eso.c revision 1.20 1 /* $NetBSD: eso.c,v 1.20 2000/12/28 22:59:12 sommerfeld Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include "mpu.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/device.h>
42 #include <sys/proc.h>
43
44 #include <dev/pci/pcidevs.h>
45 #include <dev/pci/pcivar.h>
46
47 #include <sys/audioio.h>
48 #include <dev/audio_if.h>
49 #include <dev/midi_if.h>
50
51 #include <dev/mulaw.h>
52 #include <dev/auconv.h>
53
54 #include <dev/ic/mpuvar.h>
55 #include <dev/ic/i8237reg.h>
56 #include <dev/pci/esoreg.h>
57 #include <dev/pci/esovar.h>
58
59 #include <machine/bus.h>
60 #include <machine/intr.h>
61
62 #if defined(AUDIO_DEBUG) || defined(DEBUG)
63 #define DPRINTF(x) printf x
64 #else
65 #define DPRINTF(x)
66 #endif
67
68 struct eso_dma {
69 bus_dma_tag_t ed_dmat;
70 bus_dmamap_t ed_map;
71 caddr_t ed_addr;
72 bus_dma_segment_t ed_segs[1];
73 int ed_nsegs;
74 size_t ed_size;
75 struct eso_dma * ed_next;
76 };
77
78 #define KVADDR(dma) ((void *)(dma)->ed_addr)
79 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
80
81 /* Autoconfiguration interface */
82 static int eso_match __P((struct device *, struct cfdata *, void *));
83 static void eso_attach __P((struct device *, struct device *, void *));
84 static void eso_defer __P((struct device *));
85
86 struct cfattach eso_ca = {
87 sizeof (struct eso_softc), eso_match, eso_attach
88 };
89
90 /* PCI interface */
91 static int eso_intr __P((void *));
92
93 /* MI audio layer interface */
94 static int eso_open __P((void *, int));
95 static void eso_close __P((void *));
96 static int eso_query_encoding __P((void *, struct audio_encoding *));
97 static int eso_set_params __P((void *, int, int, struct audio_params *,
98 struct audio_params *));
99 static int eso_round_blocksize __P((void *, int));
100 static int eso_halt_output __P((void *));
101 static int eso_halt_input __P((void *));
102 static int eso_getdev __P((void *, struct audio_device *));
103 static int eso_set_port __P((void *, mixer_ctrl_t *));
104 static int eso_get_port __P((void *, mixer_ctrl_t *));
105 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
106 static void * eso_allocm __P((void *, int, size_t, int, int));
107 static void eso_freem __P((void *, void *, int));
108 static size_t eso_round_buffersize __P((void *, int, size_t));
109 static paddr_t eso_mappage __P((void *, void *, off_t, int));
110 static int eso_get_props __P((void *));
111 static int eso_trigger_output __P((void *, void *, void *, int,
112 void (*)(void *), void *, struct audio_params *));
113 static int eso_trigger_input __P((void *, void *, void *, int,
114 void (*)(void *), void *, struct audio_params *));
115
116 static struct audio_hw_if eso_hw_if = {
117 eso_open,
118 eso_close,
119 NULL, /* drain */
120 eso_query_encoding,
121 eso_set_params,
122 eso_round_blocksize,
123 NULL, /* commit_settings */
124 NULL, /* init_output */
125 NULL, /* init_input */
126 NULL, /* start_output */
127 NULL, /* start_input */
128 eso_halt_output,
129 eso_halt_input,
130 NULL, /* speaker_ctl */
131 eso_getdev,
132 NULL, /* setfd */
133 eso_set_port,
134 eso_get_port,
135 eso_query_devinfo,
136 eso_allocm,
137 eso_freem,
138 eso_round_buffersize,
139 eso_mappage,
140 eso_get_props,
141 eso_trigger_output,
142 eso_trigger_input
143 };
144
145 static const char * const eso_rev2model[] = {
146 "ES1938",
147 "ES1946",
148 "ES1946 Revision E"
149 };
150
151
152 /*
153 * Utility routines
154 */
155 /* Register access etc. */
156 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
157 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
158 static uint8_t eso_read_rdr __P((struct eso_softc *));
159 static void eso_reload_master_vol __P((struct eso_softc *));
160 static int eso_reset __P((struct eso_softc *));
161 static void eso_set_gain __P((struct eso_softc *, unsigned int));
162 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
163 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
164 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
165 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
166 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
167 /* DMA memory allocation */
168 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
169 int, struct eso_dma *));
170 static void eso_freemem __P((struct eso_dma *));
171
172
173 static int
174 eso_match(parent, match, aux)
175 struct device *parent;
176 struct cfdata *match;
177 void *aux;
178 {
179 struct pci_attach_args *pa = aux;
180
181 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
182 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
183 return (1);
184
185 return (0);
186 }
187
188 static void
189 eso_attach(parent, self, aux)
190 struct device *parent, *self;
191 void *aux;
192 {
193 struct eso_softc *sc = (struct eso_softc *)self;
194 struct pci_attach_args *pa = aux;
195 struct audio_attach_args aa;
196 pci_intr_handle_t ih;
197 bus_addr_t vcbase;
198 const char *intrstring;
199 int idx;
200 uint8_t a2mode, mvctl;
201
202 sc->sc_revision = PCI_REVISION(pa->pa_class);
203
204 printf(": ESS Solo-1 PCI AudioDrive ");
205 if (sc->sc_revision <
206 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
207 printf("%s\n", eso_rev2model[sc->sc_revision]);
208 else
209 printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
210
211 /* Map I/O registers. */
212 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
213 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
214 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
215 return;
216 }
217 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
218 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
219 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
220 return;
221 }
222 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
223 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
224 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
225 /* Don't bail out yet: we can map it later, see below. */
226 vcbase = 0;
227 sc->sc_vcsize = 0x10; /* From the data sheet. */
228 }
229 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
230 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
231 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
232 return;
233 }
234 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
235 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
236 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
237 return;
238 }
239
240 sc->sc_dmat = pa->pa_dmat;
241 sc->sc_dmas = NULL;
242 sc->sc_dmac_configured = 0;
243
244 /* Enable bus mastering. */
245 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
246 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
247 PCI_COMMAND_MASTER_ENABLE);
248
249 /* Reset the device; bail out upon failure. */
250 if (eso_reset(sc) != 0) {
251 printf("%s: can't reset\n", sc->sc_dev.dv_xname);
252 return;
253 }
254
255 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
256 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
257 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
258 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
259
260 /* Enable the relevant (DMA) interrupts. */
261 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
262 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
263 ESO_IO_IRQCTL_MPUIRQ);
264
265 /* Set up A1's sample rate generator for new-style parameters. */
266 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
267 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
268 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
269
270 /* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */
271 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
272 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
273 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
274 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
275
276 /* Set mixer regs to something reasonable, needs work. */
277 sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
278 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
279 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
280 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
281 int v;
282
283 switch (idx) {
284 case ESO_MIC_PLAY_VOL:
285 case ESO_LINE_PLAY_VOL:
286 case ESO_CD_PLAY_VOL:
287 case ESO_MONO_PLAY_VOL:
288 case ESO_AUXB_PLAY_VOL:
289 case ESO_DAC_REC_VOL:
290 case ESO_LINE_REC_VOL:
291 case ESO_SYNTH_REC_VOL:
292 case ESO_CD_REC_VOL:
293 case ESO_MONO_REC_VOL:
294 case ESO_AUXB_REC_VOL:
295 case ESO_SPATIALIZER:
296 v = 0;
297 break;
298 case ESO_MASTER_VOL:
299 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
300 break;
301 default:
302 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
303 break;
304 }
305 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
306 eso_set_gain(sc, idx);
307 }
308 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
309
310 /* Map and establish the interrupt. */
311 if (pci_intr_map(pa, &ih)) {
312 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
313 return;
314 }
315 intrstring = pci_intr_string(pa->pa_pc, ih);
316 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
317 if (sc->sc_ih == NULL) {
318 printf("%s: couldn't establish interrupt",
319 sc->sc_dev.dv_xname);
320 if (intrstring != NULL)
321 printf(" at %s", intrstring);
322 printf("\n");
323 return;
324 }
325 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
326
327 /*
328 * Set up the DDMA Control register; a suitable I/O region has been
329 * supposedly mapped in the VC base address register.
