eso.c revision 1.13 1 /* $NetBSD: eso.c,v 1.13 1999/12/03 22:34:28 kleink Exp $ */
2
3 /*
4 * Copyright (c) 1999 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include "mpu.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/device.h>
42 #include <sys/proc.h>
43
44 #include <dev/pci/pcidevs.h>
45 #include <dev/pci/pcivar.h>
46
47 #include <sys/audioio.h>
48 #include <dev/audio_if.h>
49 #include <dev/midi_if.h>
50
51 #include <dev/mulaw.h>
52 #include <dev/auconv.h>
53
54 #include <dev/ic/mpuvar.h>
55 #include <dev/ic/i8237reg.h>
56 #include <dev/pci/esoreg.h>
57 #include <dev/pci/esovar.h>
58
59 #include <machine/bus.h>
60 #include <machine/intr.h>
61
62 #if defined(AUDIO_DEBUG) || defined(DEBUG)
63 #define DPRINTF(x) printf x
64 #else
65 #define DPRINTF(x)
66 #endif
67
68 struct eso_dma {
69 bus_dma_tag_t ed_dmat;
70 bus_dmamap_t ed_map;
71 caddr_t ed_addr;
72 bus_dma_segment_t ed_segs[1];
73 int ed_nsegs;
74 size_t ed_size;
75 struct eso_dma * ed_next;
76 };
77
78 #define KVADDR(dma) ((void *)(dma)->ed_addr)
79 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
80
81 /* Autoconfiguration interface */
82 static int eso_match __P((struct device *, struct cfdata *, void *));
83 static void eso_attach __P((struct device *, struct device *, void *));
84 static void eso_defer __P((struct device *));
85
86 struct cfattach eso_ca = {
87 sizeof (struct eso_softc), eso_match, eso_attach
88 };
89
90 /* PCI interface */
91 static int eso_intr __P((void *));
92
93 /* MI audio layer interface */
94 static int eso_open __P((void *, int));
95 static void eso_close __P((void *));
96 static int eso_query_encoding __P((void *, struct audio_encoding *));
97 static int eso_set_params __P((void *, int, int, struct audio_params *,
98 struct audio_params *));
99 static int eso_round_blocksize __P((void *, int));
100 static int eso_halt_output __P((void *));
101 static int eso_halt_input __P((void *));
102 static int eso_getdev __P((void *, struct audio_device *));
103 static int eso_set_port __P((void *, mixer_ctrl_t *));
104 static int eso_get_port __P((void *, mixer_ctrl_t *));
105 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
106 static void * eso_allocm __P((void *, int, size_t, int, int));
107 static void eso_freem __P((void *, void *, int));
108 static size_t eso_round_buffersize __P((void *, int, size_t));
109 static int eso_mappage __P((void *, void *, int, int));
110 static int eso_get_props __P((void *));
111 static int eso_trigger_output __P((void *, void *, void *, int,
112 void (*)(void *), void *, struct audio_params *));
113 static int eso_trigger_input __P((void *, void *, void *, int,
114 void (*)(void *), void *, struct audio_params *));
115
116 static struct audio_hw_if eso_hw_if = {
117 eso_open,
118 eso_close,
119 NULL, /* drain */
120 eso_query_encoding,
121 eso_set_params,
122 eso_round_blocksize,
123 NULL, /* commit_settings */
124 NULL, /* init_output */
125 NULL, /* init_input */
126 NULL, /* start_output */
127 NULL, /* start_input */
128 eso_halt_output,
129 eso_halt_input,
130 NULL, /* speaker_ctl */
131 eso_getdev,
132 NULL, /* setfd */
133 eso_set_port,
134 eso_get_port,
135 eso_query_devinfo,
136 eso_allocm,
137 eso_freem,
138 eso_round_buffersize,
139 eso_mappage,
140 eso_get_props,
141 eso_trigger_output,
142 eso_trigger_input
143 };
144
145 static const char * const eso_rev2model[] = {
146 "ES1938",
147 "ES1946",
148 "ES1946 Revision E"
149 };
150
151
152 /*
153 * Utility routines
154 */
155 /* Register access etc. */
156 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
157 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
158 static uint8_t eso_read_rdr __P((struct eso_softc *));
159 static int eso_reset __P((struct eso_softc *));
160 static void eso_set_gain __P((struct eso_softc *, unsigned int));
161 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
162 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
163 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
164 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
165 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
166 /* DMA memory allocation */
167 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
168 int, struct eso_dma *));
169 static void eso_freemem __P((struct eso_dma *));
170
171
172 static int
173 eso_match(parent, match, aux)
174 struct device *parent;
175 struct cfdata *match;
176 void *aux;
177 {
178 struct pci_attach_args *pa = aux;
179
180 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
181 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
182 return (1);
183
184 return (0);
185 }
186
187 static void
188 eso_attach(parent, self, aux)
189 struct device *parent, *self;
190 void *aux;
191 {
192 struct eso_softc *sc = (struct eso_softc *)self;
193 struct pci_attach_args *pa = aux;
194 struct audio_attach_args aa;
195 pci_intr_handle_t ih;
196 bus_addr_t vcbase;
197 const char *intrstring;
198 int idx;
199 uint8_t a2mode, mvctl;
200
201 sc->sc_revision = PCI_REVISION(pa->pa_class);
202
203 printf(": ESS Solo-1 PCI AudioDrive ");
204 if (sc->sc_revision <
205 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
206 printf("%s\n", eso_rev2model[sc->sc_revision]);
207 else
208 printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
209
210 /* Map I/O registers. */
211 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
212 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
213 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
214 return;
215 }
216 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
217 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
218 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
219 return;
220 }
221 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
222 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
223 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
224 /* Don't bail out yet: we can map it later, see below. */
225 vcbase = 0;
226 sc->sc_vcsize = 0x10; /* From the data sheet. */
227 }
228 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
229 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
230 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
231 return;
232 }
233 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
234 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
235 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
236 return;
237 }
238
239 sc->sc_dmat = pa->pa_dmat;
240 sc->sc_dmas = NULL;
241 sc->sc_dmac_configured = 0;
242
243 /* Enable bus mastering. */
244 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
245 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
246 PCI_COMMAND_MASTER_ENABLE);
247
248 /* Reset the device; bail out upon failure. */
249 if (eso_reset(sc) != 0) {
250 printf("%s: can't reset\n", sc->sc_dev.dv_xname);
251 return;
252 }
253
254 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
255 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
256 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
257 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
258
259 /* Enable the relevant (DMA) interrupts. */
260 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
261 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_MPUIRQ);
262
263 /* Set up A1's sample rate generator for new-style parameters. */
264 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
265 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
266 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
267
268 /* Set mixer regs to something reasonable, needs work. */
269 sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
270 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
271 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
272 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
273 int v;
274
275 switch (idx) {
276 case ESO_MIC_PLAY_VOL:
277 case ESO_LINE_PLAY_VOL:
278 case ESO_CD_PLAY_VOL:
279 case ESO_MONO_PLAY_VOL:
280 case ESO_AUXB_PLAY_VOL:
281 case ESO_DAC_REC_VOL:
282 case ESO_LINE_REC_VOL:
283 case ESO_SYNTH_REC_VOL:
284 case ESO_CD_REC_VOL:
285 case ESO_MONO_REC_VOL:
286 case ESO_AUXB_REC_VOL:
287 case ESO_SPATIALIZER:
288 v = 0;
289 break;
290 case ESO_MASTER_VOL:
291 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
292 break;
293 default:
294 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
295 break;
296 }
297 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
298 eso_set_gain(sc, idx);
299 }
300 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
301
302 /* Map and establish the interrupt. */
303 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
304 pa->pa_intrline, &ih)) {
305 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
306 return;
307 }
308 intrstring = pci_intr_string(pa->pa_pc, ih);
309 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
310 if (sc->sc_ih == NULL) {
311 printf("%s: couldn't establish interrupt",
312 sc->sc_dev.dv_xname);
313 if (intrstring != NULL)
314 printf(" at %s", intrstring);
315 printf("\n");
316 return;
317 }
318 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
319
320 /*
321 * Set up the DDMA Control register; a suitable I/O region has been
322 * supposedly mapped in the VC base address register.
