eso.c revision 1.34 1 /* $NetBSD: eso.c,v 1.34 2004/05/25 21:38:11 kleink Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.34 2004/05/25 21:38:11 kleink Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 #if defined(AUDIO_DEBUG) || defined(DEBUG)
66 #define DPRINTF(x) printf x
67 #else
68 #define DPRINTF(x)
69 #endif
70
71 struct eso_dma {
72 bus_dma_tag_t ed_dmat;
73 bus_dmamap_t ed_map;
74 caddr_t ed_addr;
75 bus_dma_segment_t ed_segs[1];
76 int ed_nsegs;
77 size_t ed_size;
78 struct eso_dma * ed_next;
79 };
80
81 #define KVADDR(dma) ((void *)(dma)->ed_addr)
82 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
83
84 /* Autoconfiguration interface */
85 static int eso_match __P((struct device *, struct cfdata *, void *));
86 static void eso_attach __P((struct device *, struct device *, void *));
87 static void eso_defer __P((struct device *));
88 static int eso_print __P((void *, const char *));
89
90 CFATTACH_DECL(eso, sizeof (struct eso_softc),
91 eso_match, eso_attach, NULL, NULL);
92
93 /* PCI interface */
94 static int eso_intr __P((void *));
95
96 /* MI audio layer interface */
97 static int eso_open __P((void *, int));
98 static void eso_close __P((void *));
99 static int eso_query_encoding __P((void *, struct audio_encoding *));
100 static int eso_set_params __P((void *, int, int, struct audio_params *,
101 struct audio_params *));
102 static int eso_round_blocksize __P((void *, int));
103 static int eso_halt_output __P((void *));
104 static int eso_halt_input __P((void *));
105 static int eso_getdev __P((void *, struct audio_device *));
106 static int eso_set_port __P((void *, mixer_ctrl_t *));
107 static int eso_get_port __P((void *, mixer_ctrl_t *));
108 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
109 static void * eso_allocm __P((void *, int, size_t, struct malloc_type *, int));
110 static void eso_freem __P((void *, void *, struct malloc_type *));
111 static size_t eso_round_buffersize __P((void *, int, size_t));
112 static paddr_t eso_mappage __P((void *, void *, off_t, int));
113 static int eso_get_props __P((void *));
114 static int eso_trigger_output __P((void *, void *, void *, int,
115 void (*)(void *), void *, struct audio_params *));
116 static int eso_trigger_input __P((void *, void *, void *, int,
117 void (*)(void *), void *, struct audio_params *));
118
119 static struct audio_hw_if eso_hw_if = {
120 eso_open,
121 eso_close,
122 NULL, /* drain */
123 eso_query_encoding,
124 eso_set_params,
125 eso_round_blocksize,
126 NULL, /* commit_settings */
127 NULL, /* init_output */
128 NULL, /* init_input */
129 NULL, /* start_output */
130 NULL, /* start_input */
131 eso_halt_output,
132 eso_halt_input,
133 NULL, /* speaker_ctl */
134 eso_getdev,
135 NULL, /* setfd */
136 eso_set_port,
137 eso_get_port,
138 eso_query_devinfo,
139 eso_allocm,
140 eso_freem,
141 eso_round_buffersize,
142 eso_mappage,
143 eso_get_props,
144 eso_trigger_output,
145 eso_trigger_input,
146 NULL, /* dev_ioctl */
147 };
148
149 static const char * const eso_rev2model[] = {
150 "ES1938",
151 "ES1946",
152 "ES1946 Revision E"
153 };
154
155
156 /*
157 * Utility routines
158 */
159 /* Register access etc. */
160 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
161 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
162 static uint8_t eso_read_rdr __P((struct eso_softc *));
163 static void eso_reload_master_vol __P((struct eso_softc *));
164 static int eso_reset __P((struct eso_softc *));
165 static void eso_set_gain __P((struct eso_softc *, unsigned int));
166 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
167 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
168 static int eso_set_monoinbypass __P((struct eso_softc *, unsigned int));
169 static int eso_set_preamp __P((struct eso_softc *, unsigned int));
170 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
171 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
172 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
173 /* DMA memory allocation */
174 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
175 int, int, struct eso_dma *));
176 static void eso_freemem __P((struct eso_dma *));
177
178
179 static int
180 eso_match(parent, match, aux)
181 struct device *parent;
182 struct cfdata *match;
183 void *aux;
184 {
185 struct pci_attach_args *pa = aux;
186
187 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
188 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
189 return (1);
190
191 return (0);
192 }
193
194 static void
195 eso_attach(parent, self, aux)
196 struct device *parent, *self;
197 void *aux;
198 {
199 struct eso_softc *sc = (struct eso_softc *)self;
200 struct pci_attach_args *pa = aux;
201 struct audio_attach_args aa;
202 pci_intr_handle_t ih;
203 bus_addr_t vcbase;
204 const char *intrstring;
205 int idx;
206 uint8_t a2mode, mvctl;
207
208 aprint_naive(": Audio controller\n");
209
210 sc->sc_revision = PCI_REVISION(pa->pa_class);
211
212 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
213 if (sc->sc_revision <
214 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
215 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
216 else
217 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
218
219 /* Map I/O registers. */
220 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
221 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
222 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
223 return;
224 }
225 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
226 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
227 aprint_error("%s: can't map SB I/O space\n",
228 sc->sc_dev.dv_xname);
229 return;
230 }
231 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
232 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
233 aprint_error("%s: can't map VC I/O space\n",
234 sc->sc_dev.dv_xname);
235 /* Don't bail out yet: we can map it later, see below. */
236 vcbase = 0;
237 sc->sc_vcsize = 0x10; /* From the data sheet. */
238 }
239 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
240 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
241 aprint_error("%s: can't map MPU I/O space\n",
242 sc->sc_dev.dv_xname);
243 return;
244 }
245 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
246 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
247 aprint_error("%s: can't map Game I/O space\n",
248 sc->sc_dev.dv_xname);
249 return;
250 }
251
252 sc->sc_dmat = pa->pa_dmat;
253 sc->sc_dmas = NULL;
254 sc->sc_dmac_configured = 0;
255
256 /* Enable bus mastering. */
257 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
258 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
259 PCI_COMMAND_MASTER_ENABLE);
260
261 /* Reset the device; bail out upon failure. */
262 if (eso_reset(sc) != 0) {
263 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
264 return;
265 }
266
267 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
268 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
269 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
270 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
271
272 /* Enable the relevant (DMA) interrupts. */
273 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
274 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
275 ESO_IO_IRQCTL_MPUIRQ);
276
277 /* Set up A1's sample rate generator for new-style parameters. */
278 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
279 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
280 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
281
282 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
283 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
284 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
285 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
286 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
287
288 /* Set mixer regs to something reasonable, needs work. */
289 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
290 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
291 eso_set_monoinbypass(sc, 0);
292 eso_set_preamp(sc, 1);
293 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
294 int v;
295
296 switch (idx) {
297 case ESO_MIC_PLAY_VOL:
298 case ESO_LINE_PLAY_VOL:
299 case ESO_CD_PLAY_VOL:
300 case ESO_MONO_PLAY_VOL:
301 case ESO_AUXB_PLAY_VOL:
302 case ESO_DAC_REC_VOL:
303 case ESO_LINE_REC_VOL:
304 case ESO_SYNTH_REC_VOL:
305 case ESO_CD_REC_VOL:
306 case ESO_MONO_REC_VOL:
307 case ESO_AUXB_REC_VOL:
308 case ESO_SPATIALIZER:
309 v = 0;
310 break;
311 case ESO_MASTER_VOL:
312 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
313 break;
314 default:
315 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
316 break;
317 }
318 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
319 eso_set_gain(sc, idx);
320 }
321 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
322
323 /* Map and establish the interrupt. */
324 if (pci_intr_map(pa, &ih)) {
325 aprint_error("%s: couldn't map interrupt\n",
326 sc->sc_dev.dv_xname);
327 return;
328 }
329 intrstring = pci_intr_string(pa->pa_pc, ih);
330 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
331 if (sc->sc_ih == NULL) {
332 aprint_error("%s: couldn't establish interrupt",
333 sc->sc_dev.dv_xname);
334 if (intrstring != NULL)
335 aprint_normal(" at %s", intrstring);
336 aprint_normal("\n");
337 return;
338 }
339 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
340 intrstring);
341
342 /*
343 * Set up the DDMA Control register; a suitable I/O region has been
344 * supposedly mapped in the VC base address register.
