Home | History | Annotate | Line # | Download | only in pci
eso.c revision 1.35
      1 /*	$NetBSD: eso.c,v 1.35 2004/07/08 21:33:45 kleink Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.35 2004/07/08 21:33:45 kleink Exp $");
     37 
     38 #include "mpu.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/kernel.h>
     43 #include <sys/malloc.h>
     44 #include <sys/device.h>
     45 #include <sys/proc.h>
     46 
     47 #include <dev/pci/pcidevs.h>
     48 #include <dev/pci/pcivar.h>
     49 
     50 #include <sys/audioio.h>
     51 #include <dev/audio_if.h>
     52 #include <dev/midi_if.h>
     53 
     54 #include <dev/mulaw.h>
     55 #include <dev/auconv.h>
     56 
     57 #include <dev/ic/mpuvar.h>
     58 #include <dev/ic/i8237reg.h>
     59 #include <dev/pci/esoreg.h>
     60 #include <dev/pci/esovar.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 
     65 /*
     66  * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
     67  * XXX engine by allocating through the ISA DMA tag.
     68  */
     69 #if defined(amd64) || defined(i386)
     70 #include "isa.h"
     71 #if NISA > 0
     72 #include <dev/isa/isavar.h>
     73 #endif
     74 #endif
     75 
     76 #if defined(AUDIO_DEBUG) || defined(DEBUG)
     77 #define DPRINTF(x) printf x
     78 #else
     79 #define DPRINTF(x)
     80 #endif
     81 
     82 struct eso_dma {
     83 	bus_dma_tag_t		ed_dmat;
     84 	bus_dmamap_t		ed_map;
     85 	caddr_t			ed_addr;
     86 	bus_dma_segment_t	ed_segs[1];
     87 	int			ed_nsegs;
     88 	size_t			ed_size;
     89 	struct eso_dma *	ed_next;
     90 };
     91 
     92 #define KVADDR(dma)	((void *)(dma)->ed_addr)
     93 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
     94 
     95 /* Autoconfiguration interface */
     96 static int eso_match __P((struct device *, struct cfdata *, void *));
     97 static void eso_attach __P((struct device *, struct device *, void *));
     98 static void eso_defer __P((struct device *));
     99 static int eso_print __P((void *, const char *));
    100 
    101 CFATTACH_DECL(eso, sizeof (struct eso_softc),
    102     eso_match, eso_attach, NULL, NULL);
    103 
    104 /* PCI interface */
    105 static int eso_intr __P((void *));
    106 
    107 /* MI audio layer interface */
    108 static int	eso_open __P((void *, int));
    109 static void	eso_close __P((void *));
    110 static int	eso_query_encoding __P((void *, struct audio_encoding *));
    111 static int	eso_set_params __P((void *, int, int, struct audio_params *,
    112 		    struct audio_params *));
    113 static int	eso_round_blocksize __P((void *, int));
    114 static int	eso_halt_output __P((void *));
    115 static int	eso_halt_input __P((void *));
    116 static int	eso_getdev __P((void *, struct audio_device *));
    117 static int	eso_set_port __P((void *, mixer_ctrl_t *));
    118 static int	eso_get_port __P((void *, mixer_ctrl_t *));
    119 static int	eso_query_devinfo __P((void *, mixer_devinfo_t *));
    120 static void *	eso_allocm __P((void *, int, size_t, struct malloc_type *, int));
    121 static void	eso_freem __P((void *, void *, struct malloc_type *));
    122 static size_t	eso_round_buffersize __P((void *, int, size_t));
    123 static paddr_t	eso_mappage __P((void *, void *, off_t, int));
    124 static int	eso_get_props __P((void *));
    125 static int	eso_trigger_output __P((void *, void *, void *, int,
    126 		    void (*)(void *), void *, struct audio_params *));
    127 static int	eso_trigger_input __P((void *, void *, void *, int,
    128 		    void (*)(void *), void *, struct audio_params *));
    129 
    130 static struct audio_hw_if eso_hw_if = {
    131 	eso_open,
    132 	eso_close,
    133 	NULL,			/* drain */
    134 	eso_query_encoding,
    135 	eso_set_params,
    136 	eso_round_blocksize,
    137 	NULL,			/* commit_settings */
    138 	NULL,			/* init_output */
    139 	NULL,			/* init_input */
    140 	NULL,			/* start_output */
    141 	NULL,			/* start_input */
    142 	eso_halt_output,
    143 	eso_halt_input,
    144 	NULL,			/* speaker_ctl */
    145 	eso_getdev,
    146 	NULL,			/* setfd */
    147 	eso_set_port,
    148 	eso_get_port,
    149 	eso_query_devinfo,
    150 	eso_allocm,
    151 	eso_freem,
    152 	eso_round_buffersize,
    153 	eso_mappage,
    154 	eso_get_props,
    155 	eso_trigger_output,
    156 	eso_trigger_input,
    157 	NULL,			/* dev_ioctl */
    158 };
    159 
    160 static const char * const eso_rev2model[] = {
    161 	"ES1938",
    162 	"ES1946",
    163 	"ES1946 Revision E"
    164 };
    165 
    166 
    167 /*
    168  * Utility routines
    169  */
    170 /* Register access etc. */
    171 static uint8_t	eso_read_ctlreg __P((struct eso_softc *, uint8_t));
    172 static uint8_t	eso_read_mixreg __P((struct eso_softc *, uint8_t));
    173 static uint8_t	eso_read_rdr __P((struct eso_softc *));
    174 static void	eso_reload_master_vol __P((struct eso_softc *));
    175 static int	eso_reset __P((struct eso_softc *));
    176 static void	eso_set_gain __P((struct eso_softc *, unsigned int));
    177 static int	eso_set_recsrc __P((struct eso_softc *, unsigned int));
    178 static int	eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
    179 static int	eso_set_monoinbypass __P((struct eso_softc *, unsigned int));
    180 static int	eso_set_preamp __P((struct eso_softc *, unsigned int));
    181 static void	eso_write_cmd __P((struct eso_softc *, uint8_t));
    182 static void	eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
    183 static void	eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
    184 /* DMA memory allocation */
    185 static int	eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
    186 		    int, int, struct eso_dma *));
    187 static void	eso_freemem __P((struct eso_dma *));
    188 
    189 
    190 static int
    191 eso_match(parent, match, aux)
    192 	struct device *parent;
    193 	struct cfdata *match;
    194 	void *aux;
    195 {
    196 	struct pci_attach_args *pa = aux;
