eso.c revision 1.23 1 /* $NetBSD: eso.c,v 1.23 2001/11/13 07:48:42 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.23 2001/11/13 07:48:42 lukem Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70
71 struct eso_dma {
72 bus_dma_tag_t ed_dmat;
73 bus_dmamap_t ed_map;
74 caddr_t ed_addr;
75 bus_dma_segment_t ed_segs[1];
76 int ed_nsegs;
77 size_t ed_size;
78 struct eso_dma * ed_next;
79 };
80
81 #define KVADDR(dma) ((void *)(dma)->ed_addr)
82 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
83
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88
89 struct cfattach eso_ca = {
90 sizeof (struct eso_softc), eso_match, eso_attach
91 };
92
93 /* PCI interface */
94 static int eso_intr __P((void *));
95
96 /* MI audio layer interface */
97 static int eso_open __P((void *, int));
98 static void eso_close __P((void *));
99 static int eso_query_encoding __P((void *, struct audio_encoding *));
100 static int eso_set_params __P((void *, int, int, struct audio_params *,
101 struct audio_params *));
102 static int eso_round_blocksize __P((void *, int));
103 static int eso_halt_output __P((void *));
104 static int eso_halt_input __P((void *));
105 static int eso_getdev __P((void *, struct audio_device *));
106 static int eso_set_port __P((void *, mixer_ctrl_t *));
107 static int eso_get_port __P((void *, mixer_ctrl_t *));
108 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
109 static void * eso_allocm __P((void *, int, size_t, int, int));
110 static void eso_freem __P((void *, void *, int));
111 static size_t eso_round_buffersize __P((void *, int, size_t));
112 static paddr_t eso_mappage __P((void *, void *, off_t, int));
113 static int eso_get_props __P((void *));
114 static int eso_trigger_output __P((void *, void *, void *, int,
115 void (*)(void *), void *, struct audio_params *));
116 static int eso_trigger_input __P((void *, void *, void *, int,
117 void (*)(void *), void *, struct audio_params *));
118
119 static struct audio_hw_if eso_hw_if = {
120 eso_open,
121 eso_close,
122 NULL, /* drain */
123 eso_query_encoding,
124 eso_set_params,
125 eso_round_blocksize,
126 NULL, /* commit_settings */
127 NULL, /* init_output */
128 NULL, /* init_input */
129 NULL, /* start_output */
130 NULL, /* start_input */
131 eso_halt_output,
132 eso_halt_input,
133 NULL, /* speaker_ctl */
134 eso_getdev,
135 NULL, /* setfd */
136 eso_set_port,
137 eso_get_port,
138 eso_query_devinfo,
139 eso_allocm,
140 eso_freem,
141 eso_round_buffersize,
142 eso_mappage,
143 eso_get_props,
144 eso_trigger_output,
145 eso_trigger_input,
146 NULL, /* dev_ioctl */
147 };
148
149 static const char * const eso_rev2model[] = {
150 "ES1938",
151 "ES1946",
152 "ES1946 Revision E"
153 };
154
155
156 /*
157 * Utility routines
158 */
159 /* Register access etc. */
160 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
161 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
162 static uint8_t eso_read_rdr __P((struct eso_softc *));
163 static void eso_reload_master_vol __P((struct eso_softc *));
164 static int eso_reset __P((struct eso_softc *));
165 static void eso_set_gain __P((struct eso_softc *, unsigned int));
166 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
167 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
168 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
169 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
170 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
171 /* DMA memory allocation */
172 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
173 int, int, struct eso_dma *));
174 static void eso_freemem __P((struct eso_dma *));
175
176
177 static int
178 eso_match(parent, match, aux)
179 struct device *parent;
180 struct cfdata *match;
181 void *aux;
182 {
183 struct pci_attach_args *pa = aux;
184
185 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
186 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
187 return (1);
188
189 return (0);
190 }
191
192 static void
193 eso_attach(parent, self, aux)
194 struct device *parent, *self;
195 void *aux;
196 {
197 struct eso_softc *sc = (struct eso_softc *)self;
198 struct pci_attach_args *pa = aux;
199 struct audio_attach_args aa;
200 pci_intr_handle_t ih;
201 bus_addr_t vcbase;
202 const char *intrstring;
203 int idx;
204 uint8_t a2mode, mvctl;
205
206 sc->sc_revision = PCI_REVISION(pa->pa_class);
207
208 printf(": ESS Solo-1 PCI AudioDrive ");
209 if (sc->sc_revision <
210 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
211 printf("%s\n", eso_rev2model[sc->sc_revision]);
212 else
213 printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
214
215 /* Map I/O registers. */
216 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
217 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
218 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
219 return;
220 }
221 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
222 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
223 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
224 return;
225 }
226 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
227 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
228 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
229 /* Don't bail out yet: we can map it later, see below. */
230 vcbase = 0;
231 sc->sc_vcsize = 0x10; /* From the data sheet. */
232 }
233 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
234 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
235 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
236 return;
237 }
238 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
239 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
240 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
241 return;
242 }
243
244 sc->sc_dmat = pa->pa_dmat;
245 sc->sc_dmas = NULL;
246 sc->sc_dmac_configured = 0;
247
248 /* Enable bus mastering. */
249 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
250 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
251 PCI_COMMAND_MASTER_ENABLE);
252
253 /* Reset the device; bail out upon failure. */
254 if (eso_reset(sc) != 0) {
255 printf("%s: can't reset\n", sc->sc_dev.dv_xname);
256 return;
257 }
258
259 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
260 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
261 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
262 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
263
264 /* Enable the relevant (DMA) interrupts. */
265 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
266 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
267 ESO_IO_IRQCTL_MPUIRQ);
268
269 /* Set up A1's sample rate generator for new-style parameters. */
270 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
271 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
272 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
273
274 /* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */
275 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
276 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
277 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
278 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
279
280 /* Set mixer regs to something reasonable, needs work. */
281 sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
282 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
283 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
284 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
285 int v;
286
287 switch (idx) {
288 case ESO_MIC_PLAY_VOL:
289 case ESO_LINE_PLAY_VOL:
290 case ESO_CD_PLAY_VOL:
291 case ESO_MONO_PLAY_VOL:
292 case ESO_AUXB_PLAY_VOL:
293 case ESO_DAC_REC_VOL:
294 case ESO_LINE_REC_VOL:
295 case ESO_SYNTH_REC_VOL:
296 case ESO_CD_REC_VOL:
297 case ESO_MONO_REC_VOL:
298 case ESO_AUXB_REC_VOL:
299 case ESO_SPATIALIZER:
300 v = 0;
301 break;
302 case ESO_MASTER_VOL:
303 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
304 break;
305 default:
306 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
307 break;
308 }
309 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
310 eso_set_gain(sc, idx);
311 }
312 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
313
314 /* Map and establish the interrupt. */
315 if (pci_intr_map(pa, &ih)) {
316 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
317 return;
318 }
319 intrstring = pci_intr_string(pa->pa_pc, ih);
320 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
321 if (sc->sc_ih == NULL) {
322 printf("%s: couldn't establish interrupt",
323 sc->sc_dev.dv_xname);
324 if (intrstring != NULL)
325 printf(" at %s", intrstring);
326 printf("\n");
327 return;
328 }
329 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
330
331 /*
332 * Set up the DDMA Control register; a suitable I/O region has been
333 * supposedly mapped in the VC base address register.