345 *
346 * The Solo-1 has an ... interesting silicon bug that causes it to
347 * not respond to I/O space accesses to the Audio 1 DMA controller
348 * if the latter's mapping base address is aligned on a 1K boundary.
349 * As a consequence, it is quite possible for the mapping provided
350 * in the VC BAR to be useless. To work around this, we defer this
351 * part until all autoconfiguration on our parent bus is completed
352 * and then try to map it ourselves in fulfillment of the constraint.
353 *
354 * According to the register map we may write to the low 16 bits
355 * only, but experimenting has shown we're safe.
356 * -kjk
357 */
358 if (ESO_VALID_DDMAC_BASE(vcbase)) {
359 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
360 vcbase | ESO_PCI_DDMAC_DE);
361 sc->sc_dmac_configured = 1;
362
363 aprint_normal(
364 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
365 sc->sc_dev.dv_xname, (unsigned long)vcbase);
366 } else {
367 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
368 sc->sc_dev.dv_xname, (unsigned long)vcbase));
369 sc->sc_pa = *pa;
370 config_defer(self, eso_defer);
371 }
372
373 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
374
375 aa.type = AUDIODEV_TYPE_OPL;
376 aa.hwif = NULL;
377 aa.hdl = NULL;
378 (void)config_found(&sc->sc_dev, &aa, audioprint);
379
380 aa.type = AUDIODEV_TYPE_MPU;
381 aa.hwif = NULL;
382 aa.hdl = NULL;
383 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
384 if (sc->sc_mpudev != NULL) {
385 /* Unmask the MPU irq. */
386 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
387 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
388 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
389 }
390
391 aa.type = AUDIODEV_TYPE_AUX;
392 aa.hwif = NULL;
393 aa.hdl = NULL;
394 (void)config_found(&sc->sc_dev, &aa, eso_print);
395 }
396
397 static void
398 eso_defer(self)
399 struct device *self;
400 {
401 struct eso_softc *sc = (struct eso_softc *)self;
402 struct pci_attach_args *pa = &sc->sc_pa;
403 bus_addr_t addr, start;
404
405 aprint_normal("%s: ", sc->sc_dev.dv_xname);
406
407 /*
408 * This is outright ugly, but since we must not make assumptions
409 * on the underlying allocator's behaviour it's the most straight-
410 * forward way to implement it. Note that we skip over the first
411 * 1K region, which is typically occupied by an attached ISA bus.
412 */
413 for (start = 0x0400; start < 0xffff; start += 0x0400) {
414 if (bus_space_alloc(sc->sc_iot,
415 start + sc->sc_vcsize, start + 0x0400 - 1,
416 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
417 &sc->sc_dmac_ioh) != 0)
418 continue;
419
420 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
421 addr | ESO_PCI_DDMAC_DE);
422 sc->sc_dmac_iot = sc->sc_iot;
423 sc->sc_dmac_configured = 1;
424 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
425 (unsigned long)addr);
426
427 return;
428 }
429
430 aprint_error("can't map Audio 1 DMA into I/O space\n");
431 }
432
433 /* ARGSUSED */
434 static int
435 eso_print(aux, pnp)
436 void *aux;
437 const char *pnp;
438 {
439
440 /* Only joys can attach via this; easy. */
441 if (pnp)
442 aprint_normal("joy at %s:", pnp);
443
444 return (UNCONF);
445 }
446
447 static void
448 eso_write_cmd(sc, cmd)
449 struct eso_softc *sc;
450 uint8_t cmd;
451 {
452 int i;
453
454 /* Poll for busy indicator to become clear. */
455 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
456 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
457 & ESO_SB_RSR_BUSY) == 0) {
458 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
459 ESO_SB_WDR, cmd);
460 return;
461 } else {
462 delay(10);
463 }
464 }
465
466 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
467 return;
468 }
469
470 /* Write to a controller register */
471 static void
472 eso_write_ctlreg(sc, reg, val)
473 struct eso_softc *sc;
474 uint8_t reg, val;
475 {
476
477 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
478
479 eso_write_cmd(sc, reg);
480 eso_write_cmd(sc, val);
481 }
482
483 /* Read out the Read Data Register */
484 static uint8_t
485 eso_read_rdr(sc)
486 struct eso_softc *sc;
487 {
488 int i;
489
490 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
491 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
492 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
493 return (bus_space_read_1(sc->sc_sb_iot,
494 sc->sc_sb_ioh, ESO_SB_RDR));
495 } else {
496 delay(10);
497 }
498 }
499
500 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
501 return (-1);
502 }
503
504
505 static uint8_t
506 eso_read_ctlreg(sc, reg)
507 struct eso_softc *sc;
508 uint8_t reg;
509 {
510
511 eso_write_cmd(sc, ESO_CMD_RCR);
512 eso_write_cmd(sc, reg);
513 return (eso_read_rdr(sc));
514 }
515
516 static void
517 eso_write_mixreg(sc, reg, val)
518 struct eso_softc *sc;
519 uint8_t reg, val;
520 {
521 int s;
522
523 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
524
525 s = splaudio();
526 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
527 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
528 splx(s);
529 }
530
531 static uint8_t
532 eso_read_mixreg(sc, reg)
533 struct eso_softc *sc;
534 uint8_t reg;
535 {
536 int s;
537 uint8_t val;
538
539 s = splaudio();
540 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
541 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
542 splx(s);
543
544 return (val);
545 }
546
547 static int
548 eso_intr(hdl)
549 void *hdl;
550 {
551 struct eso_softc *sc = hdl;
552 uint8_t irqctl;
553
554 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
555
556 /* If it wasn't ours, that's all she wrote. */
557 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
558 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
559 return (0);
560
561 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
562 /* Clear interrupt. */
563 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
564 ESO_SB_RBSR);
565
566 if (sc->sc_rintr)
567 sc->sc_rintr(sc->sc_rarg);
568 else
569 wakeup(&sc->sc_rintr);
570 }
571
572 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
573 /*
574 * Clear the A2 IRQ latch: the cached value reflects the
575 * current DAC settings with the IRQ latch bit not set.
576 */
577 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
578
579 if (sc->sc_pintr)
580 sc->sc_pintr(sc->sc_parg);
581 else
582 wakeup(&sc->sc_pintr);
583 }
584
585 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
586 /* Clear interrupt. */
587 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
588
589 /*
590 * Raise a flag to cause a lazy update of the in-softc gain
591 * values the next time the software mixer is read to keep
592 * interrupt service cost low. ~0 cannot occur otherwise
593 * as the master volume has a precision of 6 bits only.
