eso.c revision 1.32 1 /* $NetBSD: eso.c,v 1.32 2004/02/17 17:34:21 kleink Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.32 2004/02/17 17:34:21 kleink Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70
71 struct eso_dma {
72 bus_dma_tag_t ed_dmat;
73 bus_dmamap_t ed_map;
74 caddr_t ed_addr;
75 bus_dma_segment_t ed_segs[1];
76 int ed_nsegs;
77 size_t ed_size;
78 struct eso_dma * ed_next;
79 };
80
81 #define KVADDR(dma) ((void *)(dma)->ed_addr)
82 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
83
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88 static int eso_print __P((void *, const char *));
89
90 CFATTACH_DECL(eso, sizeof (struct eso_softc),
91 eso_match, eso_attach, NULL, NULL);
92
93 /* PCI interface */
94 static int eso_intr __P((void *));
95
96 /* MI audio layer interface */
97 static int eso_open __P((void *, int));
98 static void eso_close __P((void *));
99 static int eso_query_encoding __P((void *, struct audio_encoding *));
100 static int eso_set_params __P((void *, int, int, struct audio_params *,
101 struct audio_params *));
102 static int eso_round_blocksize __P((void *, int));
103 static int eso_halt_output __P((void *));
104 static int eso_halt_input __P((void *));
105 static int eso_getdev __P((void *, struct audio_device *));
106 static int eso_set_port __P((void *, mixer_ctrl_t *));
107 static int eso_get_port __P((void *, mixer_ctrl_t *));
108 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
109 static void * eso_allocm __P((void *, int, size_t, struct malloc_type *, int));
110 static void eso_freem __P((void *, void *, struct malloc_type *));
111 static size_t eso_round_buffersize __P((void *, int, size_t));
112 static paddr_t eso_mappage __P((void *, void *, off_t, int));
113 static int eso_get_props __P((void *));
114 static int eso_trigger_output __P((void *, void *, void *, int,
115 void (*)(void *), void *, struct audio_params *));
116 static int eso_trigger_input __P((void *, void *, void *, int,
117 void (*)(void *), void *, struct audio_params *));
118
119 static struct audio_hw_if eso_hw_if = {
120 eso_open,
121 eso_close,
122 NULL, /* drain */
123 eso_query_encoding,
124 eso_set_params,
125 eso_round_blocksize,
126 NULL, /* commit_settings */
127 NULL, /* init_output */
128 NULL, /* init_input */
129 NULL, /* start_output */
130 NULL, /* start_input */
131 eso_halt_output,
132 eso_halt_input,
133 NULL, /* speaker_ctl */
134 eso_getdev,
135 NULL, /* setfd */
136 eso_set_port,
137 eso_get_port,
138 eso_query_devinfo,
139 eso_allocm,
140 eso_freem,
141 eso_round_buffersize,
142 eso_mappage,
143 eso_get_props,
144 eso_trigger_output,
145 eso_trigger_input,
146 NULL, /* dev_ioctl */
147 };
148
149 static const char * const eso_rev2model[] = {
150 "ES1938",
151 "ES1946",
152 "ES1946 Revision E"
153 };
154
155
156 /*
157 * Utility routines
158 */
159 /* Register access etc. */
160 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
161 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
162 static uint8_t eso_read_rdr __P((struct eso_softc *));
163 static void eso_reload_master_vol __P((struct eso_softc *));
164 static int eso_reset __P((struct eso_softc *));
165 static void eso_set_gain __P((struct eso_softc *, unsigned int));
166 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
167 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
168 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
169 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
170 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
171 /* DMA memory allocation */
172 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
173 int, int, struct eso_dma *));
174 static void eso_freemem __P((struct eso_dma *));
175
176
177 static int
178 eso_match(parent, match, aux)
179 struct device *parent;
180 struct cfdata *match;
181 void *aux;
182 {
183 struct pci_attach_args *pa = aux;
184
185 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
186 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
187 return (1);
188
189 return (0);
190 }
191
192 static void
193 eso_attach(parent, self, aux)
194 struct device *parent, *self;
195 void *aux;
196 {
197 struct eso_softc *sc = (struct eso_softc *)self;
198 struct pci_attach_args *pa = aux;
199 struct audio_attach_args aa;
200 pci_intr_handle_t ih;
201 bus_addr_t vcbase;
202 const char *intrstring;
203 int idx;
204 uint8_t a2mode, mvctl;
205
206 aprint_naive(": Audio controller\n");
207
208 sc->sc_revision = PCI_REVISION(pa->pa_class);
209
210 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
211 if (sc->sc_revision <
212 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
213 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
214 else
215 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
216
217 /* Map I/O registers. */
218 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
219 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
220 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
221 return;
222 }
223 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
224 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
225 aprint_error("%s: can't map SB I/O space\n",
226 sc->sc_dev.dv_xname);
227 return;
228 }
229 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
230 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
231 aprint_error("%s: can't map VC I/O space\n",
232 sc->sc_dev.dv_xname);
233 /* Don't bail out yet: we can map it later, see below. */
234 vcbase = 0;
235 sc->sc_vcsize = 0x10; /* From the data sheet. */
236 }
237 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
238 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
239 aprint_error("%s: can't map MPU I/O space\n",
240 sc->sc_dev.dv_xname);
241 return;
242 }
243 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
244 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
245 aprint_error("%s: can't map Game I/O space\n",
246 sc->sc_dev.dv_xname);
247 return;
248 }
249
250 sc->sc_dmat = pa->pa_dmat;
251 sc->sc_dmas = NULL;
252 sc->sc_dmac_configured = 0;
253
254 /* Enable bus mastering. */
255 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
256 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
257 PCI_COMMAND_MASTER_ENABLE);
258
259 /* Reset the device; bail out upon failure. */
260 if (eso_reset(sc) != 0) {
261 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
262 return;
263 }
264
265 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
266 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
267 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
268 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
269
270 /* Enable the relevant (DMA) interrupts. */
271 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
272 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
273 ESO_IO_IRQCTL_MPUIRQ);
274
275 /* Set up A1's sample rate generator for new-style parameters. */
276 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
277 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
278 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
279
280 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
281 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
282 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
283 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
284 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
285
286 /* Set mixer regs to something reasonable, needs work. */
287 sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
288 sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
289 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
290 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
291 int v;
292
293 switch (idx) {
294 case ESO_MIC_PLAY_VOL:
295 case ESO_LINE_PLAY_VOL:
296 case ESO_CD_PLAY_VOL:
297 case ESO_MONO_PLAY_VOL:
298 case ESO_AUXB_PLAY_VOL:
299 case ESO_DAC_REC_VOL:
300 case ESO_LINE_REC_VOL:
301 case ESO_SYNTH_REC_VOL:
302 case ESO_CD_REC_VOL:
303 case ESO_MONO_REC_VOL:
304 case ESO_AUXB_REC_VOL:
305 case ESO_SPATIALIZER:
306 v = 0;
307 break;
308 case ESO_MASTER_VOL:
309 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
310 break;
311 default:
312 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
313 break;
314 }
315 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
316 eso_set_gain(sc, idx);
317 }
318 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
319
320 /* Map and establish the interrupt. */
321 if (pci_intr_map(pa, &ih)) {
322 aprint_error("%s: couldn't map interrupt\n",
323 sc->sc_dev.dv_xname);
324 return;
325 }
326 intrstring = pci_intr_string(pa->pa_pc, ih);
327 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
328 if (sc->sc_ih == NULL) {
329 aprint_error("%s: couldn't establish interrupt",
330 sc->sc_dev.dv_xname);
331 if (intrstring != NULL)
332 aprint_normal(" at %s", intrstring);
333 aprint_normal("\n");
334 return;
335 }
336 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
337 intrstring);
338
339 /*
340 * Set up the DDMA Control register; a suitable I/O region has been
341 * supposedly mapped in the VC base address register.