330 *
331 * The Solo-1 has an ... interesting silicon bug that causes it to
332 * not respond to I/O space accesses to the Audio 1 DMA controller
333 * if the latter's mapping base address is aligned on a 1K boundary.
334 * As a consequence, it is quite possible for the mapping provided
335 * in the VC BAR to be useless. To work around this, we defer this
336 * part until all autoconfiguration on our parent bus is completed
337 * and then try to map it ourselves in fulfillment of the constraint.
338 *
339 * According to the register map we may write to the low 16 bits
340 * only, but experimenting has shown we're safe.
341 * -kjk
342 */
343 if (ESO_VALID_DDMAC_BASE(vcbase)) {
344 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
345 vcbase | ESO_PCI_DDMAC_DE);
346 sc->sc_dmac_configured = 1;
347
348 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
349 sc->sc_dev.dv_xname, (unsigned long)vcbase);
350 } else {
351 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
352 sc->sc_dev.dv_xname, (unsigned long)vcbase));
353 sc->sc_pa = *pa;
354 config_defer(self, eso_defer);
355 }
356
357 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
358
359 aa.type = AUDIODEV_TYPE_OPL;
360 aa.hwif = NULL;
361 aa.hdl = NULL;
362 (void)config_found(&sc->sc_dev, &aa, audioprint);
363
364 aa.type = AUDIODEV_TYPE_MPU;
365 aa.hwif = NULL;
366 aa.hdl = NULL;
367 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
368 if (sc->sc_mpudev != NULL) {
369 /* Unmask the MPU irq. */
370 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
371 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
372 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
373 }
374 }
375
376 static void
377 eso_defer(self)
378 struct device *self;
379 {
380 struct eso_softc *sc = (struct eso_softc *)self;
381 struct pci_attach_args *pa = &sc->sc_pa;
382 bus_addr_t addr, start;
383
384 printf("%s: ", sc->sc_dev.dv_xname);
385
386 /*
387 * This is outright ugly, but since we must not make assumptions
388 * on the underlying allocator's behaviour it's the most straight-
389 * forward way to implement it. Note that we skip over the first
390 * 1K region, which is typically occupied by an attached ISA bus.
391 */
392 for (start = 0x0400; start < 0xffff; start += 0x0400) {
393 if (bus_space_alloc(sc->sc_iot,
394 start + sc->sc_vcsize, start + 0x0400 - 1,
395 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
396 &sc->sc_dmac_ioh) != 0)
397 continue;
398
399 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
400 addr | ESO_PCI_DDMAC_DE);
401 sc->sc_dmac_iot = sc->sc_iot;
402 sc->sc_dmac_configured = 1;
403 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
404 (unsigned long)addr);
405
406 return;
407 }
408
409 printf("can't map Audio 1 DMA into I/O space\n");
410 }
411
412 static void
413 eso_write_cmd(sc, cmd)
414 struct eso_softc *sc;
415 uint8_t cmd;
416 {
417 int i;
418
419 /* Poll for busy indicator to become clear. */
420 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
421 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
422 & ESO_SB_RSR_BUSY) == 0) {
423 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
424 ESO_SB_WDR, cmd);
425 return;
426 } else {
427 delay(10);
428 }
429 }
430
431 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
432 return;
433 }
434
435 /* Write to a controller register */
436 static void
437 eso_write_ctlreg(sc, reg, val)
438 struct eso_softc *sc;
439 uint8_t reg, val;
440 {
441
442 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
443
444 eso_write_cmd(sc, reg);
445 eso_write_cmd(sc, val);
446 }
447
448 /* Read out the Read Data Register */
449 static uint8_t
450 eso_read_rdr(sc)
451 struct eso_softc *sc;
452 {
453 int i;
454
455 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
456 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
457 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
458 return (bus_space_read_1(sc->sc_sb_iot,
459 sc->sc_sb_ioh, ESO_SB_RDR));
460 } else {
461 delay(10);
462 }
463 }
464
465 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
466 return (-1);
467 }
468
469
470 static uint8_t
471 eso_read_ctlreg(sc, reg)
472 struct eso_softc *sc;
473 uint8_t reg;
474 {
475
476 eso_write_cmd(sc, ESO_CMD_RCR);
477 eso_write_cmd(sc, reg);
478 return (eso_read_rdr(sc));
479 }
480
481 static void
482 eso_write_mixreg(sc, reg, val)
483 struct eso_softc *sc;
484 uint8_t reg, val;
485 {
486 int s;
487
488 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
489
490 s = splaudio();
491 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
492 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
493 splx(s);
494 }
495
496 static uint8_t
497 eso_read_mixreg(sc, reg)
498 struct eso_softc *sc;
499 uint8_t reg;
500 {
501 int s;
502 uint8_t val;
503
504 s = splaudio();
505 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
506 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
507 splx(s);
508
509 return (val);
510 }
511
512 static int
513 eso_intr(hdl)
514 void *hdl;
515 {
516 struct eso_softc *sc = hdl;
517 uint8_t irqctl;
518
519 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
520
521 /* If it wasn't ours, that's all she wrote. */
522 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
523 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
524 return (0);
525
526 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
527 /* Clear interrupt. */
528 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
529 ESO_SB_RBSR);
530
531 if (sc->sc_rintr)
532 sc->sc_rintr(sc->sc_rarg);
533 else
534 wakeup(&sc->sc_rintr);
535 }
536
537 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
538 /*
539 * Clear the A2 IRQ latch: the cached value reflects the
540 * current DAC settings with the IRQ latch bit not set.
541 */
542 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
543
544 if (sc->sc_pintr)
545 sc->sc_pintr(sc->sc_parg);
546 else
547 wakeup(&sc->sc_pintr);
548 }
549
550 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
551 /* Clear interrupt. */
552 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
553
554 /*
555 * Raise a flag to cause a lazy update of the in-softc gain
556 * values the next time the software mixer is read to keep
557 * interrupt service cost low. ~0 cannot occur otherwise
558 * as the master volume has a precision of 6 bits only.