323 *
324 * The Solo-1 has an ... interesting silicon bug that causes it to
325 * not respond to I/O space accesses to the Audio 1 DMA controller
326 * if the latter's mapping base address is aligned on a 1K boundary.
327 * As a consequence, it is quite possible for the mapping provided
328 * in the VC BAR to be useless. To work around this, we defer this
329 * part until all autoconfiguration on our parent bus is completed
330 * and then try to map it ourselves in fulfillment of the constraint.
331 *
332 * According to the register map we may write to the low 16 bits
333 * only, but experimenting has shown we're safe.
334 * -kjk
335 */
336 if (ESO_VALID_DDMAC_BASE(vcbase)) {
337 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
338 vcbase | ESO_PCI_DDMAC_DE);
339 sc->sc_dmac_configured = 1;
340
341 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
342 sc->sc_dev.dv_xname, (unsigned long)vcbase);
343 } else {
344 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
345 sc->sc_dev.dv_xname, (unsigned long)vcbase));
346 sc->sc_pa = *pa;
347 config_defer(self, eso_defer);
348 }
349
350 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
351
352 aa.type = AUDIODEV_TYPE_OPL;
353 aa.hwif = NULL;
354 aa.hdl = NULL;
355 (void)config_found(&sc->sc_dev, &aa, audioprint);
356
357 aa.type = AUDIODEV_TYPE_MPU;
358 aa.hwif = NULL;
359 aa.hdl = NULL;
360 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
361 if (sc->sc_mpudev != NULL) {
362 /* Unmask the MPU irq. */
363 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
364 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
365 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
366 }
367 }
368
369 static void
370 eso_defer(self)
371 struct device *self;
372 {
373 struct eso_softc *sc = (struct eso_softc *)self;
374 struct pci_attach_args *pa = &sc->sc_pa;
375 bus_addr_t addr, start;
376
377 printf("%s: ", sc->sc_dev.dv_xname);
378
379 /*
380 * This is outright ugly, but since we must not make assumptions
381 * on the underlying allocator's behaviour it's the most straight-
382 * forward way to implement it. Note that we skip over the first
383 * 1K region, which is typically occupied by an attached ISA bus.
384 */
385 for (start = 0x0400; start < 0xffff; start += 0x0400) {
386 if (bus_space_alloc(sc->sc_iot,
387 start + sc->sc_vcsize, start + 0x0400 - 1,
388 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
389 &sc->sc_dmac_ioh) != 0)
390 continue;
391
392 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
393 addr | ESO_PCI_DDMAC_DE);
394 sc->sc_dmac_iot = sc->sc_iot;
395 sc->sc_dmac_configured = 1;
396 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
397 (unsigned long)addr);
398
399 return;
400 }
401
402 printf("can't map Audio 1 DMA into I/O space\n");
403 }
404
405 static void
406 eso_write_cmd(sc, cmd)
407 struct eso_softc *sc;
408 uint8_t cmd;
409 {
410 int i;
411
412 /* Poll for busy indicator to become clear. */
413 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
414 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
415 & ESO_SB_RSR_BUSY) == 0) {
416 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
417 ESO_SB_WDR, cmd);
418 return;
419 } else {
420 delay(10);
421 }
422 }
423
424 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
425 return;
426 }
427
428 /* Write to a controller register */
429 static void
430 eso_write_ctlreg(sc, reg, val)
431 struct eso_softc *sc;
432 uint8_t reg, val;
433 {
434
435 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
436
437 eso_write_cmd(sc, reg);
438 eso_write_cmd(sc, val);
439 }
440
441 /* Read out the Read Data Register */
442 static uint8_t
443 eso_read_rdr(sc)
444 struct eso_softc *sc;
445 {
446 int i;
447
448 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
449 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
450 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
451 return (bus_space_read_1(sc->sc_sb_iot,
452 sc->sc_sb_ioh, ESO_SB_RDR));
453 } else {
454 delay(10);
455 }
456 }
457
458 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
459 return (-1);
460 }
461
462
463 static uint8_t
464 eso_read_ctlreg(sc, reg)
465 struct eso_softc *sc;
466 uint8_t reg;
467 {
468
469 eso_write_cmd(sc, ESO_CMD_RCR);
470 eso_write_cmd(sc, reg);
471 return (eso_read_rdr(sc));
472 }
473
474 static void
475 eso_write_mixreg(sc, reg, val)
476 struct eso_softc *sc;
477 uint8_t reg, val;
478 {
479 int s;
480
481 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
482
483 s = splaudio();
484 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
485 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
486 splx(s);
487 }
488
489 static uint8_t
490 eso_read_mixreg(sc, reg)
491 struct eso_softc *sc;
492 uint8_t reg;
493 {
494 int s;
495 uint8_t val;
496
497 s = splaudio();
498 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
499 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
500 splx(s);
501
502 return (val);
503 }
504
505 static int
506 eso_intr(hdl)
507 void *hdl;
508 {
509 struct eso_softc *sc = hdl;
510 uint8_t irqctl;
511
512 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
513
514 /* If it wasn't ours, that's all she wrote. */
515 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
516 ESO_IO_IRQCTL_MPUIRQ)) == 0)
517 return (0);
518
519 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
520 /* Clear interrupt. */
521 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
522 ESO_SB_RBSR);
523
524 if (sc->sc_rintr)
525 sc->sc_rintr(sc->sc_rarg);
526 else
527 wakeup(&sc->sc_rintr);
528 }
529
530 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
531 /*
532 * Clear the A2 IRQ latch: the cached value reflects the
533 * current DAC settings with the IRQ latch bit not set.