342 *
343 * The Solo-1 has an ... interesting silicon bug that causes it to
344 * not respond to I/O space accesses to the Audio 1 DMA controller
345 * if the latter's mapping base address is aligned on a 1K boundary.
346 * As a consequence, it is quite possible for the mapping provided
347 * in the VC BAR to be useless. To work around this, we defer this
348 * part until all autoconfiguration on our parent bus is completed
349 * and then try to map it ourselves in fulfillment of the constraint.
350 *
351 * According to the register map we may write to the low 16 bits
352 * only, but experimenting has shown we're safe.
353 * -kjk
354 */
355 if (ESO_VALID_DDMAC_BASE(vcbase)) {
356 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
357 vcbase | ESO_PCI_DDMAC_DE);
358 sc->sc_dmac_configured = 1;
359
360 aprint_normal(
361 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
362 sc->sc_dev.dv_xname, (unsigned long)vcbase);
363 } else {
364 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
365 sc->sc_dev.dv_xname, (unsigned long)vcbase));
366 sc->sc_pa = *pa;
367 config_defer(self, eso_defer);
368 }
369
370 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
371
372 aa.type = AUDIODEV_TYPE_OPL;
373 aa.hwif = NULL;
374 aa.hdl = NULL;
375 (void)config_found(&sc->sc_dev, &aa, audioprint);
376
377 aa.type = AUDIODEV_TYPE_MPU;
378 aa.hwif = NULL;
379 aa.hdl = NULL;
380 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
381 if (sc->sc_mpudev != NULL) {
382 /* Unmask the MPU irq. */
383 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
384 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
385 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
386 }
387
388 aa.type = AUDIODEV_TYPE_AUX;
389 aa.hwif = NULL;
390 aa.hdl = NULL;
391 (void)config_found(&sc->sc_dev, &aa, eso_print);
392 }
393
394 static void
395 eso_defer(self)
396 struct device *self;
397 {
398 struct eso_softc *sc = (struct eso_softc *)self;
399 struct pci_attach_args *pa = &sc->sc_pa;
400 bus_addr_t addr, start;
401
402 aprint_normal("%s: ", sc->sc_dev.dv_xname);
403
404 /*
405 * This is outright ugly, but since we must not make assumptions
406 * on the underlying allocator's behaviour it's the most straight-
407 * forward way to implement it. Note that we skip over the first
408 * 1K region, which is typically occupied by an attached ISA bus.
409 */
410 for (start = 0x0400; start < 0xffff; start += 0x0400) {
411 if (bus_space_alloc(sc->sc_iot,
412 start + sc->sc_vcsize, start + 0x0400 - 1,
413 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
414 &sc->sc_dmac_ioh) != 0)
415 continue;
416
417 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
418 addr | ESO_PCI_DDMAC_DE);
419 sc->sc_dmac_iot = sc->sc_iot;
420 sc->sc_dmac_configured = 1;
421 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
422 (unsigned long)addr);
423
424 return;
425 }
426
427 aprint_error("can't map Audio 1 DMA into I/O space\n");
428 }
429
430 /* ARGSUSED */
431 static int
432 eso_print(aux, pnp)
433 void *aux;
434 const char *pnp;
435 {
436
437 /* Only joys can attach via this; easy. */
438 if (pnp)
439 aprint_normal("joy at %s:", pnp);
440
441 return (UNCONF);
442 }
443
444 static void
445 eso_write_cmd(sc, cmd)
446 struct eso_softc *sc;
447 uint8_t cmd;
448 {
449 int i;
450
451 /* Poll for busy indicator to become clear. */
452 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
453 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
454 & ESO_SB_RSR_BUSY) == 0) {
455 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
456 ESO_SB_WDR, cmd);
457 return;
458 } else {
459 delay(10);
460 }
461 }
462
463 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
464 return;
465 }
466
467 /* Write to a controller register */
468 static void
469 eso_write_ctlreg(sc, reg, val)
470 struct eso_softc *sc;
471 uint8_t reg, val;
472 {
473
474 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
475
476 eso_write_cmd(sc, reg);
477 eso_write_cmd(sc, val);
478 }
479
480 /* Read out the Read Data Register */
481 static uint8_t
482 eso_read_rdr(sc)
483 struct eso_softc *sc;
484 {
485 int i;
486
487 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
488 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
489 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
490 return (bus_space_read_1(sc->sc_sb_iot,
491 sc->sc_sb_ioh, ESO_SB_RDR));
492 } else {
493 delay(10);
494 }
495 }
496
497 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
498 return (-1);
499 }
500
501
502 static uint8_t
503 eso_read_ctlreg(sc, reg)
504 struct eso_softc *sc;
505 uint8_t reg;
506 {
507
508 eso_write_cmd(sc, ESO_CMD_RCR);
509 eso_write_cmd(sc, reg);
510 return (eso_read_rdr(sc));
511 }
512
513 static void
514 eso_write_mixreg(sc, reg, val)
515 struct eso_softc *sc;
516 uint8_t reg, val;
517 {
518 int s;
519
520 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
521
522 s = splaudio();
523 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
524 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
525 splx(s);
526 }
527
528 static uint8_t
529 eso_read_mixreg(sc, reg)
530 struct eso_softc *sc;
531 uint8_t reg;
532 {
533 int s;
534 uint8_t val;
535
536 s = splaudio();
537 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
538 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
539 splx(s);
540
541 return (val);
542 }
543
544 static int
545 eso_intr(hdl)
546 void *hdl;
547 {
548 struct eso_softc *sc = hdl;
549 uint8_t irqctl;
550
551 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
552
553 /* If it wasn't ours, that's all she wrote. */
554 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
555 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
556 return (0);
557
558 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
559 /* Clear interrupt. */
560 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
561 ESO_SB_RBSR);
562
563 if (sc->sc_rintr)
564 sc->sc_rintr(sc->sc_rarg);
565 else
566 wakeup(&sc->sc_rintr);
567 }
568
569 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
570 /*
571 * Clear the A2 IRQ latch: the cached value reflects the
572 * current DAC settings with the IRQ latch bit not set.
573 */
574 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
575
576 if (sc->sc_pintr)
577 sc->sc_pintr(sc->sc_parg);
578 else
579 wakeup(&sc->sc_pintr);
580 }
581
582 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
583 /* Clear interrupt. */
584 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
585
586 /*
587 * Raise a flag to cause a lazy update of the in-softc gain
588 * values the next time the software mixer is read to keep
589 * interrupt service cost low. ~0 cannot occur otherwise
590 * as the master volume has a precision of 6 bits only.
