eso.c revision 1.24 1 /* $NetBSD: eso.c,v 1.24 2002/04/25 00:52:21 kleink Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.24 2002/04/25 00:52:21 kleink Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70
71 struct eso_dma {
72 bus_dma_tag_t ed_dmat;
73 bus_dmamap_t ed_map;
74 caddr_t ed_addr;
75 bus_dma_segment_t ed_segs[1];
76 int ed_nsegs;
77 size_t ed_size;
78 struct eso_dma * ed_next;
79 };
80
81 #define KVADDR(dma) ((void *)(dma)->ed_addr)
82 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
83
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88 static int eso_print __P((void *, const char *));
89
90 struct cfattach eso_ca = {
91 sizeof (struct eso_softc), eso_match, eso_attach
92 };
93
94 /* PCI interface */
95 static int eso_intr __P((void *));
96
97 /* MI audio layer interface */
98 static int eso_open __P((void *, int));
99 static void eso_close __P((void *));
100 static int eso_query_encoding __P((void *, struct audio_encoding *));
101 static int eso_set_params __P((void *, int, int, struct audio_params *,
102 struct audio_params *));
103 static int eso_round_blocksize __P((void *, int));
104 static int eso_halt_output __P((void *));
105 static int eso_halt_input __P((void *));
106 static int eso_getdev __P((void *, struct audio_device *));
107 static int eso_set_port __P((void *, mixer_ctrl_t *));
108 static int eso_get_port __P((void *, mixer_ctrl_t *));
109 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
110 static void * eso_allocm __P((void *, int, size_t, int, int));
111 static void eso_freem __P((void *, void *, int));
112 static size_t eso_round_buffersize __P((void *, int, size_t));
113 static paddr_t eso_mappage __P((void *, void *, off_t, int));
114 static int eso_get_props __P((void *));
115 static int eso_trigger_output __P((void *, void *, void *, int,
116 void (*)(void *), void *, struct audio_params *));
117 static int eso_trigger_input __P((void *, void *, void *, int,
118 void (*)(void *), void *, struct audio_params *));
119
120 static struct audio_hw_if eso_hw_if = {
121 eso_open,
122 eso_close,
123 NULL, /* drain */
124 eso_query_encoding,
125 eso_set_params,
126 eso_round_blocksize,
127 NULL, /* commit_settings */
128 NULL, /* init_output */
129 NULL, /* init_input */
130 NULL, /* start_output */
131 NULL, /* start_input */
132 eso_halt_output,
133 eso_halt_input,
134 NULL, /* speaker_ctl */
135 eso_getdev,
136 NULL, /* setfd */
137 eso_set_port,
138 eso_get_port,
139 eso_query_devinfo,
140 eso_allocm,
141 eso_freem,
142 eso_round_buffersize,
143 eso_mappage,
144 eso_get_props,
145 eso_trigger_output,
146 eso_trigger_input,
147 NULL, /* dev_ioctl */
148 };
149
150 static const char * const eso_rev2model[] = {
151 "ES1938",
152 "ES1946",
153 "ES1946 Revision E"
154 };
155
156
157 /*
158 * Utility routines
159 */
160 /* Register access etc. */
161 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
162 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
163 static uint8_t eso_read_rdr __P((struct eso_softc *));
164 static void eso_reload_master_vol __P((struct eso_softc *));
165 static int eso_reset __P((struct eso_softc *));
166 static void eso_set_gain __P((struct eso_softc *, unsigned int));
167 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
168 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
169 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
170 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
171 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
172 /* DMA memory allocation */
173 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
174 int, int, struct eso_dma *));
175 static void eso_freemem __P((struct eso_dma *));
176
177
178 static int
179 eso_match(parent, match, aux)
180 struct device *parent;
181 struct cfdata *match;
182 void *aux;
183 {
184 struct pci_attach_args *pa = aux;
185
186 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
187 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
188 return (1);
189
190 return (0);
191 }
192
193 static void
194 eso_attach(parent, self, aux)
195 struct device *parent, *self;
196 void *aux;
197 {
198 struct eso_softc *sc = (struct eso_softc *)self;
199 struct pci_attach_args *pa = aux;
200 struct audio_attach_args aa;
201 pci_intr_handle_t ih;
202 bus_addr_t vcbase;
203 const char *intrstring;
204 int idx;
205 uint8_t a2mode, mvctl;
206
207 sc->sc_revision = PCI_REVISION(pa->pa_class);
208
209 printf(": ESS Solo-1 PCI AudioDrive ");
210 if (sc->sc_revision <
211 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
212 printf("%s\n", eso_rev2model[sc->sc_revision]);
213 else
214 printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
215
216 /* Map I/O registers. */
217 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
218 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
219 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
220 return;
221 }
222 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
223 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
224 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
225 return;
226 }
227 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
228 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
229 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
230 /* Don't bail out yet: we can map it later, see below. */
231 vcbase = 0;
232 sc->sc_vcsize = 0x10; /* From the data sheet. */
233 }
234 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
235 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
236 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
237 return;
238 }
239 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
240 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
241 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
242 return;
243 }
244
245 sc->sc_dmat = pa->pa_dmat;
246 sc->sc_dmas = NULL;
247 sc->sc_dmac_configured = 0;
248
249 /* Enable bus mastering. */
250 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
251 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
252 PCI_COMMAND_MASTER_ENABLE);
253
254 /* Reset the device; bail out upon failure. */
255 if (eso_reset(sc) != 0) {
256 printf("%s: can't reset\n", sc->sc_dev.dv_xname);
257 return;
258 }
259
260 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
261 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
262 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
263 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
264
265 /* Enable the relevant (DMA) interrupts. */
266 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
267 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
268 ESO_IO_IRQCTL_MPUIRQ);
269
270 /* Set up A1's sample rate generator for new-style parameters. */
271 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
272 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
273 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
274
275 /* Slave Master Volume to Hardware Volume Control Counter, unask IRQ. */
276 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
277 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
278 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
279 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
280
281 /* Set mixer regs to something reasonable, needs work. */
282 sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
283 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
284 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
285 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
286 int v;
287
288 switch (idx) {
289 case ESO_MIC_PLAY_VOL:
290 case ESO_LINE_PLAY_VOL:
291 case ESO_CD_PLAY_VOL:
292 case ESO_MONO_PLAY_VOL:
293 case ESO_AUXB_PLAY_VOL:
294 case ESO_DAC_REC_VOL:
295 case ESO_LINE_REC_VOL:
296 case ESO_SYNTH_REC_VOL:
297 case ESO_CD_REC_VOL:
298 case ESO_MONO_REC_VOL:
299 case ESO_AUXB_REC_VOL:
300 case ESO_SPATIALIZER:
301 v = 0;
302 break;
303 case ESO_MASTER_VOL:
304 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
305 break;
306 default:
307 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
308 break;
309 }
310 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
311 eso_set_gain(sc, idx);
312 }
313 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
314
315 /* Map and establish the interrupt. */
316 if (pci_intr_map(pa, &ih)) {
317 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
318 return;
319 }
320 intrstring = pci_intr_string(pa->pa_pc, ih);
321 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
322 if (sc->sc_ih == NULL) {
323 printf("%s: couldn't establish interrupt",
324 sc->sc_dev.dv_xname);
325 if (intrstring != NULL)
326 printf(" at %s", intrstring);
327 printf("\n");
328 return;
329 }
330 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
331
332 /*
333 * Set up the DDMA Control register; a suitable I/O region has been
334 * supposedly mapped in the VC base address register.