334 *
335 * The Solo-1 has an ... interesting silicon bug that causes it to
336 * not respond to I/O space accesses to the Audio 1 DMA controller
337 * if the latter's mapping base address is aligned on a 1K boundary.
338 * As a consequence, it is quite possible for the mapping provided
339 * in the VC BAR to be useless. To work around this, we defer this
340 * part until all autoconfiguration on our parent bus is completed
341 * and then try to map it ourselves in fulfillment of the constraint.
342 *
343 * According to the register map we may write to the low 16 bits
344 * only, but experimenting has shown we're safe.
345 * -kjk
346 */
347 if (ESO_VALID_DDMAC_BASE(vcbase)) {
348 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
349 vcbase | ESO_PCI_DDMAC_DE);
350 sc->sc_dmac_configured = 1;
351
352 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
353 sc->sc_dev.dv_xname, (unsigned long)vcbase);
354 } else {
355 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
356 sc->sc_dev.dv_xname, (unsigned long)vcbase));
357 sc->sc_pa = *pa;
358 config_defer(self, eso_defer);
359 }
360
361 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
362
363 aa.type = AUDIODEV_TYPE_OPL;
364 aa.hwif = NULL;
365 aa.hdl = NULL;
366 (void)config_found(&sc->sc_dev, &aa, audioprint);
367
368 aa.type = AUDIODEV_TYPE_MPU;
369 aa.hwif = NULL;
370 aa.hdl = NULL;
371 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
372 if (sc->sc_mpudev != NULL) {
373 /* Unmask the MPU irq. */
374 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
375 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
376 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
377 }
378 }
379
380 static void
381 eso_defer(self)
382 struct device *self;
383 {
384 struct eso_softc *sc = (struct eso_softc *)self;
385 struct pci_attach_args *pa = &sc->sc_pa;
386 bus_addr_t addr, start;
387
388 printf("%s: ", sc->sc_dev.dv_xname);
389
390 /*
391 * This is outright ugly, but since we must not make assumptions
392 * on the underlying allocator's behaviour it's the most straight-
393 * forward way to implement it. Note that we skip over the first
394 * 1K region, which is typically occupied by an attached ISA bus.
395 */
396 for (start = 0x0400; start < 0xffff; start += 0x0400) {
397 if (bus_space_alloc(sc->sc_iot,
398 start + sc->sc_vcsize, start + 0x0400 - 1,
399 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
400 &sc->sc_dmac_ioh) != 0)
401 continue;
402
403 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
404 addr | ESO_PCI_DDMAC_DE);
405 sc->sc_dmac_iot = sc->sc_iot;
406 sc->sc_dmac_configured = 1;
407 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
408 (unsigned long)addr);
409
410 return;
411 }
412
413 printf("can't map Audio 1 DMA into I/O space\n");
414 }
415
416 static void
417 eso_write_cmd(sc, cmd)
418 struct eso_softc *sc;
419 uint8_t cmd;
420 {
421 int i;
422
423 /* Poll for busy indicator to become clear. */
424 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
425 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
426 & ESO_SB_RSR_BUSY) == 0) {
427 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
428 ESO_SB_WDR, cmd);
429 return;
430 } else {
431 delay(10);
432 }
433 }
434
435 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
436 return;
437 }
438
439 /* Write to a controller register */
440 static void
441 eso_write_ctlreg(sc, reg, val)
442 struct eso_softc *sc;
443 uint8_t reg, val;
444 {
445
446 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
447
448 eso_write_cmd(sc, reg);
449 eso_write_cmd(sc, val);
450 }
451
452 /* Read out the Read Data Register */
453 static uint8_t
454 eso_read_rdr(sc)
455 struct eso_softc *sc;
456 {
457 int i;
458
459 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
460 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
461 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
462 return (bus_space_read_1(sc->sc_sb_iot,
463 sc->sc_sb_ioh, ESO_SB_RDR));
464 } else {
465 delay(10);
466 }
467 }
468
469 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
470 return (-1);
471 }
472
473
474 static uint8_t
475 eso_read_ctlreg(sc, reg)
476 struct eso_softc *sc;
477 uint8_t reg;
478 {
479
480 eso_write_cmd(sc, ESO_CMD_RCR);
481 eso_write_cmd(sc, reg);
482 return (eso_read_rdr(sc));
483 }
484
485 static void
486 eso_write_mixreg(sc, reg, val)
487 struct eso_softc *sc;
488 uint8_t reg, val;
489 {
490 int s;
491
492 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
493
494 s = splaudio();
495 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
496 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
497 splx(s);
498 }
499
500 static uint8_t
501 eso_read_mixreg(sc, reg)
502 struct eso_softc *sc;
503 uint8_t reg;
504 {
505 int s;
506 uint8_t val;
507
508 s = splaudio();
509 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
510 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
511 splx(s);
512
513 return (val);
514 }
515
516 static int
517 eso_intr(hdl)
518 void *hdl;
519 {
520 struct eso_softc *sc = hdl;
521 uint8_t irqctl;
522
523 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
524
525 /* If it wasn't ours, that's all she wrote. */
526 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
527 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
528 return (0);
529
530 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
531 /* Clear interrupt. */
532 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
533 ESO_SB_RBSR);
534
535 if (sc->sc_rintr)
536 sc->sc_rintr(sc->sc_rarg);
537 else
538 wakeup(&sc->sc_rintr);
539 }
540
541 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
542 /*
543 * Clear the A2 IRQ latch: the cached value reflects the
544 * current DAC settings with the IRQ latch bit not set.
545 */
546 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
547
548 if (sc->sc_pintr)
549 sc->sc_pintr(sc->sc_parg);
550 else
551 wakeup(&sc->sc_pintr);
552 }
553
554 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
555 /* Clear interrupt. */
556 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
557
558 /*
559 * Raise a flag to cause a lazy update of the in-softc gain
560 * values the next time the software mixer is read to keep
561 * interrupt service cost low. ~0 cannot occur otherwise
562 * as the master volume has a precision of 6 bits only.