559 */
560 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
561 }
562
563 #if NMPU > 0
564 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
565 mpu_intr(sc->sc_mpudev);
566 #endif
567
568 return (1);
569 }
570
571 /* Perform a software reset, including DMA FIFOs. */
572 static int
573 eso_reset(sc)
574 struct eso_softc *sc;
575 {
576 int i;
577
578 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
579 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
580 /* `Delay' suggested in the data sheet. */
581 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
582 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
583
584 /* Wait for reset to take effect. */
585 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
586 /* Poll for data to become available. */
587 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
588 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
589 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
590 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
591
592 /* Activate Solo-1 extension commands. */
593 eso_write_cmd(sc, ESO_CMD_EXTENB);
594 /* Reset mixer registers. */
595 eso_write_mixreg(sc, ESO_MIXREG_RESET,
596 ESO_MIXREG_RESET_RESET);
597
598 return (0);
599 } else {
600 delay(1000);
601 }
602 }
603
604 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
605 return (-1);
606 }
607
608
609 /* ARGSUSED */
610 static int
611 eso_open(hdl, flags)
612 void *hdl;
613 int flags;
614 {
615 struct eso_softc *sc = hdl;
616
617 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
618
619 sc->sc_pintr = NULL;
620 sc->sc_rintr = NULL;
621
622 return (0);
623 }
624
625 static void
626 eso_close(hdl)
627 void *hdl;
628 {
629
630 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
631 }
632
633 static int
634 eso_query_encoding(hdl, fp)
635 void *hdl;
636 struct audio_encoding *fp;
637 {
638
639 switch (fp->index) {
640 case 0:
641 strcpy(fp->name, AudioEulinear);
642 fp->encoding = AUDIO_ENCODING_ULINEAR;
643 fp->precision = 8;
644 fp->flags = 0;
645 break;
646 case 1:
647 strcpy(fp->name, AudioEmulaw);
648 fp->encoding = AUDIO_ENCODING_ULAW;
649 fp->precision = 8;
650 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
651 break;
652 case 2:
653 strcpy(fp->name, AudioEalaw);
654 fp->encoding = AUDIO_ENCODING_ALAW;
655 fp->precision = 8;
656 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
657 break;
658 case 3:
659 strcpy(fp->name, AudioEslinear);
660 fp->encoding = AUDIO_ENCODING_SLINEAR;
661 fp->precision = 8;
662 fp->flags = 0;
663 break;
664 case 4:
665 strcpy(fp->name, AudioEslinear_le);
666 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
667 fp->precision = 16;
668 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
669 break;
670 case 5:
671 strcpy(fp->name, AudioEulinear_le);
672 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
673 fp->precision = 16;
674 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
675 break;
676 case 6:
677 strcpy(fp->name, AudioEslinear_be);
678 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
679 fp->precision = 16;
680 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
681 break;
682 case 7:
683 strcpy(fp->name, AudioEulinear_be);
684 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
685 fp->precision = 16;
686 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
687 break;
688 default:
689 return (EINVAL);
690 }
691
692 return (0);
693 }
694
695 static int
696 eso_set_params(hdl, setmode, usemode, play, rec)
697 void *hdl;
698 int setmode, usemode;
699 struct audio_params *play, *rec;
700 {
701 struct eso_softc *sc = hdl;
702 struct audio_params *p;
703 int mode, r[2], rd[2], clk;
704 unsigned int srg, fltdiv;
705
706 for (mode = AUMODE_RECORD; mode != -1;
707 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
708 if ((setmode & mode) == 0)
709 continue;
710
711 p = (mode == AUMODE_PLAY) ? play : rec;
712
713 if (p->sample_rate < ESO_MINRATE ||
714 p->sample_rate > ESO_MAXRATE ||
715 (p->precision != 8 && p->precision != 16) ||
716 (p->channels != 1 && p->channels != 2))
717 return (EINVAL);
718
719 p->factor = 1;
720 p->sw_code = NULL;
721 switch (p->encoding) {
722 case AUDIO_ENCODING_SLINEAR_BE:
723 case AUDIO_ENCODING_ULINEAR_BE:
724 if (mode == AUMODE_PLAY && p->precision == 16)
725 p->sw_code = swap_bytes;
726 break;
727 case AUDIO_ENCODING_SLINEAR_LE:
728 case AUDIO_ENCODING_ULINEAR_LE:
729 if (mode == AUMODE_RECORD && p->precision == 16)
730 p->sw_code = swap_bytes;
731 break;
732 case AUDIO_ENCODING_ULAW:
733 if (mode == AUMODE_PLAY) {
734 p->factor = 2;
735 p->sw_code = mulaw_to_ulinear16_le;
736 } else {
737 p->sw_code = ulinear8_to_mulaw;
738 }
739 break;
740 case AUDIO_ENCODING_ALAW:
741 if (mode == AUMODE_PLAY) {
742 p->factor = 2;
743 p->sw_code = alaw_to_ulinear16_le;
744 } else {
745 p->sw_code = ulinear8_to_alaw;
746 }
747 break;
748 default:
749 return (EINVAL);
750 }
751
752 /*
753 * We'll compute both possible sample rate dividers and pick
754 * the one with the least error.
755 */
756 #define ABS(x) ((x) < 0 ? -(x) : (x))
757 r[0] = ESO_CLK0 /
758 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
759 r[1] = ESO_CLK1 /
760 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
761
762 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
763 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
764
765 /* Roll-off frequency of 87%, as in the ES1888 driver. */
766 fltdiv = 256 - 200279L / r[clk];
767
768 /* Update to reflect the possibly inexact rate. */
769 p->sample_rate = r[clk];
770
771 if (mode == AUMODE_RECORD) {
772 /* Audio 1 */
773 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
774 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
775 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
776 } else {
777 /* Audio 2 */
778 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
779 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
780 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
781 }
782 #undef ABS
783
784 }
785
786 return (0);
787 }
788
789 static int
790 eso_round_blocksize(hdl, blk)
791 void *hdl;
792 int blk;
793 {
794
795 return (blk & -32); /* keep good alignment; at least 16 req'd */
796 }
797
798 static int
799 eso_halt_output(hdl)
800 void *hdl;
801 {
802 struct eso_softc *sc = hdl;
803 int error, s;
804
805 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
806
807 /*
808 * Disable auto-initialize DMA, allowing the FIFO to drain and then
809 * stop. The interrupt callback pointer is cleared at this
810 * point so that an outstanding FIFO interrupt for the remaining data
811 * will be acknowledged without further processing.
812 *
813 * This does not immediately `abort' an operation in progress (c.f.
814 * audio(9)) but is the method to leave the FIFO behind in a clean
815 * state with the least hair. (Besides, that item needs to be
816 * rephrased for trigger_*()-based DMA environments.)
817 */
818 s = splaudio();
819 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
820 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
821 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
822 ESO_IO_A2DMAM_DMAENB);
823
824 sc->sc_pintr = NULL;
825 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
826 splx(s);
827
828 /* Shut down DMA completely. */
829 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
830 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
831
832 return (error == EWOULDBLOCK ? 0 : error);
833 }
834
835 static int
836 eso_halt_input(hdl)
837 void *hdl;
838 {
839 struct eso_softc *sc = hdl;
840 int error, s;
841
842 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
843
844 /* Just like eso_halt_output(), but for Audio 1. */
845 s = splaudio();
846 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
847 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
848 ESO_CTLREG_A1C2_DMAENB);
849 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
850 DMA37MD_WRITE | DMA37MD_DEMAND);
851
852 sc->sc_rintr = NULL;
853 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
854 splx(s);
855
856 /* Shut down DMA completely. */
857 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
858 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
859 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
860 ESO_DMAC_MASK_MASK);
861
862 return (error == EWOULDBLOCK ? 0 : error);
863 }
864
865 static int
866 eso_getdev(hdl, retp)
867 void *hdl;
868 struct audio_device *retp;
869 {
870 struct eso_softc *sc = hdl;
871
872 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
873 snprintf(retp->version, sizeof (retp->version), "0x%02x",
874 sc->sc_revision);
875 if (sc->sc_revision <
876 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
877 strncpy(retp->config, eso_rev2model[sc->sc_revision],
878 sizeof (retp->config));
879 else
880 strncpy(retp->config, "unknown", sizeof (retp->config));
881
882 return (0);
883 }
884
885 static int
886 eso_set_port(hdl, cp)
887 void *hdl;
888 mixer_ctrl_t *cp;
889 {
890 struct eso_softc *sc = hdl;
891 unsigned int lgain, rgain;
892 uint8_t tmp;
893
894 switch (cp->dev) {
895 case ESO_DAC_PLAY_VOL:
896 case ESO_MIC_PLAY_VOL:
897 case ESO_LINE_PLAY_VOL:
898 case ESO_SYNTH_PLAY_VOL:
899 case ESO_CD_PLAY_VOL:
900 case ESO_AUXB_PLAY_VOL:
901 case ESO_RECORD_VOL:
902 case ESO_DAC_REC_VOL:
903 case ESO_MIC_REC_VOL:
904 case ESO_LINE_REC_VOL:
905 case ESO_SYNTH_REC_VOL:
906 case ESO_CD_REC_VOL:
907 case ESO_AUXB_REC_VOL:
908 if (cp->type != AUDIO_MIXER_VALUE)
909 return (EINVAL);
910
911 /*
912 * Stereo-capable mixer ports: if we get a single-channel
913 * gain value passed in, then we duplicate it to both left
914 * and right channels.