591 */
592 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
593 }
594
595 #if NMPU > 0
596 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
597 mpu_intr(sc->sc_mpudev);
598 #endif
599
600 return (1);
601 }
602
603 /* Perform a software reset, including DMA FIFOs. */
604 static int
605 eso_reset(sc)
606 struct eso_softc *sc;
607 {
608 int i;
609
610 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
611 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
612 /* `Delay' suggested in the data sheet. */
613 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
614 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
615
616 /* Wait for reset to take effect. */
617 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
618 /* Poll for data to become available. */
619 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
620 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
621 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
622 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
623
624 /* Activate Solo-1 extension commands. */
625 eso_write_cmd(sc, ESO_CMD_EXTENB);
626 /* Reset mixer registers. */
627 eso_write_mixreg(sc, ESO_MIXREG_RESET,
628 ESO_MIXREG_RESET_RESET);
629
630 return (0);
631 } else {
632 delay(1000);
633 }
634 }
635
636 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
637 return (-1);
638 }
639
640
641 /* ARGSUSED */
642 static int
643 eso_open(hdl, flags)
644 void *hdl;
645 int flags;
646 {
647 struct eso_softc *sc = hdl;
648
649 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
650
651 sc->sc_pintr = NULL;
652 sc->sc_rintr = NULL;
653
654 return (0);
655 }
656
657 static void
658 eso_close(hdl)
659 void *hdl;
660 {
661
662 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
663 }
664
665 static int
666 eso_query_encoding(hdl, fp)
667 void *hdl;
668 struct audio_encoding *fp;
669 {
670
671 switch (fp->index) {
672 case 0:
673 strcpy(fp->name, AudioEulinear);
674 fp->encoding = AUDIO_ENCODING_ULINEAR;
675 fp->precision = 8;
676 fp->flags = 0;
677 break;
678 case 1:
679 strcpy(fp->name, AudioEmulaw);
680 fp->encoding = AUDIO_ENCODING_ULAW;
681 fp->precision = 8;
682 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
683 break;
684 case 2:
685 strcpy(fp->name, AudioEalaw);
686 fp->encoding = AUDIO_ENCODING_ALAW;
687 fp->precision = 8;
688 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
689 break;
690 case 3:
691 strcpy(fp->name, AudioEslinear);
692 fp->encoding = AUDIO_ENCODING_SLINEAR;
693 fp->precision = 8;
694 fp->flags = 0;
695 break;
696 case 4:
697 strcpy(fp->name, AudioEslinear_le);
698 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
699 fp->precision = 16;
700 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
701 break;
702 case 5:
703 strcpy(fp->name, AudioEulinear_le);
704 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
705 fp->precision = 16;
706 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
707 break;
708 case 6:
709 strcpy(fp->name, AudioEslinear_be);
710 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
711 fp->precision = 16;
712 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
713 break;
714 case 7:
715 strcpy(fp->name, AudioEulinear_be);
716 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
717 fp->precision = 16;
718 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
719 break;
720 default:
721 return (EINVAL);
722 }
723
724 return (0);
725 }
726
727 static int
728 eso_set_params(hdl, setmode, usemode, play, rec)
729 void *hdl;
730 int setmode, usemode;
731 struct audio_params *play, *rec;
732 {
733 struct eso_softc *sc = hdl;
734 struct audio_params *p;
735 int mode, r[2], rd[2], clk;
736 unsigned int srg, fltdiv;
737
738 for (mode = AUMODE_RECORD; mode != -1;
739 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
740 if ((setmode & mode) == 0)
741 continue;
742
743 p = (mode == AUMODE_PLAY) ? play : rec;
744
745 if (p->sample_rate < ESO_MINRATE ||
746 p->sample_rate > ESO_MAXRATE ||
747 (p->precision != 8 && p->precision != 16) ||
748 (p->channels != 1 && p->channels != 2))
749 return (EINVAL);
750
751 p->factor = 1;
752 p->sw_code = NULL;
753 switch (p->encoding) {
754 case AUDIO_ENCODING_SLINEAR_BE:
755 case AUDIO_ENCODING_ULINEAR_BE:
756 if (mode == AUMODE_PLAY && p->precision == 16)
757 p->sw_code = swap_bytes;
758 break;
759 case AUDIO_ENCODING_SLINEAR_LE:
760 case AUDIO_ENCODING_ULINEAR_LE:
761 if (mode == AUMODE_RECORD && p->precision == 16)
762 p->sw_code = swap_bytes;
763 break;
764 case AUDIO_ENCODING_ULAW:
765 if (mode == AUMODE_PLAY) {
766 p->factor = 2;
767 p->sw_code = mulaw_to_ulinear16_le;
768 } else {
769 p->sw_code = ulinear8_to_mulaw;
770 }
771 break;
772 case AUDIO_ENCODING_ALAW:
773 if (mode == AUMODE_PLAY) {
774 p->factor = 2;
775 p->sw_code = alaw_to_ulinear16_le;
776 } else {
777 p->sw_code = ulinear8_to_alaw;
778 }
779 break;
780 default:
781 return (EINVAL);
782 }
783
784 /*
785 * We'll compute both possible sample rate dividers and pick
786 * the one with the least error.
787 */
788 #define ABS(x) ((x) < 0 ? -(x) : (x))
789 r[0] = ESO_CLK0 /
790 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
791 r[1] = ESO_CLK1 /
792 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
793
794 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
795 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
796
797 /* Roll-off frequency of 87%, as in the ES1888 driver. */
798 fltdiv = 256 - 200279L / r[clk];
799
800 /* Update to reflect the possibly inexact rate. */
801 p->sample_rate = r[clk];
802
803 if (mode == AUMODE_RECORD) {
804 /* Audio 1 */
805 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
806 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
807 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
808 } else {
809 /* Audio 2 */
810 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
811 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
812 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
813 }
814 #undef ABS
815
816 }
817
818 return (0);
819 }
820
821 static int
822 eso_round_blocksize(hdl, blk)
823 void *hdl;
824 int blk;
825 {
826
827 return (blk & -32); /* keep good alignment; at least 16 req'd */
828 }
829
830 static int
831 eso_halt_output(hdl)
832 void *hdl;
833 {
834 struct eso_softc *sc = hdl;
835 int error, s;
836
837 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
838
839 /*
840 * Disable auto-initialize DMA, allowing the FIFO to drain and then
841 * stop. The interrupt callback pointer is cleared at this
842 * point so that an outstanding FIFO interrupt for the remaining data
843 * will be acknowledged without further processing.
844 *
845 * This does not immediately `abort' an operation in progress (c.f.
846 * audio(9)) but is the method to leave the FIFO behind in a clean
847 * state with the least hair. (Besides, that item needs to be
848 * rephrased for trigger_*()-based DMA environments.)