335 *
336 * The Solo-1 has an ... interesting silicon bug that causes it to
337 * not respond to I/O space accesses to the Audio 1 DMA controller
338 * if the latter's mapping base address is aligned on a 1K boundary.
339 * As a consequence, it is quite possible for the mapping provided
340 * in the VC BAR to be useless. To work around this, we defer this
341 * part until all autoconfiguration on our parent bus is completed
342 * and then try to map it ourselves in fulfillment of the constraint.
343 *
344 * According to the register map we may write to the low 16 bits
345 * only, but experimenting has shown we're safe.
346 * -kjk
347 */
348 if (ESO_VALID_DDMAC_BASE(vcbase)) {
349 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
350 vcbase | ESO_PCI_DDMAC_DE);
351 sc->sc_dmac_configured = 1;
352
353 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
354 sc->sc_dev.dv_xname, (unsigned long)vcbase);
355 } else {
356 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
357 sc->sc_dev.dv_xname, (unsigned long)vcbase));
358 sc->sc_pa = *pa;
359 config_defer(self, eso_defer);
360 }
361
362 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
363
364 aa.type = AUDIODEV_TYPE_OPL;
365 aa.hwif = NULL;
366 aa.hdl = NULL;
367 (void)config_found(&sc->sc_dev, &aa, audioprint);
368
369 aa.type = AUDIODEV_TYPE_MPU;
370 aa.hwif = NULL;
371 aa.hdl = NULL;
372 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
373 if (sc->sc_mpudev != NULL) {
374 /* Unmask the MPU irq. */
375 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
376 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
377 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
378 }
379
380 aa.type = AUDIODEV_TYPE_AUX;
381 aa.hwif = NULL;
382 aa.hdl = NULL;
383 (void)config_found(&sc->sc_dev, &aa, eso_print);
384 }
385
386 static void
387 eso_defer(self)
388 struct device *self;
389 {
390 struct eso_softc *sc = (struct eso_softc *)self;
391 struct pci_attach_args *pa = &sc->sc_pa;
392 bus_addr_t addr, start;
393
394 printf("%s: ", sc->sc_dev.dv_xname);
395
396 /*
397 * This is outright ugly, but since we must not make assumptions
398 * on the underlying allocator's behaviour it's the most straight-
399 * forward way to implement it. Note that we skip over the first
400 * 1K region, which is typically occupied by an attached ISA bus.
401 */
402 for (start = 0x0400; start < 0xffff; start += 0x0400) {
403 if (bus_space_alloc(sc->sc_iot,
404 start + sc->sc_vcsize, start + 0x0400 - 1,
405 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
406 &sc->sc_dmac_ioh) != 0)
407 continue;
408
409 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
410 addr | ESO_PCI_DDMAC_DE);
411 sc->sc_dmac_iot = sc->sc_iot;
412 sc->sc_dmac_configured = 1;
413 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
414 (unsigned long)addr);
415
416 return;
417 }
418
419 printf("can't map Audio 1 DMA into I/O space\n");
420 }
421
422 /* ARGSUSED */
423 static int
424 eso_print(aux, pnp)
425 void *aux;
426 const char *pnp;
427 {
428
429 /* Only joys can attach via this; easy. */
430 if (pnp)
431 printf("joy at %s:", pnp);
432
433 return (UNCONF);
434 }
435
436 static void
437 eso_write_cmd(sc, cmd)
438 struct eso_softc *sc;
439 uint8_t cmd;
440 {
441 int i;
442
443 /* Poll for busy indicator to become clear. */
444 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
445 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
446 & ESO_SB_RSR_BUSY) == 0) {
447 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
448 ESO_SB_WDR, cmd);
449 return;
450 } else {
451 delay(10);
452 }
453 }
454
455 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
456 return;
457 }
458
459 /* Write to a controller register */
460 static void
461 eso_write_ctlreg(sc, reg, val)
462 struct eso_softc *sc;
463 uint8_t reg, val;
464 {
465
466 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
467
468 eso_write_cmd(sc, reg);
469 eso_write_cmd(sc, val);
470 }
471
472 /* Read out the Read Data Register */
473 static uint8_t
474 eso_read_rdr(sc)
475 struct eso_softc *sc;
476 {
477 int i;
478
479 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
480 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
481 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
482 return (bus_space_read_1(sc->sc_sb_iot,
483 sc->sc_sb_ioh, ESO_SB_RDR));
484 } else {
485 delay(10);
486 }
487 }
488
489 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
490 return (-1);
491 }
492
493
494 static uint8_t
495 eso_read_ctlreg(sc, reg)
496 struct eso_softc *sc;
497 uint8_t reg;
498 {
499
500 eso_write_cmd(sc, ESO_CMD_RCR);
501 eso_write_cmd(sc, reg);
502 return (eso_read_rdr(sc));
503 }
504
505 static void
506 eso_write_mixreg(sc, reg, val)
507 struct eso_softc *sc;
508 uint8_t reg, val;
509 {
510 int s;
511
512 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
513
514 s = splaudio();
515 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
516 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
517 splx(s);
518 }
519
520 static uint8_t
521 eso_read_mixreg(sc, reg)
522 struct eso_softc *sc;
523 uint8_t reg;
524 {
525 int s;
526 uint8_t val;
527
528 s = splaudio();
529 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
530 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
531 splx(s);
532
533 return (val);
534 }
535
536 static int
537 eso_intr(hdl)
538 void *hdl;
539 {
540 struct eso_softc *sc = hdl;
541 uint8_t irqctl;
542
543 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
544
545 /* If it wasn't ours, that's all she wrote. */
546 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
547 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
548 return (0);
549
550 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
551 /* Clear interrupt. */
552 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
553 ESO_SB_RBSR);
554
555 if (sc->sc_rintr)
556 sc->sc_rintr(sc->sc_rarg);
557 else
558 wakeup(&sc->sc_rintr);
559 }
560
561 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
562 /*
563 * Clear the A2 IRQ latch: the cached value reflects the
564 * current DAC settings with the IRQ latch bit not set.
565 */
566 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
567
568 if (sc->sc_pintr)
569 sc->sc_pintr(sc->sc_parg);
570 else
571 wakeup(&sc->sc_pintr);
572 }
573
574 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
575 /* Clear interrupt. */
576 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
577
578 /*
579 * Raise a flag to cause a lazy update of the in-softc gain
580 * values the next time the software mixer is read to keep
581 * interrupt service cost low. ~0 cannot occur otherwise
582 * as the master volume has a precision of 6 bits only.