915 */
916 switch (cp->un.value.num_channels) {
917 case 1:
918 lgain = rgain = ESO_GAIN_TO_4BIT(
919 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
920 break;
921 case 2:
922 lgain = ESO_GAIN_TO_4BIT(
923 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
924 rgain = ESO_GAIN_TO_4BIT(
925 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
926 break;
927 default:
928 return (EINVAL);
929 }
930
931 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
932 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
933 eso_set_gain(sc, cp->dev);
934 break;
935
936 case ESO_MASTER_VOL:
937 if (cp->type != AUDIO_MIXER_VALUE)
938 return (EINVAL);
939
940 /* Like above, but a precision of 6 bits. */
941 switch (cp->un.value.num_channels) {
942 case 1:
943 lgain = rgain = ESO_GAIN_TO_6BIT(
944 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
945 break;
946 case 2:
947 lgain = ESO_GAIN_TO_6BIT(
948 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
949 rgain = ESO_GAIN_TO_6BIT(
950 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
951 break;
952 default:
953 return (EINVAL);
954 }
955
956 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
957 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
958 eso_set_gain(sc, cp->dev);
959 break;
960
961 case ESO_SPATIALIZER:
962 if (cp->type != AUDIO_MIXER_VALUE ||
963 cp->un.value.num_channels != 1)
964 return (EINVAL);
965
966 sc->sc_gain[cp->dev][ESO_LEFT] =
967 sc->sc_gain[cp->dev][ESO_RIGHT] =
968 ESO_GAIN_TO_6BIT(
969 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
970 eso_set_gain(sc, cp->dev);
971 break;
972
973 case ESO_MONO_PLAY_VOL:
974 case ESO_MONO_REC_VOL:
975 if (cp->type != AUDIO_MIXER_VALUE ||
976 cp->un.value.num_channels != 1)
977 return (EINVAL);
978
979 sc->sc_gain[cp->dev][ESO_LEFT] =
980 sc->sc_gain[cp->dev][ESO_RIGHT] =
981 ESO_GAIN_TO_4BIT(
982 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
983 eso_set_gain(sc, cp->dev);
984 break;
985
986 case ESO_PCSPEAKER_VOL:
987 if (cp->type != AUDIO_MIXER_VALUE ||
988 cp->un.value.num_channels != 1)
989 return (EINVAL);
990
991 sc->sc_gain[cp->dev][ESO_LEFT] =
992 sc->sc_gain[cp->dev][ESO_RIGHT] =
993 ESO_GAIN_TO_3BIT(
994 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
995 eso_set_gain(sc, cp->dev);
996 break;
997
998 case ESO_SPATIALIZER_ENABLE:
999 if (cp->type != AUDIO_MIXER_ENUM)
1000 return (EINVAL);
1001
1002 sc->sc_spatializer = (cp->un.ord != 0);
1003
1004 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1005 if (sc->sc_spatializer)
1006 tmp |= ESO_MIXREG_SPAT_ENB;
1007 else
1008 tmp &= ~ESO_MIXREG_SPAT_ENB;
1009 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1010 tmp | ESO_MIXREG_SPAT_RSTREL);
1011 break;
1012
1013 case ESO_MASTER_MUTE:
1014 if (cp->type != AUDIO_MIXER_ENUM)
1015 return (EINVAL);
1016
1017 sc->sc_mvmute = (cp->un.ord != 0);
1018
1019 if (sc->sc_mvmute) {
1020 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1021 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1022 ESO_MIXREG_LMVM_MUTE);
1023 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1024 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1025 ESO_MIXREG_RMVM_MUTE);
1026 } else {
1027 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1028 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1029 ~ESO_MIXREG_LMVM_MUTE);
1030 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1031 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1032 ~ESO_MIXREG_RMVM_MUTE);
1033 }
1034 break;
1035
1036 case ESO_MONOOUT_SOURCE:
1037 if (cp->type != AUDIO_MIXER_ENUM)
1038 return (EINVAL);
1039
1040 return (eso_set_monooutsrc(sc, cp->un.ord));
1041
1042 case ESO_RECORD_MONITOR:
1043 if (cp->type != AUDIO_MIXER_ENUM)
1044 return (EINVAL);
1045
1046 sc->sc_recmon = (cp->un.ord != 0);
1047
1048 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1049 if (sc->sc_recmon)
1050 tmp |= ESO_CTLREG_ACTL_RECMON;
1051 else
1052 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1053 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1054 break;
1055
1056 case ESO_RECORD_SOURCE:
1057 if (cp->type != AUDIO_MIXER_ENUM)
1058 return (EINVAL);
1059
1060 return (eso_set_recsrc(sc, cp->un.ord));
1061
1062 case ESO_MIC_PREAMP:
1063 if (cp->type != AUDIO_MIXER_ENUM)
1064 return (EINVAL);
1065
1066 sc->sc_preamp = (cp->un.ord != 0);
1067
1068 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1069 tmp &= ~ESO_MIXREG_MPM_RESV0;
1070 if (sc->sc_preamp)
1071 tmp |= ESO_MIXREG_MPM_PREAMP;
1072 else
1073 tmp &= ~ESO_MIXREG_MPM_PREAMP;
1074 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1075 break;
1076
1077 default:
1078 return (EINVAL);
1079 }
1080
1081 return (0);
1082 }
1083
1084 static int
1085 eso_get_port(hdl, cp)
1086 void *hdl;
1087 mixer_ctrl_t *cp;
1088 {
1089 struct eso_softc *sc = hdl;
1090
1091 switch (cp->dev) {
1092 case ESO_MASTER_VOL:
1093 /* Reload from mixer after hardware volume control use. */
1094 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1095 eso_reload_master_vol(sc);
1096 /* FALLTHROUGH */
1097 case ESO_DAC_PLAY_VOL:
1098 case ESO_MIC_PLAY_VOL:
1099 case ESO_LINE_PLAY_VOL:
1100 case ESO_SYNTH_PLAY_VOL:
1101 case ESO_CD_PLAY_VOL:
1102 case ESO_AUXB_PLAY_VOL:
1103 case ESO_RECORD_VOL:
1104 case ESO_DAC_REC_VOL:
1105 case ESO_MIC_REC_VOL:
1106 case ESO_LINE_REC_VOL:
1107 case ESO_SYNTH_REC_VOL:
1108 case ESO_CD_REC_VOL:
1109 case ESO_AUXB_REC_VOL:
1110 /*
1111 * Stereo-capable ports: if a single-channel query is made,
1112 * just return the left channel's value (since single-channel
1113 * settings themselves are applied to both channels).