534 */
535 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
536
537 if (sc->sc_pintr)
538 sc->sc_pintr(sc->sc_parg);
539 else
540 wakeup(&sc->sc_pintr);
541 }
542
543 #if NMPU > 0
544 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
545 mpu_intr(sc->sc_mpudev);
546 #endif
547
548 return (1);
549 }
550
551 /* Perform a software reset, including DMA FIFOs. */
552 static int
553 eso_reset(sc)
554 struct eso_softc *sc;
555 {
556 int i;
557
558 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
559 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
560 /* `Delay' suggested in the data sheet. */
561 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
562 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
563
564 /* Wait for reset to take effect. */
565 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
566 /* Poll for data to become available. */
567 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
568 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
569 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
570 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
571
572 /* Activate Solo-1 extension commands. */
573 eso_write_cmd(sc, ESO_CMD_EXTENB);
574 /* Reset mixer registers. */
575 eso_write_mixreg(sc, ESO_MIXREG_RESET,
576 ESO_MIXREG_RESET_RESET);
577
578 return (0);
579 } else {
580 delay(1000);
581 }
582 }
583
584 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
585 return (-1);
586 }
587
588
589 /* ARGSUSED */
590 static int
591 eso_open(hdl, flags)
592 void *hdl;
593 int flags;
594 {
595 struct eso_softc *sc = hdl;
596
597 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
598
599 sc->sc_pintr = NULL;
600 sc->sc_rintr = NULL;
601
602 return (0);
603 }
604
605 static void
606 eso_close(hdl)
607 void *hdl;
608 {
609
610 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
611 }
612
613 static int
614 eso_query_encoding(hdl, fp)
615 void *hdl;
616 struct audio_encoding *fp;
617 {
618
619 switch (fp->index) {
620 case 0:
621 strcpy(fp->name, AudioEulinear);
622 fp->encoding = AUDIO_ENCODING_ULINEAR;
623 fp->precision = 8;
624 fp->flags = 0;
625 break;
626 case 1:
627 strcpy(fp->name, AudioEmulaw);
628 fp->encoding = AUDIO_ENCODING_ULAW;
629 fp->precision = 8;
630 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
631 break;
632 case 2:
633 strcpy(fp->name, AudioEalaw);
634 fp->encoding = AUDIO_ENCODING_ALAW;
635 fp->precision = 8;
636 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
637 break;
638 case 3:
639 strcpy(fp->name, AudioEslinear);
640 fp->encoding = AUDIO_ENCODING_SLINEAR;
641 fp->precision = 8;
642 fp->flags = 0;
643 break;
644 case 4:
645 strcpy(fp->name, AudioEslinear_le);
646 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
647 fp->precision = 16;
648 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
649 break;
650 case 5:
651 strcpy(fp->name, AudioEulinear_le);
652 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
653 fp->precision = 16;
654 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
655 break;
656 case 6:
657 strcpy(fp->name, AudioEslinear_be);
658 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
659 fp->precision = 16;
660 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
661 break;
662 case 7:
663 strcpy(fp->name, AudioEulinear_be);
664 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
665 fp->precision = 16;
666 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
667 break;
668 default:
669 return (EINVAL);
670 }
671
672 return (0);
673 }
674
675 static int
676 eso_set_params(hdl, setmode, usemode, play, rec)
677 void *hdl;
678 int setmode, usemode;
679 struct audio_params *play, *rec;
680 {
681 struct eso_softc *sc = hdl;
682 struct audio_params *p;
683 int mode, r[2], rd[2], clk;
684 unsigned int srg, fltdiv;
685
686 for (mode = AUMODE_RECORD; mode != -1;
687 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
688 if ((setmode & mode) == 0)
689 continue;
690
691 p = (mode == AUMODE_PLAY) ? play : rec;
692
693 if (p->sample_rate < ESO_MINRATE ||
694 p->sample_rate > ESO_MAXRATE ||
695 (p->precision != 8 && p->precision != 16) ||
696 (p->channels != 1 && p->channels != 2))
697 return (EINVAL);
698
699 p->factor = 1;
700 p->sw_code = NULL;
701 switch (p->encoding) {
702 case AUDIO_ENCODING_SLINEAR_BE:
703 case AUDIO_ENCODING_ULINEAR_BE:
704 if (mode == AUMODE_PLAY && p->precision == 16)
705 p->sw_code = swap_bytes;
706 break;
707 case AUDIO_ENCODING_SLINEAR_LE:
708 case AUDIO_ENCODING_ULINEAR_LE:
709 if (mode == AUMODE_RECORD && p->precision == 16)
710 p->sw_code = swap_bytes;
711 break;
712 case AUDIO_ENCODING_ULAW:
713 if (mode == AUMODE_PLAY) {
714 p->factor = 2;
715 p->sw_code = mulaw_to_ulinear16_le;
716 } else {
717 p->sw_code = ulinear8_to_mulaw;
718 }
719 break;
720 case AUDIO_ENCODING_ALAW:
721 if (mode == AUMODE_PLAY) {
722 p->factor = 2;
723 p->sw_code = alaw_to_ulinear16_le;
724 } else {
725 p->sw_code = ulinear8_to_alaw;
726 }
727 break;
728 default:
729 return (EINVAL);
730 }
731
732 /*
733 * We'll compute both possible sample rate dividers and pick
734 * the one with the least error.
735 */
736 #define ABS(x) ((x) < 0 ? -(x) : (x))
737 r[0] = ESO_CLK0 /
738 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
739 r[1] = ESO_CLK1 /
740 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
741
742 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
743 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
744
745 /* Roll-off frequency of 87%, as in the ES1888 driver. */
746 fltdiv = 256 - 200279L / r[clk];
747
748 /* Update to reflect the possibly inexact rate. */
749 p->sample_rate = r[clk];
750
751 if (mode == AUMODE_RECORD) {
752 /* Audio 1 */
753 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
754 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
755 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
756 } else {
757 /* Audio 2 */
758 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
759 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
760 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
761 }
762 #undef ABS
763
764 }
765
766 return (0);
767 }
768
769 static int
770 eso_round_blocksize(hdl, blk)
771 void *hdl;
772 int blk;
773 {
774
775 return (blk & -32); /* keep good alignment; at least 16 req'd */
776 }
777
778 static int
779 eso_halt_output(hdl)
780 void *hdl;
781 {
782 struct eso_softc *sc = hdl;
783 int error, s;
784
785 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
786
787 /*
788 * Disable auto-initialize DMA, allowing the FIFO to drain and then
789 * stop. The interrupt callback pointer is cleared at this
790 * point so that an outstanding FIFO interrupt for the remaining data
791 * will be acknowledged without further processing.
792 *
793 * This does not immediately `abort' an operation in progress (c.f.
794 * audio(9)) but is the method to leave the FIFO behind in a clean
795 * state with the least hair. (Besides, that item needs to be
796 * rephrased for trigger_*()-based DMA environments.)
