eso.c revision 1.11 1 /* $NetBSD: eso.c,v 1.11 1999/11/01 18:12:20 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1999 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include "mpu.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/device.h>
42 #include <sys/proc.h>
43
44 #include <dev/pci/pcidevs.h>
45 #include <dev/pci/pcivar.h>
46
47 #include <sys/audioio.h>
48 #include <dev/audio_if.h>
49 #include <dev/midi_if.h>
50
51 #include <dev/mulaw.h>
52 #include <dev/auconv.h>
53
54 #include <dev/ic/mpuvar.h>
55 #include <dev/ic/i8237reg.h>
56 #include <dev/pci/esoreg.h>
57 #include <dev/pci/esovar.h>
58
59 #include <machine/bus.h>
60 #include <machine/intr.h>
61
62 #if defined(AUDIO_DEBUG) || defined(DEBUG)
63 #define DPRINTF(x) printf x
64 #else
65 #define DPRINTF(x)
66 #endif
67
68 struct eso_dma {
69 bus_dma_tag_t ed_dmat;
70 bus_dmamap_t ed_map;
71 caddr_t ed_addr;
72 bus_dma_segment_t ed_segs[1];
73 int ed_nsegs;
74 size_t ed_size;
75 struct eso_dma * ed_next;
76 };
77
78 #define KVADDR(dma) ((void *)(dma)->ed_addr)
79 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
80
81 /* Autoconfiguration interface */
82 static int eso_match __P((struct device *, struct cfdata *, void *));
83 static void eso_attach __P((struct device *, struct device *, void *));
84 static void eso_defer __P((struct device *));
85
86 struct cfattach eso_ca = {
87 sizeof (struct eso_softc), eso_match, eso_attach
88 };
89
90 /* PCI interface */
91 static int eso_intr __P((void *));
92
93 /* MI audio layer interface */
94 static int eso_open __P((void *, int));
95 static void eso_close __P((void *));
96 static int eso_query_encoding __P((void *, struct audio_encoding *));
97 static int eso_set_params __P((void *, int, int, struct audio_params *,
98 struct audio_params *));
99 static int eso_round_blocksize __P((void *, int));
100 static int eso_halt_output __P((void *));
101 static int eso_halt_input __P((void *));
102 static int eso_getdev __P((void *, struct audio_device *));
103 static int eso_set_port __P((void *, mixer_ctrl_t *));
104 static int eso_get_port __P((void *, mixer_ctrl_t *));
105 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
106 static void * eso_allocm __P((void *, int, size_t, int, int));
107 static void eso_freem __P((void *, void *, int));
108 static size_t eso_round_buffersize __P((void *, int, size_t));
109 static int eso_mappage __P((void *, void *, int, int));
110 static int eso_get_props __P((void *));
111 static int eso_trigger_output __P((void *, void *, void *, int,
112 void (*)(void *), void *, struct audio_params *));
113 static int eso_trigger_input __P((void *, void *, void *, int,
114 void (*)(void *), void *, struct audio_params *));
115
116 static struct audio_hw_if eso_hw_if = {
117 eso_open,
118 eso_close,
119 NULL, /* drain */
120 eso_query_encoding,
121 eso_set_params,
122 eso_round_blocksize,
123 NULL, /* commit_settings */
124 NULL, /* init_output */
125 NULL, /* init_input */
126 NULL, /* start_output */
127 NULL, /* start_input */
128 eso_halt_output,
129 eso_halt_input,
130 NULL, /* speaker_ctl */
131 eso_getdev,
132 NULL, /* setfd */
133 eso_set_port,
134 eso_get_port,
135 eso_query_devinfo,
136 eso_allocm,
137 eso_freem,
138 eso_round_buffersize,
139 eso_mappage,
140 eso_get_props,
141 eso_trigger_output,
142 eso_trigger_input
143 };
144
145 static const char * const eso_rev2model[] = {
146 "ES1938",
147 "ES1946"
148 };
149
150
151 /*
152 * Utility routines
153 */
154 /* Register access etc. */
155 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
156 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
157 static uint8_t eso_read_rdr __P((struct eso_softc *));
158 static int eso_reset __P((struct eso_softc *));
159 static void eso_set_gain __P((struct eso_softc *, unsigned int));
160 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
161 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
162 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
163 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
164 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
165 /* DMA memory allocation */
166 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
167 int, struct eso_dma *));
168 static void eso_freemem __P((struct eso_dma *));
169
170
171 static int
172 eso_match(parent, match, aux)
173 struct device *parent;
174 struct cfdata *match;
175 void *aux;
176 {
177 struct pci_attach_args *pa = aux;
178
179 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
181 return (1);
182
183 return (0);
184 }
185
186 static void
187 eso_attach(parent, self, aux)
188 struct device *parent, *self;
189 void *aux;
190 {
191 struct eso_softc *sc = (struct eso_softc *)self;
192 struct pci_attach_args *pa = aux;
193 struct audio_attach_args aa;
194 pci_intr_handle_t ih;
195 bus_addr_t vcbase;
196 const char *intrstring;
197 int idx;
198 uint8_t a2mode, mvctl;
199
200 sc->sc_revision = PCI_REVISION(pa->pa_class);
201
202 printf(": ESS Solo-1 PCI AudioDrive ");
203 if (sc->sc_revision <
204 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
205 printf("%s\n", eso_rev2model[sc->sc_revision]);
206 else
207 printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
208
209 /* Map I/O registers. */
210 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
211 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
212 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
213 return;
214 }
215 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
216 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
217 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
218 return;
219 }
220 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
221 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
222 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
223 /* Don't bail out yet: we can map it later, see below. */
224 vcbase = 0;
225 sc->sc_vcsize = 0x10; /* From the data sheet. */
226 }
227 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
228 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
229 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
230 return;
231 }
232 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
233 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
234 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
235 return;
236 }
237
238 sc->sc_dmat = pa->pa_dmat;
239 sc->sc_dmas = NULL;
240 sc->sc_dmac_configured = 0;
241
242 /* Enable bus mastering. */
243 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
244 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
245 PCI_COMMAND_MASTER_ENABLE);
246
247 /* Reset the device; bail out upon failure. */
248 if (eso_reset(sc) != 0) {
249 printf("%s: can't reset\n", sc->sc_dev.dv_xname);
250 return;
251 }
252
253 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
254 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
255 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
256 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
257
258 /* Enable the relevant (DMA) interrupts. */
259 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
260 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_MPUIRQ);
261
262 /* Set up A1's sample rate generator for new-style parameters. */
263 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
264 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
265 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
266
267 /* Set mixer regs to something reasonable, needs work. */
268 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
269 int v;
270
271 switch (idx) {
272 case ESO_MIC_PLAY_VOL:
273 case ESO_LINE_PLAY_VOL:
274 case ESO_CD_PLAY_VOL:
275 case ESO_MONO_PLAY_VOL:
276 case ESO_AUXB_PLAY_VOL:
277 case ESO_DAC_REC_VOL:
278 case ESO_LINE_REC_VOL:
279 case ESO_SYNTH_REC_VOL:
280 case ESO_CD_REC_VOL:
281 case ESO_MONO_REC_VOL:
282 case ESO_AUXB_REC_VOL:
283 case ESO_SPATIALIZER:
284 v = 0;
285 break;
286 case ESO_MASTER_VOL:
287 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
288 break;
289 default:
290 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
291 break;
292 }
293 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
294 eso_set_gain(sc, idx);
295 }
296 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
297
298 /* Map and establish the interrupt. */
299 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
300 pa->pa_intrline, &ih)) {
301 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
302 return;
303 }
304 intrstring = pci_intr_string(pa->pa_pc, ih);
305 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
306 if (sc->sc_ih == NULL) {
307 printf("%s: couldn't establish interrupt",
308 sc->sc_dev.dv_xname);
309 if (intrstring != NULL)
310 printf(" at %s", intrstring);
311 printf("\n");
312 return;
313 }
314 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
315
316 /*
317 * Set up the DDMA Control register; a suitable I/O region has been
318 * supposedly mapped in the VC base address register.