849 */
850 s = splaudio();
851 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
852 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
853 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
854 ESO_IO_A2DMAM_DMAENB);
855
856 sc->sc_pintr = NULL;
857 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
858 splx(s);
859
860 /* Shut down DMA completely. */
861 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
862 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
863
864 return (error == EWOULDBLOCK ? 0 : error);
865 }
866
867 static int
868 eso_halt_input(hdl)
869 void *hdl;
870 {
871 struct eso_softc *sc = hdl;
872 int error, s;
873
874 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
875
876 /* Just like eso_halt_output(), but for Audio 1. */
877 s = splaudio();
878 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
879 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
880 ESO_CTLREG_A1C2_DMAENB);
881 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
882 DMA37MD_WRITE | DMA37MD_DEMAND);
883
884 sc->sc_rintr = NULL;
885 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
886 splx(s);
887
888 /* Shut down DMA completely. */
889 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
890 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
891 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
892 ESO_DMAC_MASK_MASK);
893
894 return (error == EWOULDBLOCK ? 0 : error);
895 }
896
897 static int
898 eso_getdev(hdl, retp)
899 void *hdl;
900 struct audio_device *retp;
901 {
902 struct eso_softc *sc = hdl;
903
904 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
905 snprintf(retp->version, sizeof (retp->version), "0x%02x",
906 sc->sc_revision);
907 if (sc->sc_revision <
908 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
909 strncpy(retp->config, eso_rev2model[sc->sc_revision],
910 sizeof (retp->config));
911 else
912 strncpy(retp->config, "unknown", sizeof (retp->config));
913
914 return (0);
915 }
916
917 static int
918 eso_set_port(hdl, cp)
919 void *hdl;
920 mixer_ctrl_t *cp;
921 {
922 struct eso_softc *sc = hdl;
923 unsigned int lgain, rgain;
924 uint8_t tmp;
925
926 switch (cp->dev) {
927 case ESO_DAC_PLAY_VOL:
928 case ESO_MIC_PLAY_VOL:
929 case ESO_LINE_PLAY_VOL:
930 case ESO_SYNTH_PLAY_VOL:
931 case ESO_CD_PLAY_VOL:
932 case ESO_AUXB_PLAY_VOL:
933 case ESO_RECORD_VOL:
934 case ESO_DAC_REC_VOL:
935 case ESO_MIC_REC_VOL:
936 case ESO_LINE_REC_VOL:
937 case ESO_SYNTH_REC_VOL:
938 case ESO_CD_REC_VOL:
939 case ESO_AUXB_REC_VOL:
940 if (cp->type != AUDIO_MIXER_VALUE)
941 return (EINVAL);
942
943 /*
944 * Stereo-capable mixer ports: if we get a single-channel
945 * gain value passed in, then we duplicate it to both left
946 * and right channels.
947 */
948 switch (cp->un.value.num_channels) {
949 case 1:
950 lgain = rgain = ESO_GAIN_TO_4BIT(
951 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
952 break;
953 case 2:
954 lgain = ESO_GAIN_TO_4BIT(
955 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
956 rgain = ESO_GAIN_TO_4BIT(
957 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
958 break;
959 default:
960 return (EINVAL);
961 }
962
963 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
964 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
965 eso_set_gain(sc, cp->dev);
966 break;
967
968 case ESO_MASTER_VOL:
969 if (cp->type != AUDIO_MIXER_VALUE)
970 return (EINVAL);
971
972 /* Like above, but a precision of 6 bits. */
973 switch (cp->un.value.num_channels) {
974 case 1:
975 lgain = rgain = ESO_GAIN_TO_6BIT(
976 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
977 break;
978 case 2:
979 lgain = ESO_GAIN_TO_6BIT(
980 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
981 rgain = ESO_GAIN_TO_6BIT(
982 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
983 break;
984 default:
985 return (EINVAL);
986 }
987
988 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
989 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
990 eso_set_gain(sc, cp->dev);
991 break;
992
993 case ESO_SPATIALIZER:
994 if (cp->type != AUDIO_MIXER_VALUE ||
995 cp->un.value.num_channels != 1)
996 return (EINVAL);
997
998 sc->sc_gain[cp->dev][ESO_LEFT] =
999 sc->sc_gain[cp->dev][ESO_RIGHT] =
1000 ESO_GAIN_TO_6BIT(
1001 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1002 eso_set_gain(sc, cp->dev);
1003 break;
1004
1005 case ESO_MONO_PLAY_VOL:
1006 case ESO_MONO_REC_VOL:
1007 if (cp->type != AUDIO_MIXER_VALUE ||
1008 cp->un.value.num_channels != 1)
1009 return (EINVAL);
1010
1011 sc->sc_gain[cp->dev][ESO_LEFT] =
1012 sc->sc_gain[cp->dev][ESO_RIGHT] =
1013 ESO_GAIN_TO_4BIT(
1014 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1015 eso_set_gain(sc, cp->dev);
1016 break;
1017
1018 case ESO_PCSPEAKER_VOL:
1019 if (cp->type != AUDIO_MIXER_VALUE ||
1020 cp->un.value.num_channels != 1)
1021 return (EINVAL);
1022
1023 sc->sc_gain[cp->dev][ESO_LEFT] =
1024 sc->sc_gain[cp->dev][ESO_RIGHT] =
1025 ESO_GAIN_TO_3BIT(
1026 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1027 eso_set_gain(sc, cp->dev);
1028 break;
1029
1030 case ESO_SPATIALIZER_ENABLE:
1031 if (cp->type != AUDIO_MIXER_ENUM)
1032 return (EINVAL);
1033
1034 sc->sc_spatializer = (cp->un.ord != 0);
1035
1036 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1037 if (sc->sc_spatializer)
1038 tmp |= ESO_MIXREG_SPAT_ENB;
1039 else
1040 tmp &= ~ESO_MIXREG_SPAT_ENB;
1041 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1042 tmp | ESO_MIXREG_SPAT_RSTREL);
1043 break;
1044
1045 case ESO_MASTER_MUTE:
1046 if (cp->type != AUDIO_MIXER_ENUM)
1047 return (EINVAL);
1048
1049 sc->sc_mvmute = (cp->un.ord != 0);
1050
1051 if (sc->sc_mvmute) {
1052 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1053 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1054 ESO_MIXREG_LMVM_MUTE);
1055 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1056 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1057 ESO_MIXREG_RMVM_MUTE);
1058 } else {
1059 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1060 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1061 ~ESO_MIXREG_LMVM_MUTE);
1062 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1063 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1064 ~ESO_MIXREG_RMVM_MUTE);
1065 }
1066 break;
1067
1068 case ESO_MONOOUT_SOURCE:
1069 if (cp->type != AUDIO_MIXER_ENUM)
1070 return (EINVAL);
1071
1072 return (eso_set_monooutsrc(sc, cp->un.ord));
1073
1074 case ESO_RECORD_MONITOR:
1075 if (cp->type != AUDIO_MIXER_ENUM)
1076 return (EINVAL);
1077
1078 sc->sc_recmon = (cp->un.ord != 0);
1079
1080 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1081 if (sc->sc_recmon)
1082 tmp |= ESO_CTLREG_ACTL_RECMON;
1083 else
1084 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1085 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1086 break;
1087
1088 case ESO_RECORD_SOURCE:
1089 if (cp->type != AUDIO_MIXER_ENUM)
1090 return (EINVAL);
1091
1092 return (eso_set_recsrc(sc, cp->un.ord));
1093
1094 case ESO_MIC_PREAMP:
1095 if (cp->type != AUDIO_MIXER_ENUM)
1096 return (EINVAL);
1097
1098 sc->sc_preamp = (cp->un.ord != 0);
1099
1100 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1101 tmp &= ~ESO_MIXREG_MPM_RESV0;
1102 if (sc->sc_preamp)
1103 tmp |= ESO_MIXREG_MPM_PREAMP;
1104 else
1105 tmp &= ~ESO_MIXREG_MPM_PREAMP;
1106 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1107 break;
1108
1109 default:
1110 return (EINVAL);
1111 }
1112
1113 return (0);
1114 }
1115
1116 static int
1117 eso_get_port(hdl, cp)
1118 void *hdl;
1119 mixer_ctrl_t *cp;
1120 {
1121 struct eso_softc *sc = hdl;
1122
1123 switch (cp->dev) {
1124 case ESO_MASTER_VOL:
1125 /* Reload from mixer after hardware volume control use. */
1126 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1127 eso_reload_master_vol(sc);
1128 /* FALLTHROUGH */
1129 case ESO_DAC_PLAY_VOL:
1130 case ESO_MIC_PLAY_VOL:
1131 case ESO_LINE_PLAY_VOL:
1132 case ESO_SYNTH_PLAY_VOL:
1133 case ESO_CD_PLAY_VOL:
1134 case ESO_AUXB_PLAY_VOL:
1135 case ESO_RECORD_VOL:
1136 case ESO_DAC_REC_VOL:
1137 case ESO_MIC_REC_VOL:
1138 case ESO_LINE_REC_VOL:
1139 case ESO_SYNTH_REC_VOL:
1140 case ESO_CD_REC_VOL:
1141 case ESO_AUXB_REC_VOL:
1142 /*
1143 * Stereo-capable ports: if a single-channel query is made,
1144 * just return the left channel's value (since single-channel
1145 * settings themselves are applied to both channels).