797 */
798 s = splaudio();
799 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
800 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
801 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
802 ESO_IO_A2DMAM_DMAENB);
803
804 sc->sc_pintr = NULL;
805 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", hz);
806 splx(s);
807
808 /* Shut down DMA completely. */
809 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
810 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
811
812 return (error == EWOULDBLOCK ? 0 : error);
813 }
814
815 static int
816 eso_halt_input(hdl)
817 void *hdl;
818 {
819 struct eso_softc *sc = hdl;
820 int error, s;
821
822 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
823
824 /* Just like eso_halt_output(), but for Audio 1. */
825 s = splaudio();
826 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
827 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
828 ESO_CTLREG_A1C2_DMAENB);
829 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
830 DMA37MD_WRITE | DMA37MD_DEMAND);
831
832 sc->sc_rintr = NULL;
833 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", hz);
834 splx(s);
835
836 /* Shut down DMA completely. */
837 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
838 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
839 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
840 ESO_DMAC_MASK_MASK);
841
842 return (error == EWOULDBLOCK ? 0 : error);
843 }
844
845 static int
846 eso_getdev(hdl, retp)
847 void *hdl;
848 struct audio_device *retp;
849 {
850 struct eso_softc *sc = hdl;
851
852 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
853 snprintf(retp->version, sizeof (retp->version), "0x%02x",
854 sc->sc_revision);
855 if (sc->sc_revision <
856 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
857 strncpy(retp->config, eso_rev2model[sc->sc_revision],
858 sizeof (retp->config));
859 else
860 strncpy(retp->config, "unknown", sizeof (retp->config));
861
862 return (0);
863 }
864
865 static int
866 eso_set_port(hdl, cp)
867 void *hdl;
868 mixer_ctrl_t *cp;
869 {
870 struct eso_softc *sc = hdl;
871 unsigned int lgain, rgain;
872 uint8_t tmp;
873
874 switch (cp->dev) {
875 case ESO_DAC_PLAY_VOL:
876 case ESO_MIC_PLAY_VOL:
877 case ESO_LINE_PLAY_VOL:
878 case ESO_SYNTH_PLAY_VOL:
879 case ESO_CD_PLAY_VOL:
880 case ESO_AUXB_PLAY_VOL:
881 case ESO_RECORD_VOL:
882 case ESO_DAC_REC_VOL:
883 case ESO_MIC_REC_VOL:
884 case ESO_LINE_REC_VOL:
885 case ESO_SYNTH_REC_VOL:
886 case ESO_CD_REC_VOL:
887 case ESO_AUXB_REC_VOL:
888 if (cp->type != AUDIO_MIXER_VALUE)
889 return (EINVAL);
890
891 /*
892 * Stereo-capable mixer ports: if we get a single-channel
893 * gain value passed in, then we duplicate it to both left
894 * and right channels.
895 */
896 switch (cp->un.value.num_channels) {
897 case 1:
898 lgain = rgain = ESO_GAIN_TO_4BIT(
899 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
900 break;
901 case 2:
902 lgain = ESO_GAIN_TO_4BIT(
903 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
904 rgain = ESO_GAIN_TO_4BIT(
905 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
906 break;
907 default:
908 return (EINVAL);
909 }
910
911 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
912 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
913 eso_set_gain(sc, cp->dev);
914 break;
915
916 case ESO_MASTER_VOL:
917 if (cp->type != AUDIO_MIXER_VALUE)
918 return (EINVAL);
919
920 /* Like above, but a precision of 6 bits. */
921 switch (cp->un.value.num_channels) {
922 case 1:
923 lgain = rgain = ESO_GAIN_TO_6BIT(
924 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
925 break;
926 case 2:
927 lgain = ESO_GAIN_TO_6BIT(
928 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
929 rgain = ESO_GAIN_TO_6BIT(
930 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
931 break;
932 default:
933 return (EINVAL);
934 }
935
936 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
937 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
938 eso_set_gain(sc, cp->dev);
939 break;
940
941 case ESO_SPATIALIZER:
942 if (cp->type != AUDIO_MIXER_VALUE ||
943 cp->un.value.num_channels != 1)
944 return (EINVAL);
945
946 sc->sc_gain[cp->dev][ESO_LEFT] =
947 sc->sc_gain[cp->dev][ESO_RIGHT] =
948 ESO_GAIN_TO_6BIT(
949 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
950 eso_set_gain(sc, cp->dev);
951 break;
952
953 case ESO_MONO_PLAY_VOL:
954 case ESO_MONO_REC_VOL:
955 if (cp->type != AUDIO_MIXER_VALUE ||
956 cp->un.value.num_channels != 1)
957 return (EINVAL);
958
959 sc->sc_gain[cp->dev][ESO_LEFT] =
960 sc->sc_gain[cp->dev][ESO_RIGHT] =
961 ESO_GAIN_TO_4BIT(
962 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
963 eso_set_gain(sc, cp->dev);
964 break;
965
966 case ESO_PCSPEAKER_VOL:
967 if (cp->type != AUDIO_MIXER_VALUE ||
968 cp->un.value.num_channels != 1)
969 return (EINVAL);
970
971 sc->sc_gain[cp->dev][ESO_LEFT] =
972 sc->sc_gain[cp->dev][ESO_RIGHT] =
973 ESO_GAIN_TO_3BIT(
974 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
975 eso_set_gain(sc, cp->dev);
976 break;
977
978 case ESO_SPATIALIZER_ENABLE:
979 if (cp->type != AUDIO_MIXER_ENUM)
980 return (EINVAL);
981
982 sc->sc_spatializer = (cp->un.ord != 0);
983
984 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
985 if (sc->sc_spatializer)
986 tmp |= ESO_MIXREG_SPAT_ENB;
987 else
988 tmp &= ~ESO_MIXREG_SPAT_ENB;
989 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
990 tmp | ESO_MIXREG_SPAT_RSTREL);
991 break;
992
993 case ESO_MASTER_MUTE:
994 if (cp->type != AUDIO_MIXER_ENUM)
995 return (EINVAL);
996
997 sc->sc_mvmute = (cp->un.ord != 0);
998
999 if (sc->sc_mvmute) {
1000 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1001 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1002 ESO_MIXREG_LMVM_MUTE);
1003 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1004 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1005 ESO_MIXREG_RMVM_MUTE);
1006 } else {
1007 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1008 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1009 ~ESO_MIXREG_LMVM_MUTE);
1010 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1011 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1012 ~ESO_MIXREG_RMVM_MUTE);
1013 }
1014 break;
1015
1016 case ESO_MONOOUT_SOURCE:
1017 if (cp->type != AUDIO_MIXER_ENUM)
1018 return (EINVAL);
1019
1020 return (eso_set_monooutsrc(sc, cp->un.ord));
1021
1022 case ESO_RECORD_MONITOR:
1023 if (cp->type != AUDIO_MIXER_ENUM)
1024 return (EINVAL);
1025
1026 sc->sc_recmon = (cp->un.ord != 0);
1027
1028 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1029 if (sc->sc_recmon)
1030 tmp |= ESO_CTLREG_ACTL_RECMON;
1031 else
1032 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1033 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1034 break;
1035
1036 case ESO_RECORD_SOURCE:
1037 if (cp->type != AUDIO_MIXER_ENUM)
1038 return (EINVAL);
1039
1040 return (eso_set_recsrc(sc, cp->un.ord));
1041
1042 case ESO_MIC_PREAMP:
1043 if (cp->type != AUDIO_MIXER_ENUM)
1044 return (EINVAL);
1045
1046 sc->sc_preamp = (cp->un.ord != 0);
1047
1048 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1049 tmp &= ~ESO_MIXREG_MPM_RESV0;
1050 if (sc->sc_preamp)
1051 tmp |= ESO_MIXREG_MPM_PREAMP;
1052 else
1053 tmp &= ~ESO_MIXREG_MPM_PREAMP;
1054 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1055 break;
1056
1057 default:
1058 return (EINVAL);
1059 }
1060
1061 return (0);
1062 }
1063
1064 static int
1065 eso_get_port(hdl, cp)
1066 void *hdl;
1067 mixer_ctrl_t *cp;
1068 {
1069 struct eso_softc *sc = hdl;
1070
1071 switch (cp->dev) {
1072 case ESO_DAC_PLAY_VOL:
1073 case ESO_MIC_PLAY_VOL:
1074 case ESO_LINE_PLAY_VOL:
1075 case ESO_SYNTH_PLAY_VOL:
1076 case ESO_CD_PLAY_VOL:
1077 case ESO_AUXB_PLAY_VOL:
1078 case ESO_MASTER_VOL:
1079 case ESO_RECORD_VOL:
1080 case ESO_DAC_REC_VOL:
1081 case ESO_MIC_REC_VOL:
1082 case ESO_LINE_REC_VOL:
1083 case ESO_SYNTH_REC_VOL:
1084 case ESO_CD_REC_VOL:
1085 case ESO_AUXB_REC_VOL:
1086 /*
1087 * Stereo-capable ports: if a single-channel query is made,
1088 * just return the left channel's value (since single-channel
1089 * settings themselves are applied to both channels).