319 *
320 * The Solo-1 has an ... interesting silicon bug that causes it to
321 * not respond to I/O space accesses to the Audio 1 DMA controller
322 * if the latter's mapping base address is aligned on a 1K boundary.
323 * As a consequence, it is quite possible for the mapping provided
324 * in the VC BAR to be useless. To work around this, we defer this
325 * part until all autoconfiguration on our parent bus is completed
326 * and then try to map it ourselves in fulfillment of the constraint.
327 *
328 * According to the register map we may write to the low 16 bits
329 * only, but experimenting has shown we're safe.
330 * -kjk
331 */
332 if (ESO_VALID_DDMAC_BASE(vcbase)) {
333 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
334 vcbase | ESO_PCI_DDMAC_DE);
335 sc->sc_dmac_configured = 1;
336
337 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
338 sc->sc_dev.dv_xname, (unsigned long)vcbase);
339 } else {
340 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
341 sc->sc_dev.dv_xname, (unsigned long)vcbase));
342 sc->sc_pa = *pa;
343 config_defer(self, eso_defer);
344 }
345
346 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
347
348 aa.type = AUDIODEV_TYPE_OPL;
349 aa.hwif = NULL;
350 aa.hdl = NULL;
351 (void)config_found(&sc->sc_dev, &aa, audioprint);
352
353 aa.type = AUDIODEV_TYPE_MPU;
354 aa.hwif = NULL;
355 aa.hdl = NULL;
356 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
357 if (sc->sc_mpudev != NULL) {
358 /* Unmask the MPU irq. */
359 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
360 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
361 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
362 }
363 }
364
365 static void
366 eso_defer(self)
367 struct device *self;
368 {
369 struct eso_softc *sc = (struct eso_softc *)self;
370 struct pci_attach_args *pa = &sc->sc_pa;
371 bus_addr_t addr, start;
372
373 printf("%s: ", sc->sc_dev.dv_xname);
374
375 /*
376 * This is outright ugly, but since we must not make assumptions
377 * on the underlying allocator's behaviour it's the most straight-
378 * forward way to implement it. Note that we skip over the first
379 * 1K region, which is typically occupied by an attached ISA bus.
380 */
381 for (start = 0x0400; start < 0xffff; start += 0x0400) {
382 if (bus_space_alloc(sc->sc_iot,
383 start + sc->sc_vcsize, start + 0x0400 - 1,
384 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
385 &sc->sc_dmac_ioh) != 0)
386 continue;
387
388 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
389 addr | ESO_PCI_DDMAC_DE);
390 sc->sc_dmac_iot = sc->sc_iot;
391 sc->sc_dmac_configured = 1;
392 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
393 (unsigned long)addr);
394
395 return;
396 }
397
398 printf("can't map Audio 1 DMA into I/O space\n");
399 }
400
401 static void
402 eso_write_cmd(sc, cmd)
403 struct eso_softc *sc;
404 uint8_t cmd;
405 {
406 int i;
407
408 /* Poll for busy indicator to become clear. */
409 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
410 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
411 & ESO_SB_RSR_BUSY) == 0) {
412 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
413 ESO_SB_WDR, cmd);
414 return;
415 } else {
416 delay(10);
417 }
418 }
419
420 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
421 return;
422 }
423
424 /* Write to a controller register */
425 static void
426 eso_write_ctlreg(sc, reg, val)
427 struct eso_softc *sc;
428 uint8_t reg, val;
429 {
430
431 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
432
433 eso_write_cmd(sc, reg);
434 eso_write_cmd(sc, val);
435 }
436
437 /* Read out the Read Data Register */
438 static uint8_t
439 eso_read_rdr(sc)
440 struct eso_softc *sc;
441 {
442 int i;
443
444 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
445 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
446 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
447 return (bus_space_read_1(sc->sc_sb_iot,
448 sc->sc_sb_ioh, ESO_SB_RDR));
449 } else {
450 delay(10);
451 }
452 }
453
454 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
455 return (-1);
456 }
457
458
459 static uint8_t
460 eso_read_ctlreg(sc, reg)
461 struct eso_softc *sc;
462 uint8_t reg;
463 {
464
465 eso_write_cmd(sc, ESO_CMD_RCR);
466 eso_write_cmd(sc, reg);
467 return (eso_read_rdr(sc));
468 }
469
470 static void
471 eso_write_mixreg(sc, reg, val)
472 struct eso_softc *sc;
473 uint8_t reg, val;
474 {
475 int s;
476
477 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
478
479 s = splaudio();
480 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
481 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
482 splx(s);
483 }
484
485 static uint8_t
486 eso_read_mixreg(sc, reg)
487 struct eso_softc *sc;
488 uint8_t reg;
489 {
490 int s;
491 uint8_t val;
492
493 s = splaudio();
494 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
495 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
496 splx(s);
497
498 return (val);
499 }
500
501 static int
502 eso_intr(hdl)
503 void *hdl;
504 {
505 struct eso_softc *sc = hdl;
506 uint8_t irqctl;
507
508 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
509
510 /* If it wasn't ours, that's all she wrote. */
511 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
512 ESO_IO_IRQCTL_MPUIRQ)) == 0)
513 return (0);
514
515 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
516 /* Clear interrupt. */
517 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
518 ESO_SB_RBSR);
519
520 if (sc->sc_rintr)
521 sc->sc_rintr(sc->sc_rarg);
522 else
523 wakeup(&sc->sc_rintr);
524 }
525
526 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
527 /*
528 * Clear the A2 IRQ latch: the cached value reflects the
529 * current DAC settings with the IRQ latch bit not set.