1114 */
1115 switch (cp->un.value.num_channels) {
1116 case 1:
1117 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1118 sc->sc_gain[cp->dev][ESO_LEFT];
1119 break;
1120 case 2:
1121 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1122 sc->sc_gain[cp->dev][ESO_LEFT];
1123 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1124 sc->sc_gain[cp->dev][ESO_RIGHT];
1125 break;
1126 default:
1127 return (EINVAL);
1128 }
1129 break;
1130
1131 case ESO_MONO_PLAY_VOL:
1132 case ESO_PCSPEAKER_VOL:
1133 case ESO_MONO_REC_VOL:
1134 case ESO_SPATIALIZER:
1135 if (cp->un.value.num_channels != 1)
1136 return (EINVAL);
1137 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1138 sc->sc_gain[cp->dev][ESO_LEFT];
1139 break;
1140
1141 case ESO_RECORD_MONITOR:
1142 cp->un.ord = sc->sc_recmon;
1143 break;
1144
1145 case ESO_RECORD_SOURCE:
1146 cp->un.ord = sc->sc_recsrc;
1147 break;
1148
1149 case ESO_MONOOUT_SOURCE:
1150 cp->un.ord = sc->sc_monooutsrc;
1151 break;
1152
1153 case ESO_SPATIALIZER_ENABLE:
1154 cp->un.ord = sc->sc_spatializer;
1155 break;
1156
1157 case ESO_MIC_PREAMP:
1158 cp->un.ord = sc->sc_preamp;
1159 break;
1160
1161 case ESO_MASTER_MUTE:
1162 /* Reload from mixer after hardware volume control use. */
1163 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1164 eso_reload_master_vol(sc);
1165 cp->un.ord = sc->sc_mvmute;
1166 break;
1167
1168 default:
1169 return (EINVAL);
1170 }
1171
1172
1173 return (0);
1174
1175 }
1176
1177 static int
1178 eso_query_devinfo(hdl, dip)
1179 void *hdl;
1180 mixer_devinfo_t *dip;
1181 {
1182
1183 switch (dip->index) {
1184 case ESO_DAC_PLAY_VOL:
1185 dip->mixer_class = ESO_INPUT_CLASS;
1186 dip->next = dip->prev = AUDIO_MIXER_LAST;
1187 strcpy(dip->label.name, AudioNdac);
1188 dip->type = AUDIO_MIXER_VALUE;
1189 dip->un.v.num_channels = 2;
1190 strcpy(dip->un.v.units.name, AudioNvolume);
1191 break;
1192 case ESO_MIC_PLAY_VOL:
1193 dip->mixer_class = ESO_INPUT_CLASS;
1194 dip->next = dip->prev = AUDIO_MIXER_LAST;
1195 strcpy(dip->label.name, AudioNmicrophone);
1196 dip->type = AUDIO_MIXER_VALUE;
1197 dip->un.v.num_channels = 2;
1198 strcpy(dip->un.v.units.name, AudioNvolume);
1199 break;
1200 case ESO_LINE_PLAY_VOL:
1201 dip->mixer_class = ESO_INPUT_CLASS;
1202 dip->next = dip->prev = AUDIO_MIXER_LAST;
1203 strcpy(dip->label.name, AudioNline);
1204 dip->type = AUDIO_MIXER_VALUE;
1205 dip->un.v.num_channels = 2;
1206 strcpy(dip->un.v.units.name, AudioNvolume);
1207 break;
1208 case ESO_SYNTH_PLAY_VOL:
1209 dip->mixer_class = ESO_INPUT_CLASS;
1210 dip->next = dip->prev = AUDIO_MIXER_LAST;
1211 strcpy(dip->label.name, AudioNfmsynth);
1212 dip->type = AUDIO_MIXER_VALUE;
1213 dip->un.v.num_channels = 2;
1214 strcpy(dip->un.v.units.name, AudioNvolume);
1215 break;
1216 case ESO_MONO_PLAY_VOL:
1217 dip->mixer_class = ESO_INPUT_CLASS;
1218 dip->next = dip->prev = AUDIO_MIXER_LAST;
1219 strcpy(dip->label.name, "mono_in");
1220 dip->type = AUDIO_MIXER_VALUE;
1221 dip->un.v.num_channels = 1;
1222 strcpy(dip->un.v.units.name, AudioNvolume);
1223 break;
1224 case ESO_CD_PLAY_VOL:
1225 dip->mixer_class = ESO_INPUT_CLASS;
1226 dip->next = dip->prev = AUDIO_MIXER_LAST;
1227 strcpy(dip->label.name, AudioNcd);
1228 dip->type = AUDIO_MIXER_VALUE;
1229 dip->un.v.num_channels = 2;
1230 strcpy(dip->un.v.units.name, AudioNvolume);
1231 break;
1232 case ESO_AUXB_PLAY_VOL:
1233 dip->mixer_class = ESO_INPUT_CLASS;
1234 dip->next = dip->prev = AUDIO_MIXER_LAST;
1235 strcpy(dip->label.name, "auxb");
1236 dip->type = AUDIO_MIXER_VALUE;
1237 dip->un.v.num_channels = 2;
1238 strcpy(dip->un.v.units.name, AudioNvolume);
1239 break;
1240
1241 case ESO_MIC_PREAMP:
1242 dip->mixer_class = ESO_MICROPHONE_CLASS;
1243 dip->next = dip->prev = AUDIO_MIXER_LAST;
1244 strcpy(dip->label.name, AudioNpreamp);
1245 dip->type = AUDIO_MIXER_ENUM;
1246 dip->un.e.num_mem = 2;
1247 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1248 dip->un.e.member[0].ord = 0;
1249 strcpy(dip->un.e.member[1].label.name, AudioNon);
1250 dip->un.e.member[1].ord = 1;
1251 break;
1252 case ESO_MICROPHONE_CLASS:
1253 dip->mixer_class = ESO_MICROPHONE_CLASS;
1254 dip->next = dip->prev = AUDIO_MIXER_LAST;
1255 strcpy(dip->label.name, AudioNmicrophone);
1256 dip->type = AUDIO_MIXER_CLASS;
1257 break;
1258
1259 case ESO_INPUT_CLASS:
1260 dip->mixer_class = ESO_INPUT_CLASS;
1261 dip->next = dip->prev = AUDIO_MIXER_LAST;
1262 strcpy(dip->label.name, AudioCinputs);
1263 dip->type = AUDIO_MIXER_CLASS;
1264 break;
1265
1266 case ESO_MASTER_VOL:
1267 dip->mixer_class = ESO_OUTPUT_CLASS;
1268 dip->prev = AUDIO_MIXER_LAST;
1269 dip->next = ESO_MASTER_MUTE;
1270 strcpy(dip->label.name, AudioNmaster);
1271 dip->type = AUDIO_MIXER_VALUE;
1272 dip->un.v.num_channels = 2;
1273 strcpy(dip->un.v.units.name, AudioNvolume);
1274 break;
1275 case ESO_MASTER_MUTE:
1276 dip->mixer_class = ESO_OUTPUT_CLASS;
1277 dip->prev = ESO_MASTER_VOL;
1278 dip->next = AUDIO_MIXER_LAST;
1279 strcpy(dip->label.name, AudioNmute);
1280 dip->type = AUDIO_MIXER_ENUM;
1281 dip->un.e.num_mem = 2;
1282 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1283 dip->un.e.member[0].ord = 0;
1284 strcpy(dip->un.e.member[1].label.name, AudioNon);
1285 dip->un.e.member[1].ord = 1;
1286 break;
1287
1288 case ESO_PCSPEAKER_VOL:
1289 dip->mixer_class = ESO_OUTPUT_CLASS;
1290 dip->next = dip->prev = AUDIO_MIXER_LAST;
1291 strcpy(dip->label.name, "pc_speaker");
1292 dip->type = AUDIO_MIXER_VALUE;
1293 dip->un.v.num_channels = 1;
1294 strcpy(dip->un.v.units.name, AudioNvolume);
1295 break;
1296 case ESO_MONOOUT_SOURCE:
1297 dip->mixer_class = ESO_OUTPUT_CLASS;
1298 dip->next = dip->prev = AUDIO_MIXER_LAST;
1299 strcpy(dip->label.name, "mono_out");
1300 dip->type = AUDIO_MIXER_ENUM;
1301 dip->un.e.num_mem = 3;
1302 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1303 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1304 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1305 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1306 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1307 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1308 break;
1309 case ESO_SPATIALIZER:
1310 dip->mixer_class = ESO_OUTPUT_CLASS;
1311 dip->prev = AUDIO_MIXER_LAST;
1312 dip->next = ESO_SPATIALIZER_ENABLE;
1313 strcpy(dip->label.name, AudioNspatial);
1314 dip->type = AUDIO_MIXER_VALUE;
1315 dip->un.v.num_channels = 1;