563 */
564 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
565 }
566
567 #if NMPU > 0
568 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
569 mpu_intr(sc->sc_mpudev);
570 #endif
571
572 return (1);
573 }
574
575 /* Perform a software reset, including DMA FIFOs. */
576 static int
577 eso_reset(sc)
578 struct eso_softc *sc;
579 {
580 int i;
581
582 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
583 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
584 /* `Delay' suggested in the data sheet. */
585 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
586 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
587
588 /* Wait for reset to take effect. */
589 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
590 /* Poll for data to become available. */
591 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
592 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
593 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
594 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
595
596 /* Activate Solo-1 extension commands. */
597 eso_write_cmd(sc, ESO_CMD_EXTENB);
598 /* Reset mixer registers. */
599 eso_write_mixreg(sc, ESO_MIXREG_RESET,
600 ESO_MIXREG_RESET_RESET);
601
602 return (0);
603 } else {
604 delay(1000);
605 }
606 }
607
608 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
609 return (-1);
610 }
611
612
613 /* ARGSUSED */
614 static int
615 eso_open(hdl, flags)
616 void *hdl;
617 int flags;
618 {
619 struct eso_softc *sc = hdl;
620
621 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
622
623 sc->sc_pintr = NULL;
624 sc->sc_rintr = NULL;
625
626 return (0);
627 }
628
629 static void
630 eso_close(hdl)
631 void *hdl;
632 {
633
634 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
635 }
636
637 static int
638 eso_query_encoding(hdl, fp)
639 void *hdl;
640 struct audio_encoding *fp;
641 {
642
643 switch (fp->index) {
644 case 0:
645 strcpy(fp->name, AudioEulinear);
646 fp->encoding = AUDIO_ENCODING_ULINEAR;
647 fp->precision = 8;
648 fp->flags = 0;
649 break;
650 case 1:
651 strcpy(fp->name, AudioEmulaw);
652 fp->encoding = AUDIO_ENCODING_ULAW;
653 fp->precision = 8;
654 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
655 break;
656 case 2:
657 strcpy(fp->name, AudioEalaw);
658 fp->encoding = AUDIO_ENCODING_ALAW;
659 fp->precision = 8;
660 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
661 break;
662 case 3:
663 strcpy(fp->name, AudioEslinear);
664 fp->encoding = AUDIO_ENCODING_SLINEAR;
665 fp->precision = 8;
666 fp->flags = 0;
667 break;
668 case 4:
669 strcpy(fp->name, AudioEslinear_le);
670 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
671 fp->precision = 16;
672 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
673 break;
674 case 5:
675 strcpy(fp->name, AudioEulinear_le);
676 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
677 fp->precision = 16;
678 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
679 break;
680 case 6:
681 strcpy(fp->name, AudioEslinear_be);
682 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
683 fp->precision = 16;
684 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
685 break;
686 case 7:
687 strcpy(fp->name, AudioEulinear_be);
688 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
689 fp->precision = 16;
690 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
691 break;
692 default:
693 return (EINVAL);
694 }
695
696 return (0);
697 }
698
699 static int
700 eso_set_params(hdl, setmode, usemode, play, rec)
701 void *hdl;
702 int setmode, usemode;
703 struct audio_params *play, *rec;
704 {
705 struct eso_softc *sc = hdl;
706 struct audio_params *p;
707 int mode, r[2], rd[2], clk;
708 unsigned int srg, fltdiv;
709
710 for (mode = AUMODE_RECORD; mode != -1;
711 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
712 if ((setmode & mode) == 0)
713 continue;
714
715 p = (mode == AUMODE_PLAY) ? play : rec;
716
717 if (p->sample_rate < ESO_MINRATE ||
718 p->sample_rate > ESO_MAXRATE ||
719 (p->precision != 8 && p->precision != 16) ||
720 (p->channels != 1 && p->channels != 2))
721 return (EINVAL);
722
723 p->factor = 1;
724 p->sw_code = NULL;
725 switch (p->encoding) {
726 case AUDIO_ENCODING_SLINEAR_BE:
727 case AUDIO_ENCODING_ULINEAR_BE:
728 if (mode == AUMODE_PLAY && p->precision == 16)
729 p->sw_code = swap_bytes;
730 break;
731 case AUDIO_ENCODING_SLINEAR_LE:
732 case AUDIO_ENCODING_ULINEAR_LE:
733 if (mode == AUMODE_RECORD && p->precision == 16)
734 p->sw_code = swap_bytes;
735 break;
736 case AUDIO_ENCODING_ULAW:
737 if (mode == AUMODE_PLAY) {
738 p->factor = 2;
739 p->sw_code = mulaw_to_ulinear16_le;
740 } else {
741 p->sw_code = ulinear8_to_mulaw;
742 }
743 break;
744 case AUDIO_ENCODING_ALAW:
745 if (mode == AUMODE_PLAY) {
746 p->factor = 2;
747 p->sw_code = alaw_to_ulinear16_le;
748 } else {
749 p->sw_code = ulinear8_to_alaw;
750 }
751 break;
752 default:
753 return (EINVAL);
754 }
755
756 /*
757 * We'll compute both possible sample rate dividers and pick
758 * the one with the least error.
759 */
760 #define ABS(x) ((x) < 0 ? -(x) : (x))
761 r[0] = ESO_CLK0 /
762 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
763 r[1] = ESO_CLK1 /
764 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
765
766 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
767 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
768
769 /* Roll-off frequency of 87%, as in the ES1888 driver. */
770 fltdiv = 256 - 200279L / r[clk];
771
772 /* Update to reflect the possibly inexact rate. */
773 p->sample_rate = r[clk];
774
775 if (mode == AUMODE_RECORD) {
776 /* Audio 1 */
777 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
778 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
779 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
780 } else {
781 /* Audio 2 */
782 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
783 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
784 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
785 }
786 #undef ABS
787
788 }
789
790 return (0);
791 }
792
793 static int
794 eso_round_blocksize(hdl, blk)
795 void *hdl;
796 int blk;
797 {
798
799 return (blk & -32); /* keep good alignment; at least 16 req'd */
800 }
801
802 static int
803 eso_halt_output(hdl)
804 void *hdl;
805 {
806 struct eso_softc *sc = hdl;
807 int error, s;
808
809 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
810
811 /*
812 * Disable auto-initialize DMA, allowing the FIFO to drain and then
813 * stop. The interrupt callback pointer is cleared at this
814 * point so that an outstanding FIFO interrupt for the remaining data
815 * will be acknowledged without further processing.
816 *
817 * This does not immediately `abort' an operation in progress (c.f.
818 * audio(9)) but is the method to leave the FIFO behind in a clean
819 * state with the least hair. (Besides, that item needs to be
820 * rephrased for trigger_*()-based DMA environments.)
821 */
822 s = splaudio();
823 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
824 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
825 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
826 ESO_IO_A2DMAM_DMAENB);
827
828 sc->sc_pintr = NULL;
829 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
830 splx(s);
831
832 /* Shut down DMA completely. */
833 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
834 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
835
836 return (error == EWOULDBLOCK ? 0 : error);
837 }
838
839 static int
840 eso_halt_input(hdl)
841 void *hdl;
842 {
843 struct eso_softc *sc = hdl;
844 int error, s;
845
846 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
847
848 /* Just like eso_halt_output(), but for Audio 1. */
849 s = splaudio();
850 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
851 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
852 ESO_CTLREG_A1C2_DMAENB);
853 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
854 DMA37MD_WRITE | DMA37MD_DEMAND);
855
856 sc->sc_rintr = NULL;
857 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
858 splx(s);
859
860 /* Shut down DMA completely. */
861 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
862 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
863 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
864 ESO_DMAC_MASK_MASK);
865
866 return (error == EWOULDBLOCK ? 0 : error);
867 }
868
869 static int
870 eso_getdev(hdl, retp)
871 void *hdl;
872 struct audio_device *retp;
873 {
874 struct eso_softc *sc = hdl;
875
876 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
877 snprintf(retp->version, sizeof (retp->version), "0x%02x",
878 sc->sc_revision);
879 if (sc->sc_revision <
880 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
881 strncpy(retp->config, eso_rev2model[sc->sc_revision],
882 sizeof (retp->config));
883 else
884 strncpy(retp->config, "unknown", sizeof (retp->config));
885
886 return (0);
887 }
888
889 static int
890 eso_set_port(hdl, cp)
891 void *hdl;
892 mixer_ctrl_t *cp;
893 {
894 struct eso_softc *sc = hdl;
895 unsigned int lgain, rgain;
896 uint8_t tmp;
897
898 switch (cp->dev) {
899 case ESO_DAC_PLAY_VOL:
900 case ESO_MIC_PLAY_VOL:
901 case ESO_LINE_PLAY_VOL:
902 case ESO_SYNTH_PLAY_VOL:
903 case ESO_CD_PLAY_VOL:
904 case ESO_AUXB_PLAY_VOL:
905 case ESO_RECORD_VOL:
906 case ESO_DAC_REC_VOL:
907 case ESO_MIC_REC_VOL:
908 case ESO_LINE_REC_VOL:
909 case ESO_SYNTH_REC_VOL:
910 case ESO_CD_REC_VOL:
911 case ESO_AUXB_REC_VOL:
912 if (cp->type != AUDIO_MIXER_VALUE)
913 return (EINVAL);
914
915 /*
916 * Stereo-capable mixer ports: if we get a single-channel
917 * gain value passed in, then we duplicate it to both left
918 * and right channels.