583 */
584 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
585 }
586
587 #if NMPU > 0
588 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
589 mpu_intr(sc->sc_mpudev);
590 #endif
591
592 return (1);
593 }
594
595 /* Perform a software reset, including DMA FIFOs. */
596 static int
597 eso_reset(sc)
598 struct eso_softc *sc;
599 {
600 int i;
601
602 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
603 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
604 /* `Delay' suggested in the data sheet. */
605 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
606 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
607
608 /* Wait for reset to take effect. */
609 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
610 /* Poll for data to become available. */
611 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
612 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
613 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
614 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
615
616 /* Activate Solo-1 extension commands. */
617 eso_write_cmd(sc, ESO_CMD_EXTENB);
618 /* Reset mixer registers. */
619 eso_write_mixreg(sc, ESO_MIXREG_RESET,
620 ESO_MIXREG_RESET_RESET);
621
622 return (0);
623 } else {
624 delay(1000);
625 }
626 }
627
628 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
629 return (-1);
630 }
631
632
633 /* ARGSUSED */
634 static int
635 eso_open(hdl, flags)
636 void *hdl;
637 int flags;
638 {
639 struct eso_softc *sc = hdl;
640
641 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
642
643 sc->sc_pintr = NULL;
644 sc->sc_rintr = NULL;
645
646 return (0);
647 }
648
649 static void
650 eso_close(hdl)
651 void *hdl;
652 {
653
654 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
655 }
656
657 static int
658 eso_query_encoding(hdl, fp)
659 void *hdl;
660 struct audio_encoding *fp;
661 {
662
663 switch (fp->index) {
664 case 0:
665 strcpy(fp->name, AudioEulinear);
666 fp->encoding = AUDIO_ENCODING_ULINEAR;
667 fp->precision = 8;
668 fp->flags = 0;
669 break;
670 case 1:
671 strcpy(fp->name, AudioEmulaw);
672 fp->encoding = AUDIO_ENCODING_ULAW;
673 fp->precision = 8;
674 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
675 break;
676 case 2:
677 strcpy(fp->name, AudioEalaw);
678 fp->encoding = AUDIO_ENCODING_ALAW;
679 fp->precision = 8;
680 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
681 break;
682 case 3:
683 strcpy(fp->name, AudioEslinear);
684 fp->encoding = AUDIO_ENCODING_SLINEAR;
685 fp->precision = 8;
686 fp->flags = 0;
687 break;
688 case 4:
689 strcpy(fp->name, AudioEslinear_le);
690 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
691 fp->precision = 16;
692 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
693 break;
694 case 5:
695 strcpy(fp->name, AudioEulinear_le);
696 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
697 fp->precision = 16;
698 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
699 break;
700 case 6:
701 strcpy(fp->name, AudioEslinear_be);
702 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
703 fp->precision = 16;
704 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
705 break;
706 case 7:
707 strcpy(fp->name, AudioEulinear_be);
708 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
709 fp->precision = 16;
710 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
711 break;
712 default:
713 return (EINVAL);
714 }
715
716 return (0);
717 }
718
719 static int
720 eso_set_params(hdl, setmode, usemode, play, rec)
721 void *hdl;
722 int setmode, usemode;
723 struct audio_params *play, *rec;
724 {
725 struct eso_softc *sc = hdl;
726 struct audio_params *p;
727 int mode, r[2], rd[2], clk;
728 unsigned int srg, fltdiv;
729
730 for (mode = AUMODE_RECORD; mode != -1;
731 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
732 if ((setmode & mode) == 0)
733 continue;
734
735 p = (mode == AUMODE_PLAY) ? play : rec;
736
737 if (p->sample_rate < ESO_MINRATE ||
738 p->sample_rate > ESO_MAXRATE ||
739 (p->precision != 8 && p->precision != 16) ||
740 (p->channels != 1 && p->channels != 2))
741 return (EINVAL);
742
743 p->factor = 1;
744 p->sw_code = NULL;
745 switch (p->encoding) {
746 case AUDIO_ENCODING_SLINEAR_BE:
747 case AUDIO_ENCODING_ULINEAR_BE:
748 if (mode == AUMODE_PLAY && p->precision == 16)
749 p->sw_code = swap_bytes;
750 break;
751 case AUDIO_ENCODING_SLINEAR_LE:
752 case AUDIO_ENCODING_ULINEAR_LE:
753 if (mode == AUMODE_RECORD && p->precision == 16)
754 p->sw_code = swap_bytes;
755 break;
756 case AUDIO_ENCODING_ULAW:
757 if (mode == AUMODE_PLAY) {
758 p->factor = 2;
759 p->sw_code = mulaw_to_ulinear16_le;
760 } else {
761 p->sw_code = ulinear8_to_mulaw;
762 }
763 break;
764 case AUDIO_ENCODING_ALAW:
765 if (mode == AUMODE_PLAY) {
766 p->factor = 2;
767 p->sw_code = alaw_to_ulinear16_le;
768 } else {
769 p->sw_code = ulinear8_to_alaw;
770 }
771 break;
772 default:
773 return (EINVAL);
774 }
775
776 /*
777 * We'll compute both possible sample rate dividers and pick
778 * the one with the least error.
779 */
780 #define ABS(x) ((x) < 0 ? -(x) : (x))
781 r[0] = ESO_CLK0 /
782 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
783 r[1] = ESO_CLK1 /
784 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
785
786 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
787 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
788
789 /* Roll-off frequency of 87%, as in the ES1888 driver. */
790 fltdiv = 256 - 200279L / r[clk];
791
792 /* Update to reflect the possibly inexact rate. */
793 p->sample_rate = r[clk];
794
795 if (mode == AUMODE_RECORD) {
796 /* Audio 1 */
797 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
798 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
799 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
800 } else {
801 /* Audio 2 */
802 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
803 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
804 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
805 }
806 #undef ABS
807
808 }
809
810 return (0);
811 }
812
813 static int
814 eso_round_blocksize(hdl, blk)
815 void *hdl;
816 int blk;
817 {
818
819 return (blk & -32); /* keep good alignment; at least 16 req'd */
820 }
821
822 static int
823 eso_halt_output(hdl)
824 void *hdl;
825 {
826 struct eso_softc *sc = hdl;
827 int error, s;
828
829 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
830
831 /*
832 * Disable auto-initialize DMA, allowing the FIFO to drain and then
833 * stop. The interrupt callback pointer is cleared at this
834 * point so that an outstanding FIFO interrupt for the remaining data
835 * will be acknowledged without further processing.
836 *
837 * This does not immediately `abort' an operation in progress (c.f.
838 * audio(9)) but is the method to leave the FIFO behind in a clean
839 * state with the least hair. (Besides, that item needs to be
840 * rephrased for trigger_*()-based DMA environments.)
841 */
842 s = splaudio();
843 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
844 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
845 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
846 ESO_IO_A2DMAM_DMAENB);
847
848 sc->sc_pintr = NULL;
849 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
850 splx(s);
851
852 /* Shut down DMA completely. */
853 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
854 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
855
856 return (error == EWOULDBLOCK ? 0 : error);
857 }
858
859 static int
860 eso_halt_input(hdl)
861 void *hdl;
862 {
863 struct eso_softc *sc = hdl;
864 int error, s;
865
866 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
867
868 /* Just like eso_halt_output(), but for Audio 1. */
869 s = splaudio();
870 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
871 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
872 ESO_CTLREG_A1C2_DMAENB);
873 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
874 DMA37MD_WRITE | DMA37MD_DEMAND);
875
876 sc->sc_rintr = NULL;
877 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
878 splx(s);
879
880 /* Shut down DMA completely. */
881 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
882 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
883 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
884 ESO_DMAC_MASK_MASK);
885
886 return (error == EWOULDBLOCK ? 0 : error);
887 }
888
889 static int
890 eso_getdev(hdl, retp)
891 void *hdl;
892 struct audio_device *retp;
893 {
894 struct eso_softc *sc = hdl;
895
896 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
897 snprintf(retp->version, sizeof (retp->version), "0x%02x",
898 sc->sc_revision);
899 if (sc->sc_revision <
900 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
901 strncpy(retp->config, eso_rev2model[sc->sc_revision],
902 sizeof (retp->config));
903 else
904 strncpy(retp->config, "unknown", sizeof (retp->config));
905
906 return (0);
907 }
908
909 static int
910 eso_set_port(hdl, cp)
911 void *hdl;
912 mixer_ctrl_t *cp;
913 {
914 struct eso_softc *sc = hdl;
915 unsigned int lgain, rgain;
916 uint8_t tmp;
917
918 switch (cp->dev) {
919 case ESO_DAC_PLAY_VOL:
920 case ESO_MIC_PLAY_VOL:
921 case ESO_LINE_PLAY_VOL:
922 case ESO_SYNTH_PLAY_VOL:
923 case ESO_CD_PLAY_VOL:
924 case ESO_AUXB_PLAY_VOL:
925 case ESO_RECORD_VOL:
926 case ESO_DAC_REC_VOL:
927 case ESO_MIC_REC_VOL:
928 case ESO_LINE_REC_VOL:
929 case ESO_SYNTH_REC_VOL:
930 case ESO_CD_REC_VOL:
931 case ESO_AUXB_REC_VOL:
932 if (cp->type != AUDIO_MIXER_VALUE)
933 return (EINVAL);
934
935 /*
936 * Stereo-capable mixer ports: if we get a single-channel
937 * gain value passed in, then we duplicate it to both left
938 * and right channels.