1146 */
1147 switch (cp->un.value.num_channels) {
1148 case 1:
1149 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1150 sc->sc_gain[cp->dev][ESO_LEFT];
1151 break;
1152 case 2:
1153 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1154 sc->sc_gain[cp->dev][ESO_LEFT];
1155 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1156 sc->sc_gain[cp->dev][ESO_RIGHT];
1157 break;
1158 default:
1159 return (EINVAL);
1160 }
1161 break;
1162
1163 case ESO_MONO_PLAY_VOL:
1164 case ESO_PCSPEAKER_VOL:
1165 case ESO_MONO_REC_VOL:
1166 case ESO_SPATIALIZER:
1167 if (cp->un.value.num_channels != 1)
1168 return (EINVAL);
1169 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1170 sc->sc_gain[cp->dev][ESO_LEFT];
1171 break;
1172
1173 case ESO_RECORD_MONITOR:
1174 cp->un.ord = sc->sc_recmon;
1175 break;
1176
1177 case ESO_RECORD_SOURCE:
1178 cp->un.ord = sc->sc_recsrc;
1179 break;
1180
1181 case ESO_MONOOUT_SOURCE:
1182 cp->un.ord = sc->sc_monooutsrc;
1183 break;
1184
1185 case ESO_SPATIALIZER_ENABLE:
1186 cp->un.ord = sc->sc_spatializer;
1187 break;
1188
1189 case ESO_MIC_PREAMP:
1190 cp->un.ord = sc->sc_preamp;
1191 break;
1192
1193 case ESO_MASTER_MUTE:
1194 /* Reload from mixer after hardware volume control use. */
1195 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1196 eso_reload_master_vol(sc);
1197 cp->un.ord = sc->sc_mvmute;
1198 break;
1199
1200 default:
1201 return (EINVAL);
1202 }
1203
1204
1205 return (0);
1206
1207 }
1208
1209 static int
1210 eso_query_devinfo(hdl, dip)
1211 void *hdl;
1212 mixer_devinfo_t *dip;
1213 {
1214
1215 switch (dip->index) {
1216 case ESO_DAC_PLAY_VOL:
1217 dip->mixer_class = ESO_INPUT_CLASS;
1218 dip->next = dip->prev = AUDIO_MIXER_LAST;
1219 strcpy(dip->label.name, AudioNdac);
1220 dip->type = AUDIO_MIXER_VALUE;
1221 dip->un.v.num_channels = 2;
1222 strcpy(dip->un.v.units.name, AudioNvolume);
1223 break;
1224 case ESO_MIC_PLAY_VOL:
1225 dip->mixer_class = ESO_INPUT_CLASS;
1226 dip->next = dip->prev = AUDIO_MIXER_LAST;
1227 strcpy(dip->label.name, AudioNmicrophone);
1228 dip->type = AUDIO_MIXER_VALUE;
1229 dip->un.v.num_channels = 2;
1230 strcpy(dip->un.v.units.name, AudioNvolume);
1231 break;
1232 case ESO_LINE_PLAY_VOL:
1233 dip->mixer_class = ESO_INPUT_CLASS;
1234 dip->next = dip->prev = AUDIO_MIXER_LAST;
1235 strcpy(dip->label.name, AudioNline);
1236 dip->type = AUDIO_MIXER_VALUE;
1237 dip->un.v.num_channels = 2;
1238 strcpy(dip->un.v.units.name, AudioNvolume);
1239 break;
1240 case ESO_SYNTH_PLAY_VOL:
1241 dip->mixer_class = ESO_INPUT_CLASS;
1242 dip->next = dip->prev = AUDIO_MIXER_LAST;
1243 strcpy(dip->label.name, AudioNfmsynth);
1244 dip->type = AUDIO_MIXER_VALUE;
1245 dip->un.v.num_channels = 2;
1246 strcpy(dip->un.v.units.name, AudioNvolume);
1247 break;
1248 case ESO_MONO_PLAY_VOL:
1249 dip->mixer_class = ESO_INPUT_CLASS;
1250 dip->next = dip->prev = AUDIO_MIXER_LAST;
1251 strcpy(dip->label.name, "mono_in");
1252 dip->type = AUDIO_MIXER_VALUE;
1253 dip->un.v.num_channels = 1;
1254 strcpy(dip->un.v.units.name, AudioNvolume);
1255 break;
1256 case ESO_CD_PLAY_VOL:
1257 dip->mixer_class = ESO_INPUT_CLASS;
1258 dip->next = dip->prev = AUDIO_MIXER_LAST;
1259 strcpy(dip->label.name, AudioNcd);
1260 dip->type = AUDIO_MIXER_VALUE;
1261 dip->un.v.num_channels = 2;
1262 strcpy(dip->un.v.units.name, AudioNvolume);
1263 break;
1264 case ESO_AUXB_PLAY_VOL:
1265 dip->mixer_class = ESO_INPUT_CLASS;
1266 dip->next = dip->prev = AUDIO_MIXER_LAST;
1267 strcpy(dip->label.name, "auxb");
1268 dip->type = AUDIO_MIXER_VALUE;
1269 dip->un.v.num_channels = 2;
1270 strcpy(dip->un.v.units.name, AudioNvolume);
1271 break;
1272
1273 case ESO_MIC_PREAMP:
1274 dip->mixer_class = ESO_MICROPHONE_CLASS;
1275 dip->next = dip->prev = AUDIO_MIXER_LAST;
1276 strcpy(dip->label.name, AudioNpreamp);
1277 dip->type = AUDIO_MIXER_ENUM;
1278 dip->un.e.num_mem = 2;
1279 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1280 dip->un.e.member[0].ord = 0;
1281 strcpy(dip->un.e.member[1].label.name, AudioNon);
1282 dip->un.e.member[1].ord = 1;
1283 break;
1284 case ESO_MICROPHONE_CLASS:
1285 dip->mixer_class = ESO_MICROPHONE_CLASS;
1286 dip->next = dip->prev = AUDIO_MIXER_LAST;
1287 strcpy(dip->label.name, AudioNmicrophone);
1288 dip->type = AUDIO_MIXER_CLASS;
1289 break;
1290
1291 case ESO_INPUT_CLASS:
1292 dip->mixer_class = ESO_INPUT_CLASS;
1293 dip->next = dip->prev = AUDIO_MIXER_LAST;
1294 strcpy(dip->label.name, AudioCinputs);
1295 dip->type = AUDIO_MIXER_CLASS;
1296 break;
1297
1298 case ESO_MASTER_VOL:
1299 dip->mixer_class = ESO_OUTPUT_CLASS;
1300 dip->prev = AUDIO_MIXER_LAST;
1301 dip->next = ESO_MASTER_MUTE;
1302 strcpy(dip->label.name, AudioNmaster);
1303 dip->type = AUDIO_MIXER_VALUE;
1304 dip->un.v.num_channels = 2;
1305 strcpy(dip->un.v.units.name, AudioNvolume);
1306 break;
1307 case ESO_MASTER_MUTE:
1308 dip->mixer_class = ESO_OUTPUT_CLASS;
1309 dip->prev = ESO_MASTER_VOL;
1310 dip->next = AUDIO_MIXER_LAST;
1311 strcpy(dip->label.name, AudioNmute);
1312 dip->type = AUDIO_MIXER_ENUM;
1313 dip->un.e.num_mem = 2;
1314 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1315 dip->un.e.member[0].ord = 0;
1316 strcpy(dip->un.e.member[1].label.name, AudioNon);
1317 dip->un.e.member[1].ord = 1;
1318 break;
1319
1320 case ESO_PCSPEAKER_VOL:
1321 dip->mixer_class = ESO_OUTPUT_CLASS;
1322 dip->next = dip->prev = AUDIO_MIXER_LAST;
1323 strcpy(dip->label.name, "pc_speaker");
1324 dip->type = AUDIO_MIXER_VALUE;
1325 dip->un.v.num_channels = 1;
1326 strcpy(dip->un.v.units.name, AudioNvolume);
1327 break;
1328 case ESO_MONOOUT_SOURCE:
1329 dip->mixer_class = ESO_OUTPUT_CLASS;
1330 dip->next = dip->prev = AUDIO_MIXER_LAST;
1331 strcpy(dip->label.name, "mono_out");
1332 dip->type = AUDIO_MIXER_ENUM;
1333 dip->un.e.num_mem = 3;
1334 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1335 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1336 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1337 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1338 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1339 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1340 break;
1341 case ESO_SPATIALIZER:
1342 dip->mixer_class = ESO_OUTPUT_CLASS;
1343 dip->prev = AUDIO_MIXER_LAST;
1344 dip->next = ESO_SPATIALIZER_ENABLE;
1345 strcpy(dip->label.name, AudioNspatial);
1346 dip->type = AUDIO_MIXER_VALUE;
1347 dip->un.v.num_channels = 1;
1348 strcpy(dip->un.v.units.name, "level");