1090 */
1091 switch (cp->un.value.num_channels) {
1092 case 1:
1093 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1094 sc->sc_gain[cp->dev][ESO_LEFT];
1095 break;
1096 case 2:
1097 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1098 sc->sc_gain[cp->dev][ESO_LEFT];
1099 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1100 sc->sc_gain[cp->dev][ESO_RIGHT];
1101 break;
1102 default:
1103 return (EINVAL);
1104 }
1105 break;
1106
1107 case ESO_MONO_PLAY_VOL:
1108 case ESO_PCSPEAKER_VOL:
1109 case ESO_MONO_REC_VOL:
1110 case ESO_SPATIALIZER:
1111 if (cp->un.value.num_channels != 1)
1112 return (EINVAL);
1113 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1114 sc->sc_gain[cp->dev][ESO_LEFT];
1115 break;
1116
1117 case ESO_RECORD_MONITOR:
1118 cp->un.ord = sc->sc_recmon;
1119 break;
1120
1121 case ESO_RECORD_SOURCE:
1122 cp->un.ord = sc->sc_recsrc;
1123 break;
1124
1125 case ESO_MONOOUT_SOURCE:
1126 cp->un.ord = sc->sc_monooutsrc;
1127 break;
1128
1129 case ESO_SPATIALIZER_ENABLE:
1130 cp->un.ord = sc->sc_spatializer;
1131 break;
1132
1133 case ESO_MIC_PREAMP:
1134 cp->un.ord = sc->sc_preamp;
1135 break;
1136
1137 case ESO_MASTER_MUTE:
1138 cp->un.ord = sc->sc_mvmute;
1139 break;
1140
1141 default:
1142 return (EINVAL);
1143 }
1144
1145
1146 return (0);
1147
1148 }
1149
1150 static int
1151 eso_query_devinfo(hdl, dip)
1152 void *hdl;
1153 mixer_devinfo_t *dip;
1154 {
1155
1156 switch (dip->index) {
1157 case ESO_DAC_PLAY_VOL:
1158 dip->mixer_class = ESO_INPUT_CLASS;
1159 dip->next = dip->prev = AUDIO_MIXER_LAST;
1160 strcpy(dip->label.name, AudioNdac);
1161 dip->type = AUDIO_MIXER_VALUE;
1162 dip->un.v.num_channels = 2;
1163 strcpy(dip->un.v.units.name, AudioNvolume);
1164 break;
1165 case ESO_MIC_PLAY_VOL:
1166 dip->mixer_class = ESO_INPUT_CLASS;
1167 dip->next = dip->prev = AUDIO_MIXER_LAST;
1168 strcpy(dip->label.name, AudioNmicrophone);
1169 dip->type = AUDIO_MIXER_VALUE;
1170 dip->un.v.num_channels = 2;
1171 strcpy(dip->un.v.units.name, AudioNvolume);
1172 break;
1173 case ESO_LINE_PLAY_VOL:
1174 dip->mixer_class = ESO_INPUT_CLASS;
1175 dip->next = dip->prev = AUDIO_MIXER_LAST;
1176 strcpy(dip->label.name, AudioNline);
1177 dip->type = AUDIO_MIXER_VALUE;
1178 dip->un.v.num_channels = 2;
1179 strcpy(dip->un.v.units.name, AudioNvolume);
1180 break;
1181 case ESO_SYNTH_PLAY_VOL:
1182 dip->mixer_class = ESO_INPUT_CLASS;
1183 dip->next = dip->prev = AUDIO_MIXER_LAST;
1184 strcpy(dip->label.name, AudioNfmsynth);
1185 dip->type = AUDIO_MIXER_VALUE;
1186 dip->un.v.num_channels = 2;
1187 strcpy(dip->un.v.units.name, AudioNvolume);
1188 break;
1189 case ESO_MONO_PLAY_VOL:
1190 dip->mixer_class = ESO_INPUT_CLASS;
1191 dip->next = dip->prev = AUDIO_MIXER_LAST;
1192 strcpy(dip->label.name, "mono_in");
1193 dip->type = AUDIO_MIXER_VALUE;
1194 dip->un.v.num_channels = 1;
1195 strcpy(dip->un.v.units.name, AudioNvolume);
1196 break;
1197 case ESO_CD_PLAY_VOL:
1198 dip->mixer_class = ESO_INPUT_CLASS;
1199 dip->next = dip->prev = AUDIO_MIXER_LAST;
1200 strcpy(dip->label.name, AudioNcd);
1201 dip->type = AUDIO_MIXER_VALUE;
1202 dip->un.v.num_channels = 2;
1203 strcpy(dip->un.v.units.name, AudioNvolume);
1204 break;
1205 case ESO_AUXB_PLAY_VOL:
1206 dip->mixer_class = ESO_INPUT_CLASS;
1207 dip->next = dip->prev = AUDIO_MIXER_LAST;
1208 strcpy(dip->label.name, "auxb");
1209 dip->type = AUDIO_MIXER_VALUE;
1210 dip->un.v.num_channels = 2;
1211 strcpy(dip->un.v.units.name, AudioNvolume);
1212 break;
1213
1214 case ESO_MIC_PREAMP:
1215 dip->mixer_class = ESO_MICROPHONE_CLASS;
1216 dip->next = dip->prev = AUDIO_MIXER_LAST;
1217 strcpy(dip->label.name, AudioNpreamp);
1218 dip->type = AUDIO_MIXER_ENUM;
1219 dip->un.e.num_mem = 2;
1220 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1221 dip->un.e.member[0].ord = 0;
1222 strcpy(dip->un.e.member[1].label.name, AudioNon);
1223 dip->un.e.member[1].ord = 1;
1224 break;
1225 case ESO_MICROPHONE_CLASS:
1226 dip->mixer_class = ESO_MICROPHONE_CLASS;
1227 dip->next = dip->prev = AUDIO_MIXER_LAST;
1228 strcpy(dip->label.name, AudioNmicrophone);
1229 dip->type = AUDIO_MIXER_CLASS;
1230 break;
1231
1232 case ESO_INPUT_CLASS:
1233 dip->mixer_class = ESO_INPUT_CLASS;
1234 dip->next = dip->prev = AUDIO_MIXER_LAST;
1235 strcpy(dip->label.name, AudioCinputs);
1236 dip->type = AUDIO_MIXER_CLASS;
1237 break;
1238
1239 case ESO_MASTER_VOL:
1240 dip->mixer_class = ESO_OUTPUT_CLASS;
1241 dip->prev = AUDIO_MIXER_LAST;
1242 dip->next = ESO_MASTER_MUTE;
1243 strcpy(dip->label.name, AudioNmaster);
1244 dip->type = AUDIO_MIXER_VALUE;
1245 dip->un.v.num_channels = 2;
1246 strcpy(dip->un.v.units.name, AudioNvolume);
1247 break;
1248 case ESO_MASTER_MUTE:
1249 dip->mixer_class = ESO_OUTPUT_CLASS;
1250 dip->prev = ESO_MASTER_VOL;
1251 dip->next = AUDIO_MIXER_LAST;
1252 strcpy(dip->label.name, AudioNmute);
1253 dip->type = AUDIO_MIXER_ENUM;
1254 dip->un.e.num_mem = 2;
1255 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1256 dip->un.e.member[0].ord = 0;
1257 strcpy(dip->un.e.member[1].label.name, AudioNon);
1258 dip->un.e.member[1].ord = 1;
1259 break;
1260
1261 case ESO_PCSPEAKER_VOL:
1262 dip->mixer_class = ESO_OUTPUT_CLASS;
1263 dip->next = dip->prev = AUDIO_MIXER_LAST;
1264 strcpy(dip->label.name, "pc_speaker");
1265 dip->type = AUDIO_MIXER_VALUE;
1266 dip->un.v.num_channels = 1;
1267 strcpy(dip->un.v.units.name, AudioNvolume);
1268 break;
1269 case ESO_MONOOUT_SOURCE:
1270 dip->mixer_class = ESO_OUTPUT_CLASS;
1271 dip->next = dip->prev = AUDIO_MIXER_LAST;
1272 strcpy(dip->label.name, "mono_out");
1273 dip->type = AUDIO_MIXER_ENUM;
1274 dip->un.e.num_mem = 3;
1275 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1276 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1277 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1278 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1279 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1280 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1281 break;
1282 case ESO_SPATIALIZER:
1283 dip->mixer_class = ESO_OUTPUT_CLASS;
1284 dip->prev = AUDIO_MIXER_LAST;
1285 dip->next = ESO_SPATIALIZER_ENABLE;