530 */
531 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
532
533 if (sc->sc_pintr)
534 sc->sc_pintr(sc->sc_parg);
535 else
536 wakeup(&sc->sc_pintr);
537 }
538
539 #if NMPU > 0
540 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
541 mpu_intr(sc->sc_mpudev);
542 #endif
543
544 return (1);
545 }
546
547 /* Perform a software reset, including DMA FIFOs. */
548 static int
549 eso_reset(sc)
550 struct eso_softc *sc;
551 {
552 int i;
553
554 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
555 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
556 /* `Delay' suggested in the data sheet. */
557 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
558 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
559
560 /* Wait for reset to take effect. */
561 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
562 /* Poll for data to become available. */
563 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
564 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
565 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
566 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
567
568 /* Activate Solo-1 extension commands. */
569 eso_write_cmd(sc, ESO_CMD_EXTENB);
570 /* Reset mixer registers. */
571 eso_write_mixreg(sc, ESO_MIXREG_RESET,
572 ESO_MIXREG_RESET_RESET);
573
574 return (0);
575 } else {
576 delay(1000);
577 }
578 }
579
580 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
581 return (-1);
582 }
583
584
585 /* ARGSUSED */
586 static int
587 eso_open(hdl, flags)
588 void *hdl;
589 int flags;
590 {
591 struct eso_softc *sc = hdl;
592
593 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
594
595 sc->sc_pintr = NULL;
596 sc->sc_rintr = NULL;
597
598 return (0);
599 }
600
601 static void
602 eso_close(hdl)
603 void *hdl;
604 {
605
606 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
607 }
608
609 static int
610 eso_query_encoding(hdl, fp)
611 void *hdl;
612 struct audio_encoding *fp;
613 {
614
615 switch (fp->index) {
616 case 0:
617 strcpy(fp->name, AudioEulinear);
618 fp->encoding = AUDIO_ENCODING_ULINEAR;
619 fp->precision = 8;
620 fp->flags = 0;
621 break;
622 case 1:
623 strcpy(fp->name, AudioEmulaw);
624 fp->encoding = AUDIO_ENCODING_ULAW;
625 fp->precision = 8;
626 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
627 break;
628 case 2:
629 strcpy(fp->name, AudioEalaw);
630 fp->encoding = AUDIO_ENCODING_ALAW;
631 fp->precision = 8;
632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 break;
634 case 3:
635 strcpy(fp->name, AudioEslinear);
636 fp->encoding = AUDIO_ENCODING_SLINEAR;
637 fp->precision = 8;
638 fp->flags = 0;
639 break;
640 case 4:
641 strcpy(fp->name, AudioEslinear_le);
642 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
643 fp->precision = 16;
644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 break;
646 case 5:
647 strcpy(fp->name, AudioEulinear_le);
648 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
649 fp->precision = 16;
650 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
651 break;
652 case 6:
653 strcpy(fp->name, AudioEslinear_be);
654 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
655 fp->precision = 16;
656 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
657 break;
658 case 7:
659 strcpy(fp->name, AudioEulinear_be);
660 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
661 fp->precision = 16;
662 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
663 break;
664 default:
665 return (EINVAL);
666 }
667
668 return (0);
669 }
670
671 static int
672 eso_set_params(hdl, setmode, usemode, play, rec)
673 void *hdl;
674 int setmode, usemode;
675 struct audio_params *play, *rec;
676 {
677 struct eso_softc *sc = hdl;
678 struct audio_params *p;
679 int mode, r[2], rd[2], clk;
680 unsigned int srg, fltdiv;
681
682 for (mode = AUMODE_RECORD; mode != -1;
683 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
684 if ((setmode & mode) == 0)
685 continue;
686
687 p = (mode == AUMODE_PLAY) ? play : rec;
688
689 if (p->sample_rate < ESO_MINRATE ||
690 p->sample_rate > ESO_MAXRATE ||
691 (p->precision != 8 && p->precision != 16) ||
692 (p->channels != 1 && p->channels != 2))
693 return (EINVAL);
694
695 p->factor = 1;
696 p->sw_code = NULL;
697 switch (p->encoding) {
698 case AUDIO_ENCODING_SLINEAR_BE:
699 case AUDIO_ENCODING_ULINEAR_BE:
700 if (mode == AUMODE_PLAY && p->precision == 16)
701 p->sw_code = swap_bytes;
702 break;
703 case AUDIO_ENCODING_SLINEAR_LE:
704 case AUDIO_ENCODING_ULINEAR_LE:
705 if (mode == AUMODE_RECORD && p->precision == 16)
706 p->sw_code = swap_bytes;
707 break;
708 case AUDIO_ENCODING_ULAW:
709 if (mode == AUMODE_PLAY) {
710 p->factor = 2;
711 p->sw_code = mulaw_to_ulinear16_le;
712 } else {
713 p->sw_code = ulinear8_to_mulaw;
714 }
715 break;
716 case AUDIO_ENCODING_ALAW:
717 if (mode == AUMODE_PLAY) {
718 p->factor = 2;
719 p->sw_code = alaw_to_ulinear16_le;
720 } else {
721 p->sw_code = ulinear8_to_alaw;
722 }
723 break;
724 default:
725 return (EINVAL);
726 }
727
728 /*
729 * We'll compute both possible sample rate dividers and pick
730 * the one with the least error.
731 */
732 #define ABS(x) ((x) < 0 ? -(x) : (x))
733 r[0] = ESO_CLK0 /
734 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
735 r[1] = ESO_CLK1 /
736 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
737
738 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
739 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
740
741 /* Roll-off frequency of 87%, as in the ES1888 driver. */
742 fltdiv = 256 - 200279L / r[clk];
743
744 /* Update to reflect the possibly inexact rate. */
745 p->sample_rate = r[clk];
746
747 if (mode == AUMODE_RECORD) {
748 /* Audio 1 */
749 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
750 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
751 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
752 } else {
753 /* Audio 2 */
754 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
755 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
756 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
757 }
758 #undef ABS
759
760 }
761
762 return (0);
763 }
764
765 static int
766 eso_round_blocksize(hdl, blk)
767 void *hdl;
768 int blk;
769 {
770
771 return (blk & -32); /* keep good alignment; at least 16 req'd */
772 }
773
774 static int
775 eso_halt_output(hdl)
776 void *hdl;
777 {
778 struct eso_softc *sc = hdl;
779 int error, s;
780
781 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
782
783 /*
784 * Disable auto-initialize DMA, allowing the FIFO to drain and then
785 * stop. The interrupt callback pointer is cleared at this
786 * point so that an outstanding FIFO interrupt for the remaining data
787 * will be acknowledged without further processing.
788 *
789 * This does not immediately `abort' an operation in progress (c.f.
790 * audio(9)) but is the method to leave the FIFO behind in a clean
791 * state with the least hair. (Besides, that item needs to be
792 * rephrased for trigger_*()-based DMA environments.)