594 */
595 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
596 }
597
598 #if NMPU > 0
599 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
600 mpu_intr(sc->sc_mpudev);
601 #endif
602
603 return (1);
604 }
605
606 /* Perform a software reset, including DMA FIFOs. */
607 static int
608 eso_reset(sc)
609 struct eso_softc *sc;
610 {
611 int i;
612
613 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
614 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
615 /* `Delay' suggested in the data sheet. */
616 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
617 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
618
619 /* Wait for reset to take effect. */
620 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
621 /* Poll for data to become available. */
622 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
623 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
624 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
625 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
626
627 /* Activate Solo-1 extension commands. */
628 eso_write_cmd(sc, ESO_CMD_EXTENB);
629 /* Reset mixer registers. */
630 eso_write_mixreg(sc, ESO_MIXREG_RESET,
631 ESO_MIXREG_RESET_RESET);
632
633 return (0);
634 } else {
635 delay(1000);
636 }
637 }
638
639 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
640 return (-1);
641 }
642
643
644 /* ARGSUSED */
645 static int
646 eso_open(hdl, flags)
647 void *hdl;
648 int flags;
649 {
650 struct eso_softc *sc = hdl;
651
652 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
653
654 sc->sc_pintr = NULL;
655 sc->sc_rintr = NULL;
656
657 return (0);
658 }
659
660 static void
661 eso_close(hdl)
662 void *hdl;
663 {
664
665 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
666 }
667
668 static int
669 eso_query_encoding(hdl, fp)
670 void *hdl;
671 struct audio_encoding *fp;
672 {
673
674 switch (fp->index) {
675 case 0:
676 strcpy(fp->name, AudioEulinear);
677 fp->encoding = AUDIO_ENCODING_ULINEAR;
678 fp->precision = 8;
679 fp->flags = 0;
680 break;
681 case 1:
682 strcpy(fp->name, AudioEmulaw);
683 fp->encoding = AUDIO_ENCODING_ULAW;
684 fp->precision = 8;
685 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
686 break;
687 case 2:
688 strcpy(fp->name, AudioEalaw);
689 fp->encoding = AUDIO_ENCODING_ALAW;
690 fp->precision = 8;
691 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
692 break;
693 case 3:
694 strcpy(fp->name, AudioEslinear);
695 fp->encoding = AUDIO_ENCODING_SLINEAR;
696 fp->precision = 8;
697 fp->flags = 0;
698 break;
699 case 4:
700 strcpy(fp->name, AudioEslinear_le);
701 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
702 fp->precision = 16;
703 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
704 break;
705 case 5:
706 strcpy(fp->name, AudioEulinear_le);
707 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
708 fp->precision = 16;
709 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
710 break;
711 case 6:
712 strcpy(fp->name, AudioEslinear_be);
713 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
714 fp->precision = 16;
715 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
716 break;
717 case 7:
718 strcpy(fp->name, AudioEulinear_be);
719 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
720 fp->precision = 16;
721 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
722 break;
723 default:
724 return (EINVAL);
725 }
726
727 return (0);
728 }
729
730 static int
731 eso_set_params(hdl, setmode, usemode, play, rec)
732 void *hdl;
733 int setmode, usemode;
734 struct audio_params *play, *rec;
735 {
736 struct eso_softc *sc = hdl;
737 struct audio_params *p;
738 int mode, r[2], rd[2], clk;
739 unsigned int srg, fltdiv;
740
741 for (mode = AUMODE_RECORD; mode != -1;
742 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
743 if ((setmode & mode) == 0)
744 continue;
745
746 p = (mode == AUMODE_PLAY) ? play : rec;
747
748 if (p->sample_rate < ESO_MINRATE ||
749 p->sample_rate > ESO_MAXRATE ||
750 (p->precision != 8 && p->precision != 16) ||
751 (p->channels != 1 && p->channels != 2))
752 return (EINVAL);
753
754 p->factor = 1;
755 p->sw_code = NULL;
756 switch (p->encoding) {
757 case AUDIO_ENCODING_SLINEAR_BE:
758 case AUDIO_ENCODING_ULINEAR_BE:
759 if (mode == AUMODE_PLAY && p->precision == 16)
760 p->sw_code = swap_bytes;
761 break;
762 case AUDIO_ENCODING_SLINEAR_LE:
763 case AUDIO_ENCODING_ULINEAR_LE:
764 if (mode == AUMODE_RECORD && p->precision == 16)
765 p->sw_code = swap_bytes;
766 break;
767 case AUDIO_ENCODING_ULAW:
768 if (mode == AUMODE_PLAY) {
769 p->factor = 2;
770 p->sw_code = mulaw_to_ulinear16_le;
771 } else {
772 p->sw_code = ulinear8_to_mulaw;
773 }
774 break;
775 case AUDIO_ENCODING_ALAW:
776 if (mode == AUMODE_PLAY) {
777 p->factor = 2;
778 p->sw_code = alaw_to_ulinear16_le;
779 } else {
780 p->sw_code = ulinear8_to_alaw;
781 }
782 break;
783 default:
784 return (EINVAL);
785 }
786
787 /*
788 * We'll compute both possible sample rate dividers and pick
789 * the one with the least error.
790 */
791 #define ABS(x) ((x) < 0 ? -(x) : (x))
792 r[0] = ESO_CLK0 /
793 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
794 r[1] = ESO_CLK1 /
795 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
796
797 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
798 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
799
800 /* Roll-off frequency of 87%, as in the ES1888 driver. */
801 fltdiv = 256 - 200279L / r[clk];
802
803 /* Update to reflect the possibly inexact rate. */
804 p->sample_rate = r[clk];
805
806 if (mode == AUMODE_RECORD) {
807 /* Audio 1 */
808 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
809 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
810 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
811 } else {
812 /* Audio 2 */
813 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
814 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
815 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
816 }
817 #undef ABS
818
819 }
820
821 return (0);
822 }
823
824 static int
825 eso_round_blocksize(hdl, blk)
826 void *hdl;
827 int blk;
828 {
829
830 return (blk & -32); /* keep good alignment; at least 16 req'd */
831 }
832
833 static int
834 eso_halt_output(hdl)
835 void *hdl;
836 {
837 struct eso_softc *sc = hdl;
838 int error, s;
839
840 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
841
842 /*
843 * Disable auto-initialize DMA, allowing the FIFO to drain and then
844 * stop. The interrupt callback pointer is cleared at this
845 * point so that an outstanding FIFO interrupt for the remaining data
846 * will be acknowledged without further processing.
847 *
848 * This does not immediately `abort' an operation in progress (c.f.
849 * audio(9)) but is the method to leave the FIFO behind in a clean
850 * state with the least hair. (Besides, that item needs to be
851 * rephrased for trigger_*()-based DMA environments.)
852 */
853 s = splaudio();
854 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
855 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
856 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
857 ESO_IO_A2DMAM_DMAENB);
858
859 sc->sc_pintr = NULL;
860 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
861 splx(s);
862
863 /* Shut down DMA completely. */
864 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
865 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
866
867 return (error == EWOULDBLOCK ? 0 : error);
868 }
869
870 static int
871 eso_halt_input(hdl)
872 void *hdl;
873 {
874 struct eso_softc *sc = hdl;
875 int error, s;
876
877 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
878
879 /* Just like eso_halt_output(), but for Audio 1. */
880 s = splaudio();
881 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
882 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
883 ESO_CTLREG_A1C2_DMAENB);
884 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
885 DMA37MD_WRITE | DMA37MD_DEMAND);
886
887 sc->sc_rintr = NULL;
888 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
889 splx(s);
890
891 /* Shut down DMA completely. */
892 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
893 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
894 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
895 ESO_DMAC_MASK_MASK);
896
897 return (error == EWOULDBLOCK ? 0 : error);
898 }
899
900 static int
901 eso_getdev(hdl, retp)
902 void *hdl;
903 struct audio_device *retp;
904 {
905 struct eso_softc *sc = hdl;
906
907 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
908 snprintf(retp->version, sizeof (retp->version), "0x%02x",
909 sc->sc_revision);
910 if (sc->sc_revision <
911 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
912 strncpy(retp->config, eso_rev2model[sc->sc_revision],
913 sizeof (retp->config));
914 else
915 strncpy(retp->config, "unknown", sizeof (retp->config));
916
917 return (0);
918 }
919
920 static int
921 eso_set_port(hdl, cp)
922 void *hdl;
923 mixer_ctrl_t *cp;
924 {
925 struct eso_softc *sc = hdl;
926 unsigned int lgain, rgain;
927 uint8_t tmp;
928
929 switch (cp->dev) {
930 case ESO_DAC_PLAY_VOL:
931 case ESO_MIC_PLAY_VOL:
932 case ESO_LINE_PLAY_VOL:
933 case ESO_SYNTH_PLAY_VOL:
934 case ESO_CD_PLAY_VOL:
935 case ESO_AUXB_PLAY_VOL:
936 case ESO_RECORD_VOL:
937 case ESO_DAC_REC_VOL:
938 case ESO_MIC_REC_VOL:
939 case ESO_LINE_REC_VOL:
940 case ESO_SYNTH_REC_VOL:
941 case ESO_CD_REC_VOL:
942 case ESO_AUXB_REC_VOL:
943 if (cp->type != AUDIO_MIXER_VALUE)
944 return (EINVAL);
945
946 /*
947 * Stereo-capable mixer ports: if we get a single-channel
948 * gain value passed in, then we duplicate it to both left
949 * and right channels.