919 */
920 switch (cp->un.value.num_channels) {
921 case 1:
922 lgain = rgain = ESO_GAIN_TO_4BIT(
923 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
924 break;
925 case 2:
926 lgain = ESO_GAIN_TO_4BIT(
927 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
928 rgain = ESO_GAIN_TO_4BIT(
929 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
930 break;
931 default:
932 return (EINVAL);
933 }
934
935 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
936 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
937 eso_set_gain(sc, cp->dev);
938 break;
939
940 case ESO_MASTER_VOL:
941 if (cp->type != AUDIO_MIXER_VALUE)
942 return (EINVAL);
943
944 /* Like above, but a precision of 6 bits. */
945 switch (cp->un.value.num_channels) {
946 case 1:
947 lgain = rgain = ESO_GAIN_TO_6BIT(
948 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
949 break;
950 case 2:
951 lgain = ESO_GAIN_TO_6BIT(
952 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
953 rgain = ESO_GAIN_TO_6BIT(
954 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
955 break;
956 default:
957 return (EINVAL);
958 }
959
960 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
961 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
962 eso_set_gain(sc, cp->dev);
963 break;
964
965 case ESO_SPATIALIZER:
966 if (cp->type != AUDIO_MIXER_VALUE ||
967 cp->un.value.num_channels != 1)
968 return (EINVAL);
969
970 sc->sc_gain[cp->dev][ESO_LEFT] =
971 sc->sc_gain[cp->dev][ESO_RIGHT] =
972 ESO_GAIN_TO_6BIT(
973 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
974 eso_set_gain(sc, cp->dev);
975 break;
976
977 case ESO_MONO_PLAY_VOL:
978 case ESO_MONO_REC_VOL:
979 if (cp->type != AUDIO_MIXER_VALUE ||
980 cp->un.value.num_channels != 1)
981 return (EINVAL);
982
983 sc->sc_gain[cp->dev][ESO_LEFT] =
984 sc->sc_gain[cp->dev][ESO_RIGHT] =
985 ESO_GAIN_TO_4BIT(
986 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
987 eso_set_gain(sc, cp->dev);
988 break;
989
990 case ESO_PCSPEAKER_VOL:
991 if (cp->type != AUDIO_MIXER_VALUE ||
992 cp->un.value.num_channels != 1)
993 return (EINVAL);
994
995 sc->sc_gain[cp->dev][ESO_LEFT] =
996 sc->sc_gain[cp->dev][ESO_RIGHT] =
997 ESO_GAIN_TO_3BIT(
998 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
999 eso_set_gain(sc, cp->dev);
1000 break;
1001
1002 case ESO_SPATIALIZER_ENABLE:
1003 if (cp->type != AUDIO_MIXER_ENUM)
1004 return (EINVAL);
1005
1006 sc->sc_spatializer = (cp->un.ord != 0);
1007
1008 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1009 if (sc->sc_spatializer)
1010 tmp |= ESO_MIXREG_SPAT_ENB;
1011 else
1012 tmp &= ~ESO_MIXREG_SPAT_ENB;
1013 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1014 tmp | ESO_MIXREG_SPAT_RSTREL);
1015 break;
1016
1017 case ESO_MASTER_MUTE:
1018 if (cp->type != AUDIO_MIXER_ENUM)
1019 return (EINVAL);
1020
1021 sc->sc_mvmute = (cp->un.ord != 0);
1022
1023 if (sc->sc_mvmute) {
1024 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1025 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1026 ESO_MIXREG_LMVM_MUTE);
1027 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1028 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1029 ESO_MIXREG_RMVM_MUTE);
1030 } else {
1031 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1032 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1033 ~ESO_MIXREG_LMVM_MUTE);
1034 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1035 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1036 ~ESO_MIXREG_RMVM_MUTE);
1037 }
1038 break;
1039
1040 case ESO_MONOOUT_SOURCE:
1041 if (cp->type != AUDIO_MIXER_ENUM)
1042 return (EINVAL);
1043
1044 return (eso_set_monooutsrc(sc, cp->un.ord));
1045
1046 case ESO_RECORD_MONITOR:
1047 if (cp->type != AUDIO_MIXER_ENUM)
1048 return (EINVAL);
1049
1050 sc->sc_recmon = (cp->un.ord != 0);
1051
1052 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1053 if (sc->sc_recmon)
1054 tmp |= ESO_CTLREG_ACTL_RECMON;
1055 else
1056 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1057 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1058 break;
1059
1060 case ESO_RECORD_SOURCE:
1061 if (cp->type != AUDIO_MIXER_ENUM)
1062 return (EINVAL);
1063
1064 return (eso_set_recsrc(sc, cp->un.ord));
1065
1066 case ESO_MIC_PREAMP:
1067 if (cp->type != AUDIO_MIXER_ENUM)
1068 return (EINVAL);
1069
1070 sc->sc_preamp = (cp->un.ord != 0);
1071
1072 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1073 tmp &= ~ESO_MIXREG_MPM_RESV0;
1074 if (sc->sc_preamp)
1075 tmp |= ESO_MIXREG_MPM_PREAMP;
1076 else
1077 tmp &= ~ESO_MIXREG_MPM_PREAMP;
1078 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1079 break;
1080
1081 default:
1082 return (EINVAL);
1083 }
1084
1085 return (0);
1086 }
1087
1088 static int
1089 eso_get_port(hdl, cp)
1090 void *hdl;
1091 mixer_ctrl_t *cp;
1092 {
1093 struct eso_softc *sc = hdl;
1094
1095 switch (cp->dev) {
1096 case ESO_MASTER_VOL:
1097 /* Reload from mixer after hardware volume control use. */
1098 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1099 eso_reload_master_vol(sc);
1100 /* FALLTHROUGH */
1101 case ESO_DAC_PLAY_VOL:
1102 case ESO_MIC_PLAY_VOL:
1103 case ESO_LINE_PLAY_VOL:
1104 case ESO_SYNTH_PLAY_VOL:
1105 case ESO_CD_PLAY_VOL:
1106 case ESO_AUXB_PLAY_VOL:
1107 case ESO_RECORD_VOL:
1108 case ESO_DAC_REC_VOL:
1109 case ESO_MIC_REC_VOL:
1110 case ESO_LINE_REC_VOL:
1111 case ESO_SYNTH_REC_VOL:
1112 case ESO_CD_REC_VOL:
1113 case ESO_AUXB_REC_VOL:
1114 /*
1115 * Stereo-capable ports: if a single-channel query is made,
1116 * just return the left channel's value (since single-channel
1117 * settings themselves are applied to both channels).