    197 
    198 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
    199 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
    200 		return (1);
    201 
    202 	return (0);
    203 }
    204 
    205 static void
    206 eso_attach(parent, self, aux)
    207 	struct device *parent, *self;
    208 	void *aux;
    209 {
    210 	struct eso_softc *sc = (struct eso_softc *)self;
    211 	struct pci_attach_args *pa = aux;
    212 	struct audio_attach_args aa;
    213 	pci_intr_handle_t ih;
    214 	bus_addr_t vcbase;
    215 	const char *intrstring;
    216 	int idx;
    217 	uint8_t a2mode, mvctl;
    218 
    219 	aprint_naive(": Audio controller\n");
    220 
    221 	sc->sc_revision = PCI_REVISION(pa->pa_class);
    222 
    223 	aprint_normal(": ESS Solo-1 PCI AudioDrive ");
    224 	if (sc->sc_revision <
    225 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
    226 		aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
    227 	else
    228 		aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
    229 
    230 	/* Map I/O registers. */
    231 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
    232 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    233 		aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
    234 		return;
    235 	}
    236 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
    237 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
    238 		aprint_error("%s: can't map SB I/O space\n",
    239 		    sc->sc_dev.dv_xname);
    240 		return;
    241 	}
    242 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
    243 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
    244 		aprint_error("%s: can't map VC I/O space\n",
    245 		    sc->sc_dev.dv_xname);
    246 		/* Don't bail out yet: we can map it later, see below. */
    247 		vcbase = 0;
    248 		sc->sc_vcsize = 0x10; /* From the data sheet. */
    249 	}
    250 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
    251 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
    252 		aprint_error("%s: can't map MPU I/O space\n",
    253 		    sc->sc_dev.dv_xname);
    254 		return;
    255 	}
    256 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
    257 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
    258 		aprint_error("%s: can't map Game I/O space\n",
    259 		    sc->sc_dev.dv_xname);
    260 		return;
    261 	}
    262 
    263 	sc->sc_dmat = pa->pa_dmat;
    264 	sc->sc_dmas = NULL;
    265 	sc->sc_dmac_configured = 0;
    266 
    267 	/* Enable bus mastering. */
    268 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    269 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    270 	    PCI_COMMAND_MASTER_ENABLE);
    271 
    272 	/* Reset the device; bail out upon failure. */
    273 	if (eso_reset(sc) != 0) {
    274 		aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
    275 		return;
    276 	}
    277 
    278 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
    279 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
    280 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
    281 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
    282 
    283 	/* Enable the relevant (DMA) interrupts. */
    284 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
    285 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
    286 	    ESO_IO_IRQCTL_MPUIRQ);
    287 
    288 	/* Set up A1's sample rate generator for new-style parameters. */
    289 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
    290 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
    291 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
    292 
    293 	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
    294 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
    295 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
    296 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
    297 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
    298 
    299 	/* Set mixer regs to something reasonable, needs work. */
    300 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
    301 	eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
    302 	eso_set_monoinbypass(sc, 0);
    303 	eso_set_preamp(sc, 1);
    304 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
    305 		int v;
    306 
    307 		switch (idx) {
    308  		case ESO_MIC_PLAY_VOL:
    309 		case ESO_LINE_PLAY_VOL:
    310 		case ESO_CD_PLAY_VOL:
    311 		case ESO_MONO_PLAY_VOL:
    312 		case ESO_AUXB_PLAY_VOL:
    313 		case ESO_DAC_REC_VOL:
    314 		case ESO_LINE_REC_VOL:
    315 		case ESO_SYNTH_REC_VOL:
    316 		case ESO_CD_REC_VOL:
    317 		case ESO_MONO_REC_VOL:
    318 		case ESO_AUXB_REC_VOL:
    319 		case ESO_SPATIALIZER:
    320 			v = 0;
    321 			break;
    322 		case ESO_MASTER_VOL:
    323 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
    324 			break;
    325 		default:
    326 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
    327 			break;
    328 		}
    329 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
    330 		eso_set_gain(sc, idx);
    331 	}
    332 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
    333 
    334 	/* Map and establish the interrupt. */
    335 	if (pci_intr_map(pa, &ih)) {
    336 		aprint_error("%s: couldn't map interrupt\n",
    337 		    sc->sc_dev.dv_xname);
    338 		return;
    339 	}
    340 	intrstring = pci_intr_string(pa->pa_pc, ih);
    341 	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
    342 	if (sc->sc_ih == NULL) {
    343 		aprint_error("%s: couldn't establish interrupt",
    344 		    sc->sc_dev.dv_xname);
    345 		if (intrstring != NULL)
    346 			aprint_normal(" at %s", intrstring);
    347 		aprint_normal("\n");
    348 		return;
    349 	}
    350 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
    351 	    intrstring);
    352 
    353 	/*
    354 	 * Set up the DDMA Control register; a suitable I/O region has been
    355 	 * supposedly mapped in the VC base address register.