793 */
794 s = splaudio();
795 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
796 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
797 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
798 ESO_IO_A2DMAM_DMAENB);
799
800 sc->sc_pintr = NULL;
801 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", hz);
802 splx(s);
803
804 /* Shut down DMA completely. */
805 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
806 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
807
808 return (error == EWOULDBLOCK ? 0 : error);
809 }
810
811 static int
812 eso_halt_input(hdl)
813 void *hdl;
814 {
815 struct eso_softc *sc = hdl;
816 int error, s;
817
818 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
819
820 /* Just like eso_halt_output(), but for Audio 1. */
821 s = splaudio();
822 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
823 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
824 ESO_CTLREG_A1C2_DMAENB);
825 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
826 DMA37MD_WRITE | DMA37MD_DEMAND);
827
828 sc->sc_rintr = NULL;
829 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", hz);
830 splx(s);
831
832 /* Shut down DMA completely. */
833 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
834 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
835 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
836 ESO_DMAC_MASK_MASK);
837
838 return (error == EWOULDBLOCK ? 0 : error);
839 }
840
841 static int
842 eso_getdev(hdl, retp)
843 void *hdl;
844 struct audio_device *retp;
845 {
846 struct eso_softc *sc = hdl;
847
848 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
849 snprintf(retp->version, sizeof (retp->version), "0x%02x",
850 sc->sc_revision);
851 if (sc->sc_revision <
852 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
853 strncpy(retp->config, eso_rev2model[sc->sc_revision],
854 sizeof (retp->config));
855 else
856 strncpy(retp->config, "unknown", sizeof (retp->config));
857
858 return (0);
859 }
860
861 static int
862 eso_set_port(hdl, cp)
863 void *hdl;
864 mixer_ctrl_t *cp;
865 {
866 struct eso_softc *sc = hdl;
867 unsigned int lgain, rgain;
868 uint8_t tmp;
869
870 switch (cp->dev) {
871 case ESO_DAC_PLAY_VOL:
872 case ESO_MIC_PLAY_VOL:
873 case ESO_LINE_PLAY_VOL:
874 case ESO_SYNTH_PLAY_VOL:
875 case ESO_CD_PLAY_VOL:
876 case ESO_AUXB_PLAY_VOL:
877 case ESO_RECORD_VOL:
878 case ESO_DAC_REC_VOL:
879 case ESO_MIC_REC_VOL:
880 case ESO_LINE_REC_VOL:
881 case ESO_SYNTH_REC_VOL:
882 case ESO_CD_REC_VOL:
883 case ESO_AUXB_REC_VOL:
884 if (cp->type != AUDIO_MIXER_VALUE)
885 return (EINVAL);
886
887 /*
888 * Stereo-capable mixer ports: if we get a single-channel
889 * gain value passed in, then we duplicate it to both left
890 * and right channels.
891 */
892 switch (cp->un.value.num_channels) {
893 case 1:
894 lgain = rgain = ESO_GAIN_TO_4BIT(
895 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
896 break;
897 case 2:
898 lgain = ESO_GAIN_TO_4BIT(
899 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
900 rgain = ESO_GAIN_TO_4BIT(
901 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
902 break;
903 default:
904 return (EINVAL);
905 }
906
907 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
908 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
909 eso_set_gain(sc, cp->dev);
910 break;
911
912 case ESO_MASTER_VOL:
913 if (cp->type != AUDIO_MIXER_VALUE)
914 return (EINVAL);
915
916 /* Like above, but a precision of 6 bits. */
917 switch (cp->un.value.num_channels) {
918 case 1:
919 lgain = rgain = ESO_GAIN_TO_6BIT(
920 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
921 break;
922 case 2:
923 lgain = ESO_GAIN_TO_6BIT(
924 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
925 rgain = ESO_GAIN_TO_6BIT(
926 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
927 break;
928 default:
929 return (EINVAL);
930 }
931
932 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
933 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
934 eso_set_gain(sc, cp->dev);
935 break;
936
937 case ESO_SPATIALIZER:
938 if (cp->type != AUDIO_MIXER_VALUE ||
939 cp->un.value.num_channels != 1)
940 return (EINVAL);
941
942 sc->sc_gain[cp->dev][ESO_LEFT] =
943 sc->sc_gain[cp->dev][ESO_RIGHT] =
944 ESO_GAIN_TO_6BIT(
945 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
946 eso_set_gain(sc, cp->dev);
947 break;
948
949 case ESO_MONO_PLAY_VOL:
950 case ESO_MONO_REC_VOL:
951 if (cp->type != AUDIO_MIXER_VALUE ||
952 cp->un.value.num_channels != 1)
953 return (EINVAL);
954
955 sc->sc_gain[cp->dev][ESO_LEFT] =
956 sc->sc_gain[cp->dev][ESO_RIGHT] =
957 ESO_GAIN_TO_4BIT(
958 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
959 eso_set_gain(sc, cp->dev);
960 break;
961
962 case ESO_PCSPEAKER_VOL:
963 if (cp->type != AUDIO_MIXER_VALUE ||
964 cp->un.value.num_channels != 1)
965 return (EINVAL);
966
967 sc->sc_gain[cp->dev][ESO_LEFT] =
968 sc->sc_gain[cp->dev][ESO_RIGHT] =
969 ESO_GAIN_TO_3BIT(
970 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
971 eso_set_gain(sc, cp->dev);
972 break;
973
974 case ESO_SPATIALIZER_ENABLE:
975 if (cp->type != AUDIO_MIXER_ENUM)
976 return (EINVAL);
977
978 sc->sc_spatializer = (cp->un.ord != 0);
979
980 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
981 if (sc->sc_spatializer)
982 tmp |= ESO_MIXREG_SPAT_ENB;
983 else
984 tmp &= ~ESO_MIXREG_SPAT_ENB;
985 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
986 tmp | ESO_MIXREG_SPAT_RSTREL);
987 break;
988
989 case ESO_MONOOUT_SOURCE:
990 if (cp->type != AUDIO_MIXER_ENUM)
991 return (EINVAL);
992
993 return (eso_set_monooutsrc(sc, cp->un.ord));
994
995 case ESO_RECORD_MONITOR:
996 if (cp->type != AUDIO_MIXER_ENUM)
997 return (EINVAL);
998
999 sc->sc_recmon = (cp->un.ord != 0);
1000
1001 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1002 if (sc->sc_recmon)
1003 tmp |= ESO_CTLREG_ACTL_RECMON;
1004 else
1005 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1006 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1007 break;
1008
1009 case ESO_RECORD_SOURCE:
1010 if (cp->type != AUDIO_MIXER_ENUM)
1011 return (EINVAL);
1012
1013 return (eso_set_recsrc(sc, cp->un.ord));
1014
1015 case ESO_MIC_PREAMP:
1016 if (cp->type != AUDIO_MIXER_ENUM)
1017 return (EINVAL);
1018
1019 sc->sc_preamp = (cp->un.ord != 0);
1020
1021 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1022 tmp &= ~ESO_MIXREG_MPM_RESV0;
1023 if (sc->sc_preamp)
1024 tmp |= ESO_MIXREG_MPM_PREAMP;
1025 else
1026 tmp &= ~ESO_MIXREG_MPM_PREAMP;
1027 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1028 break;
1029
1030 default:
1031 return (EINVAL);
1032 }
1033
1034 return (0);
1035 }
1036
1037 static int
1038 eso_get_port(hdl, cp)
1039 void *hdl;
1040 mixer_ctrl_t *cp;
1041 {
1042 struct eso_softc *sc = hdl;
1043
1044 switch (cp->dev) {
1045 case ESO_DAC_PLAY_VOL:
1046 case ESO_MIC_PLAY_VOL:
1047 case ESO_LINE_PLAY_VOL:
1048 case ESO_SYNTH_PLAY_VOL:
1049 case ESO_CD_PLAY_VOL:
1050 case ESO_AUXB_PLAY_VOL:
1051 case ESO_MASTER_VOL:
1052 case ESO_RECORD_VOL:
1053 case ESO_DAC_REC_VOL:
1054 case ESO_MIC_REC_VOL:
1055 case ESO_LINE_REC_VOL:
1056 case ESO_SYNTH_REC_VOL:
1057 case ESO_CD_REC_VOL:
1058 case ESO_AUXB_REC_VOL:
1059 /*
1060 * Stereo-capable ports: if a single-channel query is made,
1061 * just return the left channel's value (since single-channel
1062 * settings themselves are applied to both channels).