1286 strcpy(dip->label.name, AudioNspatial);
1287 dip->type = AUDIO_MIXER_VALUE;
1288 dip->un.v.num_channels = 1;
1289 strcpy(dip->un.v.units.name, "level");
1290 break;
1291 case ESO_SPATIALIZER_ENABLE:
1292 dip->mixer_class = ESO_OUTPUT_CLASS;
1293 dip->prev = ESO_SPATIALIZER;
1294 dip->next = AUDIO_MIXER_LAST;
1295 strcpy(dip->label.name, "enable");
1296 dip->type = AUDIO_MIXER_ENUM;
1297 dip->un.e.num_mem = 2;
1298 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1299 dip->un.e.member[0].ord = 0;
1300 strcpy(dip->un.e.member[1].label.name, AudioNon);
1301 dip->un.e.member[1].ord = 1;
1302 break;
1303
1304 case ESO_OUTPUT_CLASS:
1305 dip->mixer_class = ESO_OUTPUT_CLASS;
1306 dip->next = dip->prev = AUDIO_MIXER_LAST;
1307 strcpy(dip->label.name, AudioCoutputs);
1308 dip->type = AUDIO_MIXER_CLASS;
1309 break;
1310
1311 case ESO_RECORD_MONITOR:
1312 dip->mixer_class = ESO_MONITOR_CLASS;
1313 dip->next = dip->prev = AUDIO_MIXER_LAST;
1314 strcpy(dip->label.name, AudioNmute);
1315 dip->type = AUDIO_MIXER_ENUM;
1316 dip->un.e.num_mem = 2;
1317 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1318 dip->un.e.member[0].ord = 0;
1319 strcpy(dip->un.e.member[1].label.name, AudioNon);
1320 dip->un.e.member[1].ord = 1;
1321 break;
1322 case ESO_MONITOR_CLASS:
1323 dip->mixer_class = ESO_MONITOR_CLASS;
1324 dip->next = dip->prev = AUDIO_MIXER_LAST;
1325 strcpy(dip->label.name, AudioCmonitor);
1326 dip->type = AUDIO_MIXER_CLASS;
1327 break;
1328
1329 case ESO_RECORD_VOL:
1330 dip->mixer_class = ESO_RECORD_CLASS;
1331 dip->next = dip->prev = AUDIO_MIXER_LAST;
1332 strcpy(dip->label.name, AudioNrecord);
1333 dip->type = AUDIO_MIXER_VALUE;
1334 strcpy(dip->un.v.units.name, AudioNvolume);
1335 break;
1336 case ESO_RECORD_SOURCE:
1337 dip->mixer_class = ESO_RECORD_CLASS;
1338 dip->next = dip->prev = AUDIO_MIXER_LAST;
1339 strcpy(dip->label.name, AudioNsource);
1340 dip->type = AUDIO_MIXER_ENUM;
1341 dip->un.e.num_mem = 4;
1342 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1343 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1344 strcpy(dip->un.e.member[1].label.name, AudioNline);
1345 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1346 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1347 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1348 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1349 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1350 break;
1351 case ESO_DAC_REC_VOL:
1352 dip->mixer_class = ESO_RECORD_CLASS;
1353 dip->next = dip->prev = AUDIO_MIXER_LAST;
1354 strcpy(dip->label.name, AudioNdac);
1355 dip->type = AUDIO_MIXER_VALUE;
1356 dip->un.v.num_channels = 2;
1357 strcpy(dip->un.v.units.name, AudioNvolume);
1358 break;
1359 case ESO_MIC_REC_VOL:
1360 dip->mixer_class = ESO_RECORD_CLASS;
1361 dip->next = dip->prev = AUDIO_MIXER_LAST;
1362 strcpy(dip->label.name, AudioNmicrophone);
1363 dip->type = AUDIO_MIXER_VALUE;
1364 dip->un.v.num_channels = 2;
1365 strcpy(dip->un.v.units.name, AudioNvolume);
1366 break;
1367 case ESO_LINE_REC_VOL:
1368 dip->mixer_class = ESO_RECORD_CLASS;
1369 dip->next = dip->prev = AUDIO_MIXER_LAST;
1370 strcpy(dip->label.name, AudioNline);
1371 dip->type = AUDIO_MIXER_VALUE;
1372 dip->un.v.num_channels = 2;
1373 strcpy(dip->un.v.units.name, AudioNvolume);
1374 break;
1375 case ESO_SYNTH_REC_VOL:
1376 dip->mixer_class = ESO_RECORD_CLASS;
1377 dip->next = dip->prev = AUDIO_MIXER_LAST;
1378 strcpy(dip->label.name, AudioNfmsynth);
1379 dip->type = AUDIO_MIXER_VALUE;
1380 dip->un.v.num_channels = 2;
1381 strcpy(dip->un.v.units.name, AudioNvolume);
1382 break;
1383 case ESO_MONO_REC_VOL:
1384 dip->mixer_class = ESO_RECORD_CLASS;
1385 dip->next = dip->prev = AUDIO_MIXER_LAST;
1386 strcpy(dip->label.name, "mono_in");
1387 dip->type = AUDIO_MIXER_VALUE;
1388 dip->un.v.num_channels = 1; /* No lies */
1389 strcpy(dip->un.v.units.name, AudioNvolume);
1390 break;
1391 case ESO_CD_REC_VOL:
1392 dip->mixer_class = ESO_RECORD_CLASS;
1393 dip->next = dip->prev = AUDIO_MIXER_LAST;
1394 strcpy(dip->label.name, AudioNcd);
1395 dip->type = AUDIO_MIXER_VALUE;
1396 dip->un.v.num_channels = 2;
1397 strcpy(dip->un.v.units.name, AudioNvolume);
1398 break;
1399 case ESO_AUXB_REC_VOL:
1400 dip->mixer_class = ESO_RECORD_CLASS;
1401 dip->next = dip->prev = AUDIO_MIXER_LAST;
1402 strcpy(dip->label.name, "auxb");
1403 dip->type = AUDIO_MIXER_VALUE;
1404 dip->un.v.num_channels = 2;
1405 strcpy(dip->un.v.units.name, AudioNvolume);
1406 break;
1407 case ESO_RECORD_CLASS:
1408 dip->mixer_class = ESO_RECORD_CLASS;
1409 dip->next = dip->prev = AUDIO_MIXER_LAST;
1410 strcpy(dip->label.name, AudioCrecord);
1411 dip->type = AUDIO_MIXER_CLASS;
1412 break;
1413
1414 default:
1415 return (ENXIO);
1416 }
1417
1418 return (0);
1419 }
1420
1421 static int
1422 eso_allocmem(sc, size, align, boundary, flags, ed)
1423 struct eso_softc *sc;
1424 size_t size;
1425 size_t align;
1426 size_t boundary;
1427 int flags;
1428 struct eso_dma *ed;
1429 {
1430 int error, wait;
1431
1432 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1433 ed->ed_size = size;
1434
1435 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1436 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1437 &ed->ed_nsegs, wait);
1438 if (error)
1439 goto out;
1440
1441 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1442 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1443 if (error)
1444 goto free;
1445
1446 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1447 wait, &ed->ed_map);
1448 if (error)
1449 goto unmap;
1450
1451 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1452 ed->ed_size, NULL, wait);
1453 if (error)
1454 goto destroy;
1455
1456 return (0);
1457
1458 destroy:
1459 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1460 unmap:
1461 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1462 free:
1463 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1464 out:
1465 return (error);
1466 }
1467
1468 static void
1469 eso_freemem(ed)
1470 struct eso_dma *ed;
1471 {
1472