    356 	 *
    357 	 * The Solo-1 has an ... interesting silicon bug that causes it to
    358 	 * not respond to I/O space accesses to the Audio 1 DMA controller
    359 	 * if the latter's mapping base address is aligned on a 1K boundary.
    360 	 * As a consequence, it is quite possible for the mapping provided
    361 	 * in the VC BAR to be useless.  To work around this, we defer this
    362 	 * part until all autoconfiguration on our parent bus is completed
    363 	 * and then try to map it ourselves in fulfillment of the constraint.
    364 	 *
    365 	 * According to the register map we may write to the low 16 bits
    366 	 * only, but experimenting has shown we're safe.
    367 	 * -kjk
    368 	 */
    369 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
    370 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
    371 		    vcbase | ESO_PCI_DDMAC_DE);
    372 		sc->sc_dmac_configured = 1;
    373 
    374 		aprint_normal(
    375 		    "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
    376 		    sc->sc_dev.dv_xname, (unsigned long)vcbase);
    377 	} else {
    378 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
    379 		    sc->sc_dev.dv_xname, (unsigned long)vcbase));
    380 		sc->sc_pa = *pa;
    381 		config_defer(self, eso_defer);
    382 	}
    383 
    384 	audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
    385 
    386 	aa.type = AUDIODEV_TYPE_OPL;
    387 	aa.hwif = NULL;
    388 	aa.hdl = NULL;
    389 	(void)config_found(&sc->sc_dev, &aa, audioprint);
    390 
    391 	aa.type = AUDIODEV_TYPE_MPU;
    392 	aa.hwif = NULL;
    393 	aa.hdl = NULL;
    394 	sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
    395 	if (sc->sc_mpudev != NULL) {
    396 		/* Unmask the MPU irq. */
    397 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
    398 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
    399 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
    400 	}
    401 
    402 	aa.type = AUDIODEV_TYPE_AUX;
    403 	aa.hwif = NULL;
    404 	aa.hdl = NULL;
    405 	(void)config_found(&sc->sc_dev, &aa, eso_print);
    406 }
    407 
    408 static void
    409 eso_defer(self)
    410 	struct device *self;
    411 {
    412 	struct eso_softc *sc = (struct eso_softc *)self;
    413 	struct pci_attach_args *pa = &sc->sc_pa;
    414 	bus_addr_t addr, start;
    415 
    416 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
    417 
    418 	/*
    419 	 * This is outright ugly, but since we must not make assumptions
    420 	 * on the underlying allocator's behaviour it's the most straight-
    421 	 * forward way to implement it.  Note that we skip over the first
    422 	 * 1K region, which is typically occupied by an attached ISA bus.
    423 	 */
    424 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
    425 		if (bus_space_alloc(sc->sc_iot,
    426 		    start + sc->sc_vcsize, start + 0x0400 - 1,
    427 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
    428 		    &sc->sc_dmac_ioh) != 0)
    429 			continue;
    430 
    431 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
    432 		    addr | ESO_PCI_DDMAC_DE);
    433 		sc->sc_dmac_iot = sc->sc_iot;
    434 		sc->sc_dmac_configured = 1;
    435 		aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
    436 		    (unsigned long)addr);
    437 
    438 		return;
    439 	}
    440 
    441 	aprint_error("can't map Audio 1 DMA into I/O space\n");
    442 }
    443 
    444 /* ARGSUSED */
    445 static int
    446 eso_print(aux, pnp)
    447 	void *aux;
    448 	const char *pnp;
    449 {
    450 
    451 	/* Only joys can attach via this; easy. */
    452 	if (pnp)
    453 		aprint_normal("joy at %s:", pnp);
    454 
    455 	return (UNCONF);
    456 }
    457 
    458 static void
    459 eso_write_cmd(sc, cmd)
    460 	struct eso_softc *sc;
    461 	uint8_t cmd;
    462 {
    463 	int i;
    464 
    465 	/* Poll for busy indicator to become clear. */
    466 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
    467 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
    468 		    & ESO_SB_RSR_BUSY) == 0) {
    469 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    470 			    ESO_SB_WDR, cmd);
    471 			return;
    472 		} else {
    473 			delay(10);
    474 		}
    475 	}
    476 
    477 	printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
    478 	return;
    479 }
    480 
    481 /* Write to a controller register */
    482 static void
    483 eso_write_ctlreg(sc, reg, val)
    484 	struct eso_softc *sc;
    485 	uint8_t reg, val;
    486 {
    487 
    488 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
    489 
    490 	eso_write_cmd(sc, reg);
    491 	eso_write_cmd(sc, val);
    492 }
    493 
    494 /* Read out the Read Data Register */
    495 static uint8_t
    496 eso_read_rdr(sc)
    497 	struct eso_softc *sc;
    498 {
    499 	int i;
    500 
    501 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
    502 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    503 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
    504 			return (bus_space_read_1(sc->sc_sb_iot,
    505 			    sc->sc_sb_ioh, ESO_SB_RDR));
    506 		} else {
    507 			delay(10);
    508 		}
    509 	}
    510 
    511 	printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
    512 	return (-1);
    513 }
    514 
    515 
    516 static uint8_t
    517 eso_read_ctlreg(sc, reg)