939 */
940 switch (cp->un.value.num_channels) {
941 case 1:
942 lgain = rgain = ESO_GAIN_TO_4BIT(
943 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
944 break;
945 case 2:
946 lgain = ESO_GAIN_TO_4BIT(
947 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
948 rgain = ESO_GAIN_TO_4BIT(
949 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
950 break;
951 default:
952 return (EINVAL);
953 }
954
955 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
956 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
957 eso_set_gain(sc, cp->dev);
958 break;
959
960 case ESO_MASTER_VOL:
961 if (cp->type != AUDIO_MIXER_VALUE)
962 return (EINVAL);
963
964 /* Like above, but a precision of 6 bits. */
965 switch (cp->un.value.num_channels) {
966 case 1:
967 lgain = rgain = ESO_GAIN_TO_6BIT(
968 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
969 break;
970 case 2:
971 lgain = ESO_GAIN_TO_6BIT(
972 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
973 rgain = ESO_GAIN_TO_6BIT(
974 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
975 break;
976 default:
977 return (EINVAL);
978 }
979
980 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
981 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
982 eso_set_gain(sc, cp->dev);
983 break;
984
985 case ESO_SPATIALIZER:
986 if (cp->type != AUDIO_MIXER_VALUE ||
987 cp->un.value.num_channels != 1)
988 return (EINVAL);
989
990 sc->sc_gain[cp->dev][ESO_LEFT] =
991 sc->sc_gain[cp->dev][ESO_RIGHT] =
992 ESO_GAIN_TO_6BIT(
993 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
994 eso_set_gain(sc, cp->dev);
995 break;
996
997 case ESO_MONO_PLAY_VOL:
998 case ESO_MONO_REC_VOL:
999 if (cp->type != AUDIO_MIXER_VALUE ||
1000 cp->un.value.num_channels != 1)
1001 return (EINVAL);
1002
1003 sc->sc_gain[cp->dev][ESO_LEFT] =
1004 sc->sc_gain[cp->dev][ESO_RIGHT] =
1005 ESO_GAIN_TO_4BIT(
1006 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1007 eso_set_gain(sc, cp->dev);
1008 break;
1009
1010 case ESO_PCSPEAKER_VOL:
1011 if (cp->type != AUDIO_MIXER_VALUE ||
1012 cp->un.value.num_channels != 1)
1013 return (EINVAL);
1014
1015 sc->sc_gain[cp->dev][ESO_LEFT] =
1016 sc->sc_gain[cp->dev][ESO_RIGHT] =
1017 ESO_GAIN_TO_3BIT(
1018 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1019 eso_set_gain(sc, cp->dev);
1020 break;
1021
1022 case ESO_SPATIALIZER_ENABLE:
1023 if (cp->type != AUDIO_MIXER_ENUM)
1024 return (EINVAL);
1025
1026 sc->sc_spatializer = (cp->un.ord != 0);
1027
1028 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1029 if (sc->sc_spatializer)
1030 tmp |= ESO_MIXREG_SPAT_ENB;
1031 else
1032 tmp &= ~ESO_MIXREG_SPAT_ENB;
1033 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1034 tmp | ESO_MIXREG_SPAT_RSTREL);
1035 break;
1036
1037 case ESO_MASTER_MUTE:
1038 if (cp->type != AUDIO_MIXER_ENUM)
1039 return (EINVAL);
1040
1041 sc->sc_mvmute = (cp->un.ord != 0);
1042
1043 if (sc->sc_mvmute) {
1044 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1045 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1046 ESO_MIXREG_LMVM_MUTE);
1047 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1048 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1049 ESO_MIXREG_RMVM_MUTE);
1050 } else {
1051 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1052 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1053 ~ESO_MIXREG_LMVM_MUTE);
1054 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1055 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1056 ~ESO_MIXREG_RMVM_MUTE);
1057 }
1058 break;
1059
1060 case ESO_MONOOUT_SOURCE:
1061 if (cp->type != AUDIO_MIXER_ENUM)
1062 return (EINVAL);
1063
1064 return (eso_set_monooutsrc(sc, cp->un.ord));
1065
1066 case ESO_RECORD_MONITOR:
1067 if (cp->type != AUDIO_MIXER_ENUM)
1068 return (EINVAL);
1069
1070 sc->sc_recmon = (cp->un.ord != 0);
1071
1072 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1073 if (sc->sc_recmon)
1074 tmp |= ESO_CTLREG_ACTL_RECMON;
1075 else
1076 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1077 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1078 break;
1079
1080 case ESO_RECORD_SOURCE:
1081 if (cp->type != AUDIO_MIXER_ENUM)
1082 return (EINVAL);
1083
1084 return (eso_set_recsrc(sc, cp->un.ord));
1085
1086 case ESO_MIC_PREAMP:
1087 if (cp->type != AUDIO_MIXER_ENUM)
1088 return (EINVAL);
1089
1090 sc->sc_preamp = (cp->un.ord != 0);
1091
1092 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1093 tmp &= ~ESO_MIXREG_MPM_RESV0;
1094 if (sc->sc_preamp)
1095 tmp |= ESO_MIXREG_MPM_PREAMP;
1096 else
1097 tmp &= ~ESO_MIXREG_MPM_PREAMP;
1098 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1099 break;
1100
1101 default:
1102 return (EINVAL);
1103 }
1104
1105 return (0);
1106 }
1107
1108 static int
1109 eso_get_port(hdl, cp)
1110 void *hdl;
1111 mixer_ctrl_t *cp;
1112 {
1113 struct eso_softc *sc = hdl;
1114
1115 switch (cp->dev) {
1116 case ESO_MASTER_VOL:
1117 /* Reload from mixer after hardware volume control use. */
1118 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1119 eso_reload_master_vol(sc);
1120 /* FALLTHROUGH */
1121 case ESO_DAC_PLAY_VOL:
1122 case ESO_MIC_PLAY_VOL:
1123 case ESO_LINE_PLAY_VOL:
1124 case ESO_SYNTH_PLAY_VOL:
1125 case ESO_CD_PLAY_VOL:
1126 case ESO_AUXB_PLAY_VOL:
1127 case ESO_RECORD_VOL:
1128 case ESO_DAC_REC_VOL:
1129 case ESO_MIC_REC_VOL:
1130 case ESO_LINE_REC_VOL:
1131 case ESO_SYNTH_REC_VOL:
1132 case ESO_CD_REC_VOL:
1133 case ESO_AUXB_REC_VOL:
1134 /*
1135 * Stereo-capable ports: if a single-channel query is made,
1136 * just return the left channel's value (since single-channel
1137 * settings themselves are applied to both channels).