1118 */
1119 switch (cp->un.value.num_channels) {
1120 case 1:
1121 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1122 sc->sc_gain[cp->dev][ESO_LEFT];
1123 break;
1124 case 2:
1125 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1126 sc->sc_gain[cp->dev][ESO_LEFT];
1127 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1128 sc->sc_gain[cp->dev][ESO_RIGHT];
1129 break;
1130 default:
1131 return (EINVAL);
1132 }
1133 break;
1134
1135 case ESO_MONO_PLAY_VOL:
1136 case ESO_PCSPEAKER_VOL:
1137 case ESO_MONO_REC_VOL:
1138 case ESO_SPATIALIZER:
1139 if (cp->un.value.num_channels != 1)
1140 return (EINVAL);
1141 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1142 sc->sc_gain[cp->dev][ESO_LEFT];
1143 break;
1144
1145 case ESO_RECORD_MONITOR:
1146 cp->un.ord = sc->sc_recmon;
1147 break;
1148
1149 case ESO_RECORD_SOURCE:
1150 cp->un.ord = sc->sc_recsrc;
1151 break;
1152
1153 case ESO_MONOOUT_SOURCE:
1154 cp->un.ord = sc->sc_monooutsrc;
1155 break;
1156
1157 case ESO_SPATIALIZER_ENABLE:
1158 cp->un.ord = sc->sc_spatializer;
1159 break;
1160
1161 case ESO_MIC_PREAMP:
1162 cp->un.ord = sc->sc_preamp;
1163 break;
1164
1165 case ESO_MASTER_MUTE:
1166 /* Reload from mixer after hardware volume control use. */
1167 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1168 eso_reload_master_vol(sc);
1169 cp->un.ord = sc->sc_mvmute;
1170 break;
1171
1172 default:
1173 return (EINVAL);
1174 }
1175
1176
1177 return (0);
1178
1179 }
1180
1181 static int
1182 eso_query_devinfo(hdl, dip)
1183 void *hdl;
1184 mixer_devinfo_t *dip;
1185 {
1186
1187 switch (dip->index) {
1188 case ESO_DAC_PLAY_VOL:
1189 dip->mixer_class = ESO_INPUT_CLASS;
1190 dip->next = dip->prev = AUDIO_MIXER_LAST;
1191 strcpy(dip->label.name, AudioNdac);
1192 dip->type = AUDIO_MIXER_VALUE;
1193 dip->un.v.num_channels = 2;
1194 strcpy(dip->un.v.units.name, AudioNvolume);
1195 break;
1196 case ESO_MIC_PLAY_VOL:
1197 dip->mixer_class = ESO_INPUT_CLASS;
1198 dip->next = dip->prev = AUDIO_MIXER_LAST;
1199 strcpy(dip->label.name, AudioNmicrophone);
1200 dip->type = AUDIO_MIXER_VALUE;
1201 dip->un.v.num_channels = 2;
1202 strcpy(dip->un.v.units.name, AudioNvolume);
1203 break;
1204 case ESO_LINE_PLAY_VOL:
1205 dip->mixer_class = ESO_INPUT_CLASS;
1206 dip->next = dip->prev = AUDIO_MIXER_LAST;
1207 strcpy(dip->label.name, AudioNline);
1208 dip->type = AUDIO_MIXER_VALUE;
1209 dip->un.v.num_channels = 2;
1210 strcpy(dip->un.v.units.name, AudioNvolume);
1211 break;
1212 case ESO_SYNTH_PLAY_VOL:
1213 dip->mixer_class = ESO_INPUT_CLASS;
1214 dip->next = dip->prev = AUDIO_MIXER_LAST;
1215 strcpy(dip->label.name, AudioNfmsynth);
1216 dip->type = AUDIO_MIXER_VALUE;
1217 dip->un.v.num_channels = 2;
1218 strcpy(dip->un.v.units.name, AudioNvolume);
1219 break;
1220 case ESO_MONO_PLAY_VOL:
1221 dip->mixer_class = ESO_INPUT_CLASS;
1222 dip->next = dip->prev = AUDIO_MIXER_LAST;
1223 strcpy(dip->label.name, "mono_in");
1224 dip->type = AUDIO_MIXER_VALUE;
1225 dip->un.v.num_channels = 1;
1226 strcpy(dip->un.v.units.name, AudioNvolume);
1227 break;
1228 case ESO_CD_PLAY_VOL:
1229 dip->mixer_class = ESO_INPUT_CLASS;
1230 dip->next = dip->prev = AUDIO_MIXER_LAST;
1231 strcpy(dip->label.name, AudioNcd);
1232 dip->type = AUDIO_MIXER_VALUE;
1233 dip->un.v.num_channels = 2;
1234 strcpy(dip->un.v.units.name, AudioNvolume);
1235 break;
1236 case ESO_AUXB_PLAY_VOL:
1237 dip->mixer_class = ESO_INPUT_CLASS;
1238 dip->next = dip->prev = AUDIO_MIXER_LAST;
1239 strcpy(dip->label.name, "auxb");
1240 dip->type = AUDIO_MIXER_VALUE;
1241 dip->un.v.num_channels = 2;
1242 strcpy(dip->un.v.units.name, AudioNvolume);
1243 break;
1244
1245 case ESO_MIC_PREAMP:
1246 dip->mixer_class = ESO_MICROPHONE_CLASS;
1247 dip->next = dip->prev = AUDIO_MIXER_LAST;
1248 strcpy(dip->label.name, AudioNpreamp);
1249 dip->type = AUDIO_MIXER_ENUM;
1250 dip->un.e.num_mem = 2;
1251 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1252 dip->un.e.member[0].ord = 0;
1253 strcpy(dip->un.e.member[1].label.name, AudioNon);
1254 dip->un.e.member[1].ord = 1;
1255 break;
1256 case ESO_MICROPHONE_CLASS:
1257 dip->mixer_class = ESO_MICROPHONE_CLASS;
1258 dip->next = dip->prev = AUDIO_MIXER_LAST;
1259 strcpy(dip->label.name, AudioNmicrophone);
1260 dip->type = AUDIO_MIXER_CLASS;
1261 break;
1262
1263 case ESO_INPUT_CLASS:
1264 dip->mixer_class = ESO_INPUT_CLASS;
1265 dip->next = dip->prev = AUDIO_MIXER_LAST;
1266 strcpy(dip->label.name, AudioCinputs);
1267 dip->type = AUDIO_MIXER_CLASS;
1268 break;
1269
1270 case ESO_MASTER_VOL:
1271 dip->mixer_class = ESO_OUTPUT_CLASS;
1272 dip->prev = AUDIO_MIXER_LAST;
1273 dip->next = ESO_MASTER_MUTE;
1274 strcpy(dip->label.name, AudioNmaster);
1275 dip->type = AUDIO_MIXER_VALUE;
1276 dip->un.v.num_channels = 2;
1277 strcpy(dip->un.v.units.name, AudioNvolume);
1278 break;
1279 case ESO_MASTER_MUTE:
1280 dip->mixer_class = ESO_OUTPUT_CLASS;
1281 dip->prev = ESO_MASTER_VOL;
1282 dip->next = AUDIO_MIXER_LAST;
1283 strcpy(dip->label.name, AudioNmute);
1284 dip->type = AUDIO_MIXER_ENUM;
1285 dip->un.e.num_mem = 2;
1286 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1287 dip->un.e.member[0].ord = 0;
1288 strcpy(dip->un.e.member[1].label.name, AudioNon);
1289 dip->un.e.member[1].ord = 1;
1290 break;
1291
1292 case ESO_PCSPEAKER_VOL:
1293 dip->mixer_class = ESO_OUTPUT_CLASS;
1294 dip->next = dip->prev = AUDIO_MIXER_LAST;
1295 strcpy(dip->label.name, "pc_speaker");
1296 dip->type = AUDIO_MIXER_VALUE;
1297 dip->un.v.num_channels = 1;
1298 strcpy(dip->un.v.units.name, AudioNvolume);
1299 break;
1300 case ESO_MONOOUT_SOURCE:
1301 dip->mixer_class = ESO_OUTPUT_CLASS;
1302 dip->next = dip->prev = AUDIO_MIXER_LAST;
1303 strcpy(dip->label.name, "mono_out");
1304 dip->type = AUDIO_MIXER_ENUM;
1305 dip->un.e.num_mem = 3;
1306 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1307 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1308 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1309 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1310 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1311 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1312 break;
1313 case ESO_SPATIALIZER:
1314 dip->mixer_class = ESO_OUTPUT_CLASS;
1315 dip->prev = AUDIO_MIXER_LAST;
1316 dip->next = ESO_SPATIALIZER_ENABLE;
1317 strcpy(dip->label.name, AudioNspatial);
1318 dip->type = AUDIO_MIXER_VALUE;
1319 dip->un.v.num_channels = 1;