1473 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1474 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1475 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1476 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1477 }
1478
1479 static void *
1480 eso_allocm(hdl, direction, size, type, flags)
1481 void *hdl;
1482 int direction;
1483 size_t size;
1484 int type, flags;
1485 {
1486 struct eso_softc *sc = hdl;
1487 struct eso_dma *ed;
1488 size_t boundary;
1489 int error;
1490
1491 if ((ed = malloc(size, type, flags)) == NULL)
1492 return (NULL);
1493
1494 /*
1495 * Apparently the Audio 1 DMA controller's current address
1496 * register can't roll over a 64K address boundary, so we have to
1497 * take care of that ourselves. The second channel DMA controller
1498 * doesn't have that restriction, however.
1499 */
1500 if (direction == AUMODE_RECORD)
1501 boundary = 0x10000;
1502 else
1503 boundary = 0;
1504
1505 #ifdef alpha
1506 /*
1507 * XXX For Audio 1, which implements the 24 low address bits only,
1508 * XXX force allocation through the (ISA) SGMAP.
1509 */
1510 if (direction == AUMODE_RECORD)
1511 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1512 else
1513 #endif
1514 ed->ed_dmat = sc->sc_dmat;
1515
1516 error = eso_allocmem(sc, size, 32, boundary, flags, ed);
1517 if (error) {
1518 free(ed, type);
1519 return (NULL);
1520 }
1521 ed->ed_next = sc->sc_dmas;
1522 sc->sc_dmas = ed;
1523
1524 return (KVADDR(ed));
1525 }
1526
1527 static void
1528 eso_freem(hdl, addr, type)
1529 void *hdl;
1530 void *addr;
1531 int type;
1532 {
1533 struct eso_softc *sc = hdl;
1534 struct eso_dma *p, **pp;
1535
1536 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1537 if (KVADDR(p) == addr) {
1538 eso_freemem(p);
1539 *pp = p->ed_next;
1540 free(p, type);
1541 return;
1542 }
1543 }
1544 }
1545
1546 static size_t
1547 eso_round_buffersize(hdl, direction, bufsize)
1548 void *hdl;
1549 int direction;
1550 size_t bufsize;
1551 {
1552
1553 /* 64K restriction: ISA at eleven? */
1554 if (bufsize > 65536)
1555 bufsize = 65536;
1556
1557 return (bufsize);
1558 }
1559
1560 static int
1561 eso_mappage(hdl, addr, offs, prot)
1562 void *hdl;
1563 void *addr;
1564 int offs;
1565 int prot;
1566 {
1567 struct eso_softc *sc = hdl;
1568 struct eso_dma *ed;
1569
1570 if (offs < 0)
1571 return (-1);
1572 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) == addr;
1573 ed = ed->ed_next)
1574 ;
1575 if (ed == NULL)
1576 return (-1);
1577
1578 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1579 offs, prot, BUS_DMA_WAITOK));
1580 }
1581
1582 /* ARGSUSED */
1583 static int
1584 eso_get_props(hdl)
1585 void *hdl;
1586 {
1587
1588 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1589 AUDIO_PROP_FULLDUPLEX);
1590 }
1591
1592 static int
1593 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1594 void *hdl;
1595 void *start, *end;
1596 int blksize;
1597 void (*intr) __P((void *));
1598 void *arg;
1599 struct audio_params *param;
1600 {
1601 struct eso_softc *sc = hdl;
1602 struct eso_dma *ed;
1603 uint8_t a2c1;
1604
1605 DPRINTF((
1606 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1607 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1608 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1609 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1610 param->precision, param->channels, param->sw_code, param->factor));
1611
1612 /* Find DMA buffer. */
1613 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1614 ed = ed->ed_next)
1615 ;
1616 if (ed == NULL) {
1617 printf("%s: trigger_output: bad addr %p\n",
1618 sc->sc_dev.dv_xname, start);
1619 return (EINVAL);
1620 }
1621
1622 sc->sc_pintr = intr;
1623 sc->sc_parg = arg;
1624
1625 /* DMA transfer count (in `words'!) reload using 2's complement. */
1626 blksize = -(blksize >> 1);
1627 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1628 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1629
1630 /* Update DAC to reflect DMA count and audio parameters. */
1631 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1632 if (param->precision * param->factor == 16)
1633 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1634 else
1635 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1636 if (param->channels == 2)
1637 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1638 else
1639 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1640 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1641 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1642 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1643 else
1644 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1645 /* Unmask IRQ. */
1646 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1647 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1648
1649 /* Set up DMA controller. */
1650 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1651 DMAADDR(ed));
1652 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1653 (uint8_t *)end - (uint8_t *)start);
1654 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1655 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1656
1657 /* Start DMA. */
1658 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1659 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1660 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1661 ESO_MIXREG_A2C1_AUTO;
1662 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1663
1664 return (0);
1665 }
1666
1667 static int
1668 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1669 void *hdl;
1670 void *start, *end;
1671 int blksize;
1672 void (*intr) __P((void *));
1673 void *arg;
1674 struct audio_params *param;
1675 {
1676 struct eso_softc *sc = hdl;
1677 struct eso_dma *ed;
1678 uint8_t actl, a1c1;
1679
1680 DPRINTF((
1681 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1682 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1683 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1684 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1685 param->precision, param->channels, param->sw_code, param->factor));
1686
1687 /*
1688 * If we failed to configure the Audio 1 DMA controller, bail here
1689 * while retaining availability of the DAC direction (in Audio 2).