1316 strcpy(dip->un.v.units.name, "level");
1317 break;
1318 case ESO_SPATIALIZER_ENABLE:
1319 dip->mixer_class = ESO_OUTPUT_CLASS;
1320 dip->prev = ESO_SPATIALIZER;
1321 dip->next = AUDIO_MIXER_LAST;
1322 strcpy(dip->label.name, "enable");
1323 dip->type = AUDIO_MIXER_ENUM;
1324 dip->un.e.num_mem = 2;
1325 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1326 dip->un.e.member[0].ord = 0;
1327 strcpy(dip->un.e.member[1].label.name, AudioNon);
1328 dip->un.e.member[1].ord = 1;
1329 break;
1330
1331 case ESO_OUTPUT_CLASS:
1332 dip->mixer_class = ESO_OUTPUT_CLASS;
1333 dip->next = dip->prev = AUDIO_MIXER_LAST;
1334 strcpy(dip->label.name, AudioCoutputs);
1335 dip->type = AUDIO_MIXER_CLASS;
1336 break;
1337
1338 case ESO_RECORD_MONITOR:
1339 dip->mixer_class = ESO_MONITOR_CLASS;
1340 dip->next = dip->prev = AUDIO_MIXER_LAST;
1341 strcpy(dip->label.name, AudioNmute);
1342 dip->type = AUDIO_MIXER_ENUM;
1343 dip->un.e.num_mem = 2;
1344 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1345 dip->un.e.member[0].ord = 0;
1346 strcpy(dip->un.e.member[1].label.name, AudioNon);
1347 dip->un.e.member[1].ord = 1;
1348 break;
1349 case ESO_MONITOR_CLASS:
1350 dip->mixer_class = ESO_MONITOR_CLASS;
1351 dip->next = dip->prev = AUDIO_MIXER_LAST;
1352 strcpy(dip->label.name, AudioCmonitor);
1353 dip->type = AUDIO_MIXER_CLASS;
1354 break;
1355
1356 case ESO_RECORD_VOL:
1357 dip->mixer_class = ESO_RECORD_CLASS;
1358 dip->next = dip->prev = AUDIO_MIXER_LAST;
1359 strcpy(dip->label.name, AudioNrecord);
1360 dip->type = AUDIO_MIXER_VALUE;
1361 strcpy(dip->un.v.units.name, AudioNvolume);
1362 break;
1363 case ESO_RECORD_SOURCE:
1364 dip->mixer_class = ESO_RECORD_CLASS;
1365 dip->next = dip->prev = AUDIO_MIXER_LAST;
1366 strcpy(dip->label.name, AudioNsource);
1367 dip->type = AUDIO_MIXER_ENUM;
1368 dip->un.e.num_mem = 4;
1369 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1370 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1371 strcpy(dip->un.e.member[1].label.name, AudioNline);
1372 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1373 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1374 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1375 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1376 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1377 break;
1378 case ESO_DAC_REC_VOL:
1379 dip->mixer_class = ESO_RECORD_CLASS;
1380 dip->next = dip->prev = AUDIO_MIXER_LAST;
1381 strcpy(dip->label.name, AudioNdac);
1382 dip->type = AUDIO_MIXER_VALUE;
1383 dip->un.v.num_channels = 2;
1384 strcpy(dip->un.v.units.name, AudioNvolume);
1385 break;
1386 case ESO_MIC_REC_VOL:
1387 dip->mixer_class = ESO_RECORD_CLASS;
1388 dip->next = dip->prev = AUDIO_MIXER_LAST;
1389 strcpy(dip->label.name, AudioNmicrophone);
1390 dip->type = AUDIO_MIXER_VALUE;
1391 dip->un.v.num_channels = 2;
1392 strcpy(dip->un.v.units.name, AudioNvolume);
1393 break;
1394 case ESO_LINE_REC_VOL:
1395 dip->mixer_class = ESO_RECORD_CLASS;
1396 dip->next = dip->prev = AUDIO_MIXER_LAST;
1397 strcpy(dip->label.name, AudioNline);
1398 dip->type = AUDIO_MIXER_VALUE;
1399 dip->un.v.num_channels = 2;
1400 strcpy(dip->un.v.units.name, AudioNvolume);
1401 break;
1402 case ESO_SYNTH_REC_VOL:
1403 dip->mixer_class = ESO_RECORD_CLASS;
1404 dip->next = dip->prev = AUDIO_MIXER_LAST;
1405 strcpy(dip->label.name, AudioNfmsynth);
1406 dip->type = AUDIO_MIXER_VALUE;
1407 dip->un.v.num_channels = 2;
1408 strcpy(dip->un.v.units.name, AudioNvolume);
1409 break;
1410 case ESO_MONO_REC_VOL:
1411 dip->mixer_class = ESO_RECORD_CLASS;
1412 dip->next = dip->prev = AUDIO_MIXER_LAST;
1413 strcpy(dip->label.name, "mono_in");
1414 dip->type = AUDIO_MIXER_VALUE;
1415 dip->un.v.num_channels = 1; /* No lies */
1416 strcpy(dip->un.v.units.name, AudioNvolume);
1417 break;
1418 case ESO_CD_REC_VOL:
1419 dip->mixer_class = ESO_RECORD_CLASS;
1420 dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 strcpy(dip->label.name, AudioNcd);
1422 dip->type = AUDIO_MIXER_VALUE;
1423 dip->un.v.num_channels = 2;
1424 strcpy(dip->un.v.units.name, AudioNvolume);
1425 break;
1426 case ESO_AUXB_REC_VOL:
1427 dip->mixer_class = ESO_RECORD_CLASS;
1428 dip->next = dip->prev = AUDIO_MIXER_LAST;
1429 strcpy(dip->label.name, "auxb");
1430 dip->type = AUDIO_MIXER_VALUE;
1431 dip->un.v.num_channels = 2;
1432 strcpy(dip->un.v.units.name, AudioNvolume);
1433 break;
1434 case ESO_RECORD_CLASS:
1435 dip->mixer_class = ESO_RECORD_CLASS;
1436 dip->next = dip->prev = AUDIO_MIXER_LAST;
1437 strcpy(dip->label.name, AudioCrecord);
1438 dip->type = AUDIO_MIXER_CLASS;
1439 break;
1440
1441 default:
1442 return (ENXIO);
1443 }
1444
1445 return (0);
1446 }
1447
1448 static int
1449 eso_allocmem(sc, size, align, boundary, flags, ed)
1450 struct eso_softc *sc;
1451 size_t size;
1452 size_t align;
1453 size_t boundary;
1454 int flags;
1455 struct eso_dma *ed;
1456 {
1457 int error, wait;
1458
1459 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1460 ed->ed_size = size;
1461
1462 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1463 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1464 &ed->ed_nsegs, wait);
1465 if (error)
1466 goto out;
1467
1468 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1469 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1470 if (error)
1471 goto free;
1472
1473 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1474 wait, &ed->ed_map);
1475 if (error)
1476 goto unmap;
1477
1478 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1479 ed->ed_size, NULL, wait);
1480 if (error)
1481 goto destroy;
1482
1483 return (0);
1484
1485 destroy:
1486 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1487 unmap:
1488 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1489 free:
1490 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1491 out:
1492 return (error);
1493 }
1494
1495 static void
1496 eso_freemem(ed)
1497 struct eso_dma *ed;
1498 {
1499
1500 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1501 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1502 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1503 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1504 }
1505
1506 static void *
1507 eso_allocm(hdl, direction, size, type, flags)
1508 void *hdl;
1509 int direction;
1510 size_t size;
1511 int type, flags;
1512 {
1513 struct eso_softc *sc = hdl;
1514 struct eso_dma *ed;