1320 strcpy(dip->un.v.units.name, "level");
1321 break;
1322 case ESO_SPATIALIZER_ENABLE:
1323 dip->mixer_class = ESO_OUTPUT_CLASS;
1324 dip->prev = ESO_SPATIALIZER;
1325 dip->next = AUDIO_MIXER_LAST;
1326 strcpy(dip->label.name, "enable");
1327 dip->type = AUDIO_MIXER_ENUM;
1328 dip->un.e.num_mem = 2;
1329 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1330 dip->un.e.member[0].ord = 0;
1331 strcpy(dip->un.e.member[1].label.name, AudioNon);
1332 dip->un.e.member[1].ord = 1;
1333 break;
1334
1335 case ESO_OUTPUT_CLASS:
1336 dip->mixer_class = ESO_OUTPUT_CLASS;
1337 dip->next = dip->prev = AUDIO_MIXER_LAST;
1338 strcpy(dip->label.name, AudioCoutputs);
1339 dip->type = AUDIO_MIXER_CLASS;
1340 break;
1341
1342 case ESO_RECORD_MONITOR:
1343 dip->mixer_class = ESO_MONITOR_CLASS;
1344 dip->next = dip->prev = AUDIO_MIXER_LAST;
1345 strcpy(dip->label.name, AudioNmute);
1346 dip->type = AUDIO_MIXER_ENUM;
1347 dip->un.e.num_mem = 2;
1348 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1349 dip->un.e.member[0].ord = 0;
1350 strcpy(dip->un.e.member[1].label.name, AudioNon);
1351 dip->un.e.member[1].ord = 1;
1352 break;
1353 case ESO_MONITOR_CLASS:
1354 dip->mixer_class = ESO_MONITOR_CLASS;
1355 dip->next = dip->prev = AUDIO_MIXER_LAST;
1356 strcpy(dip->label.name, AudioCmonitor);
1357 dip->type = AUDIO_MIXER_CLASS;
1358 break;
1359
1360 case ESO_RECORD_VOL:
1361 dip->mixer_class = ESO_RECORD_CLASS;
1362 dip->next = dip->prev = AUDIO_MIXER_LAST;
1363 strcpy(dip->label.name, AudioNrecord);
1364 dip->type = AUDIO_MIXER_VALUE;
1365 strcpy(dip->un.v.units.name, AudioNvolume);
1366 break;
1367 case ESO_RECORD_SOURCE:
1368 dip->mixer_class = ESO_RECORD_CLASS;
1369 dip->next = dip->prev = AUDIO_MIXER_LAST;
1370 strcpy(dip->label.name, AudioNsource);
1371 dip->type = AUDIO_MIXER_ENUM;
1372 dip->un.e.num_mem = 4;
1373 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1374 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1375 strcpy(dip->un.e.member[1].label.name, AudioNline);
1376 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1377 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1378 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1379 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1380 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1381 break;
1382 case ESO_DAC_REC_VOL:
1383 dip->mixer_class = ESO_RECORD_CLASS;
1384 dip->next = dip->prev = AUDIO_MIXER_LAST;
1385 strcpy(dip->label.name, AudioNdac);
1386 dip->type = AUDIO_MIXER_VALUE;
1387 dip->un.v.num_channels = 2;
1388 strcpy(dip->un.v.units.name, AudioNvolume);
1389 break;
1390 case ESO_MIC_REC_VOL:
1391 dip->mixer_class = ESO_RECORD_CLASS;
1392 dip->next = dip->prev = AUDIO_MIXER_LAST;
1393 strcpy(dip->label.name, AudioNmicrophone);
1394 dip->type = AUDIO_MIXER_VALUE;
1395 dip->un.v.num_channels = 2;
1396 strcpy(dip->un.v.units.name, AudioNvolume);
1397 break;
1398 case ESO_LINE_REC_VOL:
1399 dip->mixer_class = ESO_RECORD_CLASS;
1400 dip->next = dip->prev = AUDIO_MIXER_LAST;
1401 strcpy(dip->label.name, AudioNline);
1402 dip->type = AUDIO_MIXER_VALUE;
1403 dip->un.v.num_channels = 2;
1404 strcpy(dip->un.v.units.name, AudioNvolume);
1405 break;
1406 case ESO_SYNTH_REC_VOL:
1407 dip->mixer_class = ESO_RECORD_CLASS;
1408 dip->next = dip->prev = AUDIO_MIXER_LAST;
1409 strcpy(dip->label.name, AudioNfmsynth);
1410 dip->type = AUDIO_MIXER_VALUE;
1411 dip->un.v.num_channels = 2;
1412 strcpy(dip->un.v.units.name, AudioNvolume);
1413 break;
1414 case ESO_MONO_REC_VOL:
1415 dip->mixer_class = ESO_RECORD_CLASS;
1416 dip->next = dip->prev = AUDIO_MIXER_LAST;
1417 strcpy(dip->label.name, "mono_in");
1418 dip->type = AUDIO_MIXER_VALUE;
1419 dip->un.v.num_channels = 1; /* No lies */
1420 strcpy(dip->un.v.units.name, AudioNvolume);
1421 break;
1422 case ESO_CD_REC_VOL:
1423 dip->mixer_class = ESO_RECORD_CLASS;
1424 dip->next = dip->prev = AUDIO_MIXER_LAST;
1425 strcpy(dip->label.name, AudioNcd);
1426 dip->type = AUDIO_MIXER_VALUE;
1427 dip->un.v.num_channels = 2;
1428 strcpy(dip->un.v.units.name, AudioNvolume);
1429 break;
1430 case ESO_AUXB_REC_VOL:
1431 dip->mixer_class = ESO_RECORD_CLASS;
1432 dip->next = dip->prev = AUDIO_MIXER_LAST;
1433 strcpy(dip->label.name, "auxb");
1434 dip->type = AUDIO_MIXER_VALUE;
1435 dip->un.v.num_channels = 2;
1436 strcpy(dip->un.v.units.name, AudioNvolume);
1437 break;
1438 case ESO_RECORD_CLASS:
1439 dip->mixer_class = ESO_RECORD_CLASS;
1440 dip->next = dip->prev = AUDIO_MIXER_LAST;
1441 strcpy(dip->label.name, AudioCrecord);
1442 dip->type = AUDIO_MIXER_CLASS;
1443 break;
1444
1445 default:
1446 return (ENXIO);
1447 }
1448
1449 return (0);
1450 }
1451
1452 static int
1453 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1454 struct eso_softc *sc;
1455 size_t size;
1456 size_t align;
1457 size_t boundary;
1458 int flags;
1459 int direction;
1460 struct eso_dma *ed;
1461 {
1462 int error, wait;
1463
1464 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1465 ed->ed_size = size;
1466
1467 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1468 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1469 &ed->ed_nsegs, wait);
1470 if (error)
1471 goto out;
1472
1473 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1474 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1475 if (error)
1476 goto free;
1477
1478 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1479 wait, &ed->ed_map);
1480 if (error)
1481 goto unmap;
1482
1483 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1484 ed->ed_size, NULL, wait |
1485 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1486 if (error)
1487 goto destroy;
1488
1489 return (0);
1490
1491 destroy:
1492 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1493 unmap:
1494 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1495 free:
1496 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1497 out:
1498 return (error);
1499 }
1500
1501 static void
1502 eso_freemem(ed)
1503 struct eso_dma *ed;
1504 {
1505
1506 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1507 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1508 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1509 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1510 }
1511
1512 static void *
1513 eso_allocm(hdl, direction, size, type, flags)
1514 void *hdl;
1515 int direction;
1516 size_t size;
1517 int type, flags;
1518 {
1519 struct eso_softc *sc = hdl;