1063 */
1064 switch (cp->un.value.num_channels) {
1065 case 1:
1066 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1067 sc->sc_gain[cp->dev][ESO_LEFT];
1068 break;
1069 case 2:
1070 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1071 sc->sc_gain[cp->dev][ESO_LEFT];
1072 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1073 sc->sc_gain[cp->dev][ESO_RIGHT];
1074 break;
1075 default:
1076 return (EINVAL);
1077 }
1078 break;
1079
1080 case ESO_MONO_PLAY_VOL:
1081 case ESO_PCSPEAKER_VOL:
1082 case ESO_MONO_REC_VOL:
1083 case ESO_SPATIALIZER:
1084 if (cp->un.value.num_channels != 1)
1085 return (EINVAL);
1086 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1087 sc->sc_gain[cp->dev][ESO_LEFT];
1088 break;
1089
1090 case ESO_RECORD_MONITOR:
1091 cp->un.ord = sc->sc_recmon;
1092 break;
1093
1094 case ESO_RECORD_SOURCE:
1095 cp->un.ord = sc->sc_recsrc;
1096 break;
1097
1098 case ESO_MONOOUT_SOURCE:
1099 cp->un.ord = sc->sc_monooutsrc;
1100 break;
1101
1102 case ESO_SPATIALIZER_ENABLE:
1103 cp->un.ord = sc->sc_spatializer;
1104 break;
1105
1106 case ESO_MIC_PREAMP:
1107 cp->un.ord = sc->sc_preamp;
1108 break;
1109
1110 default:
1111 return (EINVAL);
1112 }
1113
1114
1115 return (0);
1116
1117 }
1118
1119 static int
1120 eso_query_devinfo(hdl, dip)
1121 void *hdl;
1122 mixer_devinfo_t *dip;
1123 {
1124
1125 switch (dip->index) {
1126 case ESO_DAC_PLAY_VOL:
1127 dip->mixer_class = ESO_INPUT_CLASS;
1128 dip->next = dip->prev = AUDIO_MIXER_LAST;
1129 strcpy(dip->label.name, AudioNdac);
1130 dip->type = AUDIO_MIXER_VALUE;
1131 dip->un.v.num_channels = 2;
1132 strcpy(dip->un.v.units.name, AudioNvolume);
1133 break;
1134 case ESO_MIC_PLAY_VOL:
1135 dip->mixer_class = ESO_INPUT_CLASS;
1136 dip->next = dip->prev = AUDIO_MIXER_LAST;
1137 strcpy(dip->label.name, AudioNmicrophone);
1138 dip->type = AUDIO_MIXER_VALUE;
1139 dip->un.v.num_channels = 2;
1140 strcpy(dip->un.v.units.name, AudioNvolume);
1141 break;
1142 case ESO_LINE_PLAY_VOL:
1143 dip->mixer_class = ESO_INPUT_CLASS;
1144 dip->next = dip->prev = AUDIO_MIXER_LAST;
1145 strcpy(dip->label.name, AudioNline);
1146 dip->type = AUDIO_MIXER_VALUE;
1147 dip->un.v.num_channels = 2;
1148 strcpy(dip->un.v.units.name, AudioNvolume);
1149 break;
1150 case ESO_SYNTH_PLAY_VOL:
1151 dip->mixer_class = ESO_INPUT_CLASS;
1152 dip->next = dip->prev = AUDIO_MIXER_LAST;
1153 strcpy(dip->label.name, AudioNfmsynth);
1154 dip->type = AUDIO_MIXER_VALUE;
1155 dip->un.v.num_channels = 2;
1156 strcpy(dip->un.v.units.name, AudioNvolume);
1157 break;
1158 case ESO_MONO_PLAY_VOL:
1159 dip->mixer_class = ESO_INPUT_CLASS;
1160 dip->next = dip->prev = AUDIO_MIXER_LAST;
1161 strcpy(dip->label.name, "mono_in");
1162 dip->type = AUDIO_MIXER_VALUE;
1163 dip->un.v.num_channels = 1;
1164 strcpy(dip->un.v.units.name, AudioNvolume);
1165 break;
1166 case ESO_CD_PLAY_VOL:
1167 dip->mixer_class = ESO_INPUT_CLASS;
1168 dip->next = dip->prev = AUDIO_MIXER_LAST;
1169 strcpy(dip->label.name, AudioNcd);
1170 dip->type = AUDIO_MIXER_VALUE;
1171 dip->un.v.num_channels = 2;
1172 strcpy(dip->un.v.units.name, AudioNvolume);
1173 break;
1174 case ESO_AUXB_PLAY_VOL:
1175 dip->mixer_class = ESO_INPUT_CLASS;
1176 dip->next = dip->prev = AUDIO_MIXER_LAST;
1177 strcpy(dip->label.name, "auxb");
1178 dip->type = AUDIO_MIXER_VALUE;
1179 dip->un.v.num_channels = 2;
1180 strcpy(dip->un.v.units.name, AudioNvolume);
1181 break;
1182
1183 case ESO_MIC_PREAMP:
1184 dip->mixer_class = ESO_MICROPHONE_CLASS;
1185 dip->next = dip->prev = AUDIO_MIXER_LAST;
1186 strcpy(dip->label.name, AudioNpreamp);
1187 dip->type = AUDIO_MIXER_ENUM;
1188 dip->un.e.num_mem = 2;
1189 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1190 dip->un.e.member[0].ord = 0;
1191 strcpy(dip->un.e.member[1].label.name, AudioNon);
1192 dip->un.e.member[1].ord = 1;
1193 break;
1194 case ESO_MICROPHONE_CLASS:
1195 dip->mixer_class = ESO_MICROPHONE_CLASS;
1196 dip->next = dip->prev = AUDIO_MIXER_LAST;
1197 strcpy(dip->label.name, AudioNmicrophone);
1198 dip->type = AUDIO_MIXER_CLASS;
1199 break;
1200
1201 case ESO_INPUT_CLASS:
1202 dip->mixer_class = ESO_INPUT_CLASS;
1203 dip->next = dip->prev = AUDIO_MIXER_LAST;
1204 strcpy(dip->label.name, AudioCinputs);
1205 dip->type = AUDIO_MIXER_CLASS;
1206 break;
1207
1208 case ESO_MASTER_VOL:
1209 dip->mixer_class = ESO_OUTPUT_CLASS;
1210 dip->next = dip->prev = AUDIO_MIXER_LAST;
1211 strcpy(dip->label.name, AudioNmaster);
1212 dip->type = AUDIO_MIXER_VALUE;
1213 dip->un.v.num_channels = 2;
1214 strcpy(dip->un.v.units.name, AudioNvolume);
1215 break;
1216 case ESO_PCSPEAKER_VOL:
1217 dip->mixer_class = ESO_OUTPUT_CLASS;
1218 dip->next = dip->prev = AUDIO_MIXER_LAST;
1219 strcpy(dip->label.name, "pc_speaker");
1220 dip->type = AUDIO_MIXER_VALUE;
1221 dip->un.v.num_channels = 1;
1222 strcpy(dip->un.v.units.name, AudioNvolume);
1223 break;
1224 case ESO_MONOOUT_SOURCE:
1225 dip->mixer_class = ESO_OUTPUT_CLASS;
1226 dip->next = dip->prev = AUDIO_MIXER_LAST;
1227 strcpy(dip->label.name, "mono_out");
1228 dip->type = AUDIO_MIXER_ENUM;
1229 dip->un.e.num_mem = 3;
1230 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1231 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1232 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1233 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1234 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1235 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1236 break;
1237 case ESO_SPATIALIZER:
1238 dip->mixer_class = ESO_OUTPUT_CLASS;
1239 dip->prev = AUDIO_MIXER_LAST;
1240 dip->next = ESO_SPATIALIZER_ENABLE;
1241 strcpy(dip->label.name, AudioNspatial);
1242 dip->type = AUDIO_MIXER_VALUE;
1243 dip->un.v.num_channels = 1;
1244 strcpy(dip->un.v.units.name, "level");
1245 break;
1246 case ESO_SPATIALIZER_ENABLE:
1247 dip->mixer_class = ESO_OUTPUT_CLASS;
1248 dip->prev = ESO_SPATIALIZER;
1249 dip->next = AUDIO_MIXER_LAST;
1250 strcpy(dip->label.name, "enable");