1349 break;
1350 case ESO_SPATIALIZER_ENABLE:
1351 dip->mixer_class = ESO_OUTPUT_CLASS;
1352 dip->prev = ESO_SPATIALIZER;
1353 dip->next = AUDIO_MIXER_LAST;
1354 strcpy(dip->label.name, "enable");
1355 dip->type = AUDIO_MIXER_ENUM;
1356 dip->un.e.num_mem = 2;
1357 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1358 dip->un.e.member[0].ord = 0;
1359 strcpy(dip->un.e.member[1].label.name, AudioNon);
1360 dip->un.e.member[1].ord = 1;
1361 break;
1362
1363 case ESO_OUTPUT_CLASS:
1364 dip->mixer_class = ESO_OUTPUT_CLASS;
1365 dip->next = dip->prev = AUDIO_MIXER_LAST;
1366 strcpy(dip->label.name, AudioCoutputs);
1367 dip->type = AUDIO_MIXER_CLASS;
1368 break;
1369
1370 case ESO_RECORD_MONITOR:
1371 dip->mixer_class = ESO_MONITOR_CLASS;
1372 dip->next = dip->prev = AUDIO_MIXER_LAST;
1373 strcpy(dip->label.name, AudioNmute);
1374 dip->type = AUDIO_MIXER_ENUM;
1375 dip->un.e.num_mem = 2;
1376 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1377 dip->un.e.member[0].ord = 0;
1378 strcpy(dip->un.e.member[1].label.name, AudioNon);
1379 dip->un.e.member[1].ord = 1;
1380 break;
1381 case ESO_MONITOR_CLASS:
1382 dip->mixer_class = ESO_MONITOR_CLASS;
1383 dip->next = dip->prev = AUDIO_MIXER_LAST;
1384 strcpy(dip->label.name, AudioCmonitor);
1385 dip->type = AUDIO_MIXER_CLASS;
1386 break;
1387
1388 case ESO_RECORD_VOL:
1389 dip->mixer_class = ESO_RECORD_CLASS;
1390 dip->next = dip->prev = AUDIO_MIXER_LAST;
1391 strcpy(dip->label.name, AudioNrecord);
1392 dip->type = AUDIO_MIXER_VALUE;
1393 strcpy(dip->un.v.units.name, AudioNvolume);
1394 break;
1395 case ESO_RECORD_SOURCE:
1396 dip->mixer_class = ESO_RECORD_CLASS;
1397 dip->next = dip->prev = AUDIO_MIXER_LAST;
1398 strcpy(dip->label.name, AudioNsource);
1399 dip->type = AUDIO_MIXER_ENUM;
1400 dip->un.e.num_mem = 4;
1401 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1402 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1403 strcpy(dip->un.e.member[1].label.name, AudioNline);
1404 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1405 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1406 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1407 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1408 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1409 break;
1410 case ESO_DAC_REC_VOL:
1411 dip->mixer_class = ESO_RECORD_CLASS;
1412 dip->next = dip->prev = AUDIO_MIXER_LAST;
1413 strcpy(dip->label.name, AudioNdac);
1414 dip->type = AUDIO_MIXER_VALUE;
1415 dip->un.v.num_channels = 2;
1416 strcpy(dip->un.v.units.name, AudioNvolume);
1417 break;
1418 case ESO_MIC_REC_VOL:
1419 dip->mixer_class = ESO_RECORD_CLASS;
1420 dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 strcpy(dip->label.name, AudioNmicrophone);
1422 dip->type = AUDIO_MIXER_VALUE;
1423 dip->un.v.num_channels = 2;
1424 strcpy(dip->un.v.units.name, AudioNvolume);
1425 break;
1426 case ESO_LINE_REC_VOL:
1427 dip->mixer_class = ESO_RECORD_CLASS;
1428 dip->next = dip->prev = AUDIO_MIXER_LAST;
1429 strcpy(dip->label.name, AudioNline);
1430 dip->type = AUDIO_MIXER_VALUE;
1431 dip->un.v.num_channels = 2;
1432 strcpy(dip->un.v.units.name, AudioNvolume);
1433 break;
1434 case ESO_SYNTH_REC_VOL:
1435 dip->mixer_class = ESO_RECORD_CLASS;
1436 dip->next = dip->prev = AUDIO_MIXER_LAST;
1437 strcpy(dip->label.name, AudioNfmsynth);
1438 dip->type = AUDIO_MIXER_VALUE;
1439 dip->un.v.num_channels = 2;
1440 strcpy(dip->un.v.units.name, AudioNvolume);
1441 break;
1442 case ESO_MONO_REC_VOL:
1443 dip->mixer_class = ESO_RECORD_CLASS;
1444 dip->next = dip->prev = AUDIO_MIXER_LAST;
1445 strcpy(dip->label.name, "mono_in");
1446 dip->type = AUDIO_MIXER_VALUE;
1447 dip->un.v.num_channels = 1; /* No lies */
1448 strcpy(dip->un.v.units.name, AudioNvolume);
1449 break;
1450 case ESO_CD_REC_VOL:
1451 dip->mixer_class = ESO_RECORD_CLASS;
1452 dip->next = dip->prev = AUDIO_MIXER_LAST;
1453 strcpy(dip->label.name, AudioNcd);
1454 dip->type = AUDIO_MIXER_VALUE;
1455 dip->un.v.num_channels = 2;
1456 strcpy(dip->un.v.units.name, AudioNvolume);
1457 break;
1458 case ESO_AUXB_REC_VOL:
1459 dip->mixer_class = ESO_RECORD_CLASS;
1460 dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 strcpy(dip->label.name, "auxb");
1462 dip->type = AUDIO_MIXER_VALUE;
1463 dip->un.v.num_channels = 2;
1464 strcpy(dip->un.v.units.name, AudioNvolume);
1465 break;
1466 case ESO_RECORD_CLASS:
1467 dip->mixer_class = ESO_RECORD_CLASS;
1468 dip->next = dip->prev = AUDIO_MIXER_LAST;
1469 strcpy(dip->label.name, AudioCrecord);
1470 dip->type = AUDIO_MIXER_CLASS;
1471 break;
1472
1473 default:
1474 return (ENXIO);
1475 }
1476
1477 return (0);
1478 }
1479
1480 static int
1481 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1482 struct eso_softc *sc;
1483 size_t size;
1484 size_t align;
1485 size_t boundary;
1486 int flags;
1487 int direction;
1488 struct eso_dma *ed;
1489 {
1490 int error, wait;
1491
1492 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1493 ed->ed_size = size;
1494
1495 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1496 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1497 &ed->ed_nsegs, wait);
1498 if (error)
1499 goto out;
1500
1501 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1502 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1503 if (error)
1504 goto free;
1505
1506 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1507 wait, &ed->ed_map);
1508 if (error)
1509 goto unmap;
1510
1511 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1512 ed->ed_size, NULL, wait |
1513 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1514 if (error)
1515 goto destroy;
1516
1517 return (0);
1518
1519 destroy:
1520 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1521 unmap:
1522 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1523 free:
1524 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1525 out:
1526 return (error);
1527 }
1528
1529 static void
1530 eso_freemem(ed)
1531 struct eso_dma *ed;
1532 {
1533
1534 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1535 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1536 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1537 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1538 }
1539
1540 static void *
1541 eso_allocm(hdl, direction, size, type, flags)
1542 void *hdl;
1543 int direction;
1544 size_t size;
1545 struct malloc_type *type;
1546 int flags;
1547 {
1548 struct eso_softc *sc = hdl;