1690 */
1691 if (!sc->sc_dmac_configured)
1692 return (EIO);
1693
1694 /* Find DMA buffer. */
1695 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1696 ed = ed->ed_next)
1697 ;
1698 if (ed == NULL) {
1699 printf("%s: trigger_output: bad addr %p\n",
1700 sc->sc_dev.dv_xname, start);
1701 return (EINVAL);
1702 }
1703
1704 sc->sc_rintr = intr;
1705 sc->sc_rarg = arg;
1706
1707 /* Set up ADC DMA converter parameters. */
1708 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1709 if (param->channels == 2) {
1710 actl &= ~ESO_CTLREG_ACTL_MONO;
1711 actl |= ESO_CTLREG_ACTL_STEREO;
1712 } else {
1713 actl &= ~ESO_CTLREG_ACTL_STEREO;
1714 actl |= ESO_CTLREG_ACTL_MONO;
1715 }
1716 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1717
1718 /* Set up Transfer Type: maybe move to attach time? */
1719 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1720
1721 /* DMA transfer count reload using 2's complement. */
1722 blksize = -blksize;
1723 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1724 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1725
1726 /* Set up and enable Audio 1 DMA FIFO. */
1727 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1728 if (param->precision * param->factor == 16)
1729 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1730 if (param->channels == 2)
1731 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1732 else
1733 a1c1 |= ESO_CTLREG_A1C1_MONO;
1734 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1735 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1736 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1737 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1738
1739 /* Set up ADC IRQ/DRQ parameters. */
1740 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1741 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1742 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1743 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1744
1745 /* Set up and enable DMA controller. */
1746 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1747 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1748 ESO_DMAC_MASK_MASK);
1749 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1750 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1751 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1752 DMAADDR(ed));
1753 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1754 (uint8_t *)end - (uint8_t *)start - 1);
1755 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1756
1757 /* Start DMA. */
1758 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1759 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1760 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1761
1762 return (0);
1763 }
1764
1765 static int
1766 eso_set_monooutsrc(sc, monooutsrc)
1767 struct eso_softc *sc;
1768 unsigned int monooutsrc;
1769 {
1770 mixer_devinfo_t di;
1771 int i;
1772 uint8_t mpm;
1773
1774 di.index = ESO_MONOOUT_SOURCE;
1775 if (eso_query_devinfo(sc, &di) != 0)
1776 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1777
1778 for (i = 0; i < di.un.e.num_mem; i++) {
1779 if (monooutsrc == di.un.e.member[i].ord) {
1780 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1781 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1782 mpm |= monooutsrc;
1783 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1784 sc->sc_monooutsrc = monooutsrc;
1785 return (0);
1786 }
1787 }
1788
1789 return (EINVAL);
1790 }
1791
1792 static int
1793 eso_set_recsrc(sc, recsrc)
1794 struct eso_softc *sc;
1795 unsigned int recsrc;
1796 {
1797 mixer_devinfo_t di;
1798 int i;
1799
1800 di.index = ESO_RECORD_SOURCE;
1801 if (eso_query_devinfo(sc, &di) != 0)
1802 panic("eso_set_recsrc: eso_query_devinfo failed");
1803
1804 for (i = 0; i < di.un.e.num_mem; i++) {
1805 if (recsrc == di.un.e.member[i].ord) {
1806 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1807 sc->sc_recsrc = recsrc;
1808 return (0);
1809 }
1810 }
1811
1812 return (EINVAL);
1813 }
1814
1815 static void
1816 eso_set_gain(sc, port)
1817 struct eso_softc *sc;
1818 unsigned int port;
1819 {
1820 uint8_t mixreg, tmp;
1821
1822 switch (port) {
1823 case ESO_DAC_PLAY_VOL:
1824 mixreg = ESO_MIXREG_PVR_A2;
1825 break;
1826 case ESO_MIC_PLAY_VOL:
1827 mixreg = ESO_MIXREG_PVR_MIC;
1828 break;
1829 case ESO_LINE_PLAY_VOL:
1830 mixreg = ESO_MIXREG_PVR_LINE;
1831 break;
1832 case ESO_SYNTH_PLAY_VOL:
1833 mixreg = ESO_MIXREG_PVR_SYNTH;
1834 break;
1835 case ESO_CD_PLAY_VOL:
1836 mixreg = ESO_MIXREG_PVR_CD;
1837 break;
1838 case ESO_AUXB_PLAY_VOL:
1839 mixreg = ESO_MIXREG_PVR_AUXB;
1840 break;
1841
1842 case ESO_DAC_REC_VOL:
1843 mixreg = ESO_MIXREG_RVR_A2;
1844 break;
1845 case ESO_MIC_REC_VOL:
1846 mixreg = ESO_MIXREG_RVR_MIC;
1847 break;
1848 case ESO_LINE_REC_VOL:
1849 mixreg = ESO_MIXREG_RVR_LINE;
1850 break;
1851 case ESO_SYNTH_REC_VOL:
1852 mixreg = ESO_MIXREG_RVR_SYNTH;
1853 break;
1854 case ESO_CD_REC_VOL:
1855 mixreg = ESO_MIXREG_RVR_CD;
1856 break;
1857 case ESO_AUXB_REC_VOL:
1858 mixreg = ESO_MIXREG_RVR_AUXB;
1859 break;
1860 case ESO_MONO_PLAY_VOL:
1861 mixreg = ESO_MIXREG_PVR_MONO;
1862 break;
1863 case ESO_MONO_REC_VOL:
1864 mixreg = ESO_MIXREG_RVR_MONO;
1865 break;
1866
1867 case ESO_PCSPEAKER_VOL:
1868 /* Special case - only 3-bit, mono, and reserved bits. */
1869 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1870 tmp &= ESO_MIXREG_PCSVR_RESV;
1871 /* Map bits 7:5 -> 2:0. */
1872 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1873 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1874 return;
1875
1876 case ESO_MASTER_VOL:
1877 /* Special case - separate regs, and 6-bit precision. */
1878 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1879 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1880 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1881 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1882 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1883 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1884 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1885 return;
1886
1887 case ESO_SPATIALIZER:
1888 /* Special case - only `mono', and higher precision. */
1889 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1890 sc->sc_gain[port][ESO_LEFT]);
1891 return;
1892
1893 case ESO_RECORD_VOL:
1894 /* Very Special case, controller register. */
1895 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1896 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1897 return;
1898
1899 default:
1900 #ifdef DIAGNOSTIC
1901 panic("eso_set_gain: bad port %u", port);
1902 /* NOTREACHED */
1903 #else
1904 return;
1905 #endif
1906 }
1907
1908 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
1909 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1910 }
1911