    518 	struct eso_softc *sc;
    519 	uint8_t reg;
    520 {
    521 
    522 	eso_write_cmd(sc, ESO_CMD_RCR);
    523 	eso_write_cmd(sc, reg);
    524 	return (eso_read_rdr(sc));
    525 }
    526 
    527 static void
    528 eso_write_mixreg(sc, reg, val)
    529 	struct eso_softc *sc;
    530 	uint8_t reg, val;
    531 {
    532 	int s;
    533 
    534 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
    535 
    536 	s = splaudio();
    537 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
    538 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
    539 	splx(s);
    540 }
    541 
    542 static uint8_t
    543 eso_read_mixreg(sc, reg)
    544 	struct eso_softc *sc;
    545 	uint8_t reg;
    546 {
    547 	int s;
    548 	uint8_t val;
    549 
    550 	s = splaudio();
    551 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
    552 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
    553 	splx(s);
    554 
    555 	return (val);
    556 }
    557 
    558 static int
    559 eso_intr(hdl)
    560 	void *hdl;
    561 {
    562 	struct eso_softc *sc = hdl;
    563 	uint8_t irqctl;
    564 
    565 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
    566 
    567 	/* If it wasn't ours, that's all she wrote. */
    568 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
    569 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
    570 		return (0);
    571 
    572 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
    573 		/* Clear interrupt. */
    574 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    575 		    ESO_SB_RBSR);
    576 
    577 		if (sc->sc_rintr)
    578 			sc->sc_rintr(sc->sc_rarg);
    579 		else
    580 			wakeup(&sc->sc_rintr);
    581 	}
    582 
    583 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
    584 		/*
    585 		 * Clear the A2 IRQ latch: the cached value reflects the
    586 		 * current DAC settings with the IRQ latch bit not set.
    587 		 */
    588 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
    589 
    590 		if (sc->sc_pintr)
    591 			sc->sc_pintr(sc->sc_parg);
    592 		else
    593 			wakeup(&sc->sc_pintr);
    594 	}
    595 
    596 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
    597 		/* Clear interrupt. */
    598 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
    599 
    600 		/*
    601 		 * Raise a flag to cause a lazy update of the in-softc gain
    602 		 * values the next time the software mixer is read to keep
    603 		 * interrupt service cost low.  ~0 cannot occur otherwise
    604 		 * as the master volume has a precision of 6 bits only.
    605 		 */
    606 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
    607 	}
    608 
    609 #if NMPU > 0
    610 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
    611 		mpu_intr(sc->sc_mpudev);
    612 #endif
    613 
    614 	return (1);
    615 }
    616 
    617 /* Perform a software reset, including DMA FIFOs. */
    618 static int
    619 eso_reset(sc)
    620 	struct eso_softc *sc;
    621 {
    622 	int i;
    623 
    624 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
    625 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
    626 	/* `Delay' suggested in the data sheet. */
    627 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
    628 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
    629 
    630 	/* Wait for reset to take effect. */
    631 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
    632 		/* Poll for data to become available. */
    633 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    634 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
    635 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    636 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
    637 
    638 			/* Activate Solo-1 extension commands. */
    639 			eso_write_cmd(sc, ESO_CMD_EXTENB);
    640 			/* Reset mixer registers. */
    641 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
    642 			    ESO_MIXREG_RESET_RESET);
    643 
    644 			return (0);
    645 		} else {
    646 			delay(1000);
    647 		}
    648 	}
    649 
    650 	printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
    651 	return (-1);
    652 }
    653 
    654 
    655 /* ARGSUSED */
    656 static int
    657 eso_open(hdl, flags)
    658 	void *hdl;
    659 	int flags;
    660 {
    661 	struct eso_softc *sc = hdl;
    662 
    663 	DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
    664 
    665 	sc->sc_pintr = NULL;
    666 	sc->sc_rintr = NULL;
    667 
    668 	return (0);
    669 }
    670 
    671 static void
    672 eso_close(hdl)
    673 	void *hdl;
    674 {
    675 
    676 	DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
    677 }
    678 
    679 static int
    680 eso_query_encoding(hdl, fp)
    681 	void *hdl;
    682 	struct audio_encoding *fp;
    683 {
    684 
    685 	switch (fp->index) {
    686 	case 0:
    687 		strcpy(fp->name, AudioEulinear);
    688 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    689 		fp->precision = 8;
    690 		fp->flags = 0;
    691 		break;
    692 	case 1:
    693 		strcpy(fp->name, AudioEmulaw);
    694 		fp->encoding = AUDIO_ENCODING_ULAW;
    695 		fp->precision = 8;
    696 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    697 		break;
    698 	case 2:
    699 		strcpy(fp->name, AudioEalaw);
    700 		fp->encoding = AUDIO_ENCODING_ALAW;
    701 		fp->precision = 8;