950 */
951 switch (cp->un.value.num_channels) {
952 case 1:
953 lgain = rgain = ESO_GAIN_TO_4BIT(
954 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
955 break;
956 case 2:
957 lgain = ESO_GAIN_TO_4BIT(
958 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
959 rgain = ESO_GAIN_TO_4BIT(
960 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
961 break;
962 default:
963 return (EINVAL);
964 }
965
966 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
967 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
968 eso_set_gain(sc, cp->dev);
969 break;
970
971 case ESO_MASTER_VOL:
972 if (cp->type != AUDIO_MIXER_VALUE)
973 return (EINVAL);
974
975 /* Like above, but a precision of 6 bits. */
976 switch (cp->un.value.num_channels) {
977 case 1:
978 lgain = rgain = ESO_GAIN_TO_6BIT(
979 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
980 break;
981 case 2:
982 lgain = ESO_GAIN_TO_6BIT(
983 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
984 rgain = ESO_GAIN_TO_6BIT(
985 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
986 break;
987 default:
988 return (EINVAL);
989 }
990
991 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
992 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
993 eso_set_gain(sc, cp->dev);
994 break;
995
996 case ESO_SPATIALIZER:
997 if (cp->type != AUDIO_MIXER_VALUE ||
998 cp->un.value.num_channels != 1)
999 return (EINVAL);
1000
1001 sc->sc_gain[cp->dev][ESO_LEFT] =
1002 sc->sc_gain[cp->dev][ESO_RIGHT] =
1003 ESO_GAIN_TO_6BIT(
1004 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1005 eso_set_gain(sc, cp->dev);
1006 break;
1007
1008 case ESO_MONO_PLAY_VOL:
1009 case ESO_MONO_REC_VOL:
1010 if (cp->type != AUDIO_MIXER_VALUE ||
1011 cp->un.value.num_channels != 1)
1012 return (EINVAL);
1013
1014 sc->sc_gain[cp->dev][ESO_LEFT] =
1015 sc->sc_gain[cp->dev][ESO_RIGHT] =
1016 ESO_GAIN_TO_4BIT(
1017 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1018 eso_set_gain(sc, cp->dev);
1019 break;
1020
1021 case ESO_PCSPEAKER_VOL:
1022 if (cp->type != AUDIO_MIXER_VALUE ||
1023 cp->un.value.num_channels != 1)
1024 return (EINVAL);
1025
1026 sc->sc_gain[cp->dev][ESO_LEFT] =
1027 sc->sc_gain[cp->dev][ESO_RIGHT] =
1028 ESO_GAIN_TO_3BIT(
1029 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1030 eso_set_gain(sc, cp->dev);
1031 break;
1032
1033 case ESO_SPATIALIZER_ENABLE:
1034 if (cp->type != AUDIO_MIXER_ENUM)
1035 return (EINVAL);
1036
1037 sc->sc_spatializer = (cp->un.ord != 0);
1038
1039 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1040 if (sc->sc_spatializer)
1041 tmp |= ESO_MIXREG_SPAT_ENB;
1042 else
1043 tmp &= ~ESO_MIXREG_SPAT_ENB;
1044 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1045 tmp | ESO_MIXREG_SPAT_RSTREL);
1046 break;
1047
1048 case ESO_MASTER_MUTE:
1049 if (cp->type != AUDIO_MIXER_ENUM)
1050 return (EINVAL);
1051
1052 sc->sc_mvmute = (cp->un.ord != 0);
1053
1054 if (sc->sc_mvmute) {
1055 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1056 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1057 ESO_MIXREG_LMVM_MUTE);
1058 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1059 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1060 ESO_MIXREG_RMVM_MUTE);
1061 } else {
1062 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1063 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1064 ~ESO_MIXREG_LMVM_MUTE);
1065 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1066 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1067 ~ESO_MIXREG_RMVM_MUTE);
1068 }
1069 break;
1070
1071 case ESO_MONOOUT_SOURCE:
1072 if (cp->type != AUDIO_MIXER_ENUM)
1073 return (EINVAL);
1074
1075 return (eso_set_monooutsrc(sc, cp->un.ord));
1076
1077 case ESO_MONOIN_BYPASS:
1078 if (cp->type != AUDIO_MIXER_ENUM)
1079 return (EINVAL);
1080
1081 return (eso_set_monoinbypass(sc, cp->un.ord));
1082
1083 case ESO_RECORD_MONITOR:
1084 if (cp->type != AUDIO_MIXER_ENUM)
1085 return (EINVAL);
1086
1087 sc->sc_recmon = (cp->un.ord != 0);
1088
1089 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1090 if (sc->sc_recmon)
1091 tmp |= ESO_CTLREG_ACTL_RECMON;
1092 else
1093 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1094 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1095 break;
1096
1097 case ESO_RECORD_SOURCE:
1098 if (cp->type != AUDIO_MIXER_ENUM)
1099 return (EINVAL);
1100
1101 return (eso_set_recsrc(sc, cp->un.ord));
1102
1103 case ESO_MIC_PREAMP:
1104 if (cp->type != AUDIO_MIXER_ENUM)
1105 return (EINVAL);
1106
1107 return (eso_set_preamp(sc, cp->un.ord));
1108
1109 default:
1110 return (EINVAL);
1111 }
1112
1113 return (0);
1114 }
1115
1116 static int
1117 eso_get_port(hdl, cp)
1118 void *hdl;
1119 mixer_ctrl_t *cp;
1120 {
1121 struct eso_softc *sc = hdl;
1122
1123 switch (cp->dev) {
1124 case ESO_MASTER_VOL:
1125 /* Reload from mixer after hardware volume control use. */
1126 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1127 eso_reload_master_vol(sc);
1128 /* FALLTHROUGH */
1129 case ESO_DAC_PLAY_VOL:
1130 case ESO_MIC_PLAY_VOL:
1131 case ESO_LINE_PLAY_VOL:
1132 case ESO_SYNTH_PLAY_VOL:
1133 case ESO_CD_PLAY_VOL:
1134 case ESO_AUXB_PLAY_VOL:
1135 case ESO_RECORD_VOL:
1136 case ESO_DAC_REC_VOL:
1137 case ESO_MIC_REC_VOL:
1138 case ESO_LINE_REC_VOL:
1139 case ESO_SYNTH_REC_VOL:
1140 case ESO_CD_REC_VOL:
1141 case ESO_AUXB_REC_VOL:
1142 /*
1143 * Stereo-capable ports: if a single-channel query is made,
1144 * just return the left channel's value (since single-channel
1145 * settings themselves are applied to both channels).