1138 */
1139 switch (cp->un.value.num_channels) {
1140 case 1:
1141 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1142 sc->sc_gain[cp->dev][ESO_LEFT];
1143 break;
1144 case 2:
1145 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1146 sc->sc_gain[cp->dev][ESO_LEFT];
1147 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1148 sc->sc_gain[cp->dev][ESO_RIGHT];
1149 break;
1150 default:
1151 return (EINVAL);
1152 }
1153 break;
1154
1155 case ESO_MONO_PLAY_VOL:
1156 case ESO_PCSPEAKER_VOL:
1157 case ESO_MONO_REC_VOL:
1158 case ESO_SPATIALIZER:
1159 if (cp->un.value.num_channels != 1)
1160 return (EINVAL);
1161 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1162 sc->sc_gain[cp->dev][ESO_LEFT];
1163 break;
1164
1165 case ESO_RECORD_MONITOR:
1166 cp->un.ord = sc->sc_recmon;
1167 break;
1168
1169 case ESO_RECORD_SOURCE:
1170 cp->un.ord = sc->sc_recsrc;
1171 break;
1172
1173 case ESO_MONOOUT_SOURCE:
1174 cp->un.ord = sc->sc_monooutsrc;
1175 break;
1176
1177 case ESO_SPATIALIZER_ENABLE:
1178 cp->un.ord = sc->sc_spatializer;
1179 break;
1180
1181 case ESO_MIC_PREAMP:
1182 cp->un.ord = sc->sc_preamp;
1183 break;
1184
1185 case ESO_MASTER_MUTE:
1186 /* Reload from mixer after hardware volume control use. */
1187 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1188 eso_reload_master_vol(sc);
1189 cp->un.ord = sc->sc_mvmute;
1190 break;
1191
1192 default:
1193 return (EINVAL);
1194 }
1195
1196
1197 return (0);
1198
1199 }
1200
1201 static int
1202 eso_query_devinfo(hdl, dip)
1203 void *hdl;
1204 mixer_devinfo_t *dip;
1205 {
1206
1207 switch (dip->index) {
1208 case ESO_DAC_PLAY_VOL:
1209 dip->mixer_class = ESO_INPUT_CLASS;
1210 dip->next = dip->prev = AUDIO_MIXER_LAST;
1211 strcpy(dip->label.name, AudioNdac);
1212 dip->type = AUDIO_MIXER_VALUE;
1213 dip->un.v.num_channels = 2;
1214 strcpy(dip->un.v.units.name, AudioNvolume);
1215 break;
1216 case ESO_MIC_PLAY_VOL:
1217 dip->mixer_class = ESO_INPUT_CLASS;
1218 dip->next = dip->prev = AUDIO_MIXER_LAST;
1219 strcpy(dip->label.name, AudioNmicrophone);
1220 dip->type = AUDIO_MIXER_VALUE;
1221 dip->un.v.num_channels = 2;
1222 strcpy(dip->un.v.units.name, AudioNvolume);
1223 break;
1224 case ESO_LINE_PLAY_VOL:
1225 dip->mixer_class = ESO_INPUT_CLASS;
1226 dip->next = dip->prev = AUDIO_MIXER_LAST;
1227 strcpy(dip->label.name, AudioNline);
1228 dip->type = AUDIO_MIXER_VALUE;
1229 dip->un.v.num_channels = 2;
1230 strcpy(dip->un.v.units.name, AudioNvolume);
1231 break;
1232 case ESO_SYNTH_PLAY_VOL:
1233 dip->mixer_class = ESO_INPUT_CLASS;
1234 dip->next = dip->prev = AUDIO_MIXER_LAST;
1235 strcpy(dip->label.name, AudioNfmsynth);
1236 dip->type = AUDIO_MIXER_VALUE;
1237 dip->un.v.num_channels = 2;
1238 strcpy(dip->un.v.units.name, AudioNvolume);
1239 break;
1240 case ESO_MONO_PLAY_VOL:
1241 dip->mixer_class = ESO_INPUT_CLASS;
1242 dip->next = dip->prev = AUDIO_MIXER_LAST;
1243 strcpy(dip->label.name, "mono_in");
1244 dip->type = AUDIO_MIXER_VALUE;
1245 dip->un.v.num_channels = 1;
1246 strcpy(dip->un.v.units.name, AudioNvolume);
1247 break;
1248 case ESO_CD_PLAY_VOL:
1249 dip->mixer_class = ESO_INPUT_CLASS;
1250 dip->next = dip->prev = AUDIO_MIXER_LAST;
1251 strcpy(dip->label.name, AudioNcd);
1252 dip->type = AUDIO_MIXER_VALUE;
1253 dip->un.v.num_channels = 2;
1254 strcpy(dip->un.v.units.name, AudioNvolume);
1255 break;
1256 case ESO_AUXB_PLAY_VOL:
1257 dip->mixer_class = ESO_INPUT_CLASS;
1258 dip->next = dip->prev = AUDIO_MIXER_LAST;
1259 strcpy(dip->label.name, "auxb");
1260 dip->type = AUDIO_MIXER_VALUE;
1261 dip->un.v.num_channels = 2;
1262 strcpy(dip->un.v.units.name, AudioNvolume);
1263 break;
1264
1265 case ESO_MIC_PREAMP:
1266 dip->mixer_class = ESO_MICROPHONE_CLASS;
1267 dip->next = dip->prev = AUDIO_MIXER_LAST;
1268 strcpy(dip->label.name, AudioNpreamp);
1269 dip->type = AUDIO_MIXER_ENUM;
1270 dip->un.e.num_mem = 2;
1271 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1272 dip->un.e.member[0].ord = 0;
1273 strcpy(dip->un.e.member[1].label.name, AudioNon);
1274 dip->un.e.member[1].ord = 1;
1275 break;
1276 case ESO_MICROPHONE_CLASS:
1277 dip->mixer_class = ESO_MICROPHONE_CLASS;
1278 dip->next = dip->prev = AUDIO_MIXER_LAST;
1279 strcpy(dip->label.name, AudioNmicrophone);
1280 dip->type = AUDIO_MIXER_CLASS;
1281 break;
1282
1283 case ESO_INPUT_CLASS:
1284 dip->mixer_class = ESO_INPUT_CLASS;
1285 dip->next = dip->prev = AUDIO_MIXER_LAST;
1286 strcpy(dip->label.name, AudioCinputs);
1287 dip->type = AUDIO_MIXER_CLASS;
1288 break;
1289
1290 case ESO_MASTER_VOL:
1291 dip->mixer_class = ESO_OUTPUT_CLASS;
1292 dip->prev = AUDIO_MIXER_LAST;
1293 dip->next = ESO_MASTER_MUTE;
1294 strcpy(dip->label.name, AudioNmaster);
1295 dip->type = AUDIO_MIXER_VALUE;
1296 dip->un.v.num_channels = 2;
1297 strcpy(dip->un.v.units.name, AudioNvolume);
1298 break;
1299 case ESO_MASTER_MUTE:
1300 dip->mixer_class = ESO_OUTPUT_CLASS;
1301 dip->prev = ESO_MASTER_VOL;
1302 dip->next = AUDIO_MIXER_LAST;
1303 strcpy(dip->label.name, AudioNmute);
1304 dip->type = AUDIO_MIXER_ENUM;
1305 dip->un.e.num_mem = 2;
1306 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1307 dip->un.e.member[0].ord = 0;
1308 strcpy(dip->un.e.member[1].label.name, AudioNon);
1309 dip->un.e.member[1].ord = 1;
1310 break;
1311
1312 case ESO_PCSPEAKER_VOL:
1313 dip->mixer_class = ESO_OUTPUT_CLASS;
1314 dip->next = dip->prev = AUDIO_MIXER_LAST;
1315 strcpy(dip->label.name, "pc_speaker");
1316 dip->type = AUDIO_MIXER_VALUE;
1317 dip->un.v.num_channels = 1;
1318 strcpy(dip->un.v.units.name, AudioNvolume);
1319 break;
1320 case ESO_MONOOUT_SOURCE:
1321 dip->mixer_class = ESO_OUTPUT_CLASS;
1322 dip->next = dip->prev = AUDIO_MIXER_LAST;
1323 strcpy(dip->label.name, "mono_out");
1324 dip->type = AUDIO_MIXER_ENUM;
1325 dip->un.e.num_mem = 3;
1326 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1327 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1328 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1329 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1330 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1331 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1332 break;
1333 case ESO_SPATIALIZER:
1334 dip->mixer_class = ESO_OUTPUT_CLASS;
1335 dip->prev = AUDIO_MIXER_LAST;
1336 dip->next = ESO_SPATIALIZER_ENABLE;
1337 strcpy(dip->label.name, AudioNspatial);
1338 dip->type = AUDIO_MIXER_VALUE;
1339 dip->un.v.num_channels = 1;