1549 struct eso_dma *ed;
1550 size_t boundary;
1551 int error;
1552
1553 if ((ed = malloc(size, type, flags)) == NULL)
1554 return (NULL);
1555
1556 /*
1557 * Apparently the Audio 1 DMA controller's current address
1558 * register can't roll over a 64K address boundary, so we have to
1559 * take care of that ourselves. Similarly, the Audio 2 DMA
1560 * controller needs a 1M address boundary.
1561 */
1562 if (direction == AUMODE_RECORD)
1563 boundary = 0x10000;
1564 else
1565 boundary = 0x100000;
1566
1567 #ifdef alpha
1568 /*
1569 * XXX For Audio 1, which implements the 24 low address bits only,
1570 * XXX force allocation through the (ISA) SGMAP.
1571 */
1572 if (direction == AUMODE_RECORD)
1573 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1574 else
1575 #endif
1576 ed->ed_dmat = sc->sc_dmat;
1577
1578 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1579 if (error) {
1580 free(ed, type);
1581 return (NULL);
1582 }
1583 ed->ed_next = sc->sc_dmas;
1584 sc->sc_dmas = ed;
1585
1586 return (KVADDR(ed));
1587 }
1588
1589 static void
1590 eso_freem(hdl, addr, type)
1591 void *hdl;
1592 void *addr;
1593 struct malloc_type *type;
1594 {
1595 struct eso_softc *sc = hdl;
1596 struct eso_dma *p, **pp;
1597
1598 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1599 if (KVADDR(p) == addr) {
1600 eso_freemem(p);
1601 *pp = p->ed_next;
1602 free(p, type);
1603 return;
1604 }
1605 }
1606 }
1607
1608 static size_t
1609 eso_round_buffersize(hdl, direction, bufsize)
1610 void *hdl;
1611 int direction;
1612 size_t bufsize;
1613 {
1614 size_t maxsize;
1615
1616 /*
1617 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1618 * bytes. This is because IO_A2DMAC is a two byte value
1619 * indicating the literal byte count, and the 4 least significant
1620 * bits are read-only. Zero is not used as a special case for
1621 * 0x10000.
1622 *
1623 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1624 * be represented.
1625 */
1626 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1627
1628 if (bufsize > maxsize)
1629 bufsize = maxsize;
1630
1631 return (bufsize);
1632 }
1633
1634 static paddr_t
1635 eso_mappage(hdl, addr, offs, prot)
1636 void *hdl;
1637 void *addr;
1638 off_t offs;
1639 int prot;
1640 {
1641 struct eso_softc *sc = hdl;
1642 struct eso_dma *ed;
1643
1644 if (offs < 0)
1645 return (-1);
1646 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1647 ed = ed->ed_next)
1648 ;
1649 if (ed == NULL)
1650 return (-1);
1651
1652 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1653 offs, prot, BUS_DMA_WAITOK));
1654 }
1655
1656 /* ARGSUSED */
1657 static int
1658 eso_get_props(hdl)
1659 void *hdl;
1660 {
1661
1662 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1663 AUDIO_PROP_FULLDUPLEX);
1664 }
1665
1666 static int
1667 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1668 void *hdl;
1669 void *start, *end;
1670 int blksize;
1671 void (*intr) __P((void *));
1672 void *arg;
1673 struct audio_params *param;
1674 {
1675 struct eso_softc *sc = hdl;
1676 struct eso_dma *ed;
1677 uint8_t a2c1;
1678
1679 DPRINTF((
1680 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1681 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1682 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1683 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1684 param->precision, param->channels, param->sw_code, param->factor));
1685
1686 /* Find DMA buffer. */
1687 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1688 ed = ed->ed_next)
1689 ;
1690 if (ed == NULL) {
1691 printf("%s: trigger_output: bad addr %p\n",
1692 sc->sc_dev.dv_xname, start);
1693 return (EINVAL);
1694 }
1695
1696 sc->sc_pintr = intr;
1697 sc->sc_parg = arg;
1698
1699 /* Compute drain timeout. */
1700 sc->sc_pdrain = (blksize * NBBY * hz) /
1701 (param->sample_rate * param->channels *
1702 param->precision * param->factor) + 2; /* slop */
1703
1704 /* DMA transfer count (in `words'!) reload using 2's complement. */
1705 blksize = -(blksize >> 1);
1706 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1707 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1708
1709 /* Update DAC to reflect DMA count and audio parameters. */
1710 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1711 if (param->precision * param->factor == 16)
1712 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1713 else
1714 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1715 if (param->channels == 2)
1716 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1717 else
1718 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1719 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1720 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1721 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1722 else
1723 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1724 /* Unmask IRQ. */
1725 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1726 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1727
1728 /* Set up DMA controller. */
1729 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1730 DMAADDR(ed));
1731 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1732 (uint8_t *)end - (uint8_t *)start);
1733 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1734 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1735
1736 /* Start DMA. */
1737 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1738 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1739 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1740 ESO_MIXREG_A2C1_AUTO;
1741 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1742
1743 return (0);
1744 }
1745
1746 static int
1747 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1748 void *hdl;
1749 void *start, *end;
1750 int blksize;
1751 void (*intr) __P((void *));
1752 void *arg;
1753 struct audio_params *param;
1754 {
1755 struct eso_softc *sc = hdl;
1756 struct eso_dma *ed;
1757 uint8_t actl, a1c1;
1758
1759 DPRINTF((
1760 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1761 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1762 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1763 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1764 param->precision, param->channels, param->sw_code, param->factor));
1765
1766 /*
1767 * If we failed to configure the Audio 1 DMA controller, bail here
1768 * while retaining availability of the DAC direction (in Audio 2).