1251 dip->type = AUDIO_MIXER_ENUM;
1252 dip->un.e.num_mem = 2;
1253 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1254 dip->un.e.member[0].ord = 0;
1255 strcpy(dip->un.e.member[1].label.name, AudioNon);
1256 dip->un.e.member[1].ord = 1;
1257 break;
1258
1259 case ESO_OUTPUT_CLASS:
1260 dip->mixer_class = ESO_OUTPUT_CLASS;
1261 dip->next = dip->prev = AUDIO_MIXER_LAST;
1262 strcpy(dip->label.name, AudioCoutputs);
1263 dip->type = AUDIO_MIXER_CLASS;
1264 break;
1265
1266 case ESO_RECORD_MONITOR:
1267 dip->mixer_class = ESO_MONITOR_CLASS;
1268 dip->next = dip->prev = AUDIO_MIXER_LAST;
1269 strcpy(dip->label.name, AudioNmute);
1270 dip->type = AUDIO_MIXER_ENUM;
1271 dip->un.e.num_mem = 2;
1272 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1273 dip->un.e.member[0].ord = 0;
1274 strcpy(dip->un.e.member[1].label.name, AudioNon);
1275 dip->un.e.member[1].ord = 1;
1276 break;
1277 case ESO_MONITOR_CLASS:
1278 dip->mixer_class = ESO_MONITOR_CLASS;
1279 dip->next = dip->prev = AUDIO_MIXER_LAST;
1280 strcpy(dip->label.name, AudioCmonitor);
1281 dip->type = AUDIO_MIXER_CLASS;
1282 break;
1283
1284 case ESO_RECORD_VOL:
1285 dip->mixer_class = ESO_RECORD_CLASS;
1286 dip->next = dip->prev = AUDIO_MIXER_LAST;
1287 strcpy(dip->label.name, AudioNrecord);
1288 dip->type = AUDIO_MIXER_VALUE;
1289 strcpy(dip->un.v.units.name, AudioNvolume);
1290 break;
1291 case ESO_RECORD_SOURCE:
1292 dip->mixer_class = ESO_RECORD_CLASS;
1293 dip->next = dip->prev = AUDIO_MIXER_LAST;
1294 strcpy(dip->label.name, AudioNsource);
1295 dip->type = AUDIO_MIXER_ENUM;
1296 dip->un.e.num_mem = 4;
1297 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1298 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1299 strcpy(dip->un.e.member[1].label.name, AudioNline);
1300 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1301 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1302 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1303 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1304 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1305 break;
1306 case ESO_DAC_REC_VOL:
1307 dip->mixer_class = ESO_RECORD_CLASS;
1308 dip->next = dip->prev = AUDIO_MIXER_LAST;
1309 strcpy(dip->label.name, AudioNdac);
1310 dip->type = AUDIO_MIXER_VALUE;
1311 dip->un.v.num_channels = 2;
1312 strcpy(dip->un.v.units.name, AudioNvolume);
1313 break;
1314 case ESO_MIC_REC_VOL:
1315 dip->mixer_class = ESO_RECORD_CLASS;
1316 dip->next = dip->prev = AUDIO_MIXER_LAST;
1317 strcpy(dip->label.name, AudioNmicrophone);
1318 dip->type = AUDIO_MIXER_VALUE;
1319 dip->un.v.num_channels = 2;
1320 strcpy(dip->un.v.units.name, AudioNvolume);
1321 break;
1322 case ESO_LINE_REC_VOL:
1323 dip->mixer_class = ESO_RECORD_CLASS;
1324 dip->next = dip->prev = AUDIO_MIXER_LAST;
1325 strcpy(dip->label.name, AudioNline);
1326 dip->type = AUDIO_MIXER_VALUE;
1327 dip->un.v.num_channels = 2;
1328 strcpy(dip->un.v.units.name, AudioNvolume);
1329 break;
1330 case ESO_SYNTH_REC_VOL:
1331 dip->mixer_class = ESO_RECORD_CLASS;
1332 dip->next = dip->prev = AUDIO_MIXER_LAST;
1333 strcpy(dip->label.name, AudioNfmsynth);
1334 dip->type = AUDIO_MIXER_VALUE;
1335 dip->un.v.num_channels = 2;
1336 strcpy(dip->un.v.units.name, AudioNvolume);
1337 break;
1338 case ESO_MONO_REC_VOL:
1339 dip->mixer_class = ESO_RECORD_CLASS;
1340 dip->next = dip->prev = AUDIO_MIXER_LAST;
1341 strcpy(dip->label.name, "mono_in");
1342 dip->type = AUDIO_MIXER_VALUE;
1343 dip->un.v.num_channels = 1; /* No lies */
1344 strcpy(dip->un.v.units.name, AudioNvolume);
1345 break;
1346 case ESO_CD_REC_VOL:
1347 dip->mixer_class = ESO_RECORD_CLASS;
1348 dip->next = dip->prev = AUDIO_MIXER_LAST;
1349 strcpy(dip->label.name, AudioNcd);
1350 dip->type = AUDIO_MIXER_VALUE;
1351 dip->un.v.num_channels = 2;
1352 strcpy(dip->un.v.units.name, AudioNvolume);
1353 break;
1354 case ESO_AUXB_REC_VOL:
1355 dip->mixer_class = ESO_RECORD_CLASS;
1356 dip->next = dip->prev = AUDIO_MIXER_LAST;
1357 strcpy(dip->label.name, "auxb");
1358 dip->type = AUDIO_MIXER_VALUE;
1359 dip->un.v.num_channels = 2;
1360 strcpy(dip->un.v.units.name, AudioNvolume);
1361 break;
1362 case ESO_RECORD_CLASS:
1363 dip->mixer_class = ESO_RECORD_CLASS;
1364 dip->next = dip->prev = AUDIO_MIXER_LAST;
1365 strcpy(dip->label.name, AudioCrecord);
1366 dip->type = AUDIO_MIXER_CLASS;
1367 break;
1368
1369 default:
1370 return (ENXIO);
1371 }
1372
1373 return (0);
1374 }
1375
1376 static int
1377 eso_allocmem(sc, size, align, boundary, flags, ed)
1378 struct eso_softc *sc;
1379 size_t size;
1380 size_t align;
1381 size_t boundary;
1382 int flags;
1383 struct eso_dma *ed;
1384 {
1385 int error, wait;
1386
1387 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1388 ed->ed_size = size;
1389
1390 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1391 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1392 &ed->ed_nsegs, wait);
1393 if (error)
1394 goto out;
1395
1396 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1397 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1398 if (error)
1399 goto free;
1400
1401 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1402 wait, &ed->ed_map);
1403 if (error)
1404 goto unmap;
1405
1406 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1407 ed->ed_size, NULL, wait);
1408 if (error)
1409 goto destroy;
1410
1411 return (0);
1412
1413 destroy:
1414 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1415 unmap:
1416 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1417 free:
1418 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1419 out:
1420 return (error);
1421 }
1422
1423 static void
1424 eso_freemem(ed)
1425 struct eso_dma *ed;
1426 {
1427
1428 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1429 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1430 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1431 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1432 }
1433
1434 static void *