1515 size_t boundary;
1516 int error;
1517
1518 if ((ed = malloc(size, type, flags)) == NULL)
1519 return (NULL);
1520
1521 /*
1522 * Apparently the Audio 1 DMA controller's current address
1523 * register can't roll over a 64K address boundary, so we have to
1524 * take care of that ourselves. The second channel DMA controller
1525 * doesn't have that restriction, however.
1526 */
1527 if (direction == AUMODE_RECORD)
1528 boundary = 0x10000;
1529 else
1530 boundary = 0;
1531
1532 #ifdef alpha
1533 /*
1534 * XXX For Audio 1, which implements the 24 low address bits only,
1535 * XXX force allocation through the (ISA) SGMAP.
1536 */
1537 if (direction == AUMODE_RECORD)
1538 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1539 else
1540 #endif
1541 ed->ed_dmat = sc->sc_dmat;
1542
1543 error = eso_allocmem(sc, size, 32, boundary, flags, ed);
1544 if (error) {
1545 free(ed, type);
1546 return (NULL);
1547 }
1548 ed->ed_next = sc->sc_dmas;
1549 sc->sc_dmas = ed;
1550
1551 return (KVADDR(ed));
1552 }
1553
1554 static void
1555 eso_freem(hdl, addr, type)
1556 void *hdl;
1557 void *addr;
1558 int type;
1559 {
1560 struct eso_softc *sc = hdl;
1561 struct eso_dma *p, **pp;
1562
1563 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1564 if (KVADDR(p) == addr) {
1565 eso_freemem(p);
1566 *pp = p->ed_next;
1567 free(p, type);
1568 return;
1569 }
1570 }
1571 }
1572
1573 static size_t
1574 eso_round_buffersize(hdl, direction, bufsize)
1575 void *hdl;
1576 int direction;
1577 size_t bufsize;
1578 {
1579 size_t maxsize;
1580
1581 /*
1582 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1583 * bytes. This is because IO_A2DMAC is a two byte value
1584 * indicating the literal byte count, and the 4 least significant
1585 * bits are read-only. Zero is not used as a special case for
1586 * 0x10000.
1587 *
1588 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1589 * be represented.
1590 */
1591 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1592
1593 if (bufsize > maxsize)
1594 bufsize = maxsize;
1595
1596 return (bufsize);
1597 }
1598
1599 static paddr_t
1600 eso_mappage(hdl, addr, offs, prot)
1601 void *hdl;
1602 void *addr;
1603 off_t offs;
1604 int prot;
1605 {
1606 struct eso_softc *sc = hdl;
1607 struct eso_dma *ed;
1608
1609 if (offs < 0)
1610 return (-1);
1611 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1612 ed = ed->ed_next)
1613 ;
1614 if (ed == NULL)
1615 return (-1);
1616
1617 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1618 offs, prot, BUS_DMA_WAITOK));
1619 }
1620
1621 /* ARGSUSED */
1622 static int
1623 eso_get_props(hdl)
1624 void *hdl;
1625 {
1626
1627 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1628 AUDIO_PROP_FULLDUPLEX);
1629 }
1630
1631 static int
1632 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1633 void *hdl;
1634 void *start, *end;
1635 int blksize;
1636 void (*intr) __P((void *));
1637 void *arg;
1638 struct audio_params *param;
1639 {
1640 struct eso_softc *sc = hdl;
1641 struct eso_dma *ed;
1642 uint8_t a2c1;
1643
1644 DPRINTF((
1645 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1646 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1647 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1648 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1649 param->precision, param->channels, param->sw_code, param->factor));
1650
1651 /* Find DMA buffer. */
1652 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1653 ed = ed->ed_next)
1654 ;
1655 if (ed == NULL) {
1656 printf("%s: trigger_output: bad addr %p\n",
1657 sc->sc_dev.dv_xname, start);
1658 return (EINVAL);
1659 }
1660
1661 sc->sc_pintr = intr;
1662 sc->sc_parg = arg;
1663
1664 /* Compute drain timeout. */
1665 sc->sc_pdrain = (blksize * NBBY * hz) /
1666 (param->sample_rate * param->channels *
1667 param->precision * param->factor) + 2; /* slop */
1668
1669 /* DMA transfer count (in `words'!) reload using 2's complement. */
1670 blksize = -(blksize >> 1);
1671 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1672 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1673
1674 /* Update DAC to reflect DMA count and audio parameters. */
1675 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1676 if (param->precision * param->factor == 16)
1677 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1678 else
1679 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1680 if (param->channels == 2)
1681 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1682 else
1683 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1684 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1685 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1686 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1687 else
1688 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1689 /* Unmask IRQ. */
1690 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1691 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1692
1693 /* Set up DMA controller. */
1694 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1695 DMAADDR(ed));
1696 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1697 (uint8_t *)end - (uint8_t *)start);
1698 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1699 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1700
1701 /* Start DMA. */
1702 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1703 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1704 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1705 ESO_MIXREG_A2C1_AUTO;
1706 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1707
1708 return (0);
1709 }
1710
1711 static int
1712 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1713 void *hdl;
1714 void *start, *end;
1715 int blksize;
1716 void (*intr) __P((void *));
1717 void *arg;
1718 struct audio_params *param;
1719 {
1720 struct eso_softc *sc = hdl;
1721 struct eso_dma *ed;
1722 uint8_t actl, a1c1;
1723
1724 DPRINTF((
1725 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1726 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1727 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1728 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1729 param->precision, param->channels, param->sw_code, param->factor));
1730
1731 /*
1732 * If we failed to configure the Audio 1 DMA controller, bail here
1733 * while retaining availability of the DAC direction (in Audio 2).