1520 struct eso_dma *ed;
1521 size_t boundary;
1522 int error;
1523
1524 if ((ed = malloc(size, type, flags)) == NULL)
1525 return (NULL);
1526
1527 /*
1528 * Apparently the Audio 1 DMA controller's current address
1529 * register can't roll over a 64K address boundary, so we have to
1530 * take care of that ourselves. The second channel DMA controller
1531 * doesn't have that restriction, however.
1532 */
1533 if (direction == AUMODE_RECORD)
1534 boundary = 0x10000;
1535 else
1536 boundary = 0;
1537
1538 #ifdef alpha
1539 /*
1540 * XXX For Audio 1, which implements the 24 low address bits only,
1541 * XXX force allocation through the (ISA) SGMAP.
1542 */
1543 if (direction == AUMODE_RECORD)
1544 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1545 else
1546 #endif
1547 ed->ed_dmat = sc->sc_dmat;
1548
1549 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1550 if (error) {
1551 free(ed, type);
1552 return (NULL);
1553 }
1554 ed->ed_next = sc->sc_dmas;
1555 sc->sc_dmas = ed;
1556
1557 return (KVADDR(ed));
1558 }
1559
1560 static void
1561 eso_freem(hdl, addr, type)
1562 void *hdl;
1563 void *addr;
1564 int type;
1565 {
1566 struct eso_softc *sc = hdl;
1567 struct eso_dma *p, **pp;
1568
1569 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1570 if (KVADDR(p) == addr) {
1571 eso_freemem(p);
1572 *pp = p->ed_next;
1573 free(p, type);
1574 return;
1575 }
1576 }
1577 }
1578
1579 static size_t
1580 eso_round_buffersize(hdl, direction, bufsize)
1581 void *hdl;
1582 int direction;
1583 size_t bufsize;
1584 {
1585 size_t maxsize;
1586
1587 /*
1588 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1589 * bytes. This is because IO_A2DMAC is a two byte value
1590 * indicating the literal byte count, and the 4 least significant
1591 * bits are read-only. Zero is not used as a special case for
1592 * 0x10000.
1593 *
1594 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1595 * be represented.
1596 */
1597 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1598
1599 if (bufsize > maxsize)
1600 bufsize = maxsize;
1601
1602 return (bufsize);
1603 }
1604
1605 static paddr_t
1606 eso_mappage(hdl, addr, offs, prot)
1607 void *hdl;
1608 void *addr;
1609 off_t offs;
1610 int prot;
1611 {
1612 struct eso_softc *sc = hdl;
1613 struct eso_dma *ed;
1614
1615 if (offs < 0)
1616 return (-1);
1617 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1618 ed = ed->ed_next)
1619 ;
1620 if (ed == NULL)
1621 return (-1);
1622
1623 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1624 offs, prot, BUS_DMA_WAITOK));
1625 }
1626
1627 /* ARGSUSED */
1628 static int
1629 eso_get_props(hdl)
1630 void *hdl;
1631 {
1632
1633 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1634 AUDIO_PROP_FULLDUPLEX);
1635 }
1636
1637 static int
1638 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1639 void *hdl;
1640 void *start, *end;
1641 int blksize;
1642 void (*intr) __P((void *));
1643 void *arg;
1644 struct audio_params *param;
1645 {
1646 struct eso_softc *sc = hdl;
1647 struct eso_dma *ed;
1648 uint8_t a2c1;
1649
1650 DPRINTF((
1651 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1652 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1653 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1654 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1655 param->precision, param->channels, param->sw_code, param->factor));
1656
1657 /* Find DMA buffer. */
1658 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1659 ed = ed->ed_next)
1660 ;
1661 if (ed == NULL) {
1662 printf("%s: trigger_output: bad addr %p\n",
1663 sc->sc_dev.dv_xname, start);
1664 return (EINVAL);
1665 }
1666
1667 sc->sc_pintr = intr;
1668 sc->sc_parg = arg;
1669
1670 /* Compute drain timeout. */
1671 sc->sc_pdrain = (blksize * NBBY * hz) /
1672 (param->sample_rate * param->channels *
1673 param->precision * param->factor) + 2; /* slop */
1674
1675 /* DMA transfer count (in `words'!) reload using 2's complement. */
1676 blksize = -(blksize >> 1);
1677 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1678 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1679
1680 /* Update DAC to reflect DMA count and audio parameters. */
1681 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1682 if (param->precision * param->factor == 16)
1683 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1684 else
1685 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1686 if (param->channels == 2)
1687 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1688 else
1689 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1690 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1691 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1692 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1693 else
1694 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1695 /* Unmask IRQ. */
1696 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1697 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1698
1699 /* Set up DMA controller. */
1700 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1701 DMAADDR(ed));
1702 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1703 (uint8_t *)end - (uint8_t *)start);
1704 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1705 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1706
1707 /* Start DMA. */
1708 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1709 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1710 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1711 ESO_MIXREG_A2C1_AUTO;
1712 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1713
1714 return (0);
1715 }
1716
1717 static int
1718 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1719 void *hdl;
1720 void *start, *end;
1721 int blksize;
1722 void (*intr) __P((void *));
1723 void *arg;
1724 struct audio_params *param;
1725 {
1726 struct eso_softc *sc = hdl;
1727 struct eso_dma *ed;
1728 uint8_t actl, a1c1;
1729
1730 DPRINTF((
1731 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1732 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1733 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1734 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1735 param->precision, param->channels, param->sw_code, param->factor));
1736
1737 /*
1738 * If we failed to configure the Audio 1 DMA controller, bail here
1739 * while retaining availability of the DAC direction (in Audio 2).
