE;
1614 dip->mixer_class = EAP_INPUT_CLASS;
1615 dip->prev = AUDIO_MIXER_LAST;
1616 dip->next = AUDIO_MIXER_LAST;
1617 strcpy(dip->label.name, AudioNaux);
1618 dip->un.v.num_channels = 2;
1619 dip->un.v.delta = 8;
1620 strcpy(dip->un.v.units.name, AudioNvolume);
1621 return 0;
1622 case EAP_MIC_VOL:
1623 dip->type = AUDIO_MIXER_VALUE;
1624 dip->mixer_class = EAP_INPUT_CLASS;
1625 dip->prev = AUDIO_MIXER_LAST;
1626 dip->next = EAP_MIC_PREAMP;
1627 strcpy(dip->label.name, AudioNmicrophone);
1628 dip->un.v.num_channels = 1;
1629 dip->un.v.delta = 8;
1630 strcpy(dip->un.v.units.name, AudioNvolume);
1631 return 0;
1632 case EAP_RECORD_SOURCE:
1633 dip->mixer_class = EAP_RECORD_CLASS;
1634 dip->prev = dip->next = AUDIO_MIXER_LAST;
1635 strcpy(dip->label.name, AudioNsource);
1636 dip->type = AUDIO_MIXER_SET;
1637 dip->un.s.num_mem = 6;
1638 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1639 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1640 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1641 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1642 strcpy(dip->un.s.member[2].label.name, AudioNline);
1643 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1644 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1645 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1646 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1647 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1648 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1649 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1650 return 0;
1651 case EAP_INPUT_SOURCE:
1652 dip->mixer_class = EAP_INPUT_CLASS;
1653 dip->prev = dip->next = AUDIO_MIXER_LAST;
1654 strcpy(dip->label.name, AudioNsource);
1655 dip->type = AUDIO_MIXER_SET;
1656 dip->un.s.num_mem = 6;
1657 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1658 dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
1659 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1660 dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
1661 strcpy(dip->un.s.member[2].label.name, AudioNline);
1662 dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
1663 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1664 dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
1665 strcpy(dip->un.s.member[4].label.name, AudioNaux);
1666 dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
1667 strcpy(dip->un.s.member[5].label.name, AudioNdac);
1668 dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
1669 return 0;
1670 case EAP_MIC_PREAMP:
1671 dip->type = AUDIO_MIXER_ENUM;
1672 dip->mixer_class = EAP_INPUT_CLASS;
1673 dip->prev = EAP_MIC_VOL;
1674 dip->next = AUDIO_MIXER_LAST;
1675 strcpy(dip->label.name, AudioNpreamp);
1676 dip->un.e.num_mem = 2;
1677 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1678 dip->un.e.member[0].ord = 0;
1679 strcpy(dip->un.e.member[1].label.name, AudioNon);
1680 dip->un.e.member[1].ord = 1;
1681 return 0;
1682 case EAP_OUTPUT_CLASS:
1683 dip->type = AUDIO_MIXER_CLASS;
1684 dip->mixer_class = EAP_OUTPUT_CLASS;
1685 dip->next = dip->prev = AUDIO_MIXER_LAST;
1686 strcpy(dip->label.name, AudioCoutputs);
1687 return 0;
1688 case EAP_RECORD_CLASS:
1689 dip->type = AUDIO_MIXER_CLASS;
1690 dip->mixer_class = EAP_RECORD_CLASS;
1691 dip->next = dip->prev = AUDIO_MIXER_LAST;
1692 strcpy(dip->label.name, AudioCrecord);
1693 return 0;
1694 case EAP_INPUT_CLASS:
1695 dip->type = AUDIO_MIXER_CLASS;
1696 dip->mixer_class = EAP_INPUT_CLASS;
1697 dip->next = dip->prev = AUDIO_MIXER_LAST;
1698 strcpy(dip->label.name, AudioCinputs);
1699 return 0;
1700 }
1701 return ENXIO;
1702 }
1703
1704 static void *
1705 eap_malloc(void *addr, int direction, size_t size)
1706 {
1707 struct eap_instance *ei;
1708 struct eap_softc *sc;
1709 struct eap_dma *p;
1710 int error;
1711
1712 p = kmem_alloc(sizeof(*p), KM_SLEEP);
1713 ei = addr;