1435 eso_allocm(hdl, direction, size, type, flags)
1436 void *hdl;
1437 int direction;
1438 size_t size;
1439 int type, flags;
1440 {
1441 struct eso_softc *sc = hdl;
1442 struct eso_dma *ed;
1443 size_t boundary;
1444 int error;
1445
1446 if ((ed = malloc(size, type, flags)) == NULL)
1447 return (NULL);
1448
1449 /*
1450 * Apparently the Audio 1 DMA controller's current address
1451 * register can't roll over a 64K address boundary, so we have to
1452 * take care of that ourselves. The second channel DMA controller
1453 * doesn't have that restriction, however.
1454 */
1455 if (direction == AUMODE_RECORD)
1456 boundary = 0x10000;
1457 else
1458 boundary = 0;
1459
1460 #ifdef alpha
1461 /*
1462 * XXX For Audio 1, which implements the 24 low address bits only,
1463 * XXX force allocation through the (ISA) SGMAP.
1464 */
1465 if (direction == AUMODE_RECORD)
1466 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1467 else
1468 #endif
1469 ed->ed_dmat = sc->sc_dmat;
1470
1471 error = eso_allocmem(sc, size, 32, boundary, flags, ed);
1472 if (error) {
1473 free(ed, type);
1474 return (NULL);
1475 }
1476 ed->ed_next = sc->sc_dmas;
1477 sc->sc_dmas = ed;
1478
1479 return (KVADDR(ed));
1480 }
1481
1482 static void
1483 eso_freem(hdl, addr, type)
1484 void *hdl;
1485 void *addr;
1486 int type;
1487 {
1488 struct eso_softc *sc = hdl;
1489 struct eso_dma *p, **pp;
1490
1491 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1492 if (KVADDR(p) == addr) {
1493 eso_freemem(p);
1494 *pp = p->ed_next;
1495 free(p, type);
1496 return;
1497 }
1498 }
1499 }
1500
1501 static size_t
1502 eso_round_buffersize(hdl, direction, bufsize)
1503 void *hdl;
1504 int direction;
1505 size_t bufsize;
1506 {
1507
1508 /* 64K restriction: ISA at eleven? */
1509 if (bufsize > 65536)
1510 bufsize = 65536;
1511
1512 return (bufsize);
1513 }
1514
1515 static int
1516 eso_mappage(hdl, addr, offs, prot)
1517 void *hdl;
1518 void *addr;
1519 int offs;
1520 int prot;
1521 {
1522 struct eso_softc *sc = hdl;
1523 struct eso_dma *ed;
1524
1525 if (offs < 0)
1526 return (-1);
1527 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) == addr;
1528 ed = ed->ed_next)
1529 ;
1530 if (ed == NULL)
1531 return (-1);
1532
1533 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1534 offs, prot, BUS_DMA_WAITOK));
1535 }
1536
1537 /* ARGSUSED */
1538 static int
1539 eso_get_props(hdl)
1540 void *hdl;
1541 {
1542
1543 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1544 AUDIO_PROP_FULLDUPLEX);
1545 }
1546
1547 static int
1548 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1549 void *hdl;
1550 void *start, *end;
1551 int blksize;
1552 void (*intr) __P((void *));
1553 void *arg;
1554 struct audio_params *param;
1555 {
1556 struct eso_softc *sc = hdl;
1557 struct eso_dma *ed;
1558 uint8_t a2c1;
1559
1560 DPRINTF((
1561 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1562 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1563 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1564 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1565 param->precision, param->channels, param->sw_code, param->factor));
1566
1567 /* Find DMA buffer. */
1568 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1569 ed = ed->ed_next)
1570 ;
1571 if (ed == NULL) {
1572 printf("%s: trigger_output: bad addr %p\n",
1573 sc->sc_dev.dv_xname, start);
1574 return (EINVAL);
1575 }
1576
1577 sc->sc_pintr = intr;
1578 sc->sc_parg = arg;
1579
1580 /* DMA transfer count (in `words'!) reload using 2's complement. */
1581 blksize = -(blksize >> 1);
1582 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1583 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1584
1585 /* Update DAC to reflect DMA count and audio parameters. */
1586 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1587 if (param->precision * param->factor == 16)
1588 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1589 else
1590 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1591 if (param->channels == 2)
1592 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1593 else
1594 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1595 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1596 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1597 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1598 else
1599 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1600 /* Unmask IRQ. */
1601 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1602 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1603
1604 /* Set up DMA controller. */
1605 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1606 DMAADDR(ed));
1607 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1608 (uint8_t *)end - (uint8_t *)start);
1609 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1610 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1611
1612 /* Start DMA. */
1613 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1614 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1615 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1616 ESO_MIXREG_A2C1_AUTO;
1617 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1618
1619 return (0);
1620 }
1621
1622 static int
1623 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1624 void *hdl;
1625 void *start, *end;
1626 int blksize;
1627 void (*intr) __P((void *));
1628 void *arg;
1629 struct audio_params *param;
1630 {
1631 struct eso_softc *sc = hdl;
1632 struct eso_dma *ed;
1633 uint8_t actl, a1c1;
1634
1635 DPRINTF((
1636 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1637 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1638 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1639 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1640 param->precision, param->channels, param->sw_code, param->factor));
1641
1642 /*
1643 * If we failed to configure the Audio 1 DMA controller, bail here
1644 * while retaining availability of the DAC direction (in Audio 2).