1146 */
1147 switch (cp->un.value.num_channels) {
1148 case 1:
1149 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1150 sc->sc_gain[cp->dev][ESO_LEFT];
1151 break;
1152 case 2:
1153 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1154 sc->sc_gain[cp->dev][ESO_LEFT];
1155 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1156 sc->sc_gain[cp->dev][ESO_RIGHT];
1157 break;
1158 default:
1159 return (EINVAL);
1160 }
1161 break;
1162
1163 case ESO_MONO_PLAY_VOL:
1164 case ESO_PCSPEAKER_VOL:
1165 case ESO_MONO_REC_VOL:
1166 case ESO_SPATIALIZER:
1167 if (cp->un.value.num_channels != 1)
1168 return (EINVAL);
1169 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1170 sc->sc_gain[cp->dev][ESO_LEFT];
1171 break;
1172
1173 case ESO_RECORD_MONITOR:
1174 cp->un.ord = sc->sc_recmon;
1175 break;
1176
1177 case ESO_RECORD_SOURCE:
1178 cp->un.ord = sc->sc_recsrc;
1179 break;
1180
1181 case ESO_MONOOUT_SOURCE:
1182 cp->un.ord = sc->sc_monooutsrc;
1183 break;
1184
1185 case ESO_MONOIN_BYPASS:
1186 cp->un.ord = sc->sc_monoinbypass;
1187 break;
1188
1189 case ESO_SPATIALIZER_ENABLE:
1190 cp->un.ord = sc->sc_spatializer;
1191 break;
1192
1193 case ESO_MIC_PREAMP:
1194 cp->un.ord = sc->sc_preamp;
1195 break;
1196
1197 case ESO_MASTER_MUTE:
1198 /* Reload from mixer after hardware volume control use. */
1199 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1200 eso_reload_master_vol(sc);
1201 cp->un.ord = sc->sc_mvmute;
1202 break;
1203
1204 default:
1205 return (EINVAL);
1206 }
1207
1208
1209 return (0);
1210
1211 }
1212
1213 static int
1214 eso_query_devinfo(hdl, dip)
1215 void *hdl;
1216 mixer_devinfo_t *dip;
1217 {
1218
1219 switch (dip->index) {
1220 case ESO_DAC_PLAY_VOL:
1221 dip->mixer_class = ESO_INPUT_CLASS;
1222 dip->next = dip->prev = AUDIO_MIXER_LAST;
1223 strcpy(dip->label.name, AudioNdac);
1224 dip->type = AUDIO_MIXER_VALUE;
1225 dip->un.v.num_channels = 2;
1226 strcpy(dip->un.v.units.name, AudioNvolume);
1227 break;
1228 case ESO_MIC_PLAY_VOL:
1229 dip->mixer_class = ESO_INPUT_CLASS;
1230 dip->next = dip->prev = AUDIO_MIXER_LAST;
1231 strcpy(dip->label.name, AudioNmicrophone);
1232 dip->type = AUDIO_MIXER_VALUE;
1233 dip->un.v.num_channels = 2;
1234 strcpy(dip->un.v.units.name, AudioNvolume);
1235 break;
1236 case ESO_LINE_PLAY_VOL:
1237 dip->mixer_class = ESO_INPUT_CLASS;
1238 dip->next = dip->prev = AUDIO_MIXER_LAST;
1239 strcpy(dip->label.name, AudioNline);
1240 dip->type = AUDIO_MIXER_VALUE;
1241 dip->un.v.num_channels = 2;
1242 strcpy(dip->un.v.units.name, AudioNvolume);
1243 break;
1244 case ESO_SYNTH_PLAY_VOL:
1245 dip->mixer_class = ESO_INPUT_CLASS;
1246 dip->next = dip->prev = AUDIO_MIXER_LAST;
1247 strcpy(dip->label.name, AudioNfmsynth);
1248 dip->type = AUDIO_MIXER_VALUE;
1249 dip->un.v.num_channels = 2;
1250 strcpy(dip->un.v.units.name, AudioNvolume);
1251 break;
1252 case ESO_MONO_PLAY_VOL:
1253 dip->mixer_class = ESO_INPUT_CLASS;
1254 dip->next = dip->prev = AUDIO_MIXER_LAST;
1255 strcpy(dip->label.name, "mono_in");
1256 dip->type = AUDIO_MIXER_VALUE;
1257 dip->un.v.num_channels = 1;
1258 strcpy(dip->un.v.units.name, AudioNvolume);
1259 break;
1260 case ESO_CD_PLAY_VOL:
1261 dip->mixer_class = ESO_INPUT_CLASS;
1262 dip->next = dip->prev = AUDIO_MIXER_LAST;
1263 strcpy(dip->label.name, AudioNcd);
1264 dip->type = AUDIO_MIXER_VALUE;
1265 dip->un.v.num_channels = 2;
1266 strcpy(dip->un.v.units.name, AudioNvolume);
1267 break;
1268 case ESO_AUXB_PLAY_VOL:
1269 dip->mixer_class = ESO_INPUT_CLASS;
1270 dip->next = dip->prev = AUDIO_MIXER_LAST;
1271 strcpy(dip->label.name, "auxb");
1272 dip->type = AUDIO_MIXER_VALUE;
1273 dip->un.v.num_channels = 2;
1274 strcpy(dip->un.v.units.name, AudioNvolume);
1275 break;
1276
1277 case ESO_MIC_PREAMP:
1278 dip->mixer_class = ESO_MICROPHONE_CLASS;
1279 dip->next = dip->prev = AUDIO_MIXER_LAST;
1280 strcpy(dip->label.name, AudioNpreamp);
1281 dip->type = AUDIO_MIXER_ENUM;
1282 dip->un.e.num_mem = 2;
1283 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1284 dip->un.e.member[0].ord = 0;
1285 strcpy(dip->un.e.member[1].label.name, AudioNon);
1286 dip->un.e.member[1].ord = 1;
1287 break;
1288 case ESO_MICROPHONE_CLASS:
1289 dip->mixer_class = ESO_MICROPHONE_CLASS;
1290 dip->next = dip->prev = AUDIO_MIXER_LAST;
1291 strcpy(dip->label.name, AudioNmicrophone);
1292 dip->type = AUDIO_MIXER_CLASS;
1293 break;
1294
1295 case ESO_INPUT_CLASS:
1296 dip->mixer_class = ESO_INPUT_CLASS;
1297 dip->next = dip->prev = AUDIO_MIXER_LAST;
1298 strcpy(dip->label.name, AudioCinputs);
1299 dip->type = AUDIO_MIXER_CLASS;
1300 break;
1301
1302 case ESO_MASTER_VOL:
1303 dip->mixer_class = ESO_OUTPUT_CLASS;
1304 dip->prev = AUDIO_MIXER_LAST;
1305 dip->next = ESO_MASTER_MUTE;
1306 strcpy(dip->label.name, AudioNmaster);
1307 dip->type = AUDIO_MIXER_VALUE;
1308 dip->un.v.num_channels = 2;
1309 strcpy(dip->un.v.units.name, AudioNvolume);
1310 break;
1311 case ESO_MASTER_MUTE:
1312 dip->mixer_class = ESO_OUTPUT_CLASS;
1313 dip->prev = ESO_MASTER_VOL;
1314 dip->next = AUDIO_MIXER_LAST;
1315 strcpy(dip->label.name, AudioNmute);
1316 dip->type = AUDIO_MIXER_ENUM;
1317 dip->un.e.num_mem = 2;
1318 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1319 dip->un.e.member[0].ord = 0;
1320 strcpy(dip->un.e.member[1].label.name, AudioNon);
1321 dip->un.e.member[1].ord = 1;
1322 break;
1323
1324 case ESO_PCSPEAKER_VOL:
1325 dip->mixer_class = ESO_OUTPUT_CLASS;
1326 dip->next = dip->prev = AUDIO_MIXER_LAST;
1327 strcpy(dip->label.name, "pc_speaker");
1328 dip->type = AUDIO_MIXER_VALUE;
1329 dip->un.v.num_channels = 1;
1330 strcpy(dip->un.v.units.name, AudioNvolume);
1331 break;
1332 case ESO_MONOOUT_SOURCE:
1333 dip->mixer_class = ESO_OUTPUT_CLASS;
1334 dip->next = dip->prev = AUDIO_MIXER_LAST;
1335 strcpy(dip->label.name, "mono_out");
1336 dip->type = AUDIO_MIXER_ENUM;
1337 dip->un.e.num_mem = 3;
1338 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1339 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1340 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1341 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1342 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1343 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1344 break;
1345
1346 case ESO_MONOIN_BYPASS:
1347 dip->mixer_class = ESO_MONOIN_CLASS;
1348 dip->next = dip->prev = AUDIO_MIXER_LAST;
1349 strcpy(dip->label.name, "bypass");
1350 dip->type = AUDIO_MIXER_ENUM;
1351 dip->un.e.num_mem = 2;
1352 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1353 dip->un.e.member[0].ord = 0;
1354 strcpy(dip->un.e.member[1].label.name, AudioNon);
1355 dip->un.e.member[1].ord = 1;
1356 break;
1357 case ESO_MONOIN_CLASS:
1358 dip->mixer_class = ESO_MONOIN_CLASS;
1359 dip->next = dip->prev = AUDIO_MIXER_LAST;
1360 strcpy(dip->label.name, "mono_in");
1361 dip->type = AUDIO_MIXER_CLASS;
1362 break;
1363
1364 case ESO_SPATIALIZER:
1365 dip->mixer_class = ESO_OUTPUT_CLASS;
1366 dip->prev = AUDIO_MIXER_LAST;
1367 dip->next = ESO_SPATIALIZER_ENABLE;