1714 sc = device_private(ei->parent);
1715 error = eap_allocmem(sc, size, 16, p);
1716 if (error) {
1717 kmem_free(p, sizeof(*p));
1718 return NULL;
1719 }
1720 p->next = sc->sc_dmas;
1721 sc->sc_dmas = p;
1722 return KERNADDR(p);
1723 }
1724
1725 static void
1726 eap_free(void *addr, void *ptr, size_t size)
1727 {
1728 struct eap_instance *ei;
1729 struct eap_softc *sc;
1730 struct eap_dma **pp, *p;
1731
1732 ei = addr;
1733 sc = device_private(ei->parent);
1734 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1735 if (KERNADDR(p) == ptr) {
1736 eap_freemem(sc, p);
1737 *pp = p->next;
1738 kmem_free(p, sizeof(*p));
1739 return;
1740 }
1741 }
1742 }
1743
1744 static size_t
1745 eap_round_buffersize(void *addr, int direction, size_t size)
1746 {
1747
1748 return size;
1749 }
1750
1751 static paddr_t
1752 eap_mappage(void *addr, void *mem, off_t off, int prot)
1753 {
1754 struct eap_instance *ei;
1755 struct eap_softc *sc;
1756 struct eap_dma *p;
1757
1758 if (off < 0)
1759 return -1;
1760 ei = addr;
1761 sc = device_private(ei->parent);
1762 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1763 continue;
1764 if (!p)
1765 return -1;
1766
1767 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1768 off, prot, BUS_DMA_WAITOK);
1769 }
1770
1771 static int
1772 eap_get_props(void *addr)
1773 {
1774
1775 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1776 AUDIO_PROP_FULLDUPLEX;
1777 }
1778
1779 static void
1780 eap_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1781 {
1782 struct eap_instance *ei;
1783 struct eap_softc *sc;
1784
1785 ei = addr;
1786 sc = device_private(ei->parent);
1787 *intr = &sc->sc_intr_lock;
1788 *thread = &sc->sc_lock;
1789 }
1790
1791 #if NMIDI > 0
1792 static int
1793 eap_midi_open(void *addr, int flags,
1794 void (*iintr)(void *, int),
1795 void (*ointr)(void *),
1796 void *arg)
1797 {
1798 struct eap_softc *sc;
1799 uint8_t uctrl;
1800
1801 sc = addr;
1802 sc->sc_arg = arg;
1803
1804 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) | EAP_UART_EN);
1805 uctrl = 0;
1806 if (flags & FREAD) {
1807 uctrl |= EAP_UC_RXINTEN;
1808 sc->sc_iintr = iintr;
1809 }
1810 if (flags & FWRITE)
1811 sc->sc_ointr = ointr;
1812 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1813
1814 return 0;
1815 }
1816
1817 static void
1818 eap_midi_close(void *addr)
1819 {
1820 struct eap_softc *sc;
1821
1822 sc = addr;
1823 /* give uart a chance to drain */
1824 (void)kpause("eapclm", false, hz/10, &sc->sc_intr_lock);
1825 EWRITE1(sc, EAP_UART_CONTROL, 0);
1826 EWRITE4(sc, EAP_ICSC, EREAD4(sc, EAP_ICSC) & ~EAP_UART_EN);
1827
1828 sc->sc_iintr = 0;
1829 sc->sc_ointr = 0;
1830 }
1831
1832 static int
1833 eap_midi_output(void *addr, int d)
1834 {
1835 struct eap_softc *sc;
1836 uint8_t uctrl;
1837
1838 sc = addr;
1839 EWRITE1(sc, EAP_UART_DATA, d);
1840
1841 uctrl = EAP_UC_TXINTEN;
1842 if (sc->sc_iintr)
1843 uctrl |= EAP_UC_RXINTEN;
1844 /*
1845 * This is a write-only register, so we have to remember the right
1846 * value of RXINTEN as well as setting TXINTEN. But if we are open
1847 * for reading, it will always be correct to set RXINTEN here; only
1848 * during service of a receive interrupt could it be momentarily
1849 * toggled off, and whether we got here from the top half or from
1850 * an interrupt, that won't be the current state.
1851 */
1852 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1853 return 0;
1854 }
1855
1856 static void
1857 eap_midi_getinfo(void *addr, struct midi_info *mi)
1858 {
1859 mi->name = "AudioPCI MIDI UART";
1860 mi->props = MIDI_PROP_CAN_INPUT | MIDI_PROP_OUT_INTR;
1861 }
1862
1863 static void
1864 eap_uart_txrdy(struct eap_softc *sc)
1865 {
1866 uint8_t uctrl;
1867 uctrl = 0;
1868 if (sc->sc_iintr)
1869 uctrl = EAP_UC_RXINTEN;
1870 EWRITE1(sc, EAP_UART_CONTROL, uctrl);
1871 sc->sc_ointr(sc->sc_arg);
1872 }
1873
1874 #endif
1875