1645 */
1646 if (!sc->sc_dmac_configured)
1647 return (EIO);
1648
1649 /* Find DMA buffer. */
1650 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1651 ed = ed->ed_next)
1652 ;
1653 if (ed == NULL) {
1654 printf("%s: trigger_output: bad addr %p\n",
1655 sc->sc_dev.dv_xname, start);
1656 return (EINVAL);
1657 }
1658
1659 sc->sc_rintr = intr;
1660 sc->sc_rarg = arg;
1661
1662 /* Set up ADC DMA converter parameters. */
1663 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1664 if (param->channels == 2) {
1665 actl &= ~ESO_CTLREG_ACTL_MONO;
1666 actl |= ESO_CTLREG_ACTL_STEREO;
1667 } else {
1668 actl &= ~ESO_CTLREG_ACTL_STEREO;
1669 actl |= ESO_CTLREG_ACTL_MONO;
1670 }
1671 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1672
1673 /* Set up Transfer Type: maybe move to attach time? */
1674 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1675
1676 /* DMA transfer count reload using 2's complement. */
1677 blksize = -blksize;
1678 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1679 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1680
1681 /* Set up and enable Audio 1 DMA FIFO. */
1682 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1683 if (param->precision * param->factor == 16)
1684 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1685 if (param->channels == 2)
1686 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1687 else
1688 a1c1 |= ESO_CTLREG_A1C1_MONO;
1689 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1690 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1691 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1692 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1693
1694 /* Set up ADC IRQ/DRQ parameters. */
1695 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1696 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1697 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1698 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1699
1700 /* Set up and enable DMA controller. */
1701 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1702 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1703 ESO_DMAC_MASK_MASK);
1704 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1705 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1706 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1707 DMAADDR(ed));
1708 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1709 (uint8_t *)end - (uint8_t *)start - 1);
1710 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1711
1712 /* Start DMA. */
1713 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1714 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1715 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1716
1717 return (0);
1718 }
1719
1720 static int
1721 eso_set_monooutsrc(sc, monooutsrc)
1722 struct eso_softc *sc;
1723 unsigned int monooutsrc;
1724 {
1725 mixer_devinfo_t di;
1726 int i;
1727 uint8_t mpm;
1728
1729 di.index = ESO_MONOOUT_SOURCE;
1730 if (eso_query_devinfo(sc, &di) != 0)
1731 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1732
1733 for (i = 0; i < di.un.e.num_mem; i++) {
1734 if (monooutsrc == di.un.e.member[i].ord) {
1735 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1736 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1737 mpm |= monooutsrc;
1738 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1739 sc->sc_monooutsrc = monooutsrc;
1740 return (0);
1741 }
1742 }
1743
1744 return (EINVAL);
1745 }
1746
1747 static int
1748 eso_set_recsrc(sc, recsrc)
1749 struct eso_softc *sc;
1750 unsigned int recsrc;
1751 {
1752 mixer_devinfo_t di;
1753 int i;
1754
1755 di.index = ESO_RECORD_SOURCE;
1756 if (eso_query_devinfo(sc, &di) != 0)
1757 panic("eso_set_recsrc: eso_query_devinfo failed");
1758
1759 for (i = 0; i < di.un.e.num_mem; i++) {
1760 if (recsrc == di.un.e.member[i].ord) {
1761 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1762 sc->sc_recsrc = recsrc;
1763 return (0);
1764 }
1765 }
1766
1767 return (EINVAL);
1768 }
1769
1770 static void
1771 eso_set_gain(sc, port)
1772 struct eso_softc *sc;
1773 unsigned int port;
1774 {
1775 uint8_t mixreg, tmp;
1776
1777 switch (port) {
1778 case ESO_DAC_PLAY_VOL:
1779 mixreg = ESO_MIXREG_PVR_A2;
1780 break;
1781 case ESO_MIC_PLAY_VOL:
1782 mixreg = ESO_MIXREG_PVR_MIC;
1783 break;
1784 case ESO_LINE_PLAY_VOL:
1785 mixreg = ESO_MIXREG_PVR_LINE;
1786 break;
1787 case ESO_SYNTH_PLAY_VOL:
1788 mixreg = ESO_MIXREG_PVR_SYNTH;
1789 break;
1790 case ESO_CD_PLAY_VOL:
1791 mixreg = ESO_MIXREG_PVR_CD;
1792 break;
1793 case ESO_AUXB_PLAY_VOL:
1794 mixreg = ESO_MIXREG_PVR_AUXB;
1795 break;
1796
1797 case ESO_DAC_REC_VOL:
1798 mixreg = ESO_MIXREG_RVR_A2;
1799 break;
1800 case ESO_MIC_REC_VOL:
1801 mixreg = ESO_MIXREG_RVR_MIC;
1802 break;
1803 case ESO_LINE_REC_VOL:
1804 mixreg = ESO_MIXREG_RVR_LINE;
1805 break;
1806 case ESO_SYNTH_REC_VOL:
1807 mixreg = ESO_MIXREG_RVR_SYNTH;
1808 break;
1809 case ESO_CD_REC_VOL:
1810 mixreg = ESO_MIXREG_RVR_CD;
1811 break;
1812 case ESO_AUXB_REC_VOL:
1813 mixreg = ESO_MIXREG_RVR_AUXB;
1814 break;
1815 case ESO_MONO_PLAY_VOL:
1816 mixreg = ESO_MIXREG_PVR_MONO;
1817 break;
1818 case ESO_MONO_REC_VOL:
1819 mixreg = ESO_MIXREG_RVR_MONO;
1820 break;
1821
1822 case ESO_PCSPEAKER_VOL:
1823 /* Special case - only 3-bit, mono, and reserved bits. */
1824 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1825 tmp &= ESO_MIXREG_PCSVR_RESV;
1826 /* Map bits 7:5 -> 2:0. */
1827 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1828 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1829 return;
1830
1831 case ESO_MASTER_VOL:
1832 /* Special case - separate regs, and 6-bit precision. */
1833 /* Map bits 7:2 -> 5:0. */
1834 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1835 sc->sc_gain[port][ESO_LEFT] >> 2);
1836 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1837 sc->sc_gain[port][ESO_RIGHT] >> 2);
1838 return;
1839
1840 case ESO_SPATIALIZER:
1841 /* Special case - only `mono', and higher precision. */
1842 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1843 sc->sc_gain[port][ESO_LEFT]);
1844 return;
1845
1846 case ESO_RECORD_VOL:
1847 /* Very Special case, controller register. */
1848 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1849 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1850 return;
1851
1852 default:
1853 #ifdef DIAGNOSTIC
1854 panic("eso_set_gain: bad port %u", port);
1855 /* NOTREACHED */
1856 #else
1857 return;
1858 #endif
1859 }
1860
1861 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
1862 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1863 }
1864