    702 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    703 		break;
    704 	case 3:
    705 		strcpy(fp->name, AudioEslinear);
    706 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    707 		fp->precision = 8;
    708 		fp->flags = 0;
    709 		break;
    710 	case 4:
    711 		strcpy(fp->name, AudioEslinear_le);
    712 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    713 		fp->precision = 16;
    714 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    715 		break;
    716 	case 5:
    717 		strcpy(fp->name, AudioEulinear_le);
    718 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    719 		fp->precision = 16;
    720 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    721 		break;
    722 	case 6:
    723 		strcpy(fp->name, AudioEslinear_be);
    724 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    725 		fp->precision = 16;
    726 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    727 		break;
    728 	case 7:
    729 		strcpy(fp->name, AudioEulinear_be);
    730 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    731 		fp->precision = 16;
    732 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    733 		break;
    734 	default:
    735 		return (EINVAL);
    736 	}
    737 
    738 	return (0);
    739 }
    740 
    741 static int
    742 eso_set_params(hdl, setmode, usemode, play, rec)
    743 	void *hdl;
    744 	int setmode, usemode;
    745 	struct audio_params *play, *rec;
    746 {
    747 	struct eso_softc *sc = hdl;
    748 	struct audio_params *p;
    749 	int mode, r[2], rd[2], clk;
    750 	unsigned int srg, fltdiv;
    751 
    752 	for (mode = AUMODE_RECORD; mode != -1;
    753 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    754 		if ((setmode & mode) == 0)
    755 			continue;
    756 
    757 		p = (mode == AUMODE_PLAY) ? play : rec;
    758 
    759 		if (p->sample_rate < ESO_MINRATE ||
    760 		    p->sample_rate > ESO_MAXRATE ||
    761 		    (p->precision != 8 && p->precision != 16) ||
    762 		    (p->channels != 1 && p->channels != 2))
    763 			return (EINVAL);
    764 
    765 		p->factor = 1;
    766 		p->sw_code = NULL;
    767 		switch (p->encoding) {
    768 		case AUDIO_ENCODING_SLINEAR_BE:
    769 		case AUDIO_ENCODING_ULINEAR_BE:
    770 			if (mode == AUMODE_PLAY && p->precision == 16)
    771 				p->sw_code = swap_bytes;
    772 			break;
    773 		case AUDIO_ENCODING_SLINEAR_LE:
    774 		case AUDIO_ENCODING_ULINEAR_LE:
    775 			if (mode == AUMODE_RECORD && p->precision == 16)
    776 				p->sw_code = swap_bytes;
    777 			break;
    778 		case AUDIO_ENCODING_ULAW:
    779 			if (mode == AUMODE_PLAY) {
    780 				p->factor = 2;
    781 				p->sw_code = mulaw_to_ulinear16_le;
    782 			} else {
    783 				p->sw_code = ulinear8_to_mulaw;
    784 			}
    785 			break;
    786 		case AUDIO_ENCODING_ALAW:
    787 			if (mode == AUMODE_PLAY) {
    788 				p->factor = 2;
    789 				p->sw_code = alaw_to_ulinear16_le;
    790 			} else {
    791 				p->sw_code = ulinear8_to_alaw;
    792 			}
    793 			break;
    794 		default:
    795 			return (EINVAL);
    796 		}
    797 
    798 		/*
    799 		 * We'll compute both possible sample rate dividers and pick
    800 		 * the one with the least error.
    801 		 */
    802 #define ABS(x) ((x) < 0 ? -(x) : (x))
    803 		r[0] = ESO_CLK0 /
    804 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
    805 		r[1] = ESO_CLK1 /
    806 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
    807 
    808 		clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
    809 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
    810 
    811 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
    812 		fltdiv = 256 - 200279L / r[clk];
    813 
    814 		/* Update to reflect the possibly inexact rate. */
    815 		p->sample_rate = r[clk];
    816 
    817 		if (mode == AUMODE_RECORD) {
    818 			/* Audio 1 */
    819 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
    820 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
    821 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
    822 		} else {
    823 			/* Audio 2 */
    824 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
    825 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
    826 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
    827 		}
    828 #undef ABS
    829 
    830 	}
    831 
    832 	return (0);
    833 }
    834 
    835 static int
    836 eso_round_blocksize(hdl, blk)
    837 	void *hdl;
    838 	int blk;
    839 {
    840 
    841 	return (blk & -32);	/* keep good alignment; at least 16 req'd */
    842 }
    843 
    844 static int
    845 eso_halt_output(hdl)
    846 	void *hdl;
    847 {
    848 	struct eso_softc *sc = hdl;
    849 	int error, s;
    850 
    851 	DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
    852 
    853 	/*
    854 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
    855 	 * stop.  The interrupt callback pointer is cleared at this
    856 	 * point so that an outstanding FIFO interrupt for the remaining data
    857 	 * will be acknowledged without further processing.
    858 	 *
    859 	 * This does not immediately `abort' an operation in progress (c.f.
    860 	 * audio(9)) but is the method to leave the FIFO behind in a clean
    861 	 * state with the least hair.  (Besides, that item needs to be
    862 	 * rephrased for trigger_*()-based DMA environments.)