1740 */
1741 if (!sc->sc_dmac_configured)
1742 return (EIO);
1743
1744 /* Find DMA buffer. */
1745 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1746 ed = ed->ed_next)
1747 ;
1748 if (ed == NULL) {
1749 printf("%s: trigger_output: bad addr %p\n",
1750 sc->sc_dev.dv_xname, start);
1751 return (EINVAL);
1752 }
1753
1754 sc->sc_rintr = intr;
1755 sc->sc_rarg = arg;
1756
1757 /* Compute drain timeout. */
1758 sc->sc_rdrain = (blksize * NBBY * hz) /
1759 (param->sample_rate * param->channels *
1760 param->precision * param->factor) + 2; /* slop */
1761
1762 /* Set up ADC DMA converter parameters. */
1763 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1764 if (param->channels == 2) {
1765 actl &= ~ESO_CTLREG_ACTL_MONO;
1766 actl |= ESO_CTLREG_ACTL_STEREO;
1767 } else {
1768 actl &= ~ESO_CTLREG_ACTL_STEREO;
1769 actl |= ESO_CTLREG_ACTL_MONO;
1770 }
1771 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1772
1773 /* Set up Transfer Type: maybe move to attach time? */
1774 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1775
1776 /* DMA transfer count reload using 2's complement. */
1777 blksize = -blksize;
1778 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1779 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1780
1781 /* Set up and enable Audio 1 DMA FIFO. */
1782 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1783 if (param->precision * param->factor == 16)
1784 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1785 if (param->channels == 2)
1786 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1787 else
1788 a1c1 |= ESO_CTLREG_A1C1_MONO;
1789 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1790 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1791 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1792 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1793
1794 /* Set up ADC IRQ/DRQ parameters. */
1795 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1796 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1797 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1798 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1799
1800 /* Set up and enable DMA controller. */
1801 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1802 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1803 ESO_DMAC_MASK_MASK);
1804 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1805 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1806 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1807 DMAADDR(ed));
1808 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1809 (uint8_t *)end - (uint8_t *)start - 1);
1810 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1811
1812 /* Start DMA. */
1813 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1814 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1815 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1816
1817 return (0);
1818 }
1819
1820 static int
1821 eso_set_monooutsrc(sc, monooutsrc)
1822 struct eso_softc *sc;
1823 unsigned int monooutsrc;
1824 {
1825 mixer_devinfo_t di;
1826 int i;
1827 uint8_t mpm;
1828
1829 di.index = ESO_MONOOUT_SOURCE;
1830 if (eso_query_devinfo(sc, &di) != 0)
1831 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1832
1833 for (i = 0; i < di.un.e.num_mem; i++) {
1834 if (monooutsrc == di.un.e.member[i].ord) {
1835 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1836 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1837 mpm |= monooutsrc;
1838 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1839 sc->sc_monooutsrc = monooutsrc;
1840 return (0);
1841 }
1842 }
1843
1844 return (EINVAL);
1845 }
1846
1847 static int
1848 eso_set_recsrc(sc, recsrc)
1849 struct eso_softc *sc;
1850 unsigned int recsrc;
1851 {
1852 mixer_devinfo_t di;
1853 int i;
1854
1855 di.index = ESO_RECORD_SOURCE;
1856 if (eso_query_devinfo(sc, &di) != 0)
1857 panic("eso_set_recsrc: eso_query_devinfo failed");
1858
1859 for (i = 0; i < di.un.e.num_mem; i++) {
1860 if (recsrc == di.un.e.member[i].ord) {
1861 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1862 sc->sc_recsrc = recsrc;
1863 return (0);
1864 }
1865 }
1866
1867 return (EINVAL);
1868 }
1869
1870 /*
1871 * Reload Master Volume and Mute values in softc from mixer; used when
1872 * those have previously been invalidated by use of hardware volume controls.
1873 */
1874 static void
1875 eso_reload_master_vol(sc)
1876 struct eso_softc *sc;
1877 {
1878 uint8_t mv;
1879
1880 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1881 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1882 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1883 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1884 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1885 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1886 /* Currently both channels are muted simultaneously; either is OK. */
1887 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1888 }
1889
1890 static void
1891 eso_set_gain(sc, port)
1892 struct eso_softc *sc;
1893 unsigned int port;
1894 {
1895 uint8_t mixreg, tmp;
1896
1897 switch (port) {
1898 case ESO_DAC_PLAY_VOL:
1899 mixreg = ESO_MIXREG_PVR_A2;
1900 break;
1901 case ESO_MIC_PLAY_VOL:
1902 mixreg = ESO_MIXREG_PVR_MIC;
1903 break;
1904 case ESO_LINE_PLAY_VOL:
1905 mixreg = ESO_MIXREG_PVR_LINE;
1906 break;
1907 case ESO_SYNTH_PLAY_VOL:
1908 mixreg = ESO_MIXREG_PVR_SYNTH;
1909 break;
1910 case ESO_CD_PLAY_VOL:
1911 mixreg = ESO_MIXREG_PVR_CD;
1912 break;
1913 case ESO_AUXB_PLAY_VOL:
1914 mixreg = ESO_MIXREG_PVR_AUXB;
1915 break;
1916
1917 case ESO_DAC_REC_VOL:
1918 mixreg = ESO_MIXREG_RVR_A2;
1919 break;
1920 case ESO_MIC_REC_VOL:
1921 mixreg = ESO_MIXREG_RVR_MIC;
1922 break;
1923 case ESO_LINE_REC_VOL:
1924 mixreg = ESO_MIXREG_RVR_LINE;
1925 break;
1926 case ESO_SYNTH_REC_VOL:
1927 mixreg = ESO_MIXREG_RVR_SYNTH;
1928 break;
1929 case ESO_CD_REC_VOL:
1930 mixreg = ESO_MIXREG_RVR_CD;
1931 break;
1932 case ESO_AUXB_REC_VOL:
1933 mixreg = ESO_MIXREG_RVR_AUXB;
1934 break;
1935 case ESO_MONO_PLAY_VOL:
1936 mixreg = ESO_MIXREG_PVR_MONO;
1937 break;
1938 case ESO_MONO_REC_VOL:
1939 mixreg = ESO_MIXREG_RVR_MONO;
1940 break;
1941
1942 case ESO_PCSPEAKER_VOL:
1943 /* Special case - only 3-bit, mono, and reserved bits. */
1944 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1945 tmp &= ESO_MIXREG_PCSVR_RESV;
1946 /* Map bits 7:5 -> 2:0. */
1947 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1948 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1949 return;
1950
1951 case ESO_MASTER_VOL:
1952 /* Special case - separate regs, and 6-bit precision. */
1953 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1954 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1955 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1956 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1957 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1958 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1959 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1960 return;
1961
1962 case ESO_SPATIALIZER:
1963 /* Special case - only `mono', and higher precision. */
1964 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1965 sc->sc_gain[port][ESO_LEFT]);
1966 return;
1967
1968 case ESO_RECORD_VOL:
1969 /* Very Special case, controller register. */
1970 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1971 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1972 return;
1973
1974 default:
1975 #ifdef DIAGNOSTIC
1976 panic("eso_set_gain: bad port %u", port);
1977 /* NOTREACHED */
1978 #else
1979 return;
1980 #endif
1981 }
1982
1983 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
1984 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1985 }
1986