1368 strcpy(dip->label.name, AudioNspatial);
1369 dip->type = AUDIO_MIXER_VALUE;
1370 dip->un.v.num_channels = 1;
1371 strcpy(dip->un.v.units.name, "level");
1372 break;
1373 case ESO_SPATIALIZER_ENABLE:
1374 dip->mixer_class = ESO_OUTPUT_CLASS;
1375 dip->prev = ESO_SPATIALIZER;
1376 dip->next = AUDIO_MIXER_LAST;
1377 strcpy(dip->label.name, "enable");
1378 dip->type = AUDIO_MIXER_ENUM;
1379 dip->un.e.num_mem = 2;
1380 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1381 dip->un.e.member[0].ord = 0;
1382 strcpy(dip->un.e.member[1].label.name, AudioNon);
1383 dip->un.e.member[1].ord = 1;
1384 break;
1385
1386 case ESO_OUTPUT_CLASS:
1387 dip->mixer_class = ESO_OUTPUT_CLASS;
1388 dip->next = dip->prev = AUDIO_MIXER_LAST;
1389 strcpy(dip->label.name, AudioCoutputs);
1390 dip->type = AUDIO_MIXER_CLASS;
1391 break;
1392
1393 case ESO_RECORD_MONITOR:
1394 dip->mixer_class = ESO_MONITOR_CLASS;
1395 dip->next = dip->prev = AUDIO_MIXER_LAST;
1396 strcpy(dip->label.name, AudioNmute);
1397 dip->type = AUDIO_MIXER_ENUM;
1398 dip->un.e.num_mem = 2;
1399 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1400 dip->un.e.member[0].ord = 0;
1401 strcpy(dip->un.e.member[1].label.name, AudioNon);
1402 dip->un.e.member[1].ord = 1;
1403 break;
1404 case ESO_MONITOR_CLASS:
1405 dip->mixer_class = ESO_MONITOR_CLASS;
1406 dip->next = dip->prev = AUDIO_MIXER_LAST;
1407 strcpy(dip->label.name, AudioCmonitor);
1408 dip->type = AUDIO_MIXER_CLASS;
1409 break;
1410
1411 case ESO_RECORD_VOL:
1412 dip->mixer_class = ESO_RECORD_CLASS;
1413 dip->next = dip->prev = AUDIO_MIXER_LAST;
1414 strcpy(dip->label.name, AudioNrecord);
1415 dip->type = AUDIO_MIXER_VALUE;
1416 strcpy(dip->un.v.units.name, AudioNvolume);
1417 break;
1418 case ESO_RECORD_SOURCE:
1419 dip->mixer_class = ESO_RECORD_CLASS;
1420 dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 strcpy(dip->label.name, AudioNsource);
1422 dip->type = AUDIO_MIXER_ENUM;
1423 dip->un.e.num_mem = 4;
1424 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1425 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1426 strcpy(dip->un.e.member[1].label.name, AudioNline);
1427 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1428 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1429 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1430 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1431 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1432 break;
1433 case ESO_DAC_REC_VOL:
1434 dip->mixer_class = ESO_RECORD_CLASS;
1435 dip->next = dip->prev = AUDIO_MIXER_LAST;
1436 strcpy(dip->label.name, AudioNdac);
1437 dip->type = AUDIO_MIXER_VALUE;
1438 dip->un.v.num_channels = 2;
1439 strcpy(dip->un.v.units.name, AudioNvolume);
1440 break;
1441 case ESO_MIC_REC_VOL:
1442 dip->mixer_class = ESO_RECORD_CLASS;
1443 dip->next = dip->prev = AUDIO_MIXER_LAST;
1444 strcpy(dip->label.name, AudioNmicrophone);
1445 dip->type = AUDIO_MIXER_VALUE;
1446 dip->un.v.num_channels = 2;
1447 strcpy(dip->un.v.units.name, AudioNvolume);
1448 break;
1449 case ESO_LINE_REC_VOL:
1450 dip->mixer_class = ESO_RECORD_CLASS;
1451 dip->next = dip->prev = AUDIO_MIXER_LAST;
1452 strcpy(dip->label.name, AudioNline);
1453 dip->type = AUDIO_MIXER_VALUE;
1454 dip->un.v.num_channels = 2;
1455 strcpy(dip->un.v.units.name, AudioNvolume);
1456 break;
1457 case ESO_SYNTH_REC_VOL:
1458 dip->mixer_class = ESO_RECORD_CLASS;
1459 dip->next = dip->prev = AUDIO_MIXER_LAST;
1460 strcpy(dip->label.name, AudioNfmsynth);
1461 dip->type = AUDIO_MIXER_VALUE;
1462 dip->un.v.num_channels = 2;
1463 strcpy(dip->un.v.units.name, AudioNvolume);
1464 break;
1465 case ESO_MONO_REC_VOL:
1466 dip->mixer_class = ESO_RECORD_CLASS;
1467 dip->next = dip->prev = AUDIO_MIXER_LAST;
1468 strcpy(dip->label.name, "mono_in");
1469 dip->type = AUDIO_MIXER_VALUE;
1470 dip->un.v.num_channels = 1; /* No lies */
1471 strcpy(dip->un.v.units.name, AudioNvolume);
1472 break;
1473 case ESO_CD_REC_VOL:
1474 dip->mixer_class = ESO_RECORD_CLASS;
1475 dip->next = dip->prev = AUDIO_MIXER_LAST;
1476 strcpy(dip->label.name, AudioNcd);
1477 dip->type = AUDIO_MIXER_VALUE;
1478 dip->un.v.num_channels = 2;
1479 strcpy(dip->un.v.units.name, AudioNvolume);
1480 break;
1481 case ESO_AUXB_REC_VOL:
1482 dip->mixer_class = ESO_RECORD_CLASS;
1483 dip->next = dip->prev = AUDIO_MIXER_LAST;
1484 strcpy(dip->label.name, "auxb");
1485 dip->type = AUDIO_MIXER_VALUE;
1486 dip->un.v.num_channels = 2;
1487 strcpy(dip->un.v.units.name, AudioNvolume);
1488 break;
1489 case ESO_RECORD_CLASS:
1490 dip->mixer_class = ESO_RECORD_CLASS;
1491 dip->next = dip->prev = AUDIO_MIXER_LAST;
1492 strcpy(dip->label.name, AudioCrecord);
1493 dip->type = AUDIO_MIXER_CLASS;
1494 break;
1495
1496 default:
1497 return (ENXIO);
1498 }
1499
1500 return (0);
1501 }
1502
1503 static int
1504 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1505 struct eso_softc *sc;
1506 size_t size;
1507 size_t align;
1508 size_t boundary;
1509 int flags;
1510 int direction;
1511 struct eso_dma *ed;
1512 {
1513 int error, wait;
1514
1515 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1516 ed->ed_size = size;
1517
1518 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1519 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1520 &ed->ed_nsegs, wait);
1521 if (error)
1522 goto out;
1523
1524 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1525 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1526 if (error)
1527 goto free;
1528
1529 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1530 wait, &ed->ed_map);
1531 if (error)
1532 goto unmap;
1533
1534 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1535 ed->ed_size, NULL, wait |
1536 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1537 if (error)
1538 goto destroy;
1539
1540 return (0);
1541
1542 destroy:
1543 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1544 unmap:
1545 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1546 free:
1547 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1548 out:
1549 return (error);
1550 }
1551
1552 static void
1553 eso_freemem(ed)
1554 struct eso_dma *ed;
1555 {
1556
1557 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1558 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1559 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1560 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1561 }
1562
1563 static void *
1564 eso_allocm(hdl, direction, size, type, flags)
1565 void *hdl;
1566 int direction;
1567 size_t size;
1568 struct malloc_type *type;
1569 int flags;
1570 {
1571 struct eso_softc *sc = hdl;
1572 struct eso_dma *ed;
1573 size_t boundary;
1574 int error;
1575
1576 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1577 return (NULL);
1578
1579 /*
1580 * Apparently the Audio 1 DMA controller's current address
1581 * register can't roll over a 64K address boundary, so we have to
1582 * take care of that ourselves. Similarly, the Audio 2 DMA
1583 * controller needs a 1M address boundary.