    863 	 */
    864 	s = splaudio();
    865 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
    866 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
    867 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
    868 	    ESO_IO_A2DMAM_DMAENB);
    869 
    870 	sc->sc_pintr = NULL;
    871 	error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
    872 	splx(s);
    873 
    874 	/* Shut down DMA completely. */
    875 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
    876 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
    877 
    878 	return (error == EWOULDBLOCK ? 0 : error);
    879 }
    880 
    881 static int
    882 eso_halt_input(hdl)
    883 	void *hdl;
    884 {
    885 	struct eso_softc *sc = hdl;
    886 	int error, s;
    887 
    888 	DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
    889 
    890 	/* Just like eso_halt_output(), but for Audio 1. */
    891 	s = splaudio();
    892 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
    893 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
    894 	    ESO_CTLREG_A1C2_DMAENB);
    895 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
    896 	    DMA37MD_WRITE | DMA37MD_DEMAND);
    897 
    898 	sc->sc_rintr = NULL;
    899 	error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
    900 	splx(s);
    901 
    902 	/* Shut down DMA completely. */
    903 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
    904 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
    905 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
    906 	    ESO_DMAC_MASK_MASK);
    907 
    908 	return (error == EWOULDBLOCK ? 0 : error);
    909 }
    910 
    911 static int
    912 eso_getdev(hdl, retp)
    913 	void *hdl;
    914 	struct audio_device *retp;
    915 {
    916 	struct eso_softc *sc = hdl;
    917 
    918 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
    919 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
    920 	    sc->sc_revision);
    921 	if (sc->sc_revision <
    922 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
    923 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
    924 		    sizeof (retp->config));
    925 	else
    926 		strncpy(retp->config, "unknown", sizeof (retp->config));
    927 
    928 	return (0);
    929 }
    930 
    931 static int
    932 eso_set_port(hdl, cp)
    933 	void *hdl;
    934 	mixer_ctrl_t *cp;
    935 {
    936 	struct eso_softc *sc = hdl;
    937 	unsigned int lgain, rgain;
    938 	uint8_t tmp;
    939 
    940 	switch (cp->dev) {
    941 	case ESO_DAC_PLAY_VOL:
    942 	case ESO_MIC_PLAY_VOL:
    943 	case ESO_LINE_PLAY_VOL:
    944 	case ESO_SYNTH_PLAY_VOL:
    945 	case ESO_CD_PLAY_VOL:
    946 	case ESO_AUXB_PLAY_VOL:
    947 	case ESO_RECORD_VOL:
    948 	case ESO_DAC_REC_VOL:
    949 	case ESO_MIC_REC_VOL:
    950 	case ESO_LINE_REC_VOL:
    951 	case ESO_SYNTH_REC_VOL:
    952 	case ESO_CD_REC_VOL:
    953 	case ESO_AUXB_REC_VOL:
    954 		if (cp->type != AUDIO_MIXER_VALUE)
    955 			return (EINVAL);
    956 
    957 		/*
    958 		 * Stereo-capable mixer ports: if we get a single-channel
    959 		 * gain value passed in, then we duplicate it to both left
    960 		 * and right channels.
    961 		 */
    962 		switch (cp->un.value.num_channels) {
    963 		case 1:
    964 			lgain = rgain = ESO_GAIN_TO_4BIT(
    965 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    966 			break;
    967 		case 2:
    968 			lgain = ESO_GAIN_TO_4BIT(
    969 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
    970 			rgain = ESO_GAIN_TO_4BIT(
    971 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
    972 			break;
    973 		default:
    974 			return (EINVAL);
    975 		}
    976 
    977 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
    978 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
    979 		eso_set_gain(sc, cp->dev);
    980 		break;
    981 
    982 	case ESO_MASTER_VOL:
    983 		if (cp->type != AUDIO_MIXER_VALUE)
    984 			return (EINVAL);
    985 
    986 		/* Like above, but a precision of 6 bits. */
    987 		switch (cp->un.value.num_channels) {
    988 		case 1:
    989 			lgain = rgain = ESO_GAIN_TO_6BIT(
    990 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    991 			break;
    992 		case 2:
    993 			lgain = ESO_GAIN_TO_6BIT(
    994 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
    995 			rgain = ESO_GAIN_TO_6BIT(
    996 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
    997 			break;
    998 		default:
    999 			return (EINVAL);
   1000 		}
   1001 
   1002 		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
   1003 		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
   1004 		eso_set_gain(sc, cp->dev);
   1005 		break;
   1006 
   1007 	case ESO_SPATIALIZER:
   1008 		if (cp->type != AUDIO_MIXER_VALUE ||
   1009 		    cp->un.value.num_channels != 1)