1769 */
1770 if (!sc->sc_dmac_configured)
1771 return (EIO);
1772
1773 /* Find DMA buffer. */
1774 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1775 ed = ed->ed_next)
1776 ;
1777 if (ed == NULL) {
1778 printf("%s: trigger_output: bad addr %p\n",
1779 sc->sc_dev.dv_xname, start);
1780 return (EINVAL);
1781 }
1782
1783 sc->sc_rintr = intr;
1784 sc->sc_rarg = arg;
1785
1786 /* Compute drain timeout. */
1787 sc->sc_rdrain = (blksize * NBBY * hz) /
1788 (param->sample_rate * param->channels *
1789 param->precision * param->factor) + 2; /* slop */
1790
1791 /* Set up ADC DMA converter parameters. */
1792 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1793 if (param->channels == 2) {
1794 actl &= ~ESO_CTLREG_ACTL_MONO;
1795 actl |= ESO_CTLREG_ACTL_STEREO;
1796 } else {
1797 actl &= ~ESO_CTLREG_ACTL_STEREO;
1798 actl |= ESO_CTLREG_ACTL_MONO;
1799 }
1800 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1801
1802 /* Set up Transfer Type: maybe move to attach time? */
1803 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1804
1805 /* DMA transfer count reload using 2's complement. */
1806 blksize = -blksize;
1807 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1808 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1809
1810 /* Set up and enable Audio 1 DMA FIFO. */
1811 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1812 if (param->precision * param->factor == 16)
1813 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1814 if (param->channels == 2)
1815 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1816 else
1817 a1c1 |= ESO_CTLREG_A1C1_MONO;
1818 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1819 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1820 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1821 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1822
1823 /* Set up ADC IRQ/DRQ parameters. */
1824 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1825 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1826 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1827 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1828
1829 /* Set up and enable DMA controller. */
1830 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1831 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1832 ESO_DMAC_MASK_MASK);
1833 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1834 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1835 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1836 DMAADDR(ed));
1837 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1838 (uint8_t *)end - (uint8_t *)start - 1);
1839 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1840
1841 /* Start DMA. */
1842 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1843 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1844 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1845
1846 return (0);
1847 }
1848
1849 static int
1850 eso_set_monooutsrc(sc, monooutsrc)
1851 struct eso_softc *sc;
1852 unsigned int monooutsrc;
1853 {
1854 mixer_devinfo_t di;
1855 int i;
1856 uint8_t mpm;
1857
1858 di.index = ESO_MONOOUT_SOURCE;
1859 if (eso_query_devinfo(sc, &di) != 0)
1860 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1861
1862 for (i = 0; i < di.un.e.num_mem; i++) {
1863 if (monooutsrc == di.un.e.member[i].ord) {
1864 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1865 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1866 mpm |= monooutsrc;
1867 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1868 sc->sc_monooutsrc = monooutsrc;
1869 return (0);
1870 }
1871 }
1872
1873 return (EINVAL);
1874 }
1875
1876 static int
1877 eso_set_recsrc(sc, recsrc)
1878 struct eso_softc *sc;
1879 unsigned int recsrc;
1880 {
1881 mixer_devinfo_t di;
1882 int i;
1883
1884 di.index = ESO_RECORD_SOURCE;
1885 if (eso_query_devinfo(sc, &di) != 0)
1886 panic("eso_set_recsrc: eso_query_devinfo failed");
1887
1888 for (i = 0; i < di.un.e.num_mem; i++) {
1889 if (recsrc == di.un.e.member[i].ord) {
1890 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1891 sc->sc_recsrc = recsrc;
1892 return (0);
1893 }
1894 }
1895
1896 return (EINVAL);
1897 }
1898
1899 /*
1900 * Reload Master Volume and Mute values in softc from mixer; used when
1901 * those have previously been invalidated by use of hardware volume controls.
1902 */
1903 static void
1904 eso_reload_master_vol(sc)
1905 struct eso_softc *sc;
1906 {
1907 uint8_t mv;
1908
1909 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1910 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1911 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1912 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1913 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1914 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1915 /* Currently both channels are muted simultaneously; either is OK. */
1916 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1917 }
1918
1919 static void
1920 eso_set_gain(sc, port)
1921 struct eso_softc *sc;
1922 unsigned int port;
1923 {
1924 uint8_t mixreg, tmp;
1925
1926 switch (port) {
1927 case ESO_DAC_PLAY_VOL:
1928 mixreg = ESO_MIXREG_PVR_A2;
1929 break;
1930 case ESO_MIC_PLAY_VOL:
1931 mixreg = ESO_MIXREG_PVR_MIC;
1932 break;
1933 case ESO_LINE_PLAY_VOL:
1934 mixreg = ESO_MIXREG_PVR_LINE;
1935 break;
1936 case ESO_SYNTH_PLAY_VOL:
1937 mixreg = ESO_MIXREG_PVR_SYNTH;
1938 break;
1939 case ESO_CD_PLAY_VOL:
1940 mixreg = ESO_MIXREG_PVR_CD;
1941 break;
1942 case ESO_AUXB_PLAY_VOL:
1943 mixreg = ESO_MIXREG_PVR_AUXB;
1944 break;
1945
1946 case ESO_DAC_REC_VOL:
1947 mixreg = ESO_MIXREG_RVR_A2;
1948 break;
1949 case ESO_MIC_REC_VOL:
1950 mixreg = ESO_MIXREG_RVR_MIC;
1951 break;
1952 case ESO_LINE_REC_VOL:
1953 mixreg = ESO_MIXREG_RVR_LINE;
1954 break;
1955 case ESO_SYNTH_REC_VOL:
1956 mixreg = ESO_MIXREG_RVR_SYNTH;
1957 break;
1958 case ESO_CD_REC_VOL:
1959 mixreg = ESO_MIXREG_RVR_CD;
1960 break;
1961 case ESO_AUXB_REC_VOL:
1962 mixreg = ESO_MIXREG_RVR_AUXB;
1963 break;
1964 case ESO_MONO_PLAY_VOL:
1965 mixreg = ESO_MIXREG_PVR_MONO;
1966 break;
1967 case ESO_MONO_REC_VOL:
1968 mixreg = ESO_MIXREG_RVR_MONO;
1969 break;
1970
1971 case ESO_PCSPEAKER_VOL:
1972 /* Special case - only 3-bit, mono, and reserved bits. */
1973 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1974 tmp &= ESO_MIXREG_PCSVR_RESV;
1975 /* Map bits 7:5 -> 2:0. */
1976 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1977 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1978 return;
1979
1980 case ESO_MASTER_VOL:
1981 /* Special case - separate regs, and 6-bit precision. */
1982 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1983 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1984 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1985 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1986 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1987 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1988 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1989 return;
1990
1991 case ESO_SPATIALIZER:
1992 /* Special case - only `mono', and higher precision. */
1993 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1994 sc->sc_gain[port][ESO_LEFT]);
1995 return;
1996
1997 case ESO_RECORD_VOL:
1998 /* Very Special case, controller register. */
1999 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2000 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2001 return;
2002
2003 default:
2004 #ifdef DIAGNOSTIC
2005 panic("eso_set_gain: bad port %u", port);
2006 /* NOTREACHED */
2007 #else
2008 return;
2009 #endif
2010 }
2011
2012 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2013 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2014 }
2015