1340 strcpy(dip->un.v.units.name, "level");
1341 break;
1342 case ESO_SPATIALIZER_ENABLE:
1343 dip->mixer_class = ESO_OUTPUT_CLASS;
1344 dip->prev = ESO_SPATIALIZER;
1345 dip->next = AUDIO_MIXER_LAST;
1346 strcpy(dip->label.name, "enable");
1347 dip->type = AUDIO_MIXER_ENUM;
1348 dip->un.e.num_mem = 2;
1349 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1350 dip->un.e.member[0].ord = 0;
1351 strcpy(dip->un.e.member[1].label.name, AudioNon);
1352 dip->un.e.member[1].ord = 1;
1353 break;
1354
1355 case ESO_OUTPUT_CLASS:
1356 dip->mixer_class = ESO_OUTPUT_CLASS;
1357 dip->next = dip->prev = AUDIO_MIXER_LAST;
1358 strcpy(dip->label.name, AudioCoutputs);
1359 dip->type = AUDIO_MIXER_CLASS;
1360 break;
1361
1362 case ESO_RECORD_MONITOR:
1363 dip->mixer_class = ESO_MONITOR_CLASS;
1364 dip->next = dip->prev = AUDIO_MIXER_LAST;
1365 strcpy(dip->label.name, AudioNmute);
1366 dip->type = AUDIO_MIXER_ENUM;
1367 dip->un.e.num_mem = 2;
1368 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1369 dip->un.e.member[0].ord = 0;
1370 strcpy(dip->un.e.member[1].label.name, AudioNon);
1371 dip->un.e.member[1].ord = 1;
1372 break;
1373 case ESO_MONITOR_CLASS:
1374 dip->mixer_class = ESO_MONITOR_CLASS;
1375 dip->next = dip->prev = AUDIO_MIXER_LAST;
1376 strcpy(dip->label.name, AudioCmonitor);
1377 dip->type = AUDIO_MIXER_CLASS;
1378 break;
1379
1380 case ESO_RECORD_VOL:
1381 dip->mixer_class = ESO_RECORD_CLASS;
1382 dip->next = dip->prev = AUDIO_MIXER_LAST;
1383 strcpy(dip->label.name, AudioNrecord);
1384 dip->type = AUDIO_MIXER_VALUE;
1385 strcpy(dip->un.v.units.name, AudioNvolume);
1386 break;
1387 case ESO_RECORD_SOURCE:
1388 dip->mixer_class = ESO_RECORD_CLASS;
1389 dip->next = dip->prev = AUDIO_MIXER_LAST;
1390 strcpy(dip->label.name, AudioNsource);
1391 dip->type = AUDIO_MIXER_ENUM;
1392 dip->un.e.num_mem = 4;
1393 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1394 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1395 strcpy(dip->un.e.member[1].label.name, AudioNline);
1396 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1397 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1398 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1399 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1400 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1401 break;
1402 case ESO_DAC_REC_VOL:
1403 dip->mixer_class = ESO_RECORD_CLASS;
1404 dip->next = dip->prev = AUDIO_MIXER_LAST;
1405 strcpy(dip->label.name, AudioNdac);
1406 dip->type = AUDIO_MIXER_VALUE;
1407 dip->un.v.num_channels = 2;
1408 strcpy(dip->un.v.units.name, AudioNvolume);
1409 break;
1410 case ESO_MIC_REC_VOL:
1411 dip->mixer_class = ESO_RECORD_CLASS;
1412 dip->next = dip->prev = AUDIO_MIXER_LAST;
1413 strcpy(dip->label.name, AudioNmicrophone);
1414 dip->type = AUDIO_MIXER_VALUE;
1415 dip->un.v.num_channels = 2;
1416 strcpy(dip->un.v.units.name, AudioNvolume);
1417 break;
1418 case ESO_LINE_REC_VOL:
1419 dip->mixer_class = ESO_RECORD_CLASS;
1420 dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 strcpy(dip->label.name, AudioNline);
1422 dip->type = AUDIO_MIXER_VALUE;
1423 dip->un.v.num_channels = 2;
1424 strcpy(dip->un.v.units.name, AudioNvolume);
1425 break;
1426 case ESO_SYNTH_REC_VOL:
1427 dip->mixer_class = ESO_RECORD_CLASS;
1428 dip->next = dip->prev = AUDIO_MIXER_LAST;
1429 strcpy(dip->label.name, AudioNfmsynth);
1430 dip->type = AUDIO_MIXER_VALUE;
1431 dip->un.v.num_channels = 2;
1432 strcpy(dip->un.v.units.name, AudioNvolume);
1433 break;
1434 case ESO_MONO_REC_VOL:
1435 dip->mixer_class = ESO_RECORD_CLASS;
1436 dip->next = dip->prev = AUDIO_MIXER_LAST;
1437 strcpy(dip->label.name, "mono_in");
1438 dip->type = AUDIO_MIXER_VALUE;
1439 dip->un.v.num_channels = 1; /* No lies */
1440 strcpy(dip->un.v.units.name, AudioNvolume);
1441 break;
1442 case ESO_CD_REC_VOL:
1443 dip->mixer_class = ESO_RECORD_CLASS;
1444 dip->next = dip->prev = AUDIO_MIXER_LAST;
1445 strcpy(dip->label.name, AudioNcd);
1446 dip->type = AUDIO_MIXER_VALUE;
1447 dip->un.v.num_channels = 2;
1448 strcpy(dip->un.v.units.name, AudioNvolume);
1449 break;
1450 case ESO_AUXB_REC_VOL:
1451 dip->mixer_class = ESO_RECORD_CLASS;
1452 dip->next = dip->prev = AUDIO_MIXER_LAST;
1453 strcpy(dip->label.name, "auxb");
1454 dip->type = AUDIO_MIXER_VALUE;
1455 dip->un.v.num_channels = 2;
1456 strcpy(dip->un.v.units.name, AudioNvolume);
1457 break;
1458 case ESO_RECORD_CLASS:
1459 dip->mixer_class = ESO_RECORD_CLASS;
1460 dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 strcpy(dip->label.name, AudioCrecord);
1462 dip->type = AUDIO_MIXER_CLASS;
1463 break;
1464
1465 default:
1466 return (ENXIO);
1467 }
1468
1469 return (0);
1470 }
1471
1472 static int
1473 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1474 struct eso_softc *sc;
1475 size_t size;
1476 size_t align;
1477 size_t boundary;
1478 int flags;
1479 int direction;
1480 struct eso_dma *ed;
1481 {
1482 int error, wait;
1483
1484 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1485 ed->ed_size = size;
1486
1487 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1488 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1489 &ed->ed_nsegs, wait);
1490 if (error)
1491 goto out;
1492
1493 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1494 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1495 if (error)
1496 goto free;
1497
1498 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1499 wait, &ed->ed_map);
1500 if (error)
1501 goto unmap;
1502
1503 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1504 ed->ed_size, NULL, wait |
1505 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1506 if (error)
1507 goto destroy;
1508
1509 return (0);
1510
1511 destroy:
1512 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1513 unmap:
1514 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1515 free:
1516 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1517 out:
1518 return (error);
1519 }
1520
1521 static void
1522 eso_freemem(ed)
1523 struct eso_dma *ed;
1524 {
1525
1526 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1527 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1528 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1529 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1530 }
1531
1532 static void *
1533 eso_allocm(hdl, direction, size, type, flags)
1534 void *hdl;
1535 int direction;
1536 size_t size;
1537 int type, flags;
1538 {
1539 struct eso_softc *sc = hdl;