   1010 			return (EINVAL);
   1011 
   1012 		sc->sc_gain[cp->dev][ESO_LEFT] =
   1013 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
   1014 		    ESO_GAIN_TO_6BIT(
   1015 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1016 		eso_set_gain(sc, cp->dev);
   1017 		break;
   1018 
   1019 	case ESO_MONO_PLAY_VOL:
   1020 	case ESO_MONO_REC_VOL:
   1021 		if (cp->type != AUDIO_MIXER_VALUE ||
   1022 		    cp->un.value.num_channels != 1)
   1023 			return (EINVAL);
   1024 
   1025 		sc->sc_gain[cp->dev][ESO_LEFT] =
   1026 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
   1027 		    ESO_GAIN_TO_4BIT(
   1028 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1029 		eso_set_gain(sc, cp->dev);
   1030 		break;
   1031 
   1032 	case ESO_PCSPEAKER_VOL:
   1033 		if (cp->type != AUDIO_MIXER_VALUE ||
   1034 		    cp->un.value.num_channels != 1)
   1035 			return (EINVAL);
   1036 
   1037 		sc->sc_gain[cp->dev][ESO_LEFT] =
   1038 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
   1039 		    ESO_GAIN_TO_3BIT(
   1040 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1041 		eso_set_gain(sc, cp->dev);
   1042 		break;
   1043 
   1044 	case ESO_SPATIALIZER_ENABLE:
   1045 		if (cp->type != AUDIO_MIXER_ENUM)
   1046 			return (EINVAL);
   1047 
   1048 		sc->sc_spatializer = (cp->un.ord != 0);
   1049 
   1050 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
   1051 		if (sc->sc_spatializer)
   1052 			tmp |= ESO_MIXREG_SPAT_ENB;
   1053 		else
   1054 			tmp &= ~ESO_MIXREG_SPAT_ENB;
   1055 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
   1056 		    tmp | ESO_MIXREG_SPAT_RSTREL);
   1057 		break;
   1058 
   1059 	case ESO_MASTER_MUTE:
   1060 		if (cp->type != AUDIO_MIXER_ENUM)
   1061 			return (EINVAL);
   1062 
   1063 		sc->sc_mvmute = (cp->un.ord != 0);
   1064 
   1065 		if (sc->sc_mvmute) {
   1066 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   1067 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
   1068 			    ESO_MIXREG_LMVM_MUTE);
   1069 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   1070 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
   1071 			    ESO_MIXREG_RMVM_MUTE);
   1072 		} else {
   1073 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   1074 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
   1075 			    ~ESO_MIXREG_LMVM_MUTE);
   1076 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   1077 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
   1078 			    ~ESO_MIXREG_RMVM_MUTE);
   1079 		}
   1080 		break;
   1081 
   1082 	case ESO_MONOOUT_SOURCE:
   1083 		if (cp->type != AUDIO_MIXER_ENUM)
   1084 			return (EINVAL);
   1085 
   1086 		return (eso_set_monooutsrc(sc, cp->un.ord));
   1087 
   1088 	case ESO_MONOIN_BYPASS:
   1089 		if (cp->type != AUDIO_MIXER_ENUM)
   1090 			return (EINVAL);
   1091 
   1092 		return (eso_set_monoinbypass(sc, cp->un.ord));
   1093 
   1094 	case ESO_RECORD_MONITOR:
   1095 		if (cp->type != AUDIO_MIXER_ENUM)
   1096 			return (EINVAL);
   1097 
   1098 		sc->sc_recmon = (cp->un.ord != 0);
   1099 
   1100 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
   1101 		if (sc->sc_recmon)
   1102 			tmp |= ESO_CTLREG_ACTL_RECMON;
   1103 		else
   1104 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
   1105 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
   1106 		break;
   1107 
   1108 	case ESO_RECORD_SOURCE:
   1109 		if (cp->type != AUDIO_MIXER_ENUM)
   1110 			return (EINVAL);
   1111 
   1112 		return (eso_set_recsrc(sc, cp->un.ord));
   1113 
   1114 	case ESO_MIC_PREAMP:
   1115 		if (cp->type != AUDIO_MIXER_ENUM)
   1116 			return (EINVAL);
   1117 
   1118 		return (eso_set_preamp(sc, cp->un.ord));
   1119 
   1120 	default:
   1121 		return (EINVAL);
   1122 	}
   1123 
   1124 	return (0);
   1125 }
   1126 
   1127 static int
   1128 eso_get_port(hdl, cp)
   1129 	void *hdl;
   1130 	mixer_ctrl_t *cp;
   1131 {
   1132 	struct eso_softc *sc = hdl;
   1133 
   1134 	switch (cp->dev) {
   1135 	case ESO_MASTER_VOL:
   1136 		/* Reload from mixer after hardware volume control use. */
   1137 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
   1138 			eso_reload_master_vol(sc);
   1139 		/* FALLTHROUGH */
   1140 	case ESO_DAC_PLAY_VOL:
   1141 	case ESO_MIC_PLAY_VOL:
   1142 	case ESO_LINE_PLAY_VOL:
   1143 	case ESO_SYNTH_PLAY_VOL:
   1144 	case ESO_CD_PLAY_VOL:
   1145 	case ESO_AUXB_PLAY_VOL:
   1146 	case ESO_RECORD_VOL:
   1147 	case ESO_DAC_REC_VOL:
   1148 	case ESO_MIC_REC_VOL:
   1149 	case ESO_LINE_REC_VOL:
   1150 	case ESO_SYNTH_REC_VOL:
   1151 	case ESO_CD_REC_VOL:
   1152 	case ESO_AUXB_REC_VOL:
   1153 		/*
   1154 		 * Stereo-capable ports: if a single-channel query is made,
   1155 		 * just return the left channel's value (since single-channel
   1156 		 * settings themselves are applied to both channels).