1584 */
1585 if (direction == AUMODE_RECORD)
1586 boundary = 0x10000;
1587 else
1588 boundary = 0x100000;
1589
1590 #ifdef alpha
1591 /*
1592 * XXX For Audio 1, which implements the 24 low address bits only,
1593 * XXX force allocation through the (ISA) SGMAP.
1594 */
1595 if (direction == AUMODE_RECORD)
1596 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1597 else
1598 #endif
1599 ed->ed_dmat = sc->sc_dmat;
1600
1601 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1602 if (error) {
1603 free(ed, type);
1604 return (NULL);
1605 }
1606 ed->ed_next = sc->sc_dmas;
1607 sc->sc_dmas = ed;
1608
1609 return (KVADDR(ed));
1610 }
1611
1612 static void
1613 eso_freem(hdl, addr, type)
1614 void *hdl;
1615 void *addr;
1616 struct malloc_type *type;
1617 {
1618 struct eso_softc *sc = hdl;
1619 struct eso_dma *p, **pp;
1620
1621 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1622 if (KVADDR(p) == addr) {
1623 eso_freemem(p);
1624 *pp = p->ed_next;
1625 free(p, type);
1626 return;
1627 }
1628 }
1629 }
1630
1631 static size_t
1632 eso_round_buffersize(hdl, direction, bufsize)
1633 void *hdl;
1634 int direction;
1635 size_t bufsize;
1636 {
1637 size_t maxsize;
1638
1639 /*
1640 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1641 * bytes. This is because IO_A2DMAC is a two byte value
1642 * indicating the literal byte count, and the 4 least significant
1643 * bits are read-only. Zero is not used as a special case for
1644 * 0x10000.
1645 *
1646 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1647 * be represented.
1648 */
1649 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1650
1651 if (bufsize > maxsize)
1652 bufsize = maxsize;
1653
1654 return (bufsize);
1655 }
1656
1657 static paddr_t
1658 eso_mappage(hdl, addr, offs, prot)
1659 void *hdl;
1660 void *addr;
1661 off_t offs;
1662 int prot;
1663 {
1664 struct eso_softc *sc = hdl;
1665 struct eso_dma *ed;
1666
1667 if (offs < 0)
1668 return (-1);
1669 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1670 ed = ed->ed_next)
1671 ;
1672 if (ed == NULL)
1673 return (-1);
1674
1675 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1676 offs, prot, BUS_DMA_WAITOK));
1677 }
1678
1679 /* ARGSUSED */
1680 static int
1681 eso_get_props(hdl)
1682 void *hdl;
1683 {
1684
1685 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1686 AUDIO_PROP_FULLDUPLEX);
1687 }
1688
1689 static int
1690 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1691 void *hdl;
1692 void *start, *end;
1693 int blksize;
1694 void (*intr) __P((void *));
1695 void *arg;
1696 struct audio_params *param;
1697 {
1698 struct eso_softc *sc = hdl;
1699 struct eso_dma *ed;
1700 uint8_t a2c1;
1701
1702 DPRINTF((
1703 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1704 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1705 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1706 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1707 param->precision, param->channels, param->sw_code, param->factor));
1708
1709 /* Find DMA buffer. */
1710 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1711 ed = ed->ed_next)
1712 ;
1713 if (ed == NULL) {
1714 printf("%s: trigger_output: bad addr %p\n",
1715 sc->sc_dev.dv_xname, start);
1716 return (EINVAL);
1717 }
1718
1719 sc->sc_pintr = intr;
1720 sc->sc_parg = arg;
1721
1722 /* Compute drain timeout. */
1723 sc->sc_pdrain = (blksize * NBBY * hz) /
1724 (param->sample_rate * param->channels *
1725 param->precision * param->factor) + 2; /* slop */
1726
1727 /* DMA transfer count (in `words'!) reload using 2's complement. */
1728 blksize = -(blksize >> 1);
1729 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1730 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1731
1732 /* Update DAC to reflect DMA count and audio parameters. */
1733 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1734 if (param->precision * param->factor == 16)
1735 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1736 else
1737 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1738 if (param->channels == 2)
1739 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1740 else
1741 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1742 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1743 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1744 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1745 else
1746 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1747 /* Unmask IRQ. */
1748 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1749 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1750
1751 /* Set up DMA controller. */
1752 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1753 DMAADDR(ed));
1754 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1755 (uint8_t *)end - (uint8_t *)start);
1756 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1757 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1758
1759 /* Start DMA. */
1760 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1761 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1762 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1763 ESO_MIXREG_A2C1_AUTO;
1764 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1765
1766 return (0);
1767 }
1768
1769 static int
1770 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1771 void *hdl;
1772 void *start, *end;
1773 int blksize;
1774 void (*intr) __P((void *));
1775 void *arg;
1776 struct audio_params *param;
1777 {
1778 struct eso_softc *sc = hdl;
1779 struct eso_dma *ed;
1780 uint8_t actl, a1c1;
1781
1782 DPRINTF((
1783 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1784 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1785 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1786 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1787 param->precision, param->channels, param->sw_code, param->factor));
1788
1789 /*
1790 * If we failed to configure the Audio 1 DMA controller, bail here
1791 * while retaining availability of the DAC direction (in Audio 2).