1540 struct eso_dma *ed;
1541 size_t boundary;
1542 int error;
1543
1544 if ((ed = malloc(size, type, flags)) == NULL)
1545 return (NULL);
1546
1547 /*
1548 * Apparently the Audio 1 DMA controller's current address
1549 * register can't roll over a 64K address boundary, so we have to
1550 * take care of that ourselves. The second channel DMA controller
1551 * doesn't have that restriction, however.
1552 */
1553 if (direction == AUMODE_RECORD)
1554 boundary = 0x10000;
1555 else
1556 boundary = 0;
1557
1558 #ifdef alpha
1559 /*
1560 * XXX For Audio 1, which implements the 24 low address bits only,
1561 * XXX force allocation through the (ISA) SGMAP.
1562 */
1563 if (direction == AUMODE_RECORD)
1564 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1565 else
1566 #endif
1567 ed->ed_dmat = sc->sc_dmat;
1568
1569 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1570 if (error) {
1571 free(ed, type);
1572 return (NULL);
1573 }
1574 ed->ed_next = sc->sc_dmas;
1575 sc->sc_dmas = ed;
1576
1577 return (KVADDR(ed));
1578 }
1579
1580 static void
1581 eso_freem(hdl, addr, type)
1582 void *hdl;
1583 void *addr;
1584 int type;
1585 {
1586 struct eso_softc *sc = hdl;
1587 struct eso_dma *p, **pp;
1588
1589 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1590 if (KVADDR(p) == addr) {
1591 eso_freemem(p);
1592 *pp = p->ed_next;
1593 free(p, type);
1594 return;
1595 }
1596 }
1597 }
1598
1599 static size_t
1600 eso_round_buffersize(hdl, direction, bufsize)
1601 void *hdl;
1602 int direction;
1603 size_t bufsize;
1604 {
1605 size_t maxsize;
1606
1607 /*
1608 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1609 * bytes. This is because IO_A2DMAC is a two byte value
1610 * indicating the literal byte count, and the 4 least significant
1611 * bits are read-only. Zero is not used as a special case for
1612 * 0x10000.
1613 *
1614 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1615 * be represented.
1616 */
1617 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1618
1619 if (bufsize > maxsize)
1620 bufsize = maxsize;
1621
1622 return (bufsize);
1623 }
1624
1625 static paddr_t
1626 eso_mappage(hdl, addr, offs, prot)
1627 void *hdl;
1628 void *addr;
1629 off_t offs;
1630 int prot;
1631 {
1632 struct eso_softc *sc = hdl;
1633 struct eso_dma *ed;
1634
1635 if (offs < 0)
1636 return (-1);
1637 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1638 ed = ed->ed_next)
1639 ;
1640 if (ed == NULL)
1641 return (-1);
1642
1643 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1644 offs, prot, BUS_DMA_WAITOK));
1645 }
1646
1647 /* ARGSUSED */
1648 static int
1649 eso_get_props(hdl)
1650 void *hdl;
1651 {
1652
1653 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1654 AUDIO_PROP_FULLDUPLEX);
1655 }
1656
1657 static int
1658 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1659 void *hdl;
1660 void *start, *end;
1661 int blksize;
1662 void (*intr) __P((void *));
1663 void *arg;
1664 struct audio_params *param;
1665 {
1666 struct eso_softc *sc = hdl;
1667 struct eso_dma *ed;
1668 uint8_t a2c1;
1669
1670 DPRINTF((
1671 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1672 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1673 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1674 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1675 param->precision, param->channels, param->sw_code, param->factor));
1676
1677 /* Find DMA buffer. */
1678 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1679 ed = ed->ed_next)
1680 ;
1681 if (ed == NULL) {
1682 printf("%s: trigger_output: bad addr %p\n",
1683 sc->sc_dev.dv_xname, start);
1684 return (EINVAL);
1685 }
1686
1687 sc->sc_pintr = intr;
1688 sc->sc_parg = arg;
1689
1690 /* Compute drain timeout. */
1691 sc->sc_pdrain = (blksize * NBBY * hz) /
1692 (param->sample_rate * param->channels *
1693 param->precision * param->factor) + 2; /* slop */
1694
1695 /* DMA transfer count (in `words'!) reload using 2's complement. */
1696 blksize = -(blksize >> 1);
1697 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1698 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1699
1700 /* Update DAC to reflect DMA count and audio parameters. */
1701 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1702 if (param->precision * param->factor == 16)
1703 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1704 else
1705 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1706 if (param->channels == 2)
1707 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1708 else
1709 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1710 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1711 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1712 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1713 else
1714 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1715 /* Unmask IRQ. */
1716 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1717 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1718
1719 /* Set up DMA controller. */
1720 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1721 DMAADDR(ed));
1722 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1723 (uint8_t *)end - (uint8_t *)start);
1724 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1725 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1726
1727 /* Start DMA. */
1728 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1729 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1730 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1731 ESO_MIXREG_A2C1_AUTO;
1732 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1733
1734 return (0);
1735 }
1736
1737 static int
1738 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1739 void *hdl;
1740 void *start, *end;
1741 int blksize;
1742 void (*intr) __P((void *));
1743 void *arg;
1744 struct audio_params *param;
1745 {
1746 struct eso_softc *sc = hdl;
1747 struct eso_dma *ed;
1748 uint8_t actl, a1c1;
1749
1750 DPRINTF((
1751 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1752 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1753 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1754 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1755 param->precision, param->channels, param->sw_code, param->factor));
1756
1757 /*
1758 * If we failed to configure the Audio 1 DMA controller, bail here
1759 * while retaining availability of the DAC direction (in Audio 2).