1734 */
1735 if (!sc->sc_dmac_configured)
1736 return (EIO);
1737
1738 /* Find DMA buffer. */
1739 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1740 ed = ed->ed_next)
1741 ;
1742 if (ed == NULL) {
1743 printf("%s: trigger_output: bad addr %p\n",
1744 sc->sc_dev.dv_xname, start);
1745 return (EINVAL);
1746 }
1747
1748 sc->sc_rintr = intr;
1749 sc->sc_rarg = arg;
1750
1751 /* Compute drain timeout. */
1752 sc->sc_rdrain = (blksize * NBBY * hz) /
1753 (param->sample_rate * param->channels *
1754 param->precision * param->factor) + 2; /* slop */
1755
1756 /* Set up ADC DMA converter parameters. */
1757 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1758 if (param->channels == 2) {
1759 actl &= ~ESO_CTLREG_ACTL_MONO;
1760 actl |= ESO_CTLREG_ACTL_STEREO;
1761 } else {
1762 actl &= ~ESO_CTLREG_ACTL_STEREO;
1763 actl |= ESO_CTLREG_ACTL_MONO;
1764 }
1765 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1766
1767 /* Set up Transfer Type: maybe move to attach time? */
1768 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1769
1770 /* DMA transfer count reload using 2's complement. */
1771 blksize = -blksize;
1772 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1773 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1774
1775 /* Set up and enable Audio 1 DMA FIFO. */
1776 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1777 if (param->precision * param->factor == 16)
1778 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1779 if (param->channels == 2)
1780 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1781 else
1782 a1c1 |= ESO_CTLREG_A1C1_MONO;
1783 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1784 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1785 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1786 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1787
1788 /* Set up ADC IRQ/DRQ parameters. */
1789 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1790 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1791 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1792 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1793
1794 /* Set up and enable DMA controller. */
1795 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1796 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1797 ESO_DMAC_MASK_MASK);
1798 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1799 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1800 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1801 DMAADDR(ed));
1802 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1803 (uint8_t *)end - (uint8_t *)start - 1);
1804 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1805
1806 /* Start DMA. */
1807 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1808 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1809 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1810
1811 return (0);
1812 }
1813
1814 static int
1815 eso_set_monooutsrc(sc, monooutsrc)
1816 struct eso_softc *sc;
1817 unsigned int monooutsrc;
1818 {
1819 mixer_devinfo_t di;
1820 int i;
1821 uint8_t mpm;
1822
1823 di.index = ESO_MONOOUT_SOURCE;
1824 if (eso_query_devinfo(sc, &di) != 0)
1825 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1826
1827 for (i = 0; i < di.un.e.num_mem; i++) {
1828 if (monooutsrc == di.un.e.member[i].ord) {
1829 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1830 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1831 mpm |= monooutsrc;
1832 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1833 sc->sc_monooutsrc = monooutsrc;
1834 return (0);
1835 }
1836 }
1837
1838 return (EINVAL);
1839 }
1840
1841 static int
1842 eso_set_recsrc(sc, recsrc)
1843 struct eso_softc *sc;
1844 unsigned int recsrc;
1845 {
1846 mixer_devinfo_t di;
1847 int i;
1848
1849 di.index = ESO_RECORD_SOURCE;
1850 if (eso_query_devinfo(sc, &di) != 0)
1851 panic("eso_set_recsrc: eso_query_devinfo failed");
1852
1853 for (i = 0; i < di.un.e.num_mem; i++) {
1854 if (recsrc == di.un.e.member[i].ord) {
1855 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1856 sc->sc_recsrc = recsrc;
1857 return (0);
1858 }
1859 }
1860
1861 return (EINVAL);
1862 }
1863
1864 /*
1865 * Reload Master Volume and Mute values in softc from mixer; used when
1866 * those have previously been invalidated by use of hardware volume controls.
1867 */
1868 static void
1869 eso_reload_master_vol(sc)
1870 struct eso_softc *sc;
1871 {
1872 uint8_t mv;
1873
1874 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1875 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1876 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1877 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1878 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1879 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1880 /* Currently both channels are muted simultaneously; either is OK. */
1881 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1882 }
1883
1884 static void
1885 eso_set_gain(sc, port)
1886 struct eso_softc *sc;
1887 unsigned int port;
1888 {
1889 uint8_t mixreg, tmp;
1890
1891 switch (port) {
1892 case ESO_DAC_PLAY_VOL:
1893 mixreg = ESO_MIXREG_PVR_A2;
1894 break;
1895 case ESO_MIC_PLAY_VOL:
1896 mixreg = ESO_MIXREG_PVR_MIC;
1897 break;
1898 case ESO_LINE_PLAY_VOL:
1899 mixreg = ESO_MIXREG_PVR_LINE;
1900 break;
1901 case ESO_SYNTH_PLAY_VOL:
1902 mixreg = ESO_MIXREG_PVR_SYNTH;
1903 break;
1904 case ESO_CD_PLAY_VOL:
1905 mixreg = ESO_MIXREG_PVR_CD;
1906 break;
1907 case ESO_AUXB_PLAY_VOL:
1908 mixreg = ESO_MIXREG_PVR_AUXB;
1909 break;
1910
1911 case ESO_DAC_REC_VOL:
1912 mixreg = ESO_MIXREG_RVR_A2;
1913 break;
1914 case ESO_MIC_REC_VOL:
1915 mixreg = ESO_MIXREG_RVR_MIC;
1916 break;
1917 case ESO_LINE_REC_VOL:
1918 mixreg = ESO_MIXREG_RVR_LINE;
1919 break;
1920 case ESO_SYNTH_REC_VOL:
1921 mixreg = ESO_MIXREG_RVR_SYNTH;
1922 break;
1923 case ESO_CD_REC_VOL:
1924 mixreg = ESO_MIXREG_RVR_CD;
1925 break;
1926 case ESO_AUXB_REC_VOL:
1927 mixreg = ESO_MIXREG_RVR_AUXB;
1928 break;
1929 case ESO_MONO_PLAY_VOL:
1930 mixreg = ESO_MIXREG_PVR_MONO;
1931 break;
1932 case ESO_MONO_REC_VOL:
1933 mixreg = ESO_MIXREG_RVR_MONO;
1934 break;
1935
1936 case ESO_PCSPEAKER_VOL:
1937 /* Special case - only 3-bit, mono, and reserved bits. */
1938 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1939 tmp &= ESO_MIXREG_PCSVR_RESV;
1940 /* Map bits 7:5 -> 2:0. */
1941 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1942 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1943 return;
1944
1945 case ESO_MASTER_VOL:
1946 /* Special case - separate regs, and 6-bit precision. */
1947 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1948 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1949 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1950 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1951 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1952 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1953 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1954 return;
1955
1956 case ESO_SPATIALIZER:
1957 /* Special case - only `mono', and higher precision. */
1958 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1959 sc->sc_gain[port][ESO_LEFT]);
1960 return;
1961
1962 case ESO_RECORD_VOL:
1963 /* Very Special case, controller register. */
1964 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1965 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1966 return;
1967
1968 default:
1969 #ifdef DIAGNOSTIC
1970 panic("eso_set_gain: bad port %u", port);
1971 /* NOTREACHED */
1972 #else
1973 return;
1974 #endif
1975 }
1976
1977 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
1978 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1979 }
1980