1792 */
1793 if (!sc->sc_dmac_configured)
1794 return (EIO);
1795
1796 /* Find DMA buffer. */
1797 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1798 ed = ed->ed_next)
1799 ;
1800 if (ed == NULL) {
1801 printf("%s: trigger_output: bad addr %p\n",
1802 sc->sc_dev.dv_xname, start);
1803 return (EINVAL);
1804 }
1805
1806 sc->sc_rintr = intr;
1807 sc->sc_rarg = arg;
1808
1809 /* Compute drain timeout. */
1810 sc->sc_rdrain = (blksize * NBBY * hz) /
1811 (param->sample_rate * param->channels *
1812 param->precision * param->factor) + 2; /* slop */
1813
1814 /* Set up ADC DMA converter parameters. */
1815 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1816 if (param->channels == 2) {
1817 actl &= ~ESO_CTLREG_ACTL_MONO;
1818 actl |= ESO_CTLREG_ACTL_STEREO;
1819 } else {
1820 actl &= ~ESO_CTLREG_ACTL_STEREO;
1821 actl |= ESO_CTLREG_ACTL_MONO;
1822 }
1823 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1824
1825 /* Set up Transfer Type: maybe move to attach time? */
1826 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1827
1828 /* DMA transfer count reload using 2's complement. */
1829 blksize = -blksize;
1830 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1831 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1832
1833 /* Set up and enable Audio 1 DMA FIFO. */
1834 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1835 if (param->precision * param->factor == 16)
1836 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1837 if (param->channels == 2)
1838 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1839 else
1840 a1c1 |= ESO_CTLREG_A1C1_MONO;
1841 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1842 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1843 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1844 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1845
1846 /* Set up ADC IRQ/DRQ parameters. */
1847 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1848 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1849 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1850 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1851
1852 /* Set up and enable DMA controller. */
1853 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1854 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1855 ESO_DMAC_MASK_MASK);
1856 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1857 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1858 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1859 DMAADDR(ed));
1860 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1861 (uint8_t *)end - (uint8_t *)start - 1);
1862 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1863
1864 /* Start DMA. */
1865 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1866 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1867 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1868
1869 return (0);
1870 }
1871
1872 /*
1873 * Mixer utility functions.
1874 */
1875 static int
1876 eso_set_recsrc(sc, recsrc)
1877 struct eso_softc *sc;
1878 unsigned int recsrc;
1879 {
1880 mixer_devinfo_t di;
1881 int i;
1882
1883 di.index = ESO_RECORD_SOURCE;
1884 if (eso_query_devinfo(sc, &di) != 0)
1885 panic("eso_set_recsrc: eso_query_devinfo failed");
1886
1887 for (i = 0; i < di.un.e.num_mem; i++) {
1888 if (recsrc == di.un.e.member[i].ord) {
1889 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1890 sc->sc_recsrc = recsrc;
1891 return (0);
1892 }
1893 }
1894
1895 return (EINVAL);
1896 }
1897
1898 static int
1899 eso_set_monooutsrc(sc, monooutsrc)
1900 struct eso_softc *sc;
1901 unsigned int monooutsrc;
1902 {
1903 mixer_devinfo_t di;
1904 int i;
1905 uint8_t mpm;
1906
1907 di.index = ESO_MONOOUT_SOURCE;
1908 if (eso_query_devinfo(sc, &di) != 0)
1909 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1910
1911 for (i = 0; i < di.un.e.num_mem; i++) {
1912 if (monooutsrc == di.un.e.member[i].ord) {
1913 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1914 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1915 mpm |= monooutsrc;
1916 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1917 sc->sc_monooutsrc = monooutsrc;
1918 return (0);
1919 }
1920 }
1921
1922 return (EINVAL);
1923 }
1924
1925 static int
1926 eso_set_monoinbypass(sc, monoinbypass)
1927 struct eso_softc *sc;
1928 unsigned int monoinbypass;
1929 {
1930 mixer_devinfo_t di;
1931 int i;
1932 uint8_t mpm;
1933
1934 di.index = ESO_MONOIN_BYPASS;
1935 if (eso_query_devinfo(sc, &di) != 0)
1936 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1937
1938 for (i = 0; i < di.un.e.num_mem; i++) {
1939 if (monoinbypass == di.un.e.member[i].ord) {
1940 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1941 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1942 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1943 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1944 sc->sc_monoinbypass = monoinbypass;
1945 return (0);
1946 }
1947 }
1948
1949 return (EINVAL);
1950 }
1951
1952 static int
1953 eso_set_preamp(sc, preamp)
1954 struct eso_softc *sc;
1955 unsigned int preamp;
1956 {
1957 mixer_devinfo_t di;
1958 int i;
1959 uint8_t mpm;
1960
1961 di.index = ESO_MIC_PREAMP;
1962 if (eso_query_devinfo(sc, &di) != 0)
1963 panic("eso_set_preamp: eso_query_devinfo failed");
1964
1965 for (i = 0; i < di.un.e.num_mem; i++) {
1966 if (preamp == di.un.e.member[i].ord) {
1967 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1968 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1969 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1970 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1971 sc->sc_preamp = preamp;
1972 return (0);
1973 }
1974 }
1975
1976 return (EINVAL);
1977 }
1978
1979 /*
1980 * Reload Master Volume and Mute values in softc from mixer; used when
1981 * those have previously been invalidated by use of hardware volume controls.
1982 */
1983 static void
1984 eso_reload_master_vol(sc)
1985 struct eso_softc *sc;
1986 {
1987 uint8_t mv;
1988
1989 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1990 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1991 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1992 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1993 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1994 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1995 /* Currently both channels are muted simultaneously; either is OK. */
1996 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1997 }
1998
1999 static void
2000 eso_set_gain(sc, port)
2001 struct eso_softc *sc;
2002 unsigned int port;
2003 {
2004 uint8_t mixreg, tmp;
2005
2006 switch (port) {
2007 case ESO_DAC_PLAY_VOL:
2008 mixreg = ESO_MIXREG_PVR_A2;
2009 break;
2010 case ESO_MIC_PLAY_VOL:
2011 mixreg = ESO_MIXREG_PVR_MIC;
2012 break;
2013 case ESO_LINE_PLAY_VOL:
2014 mixreg = ESO_MIXREG_PVR_LINE;
2015 break;
2016 case ESO_SYNTH_PLAY_VOL:
2017 mixreg = ESO_MIXREG_PVR_SYNTH;
2018 break;
2019 case ESO_CD_PLAY_VOL:
2020 mixreg = ESO_MIXREG_PVR_CD;
2021 break;
2022 case ESO_AUXB_PLAY_VOL:
2023 mixreg = ESO_MIXREG_PVR_AUXB;
2024 break;
2025
2026 case ESO_DAC_REC_VOL:
2027 mixreg = ESO_MIXREG_RVR_A2;
2028 break;
2029 case ESO_MIC_REC_VOL:
2030 mixreg = ESO_MIXREG_RVR_MIC;
2031 break;
2032 case ESO_LINE_REC_VOL:
2033 mixreg = ESO_MIXREG_RVR_LINE;
2034 break;
2035 case ESO_SYNTH_REC_VOL:
2036 mixreg = ESO_MIXREG_RVR_SYNTH;
2037 break;
2038 case ESO_CD_REC_VOL:
2039 mixreg = ESO_MIXREG_RVR_CD;
2040 break;
2041 case ESO_AUXB_REC_VOL:
2042 mixreg = ESO_MIXREG_RVR_AUXB;
2043 break;
2044 case ESO_MONO_PLAY_VOL:
2045 mixreg = ESO_MIXREG_PVR_MONO;
2046 break;
2047 case ESO_MONO_REC_VOL:
2048 mixreg = ESO_MIXREG_RVR_MONO;
2049 break;
2050
2051 case ESO_PCSPEAKER_VOL:
2052 /* Special case - only 3-bit, mono, and reserved bits. */
2053 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2054 tmp &= ESO_MIXREG_PCSVR_RESV;
2055 /* Map bits 7:5 -> 2:0. */
2056 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2057 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2058 return;
2059
2060 case ESO_MASTER_VOL:
2061 /* Special case - separate regs, and 6-bit precision. */
2062 /* Map bits 7:2 -> 5:0, reflect mute settings. */
2063 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2064 (sc->sc_gain[port][ESO_LEFT] >> 2) |
2065 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2066 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2067 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2068 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2069 return;
2070
2071 case ESO_SPATIALIZER:
2072 /* Special case - only `mono', and higher precision. */
2073 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2074 sc->sc_gain[port][ESO_LEFT]);
2075 return;
2076
2077 case ESO_RECORD_VOL:
2078 /* Very Special case, controller register. */
2079 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2080 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2081 return;
2082
2083 default:
2084 #ifdef DIAGNOSTIC
2085 panic("eso_set_gain: bad port %u", port);
2086 /* NOTREACHED */
2087 #else
2088 return;
2089 #endif
2090 }
2091
2092 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2093 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2094 }
2095