1760 */
1761 if (!sc->sc_dmac_configured)
1762 return (EIO);
1763
1764 /* Find DMA buffer. */
1765 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1766 ed = ed->ed_next)
1767 ;
1768 if (ed == NULL) {
1769 printf("%s: trigger_output: bad addr %p\n",
1770 sc->sc_dev.dv_xname, start);
1771 return (EINVAL);
1772 }
1773
1774 sc->sc_rintr = intr;
1775 sc->sc_rarg = arg;
1776
1777 /* Compute drain timeout. */
1778 sc->sc_rdrain = (blksize * NBBY * hz) /
1779 (param->sample_rate * param->channels *
1780 param->precision * param->factor) + 2; /* slop */
1781
1782 /* Set up ADC DMA converter parameters. */
1783 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1784 if (param->channels == 2) {
1785 actl &= ~ESO_CTLREG_ACTL_MONO;
1786 actl |= ESO_CTLREG_ACTL_STEREO;
1787 } else {
1788 actl &= ~ESO_CTLREG_ACTL_STEREO;
1789 actl |= ESO_CTLREG_ACTL_MONO;
1790 }
1791 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1792
1793 /* Set up Transfer Type: maybe move to attach time? */
1794 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1795
1796 /* DMA transfer count reload using 2's complement. */
1797 blksize = -blksize;
1798 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1799 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1800
1801 /* Set up and enable Audio 1 DMA FIFO. */
1802 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1803 if (param->precision * param->factor == 16)
1804 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1805 if (param->channels == 2)
1806 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1807 else
1808 a1c1 |= ESO_CTLREG_A1C1_MONO;
1809 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1810 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1811 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1812 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1813
1814 /* Set up ADC IRQ/DRQ parameters. */
1815 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1816 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1817 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1818 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1819
1820 /* Set up and enable DMA controller. */
1821 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1822 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1823 ESO_DMAC_MASK_MASK);
1824 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1825 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1826 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1827 DMAADDR(ed));
1828 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1829 (uint8_t *)end - (uint8_t *)start - 1);
1830 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1831
1832 /* Start DMA. */
1833 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1834 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1835 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1836
1837 return (0);
1838 }
1839
1840 static int
1841 eso_set_monooutsrc(sc, monooutsrc)
1842 struct eso_softc *sc;
1843 unsigned int monooutsrc;
1844 {
1845 mixer_devinfo_t di;
1846 int i;
1847 uint8_t mpm;
1848
1849 di.index = ESO_MONOOUT_SOURCE;
1850 if (eso_query_devinfo(sc, &di) != 0)
1851 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1852
1853 for (i = 0; i < di.un.e.num_mem; i++) {
1854 if (monooutsrc == di.un.e.member[i].ord) {
1855 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1856 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1857 mpm |= monooutsrc;
1858 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1859 sc->sc_monooutsrc = monooutsrc;
1860 return (0);
1861 }
1862 }
1863
1864 return (EINVAL);
1865 }
1866
1867 static int
1868 eso_set_recsrc(sc, recsrc)
1869 struct eso_softc *sc;
1870 unsigned int recsrc;
1871 {
1872 mixer_devinfo_t di;
1873 int i;
1874
1875 di.index = ESO_RECORD_SOURCE;
1876 if (eso_query_devinfo(sc, &di) != 0)
1877 panic("eso_set_recsrc: eso_query_devinfo failed");
1878
1879 for (i = 0; i < di.un.e.num_mem; i++) {
1880 if (recsrc == di.un.e.member[i].ord) {
1881 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1882 sc->sc_recsrc = recsrc;
1883 return (0);
1884 }
1885 }
1886
1887 return (EINVAL);
1888 }
1889
1890 /*
1891 * Reload Master Volume and Mute values in softc from mixer; used when
1892 * those have previously been invalidated by use of hardware volume controls.
1893 */
1894 static void
1895 eso_reload_master_vol(sc)
1896 struct eso_softc *sc;
1897 {
1898 uint8_t mv;
1899
1900 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1901 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1902 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1903 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1904 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1905 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1906 /* Currently both channels are muted simultaneously; either is OK. */
1907 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1908 }
1909
1910 static void
1911 eso_set_gain(sc, port)
1912 struct eso_softc *sc;
1913 unsigned int port;
1914 {
1915 uint8_t mixreg, tmp;
1916
1917 switch (port) {
1918 case ESO_DAC_PLAY_VOL:
1919 mixreg = ESO_MIXREG_PVR_A2;
1920 break;
1921 case ESO_MIC_PLAY_VOL:
1922 mixreg = ESO_MIXREG_PVR_MIC;
1923 break;
1924 case ESO_LINE_PLAY_VOL:
1925 mixreg = ESO_MIXREG_PVR_LINE;
1926 break;
1927 case ESO_SYNTH_PLAY_VOL:
1928 mixreg = ESO_MIXREG_PVR_SYNTH;
1929 break;
1930 case ESO_CD_PLAY_VOL:
1931 mixreg = ESO_MIXREG_PVR_CD;
1932 break;
1933 case ESO_AUXB_PLAY_VOL:
1934 mixreg = ESO_MIXREG_PVR_AUXB;
1935 break;
1936
1937 case ESO_DAC_REC_VOL:
1938 mixreg = ESO_MIXREG_RVR_A2;
1939 break;
1940 case ESO_MIC_REC_VOL:
1941 mixreg = ESO_MIXREG_RVR_MIC;
1942 break;
1943 case ESO_LINE_REC_VOL:
1944 mixreg = ESO_MIXREG_RVR_LINE;
1945 break;
1946 case ESO_SYNTH_REC_VOL:
1947 mixreg = ESO_MIXREG_RVR_SYNTH;
1948 break;
1949 case ESO_CD_REC_VOL:
1950 mixreg = ESO_MIXREG_RVR_CD;
1951 break;
1952 case ESO_AUXB_REC_VOL:
1953 mixreg = ESO_MIXREG_RVR_AUXB;
1954 break;
1955 case ESO_MONO_PLAY_VOL:
1956 mixreg = ESO_MIXREG_PVR_MONO;
1957 break;
1958 case ESO_MONO_REC_VOL:
1959 mixreg = ESO_MIXREG_RVR_MONO;
1960 break;
1961
1962 case ESO_PCSPEAKER_VOL:
1963 /* Special case - only 3-bit, mono, and reserved bits. */
1964 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1965 tmp &= ESO_MIXREG_PCSVR_RESV;
1966 /* Map bits 7:5 -> 2:0. */
1967 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1968 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1969 return;
1970
1971 case ESO_MASTER_VOL:
1972 /* Special case - separate regs, and 6-bit precision. */
1973 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1974 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1975 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1976 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1977 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1978 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1979 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1980 return;
1981
1982 case ESO_SPATIALIZER:
1983 /* Special case - only `mono', and higher precision. */
1984 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1985 sc->sc_gain[port][ESO_LEFT]);
1986 return;
1987
1988 case ESO_RECORD_VOL:
1989 /* Very Special case, controller register. */
1990 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1991 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1992 return;
1993
1994 default:
1995 #ifdef DIAGNOSTIC
1996 panic("eso_set_gain: bad port %u", port);
1997 /* NOTREACHED */
1998 #else
1999 return;
2000 #endif
2001 }
2002
2003 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2004 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2005 }
2006