   1157 		 */
   1158 		switch (cp->un.value.num_channels) {
   1159 		case 1:
   1160 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1161 			    sc->sc_gain[cp->dev][ESO_LEFT];
   1162 			break;
   1163 		case 2:
   1164 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1165 			    sc->sc_gain[cp->dev][ESO_LEFT];
   1166 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1167 			    sc->sc_gain[cp->dev][ESO_RIGHT];
   1168 			break;
   1169 		default:
   1170 			return (EINVAL);
   1171 		}
   1172 		break;
   1173 
   1174 	case ESO_MONO_PLAY_VOL:
   1175 	case ESO_PCSPEAKER_VOL:
   1176 	case ESO_MONO_REC_VOL:
   1177 	case ESO_SPATIALIZER:
   1178 		if (cp->un.value.num_channels != 1)
   1179 			return (EINVAL);
   1180 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1181 		    sc->sc_gain[cp->dev][ESO_LEFT];
   1182 		break;
   1183 
   1184 	case ESO_RECORD_MONITOR:
   1185 		cp->un.ord = sc->sc_recmon;
   1186 		break;
   1187 
   1188 	case ESO_RECORD_SOURCE:
   1189 		cp->un.ord = sc->sc_recsrc;
   1190 		break;
   1191 
   1192 	case ESO_MONOOUT_SOURCE:
   1193 		cp->un.ord = sc->sc_monooutsrc;
   1194 		break;
   1195 
   1196 	case ESO_MONOIN_BYPASS:
   1197 		cp->un.ord = sc->sc_monoinbypass;
   1198 		break;
   1199 
   1200 	case ESO_SPATIALIZER_ENABLE:
   1201 		cp->un.ord = sc->sc_spatializer;
   1202 		break;
   1203 
   1204 	case ESO_MIC_PREAMP:
   1205 		cp->un.ord = sc->sc_preamp;
   1206 		break;
   1207 
   1208 	case ESO_MASTER_MUTE:
   1209 		/* Reload from mixer after hardware volume control use. */
   1210 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
   1211 			eso_reload_master_vol(sc);
   1212 		cp->un.ord = sc->sc_mvmute;
   1213 		break;
   1214 
   1215 	default:
   1216 		return (EINVAL);
   1217 	}
   1218 
   1219 
   1220 	return (0);
   1221 
   1222 }
   1223 
   1224 static int
   1225 eso_query_devinfo(hdl, dip)
   1226 	void *hdl;
   1227 	mixer_devinfo_t *dip;
   1228 {
   1229 
   1230 	switch (dip->index) {
   1231 	case ESO_DAC_PLAY_VOL:
   1232 		dip->mixer_class = ESO_INPUT_CLASS;
   1233 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1234 		strcpy(dip->label.name, AudioNdac);
   1235 		dip->type = AUDIO_MIXER_VALUE;
   1236 		dip->un.v.num_channels = 2;
   1237 		strcpy(dip->un.v.units.name, AudioNvolume);
   1238 		break;
   1239 	case ESO_MIC_PLAY_VOL:
   1240 		dip->mixer_class = ESO_INPUT_CLASS;
   1241 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1242 		strcpy(dip->label.name, AudioNmicrophone);
   1243 		dip->type = AUDIO_MIXER_VALUE;
   1244 		dip->un.v.num_channels = 2;
   1245 		strcpy(dip->un.v.units.name, AudioNvolume);
   1246 		break;
   1247 	case ESO_LINE_PLAY_VOL:
   1248 		dip->mixer_class = ESO_INPUT_CLASS;
   1249 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1250 		strcpy(dip->label.name, AudioNline);
   1251 		dip->type = AUDIO_MIXER_VALUE;
   1252 		dip->un.v.num_channels = 2;
   1253 		strcpy(dip->un.v.units.name, AudioNvolume);
   1254 		break;
   1255 	case ESO_SYNTH_PLAY_VOL:
   1256 		dip->mixer_class = ESO_INPUT_CLASS;
   1257 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1258 		strcpy(dip->label.name, AudioNfmsynth);
   1259 		dip->type = AUDIO_MIXER_VALUE;
   1260 		dip->un.v.num_channels = 2;
   1261 		strcpy(dip->un.v.units.name, AudioNvolume);
   1262 		break;
   1263 	case ESO_MONO_PLAY_VOL:
   1264 		dip->mixer_class = ESO_INPUT_CLASS;
   1265 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1266 		strcpy(dip->label.name, "mono_in");
   1267 		dip->type = AUDIO_MIXER_VALUE;
   1268 		dip->un.v.num_channels = 1;
   1269 		strcpy(dip->un.v.units.name, AudioNvolume);
   1270 		break;
   1271 	case ESO_CD_PLAY_VOL:
   1272 		dip->mixer_class = ESO_INPUT_CLASS;
   1273 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1274 		strcpy(dip->label.name, AudioNcd);
   1275 		dip->type = AUDIO_MIXER_VALUE;
   1276 		dip->un.v.num_channels = 2;
   1277 		strcpy(dip->un.v.units.name, AudioNvolume);
   1278 		break;
   1279 	case ESO_AUXB_PLAY_VOL:
   1280 		dip->mixer_class = ESO_INPUT_CLASS;
   1281 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1282 		strcpy(dip->label.name, "auxb");
   1283 		dip->type = AUDIO_MIXER_VALUE;
   1284 		dip->un.v.num_channels = 2;
   1285 		strcpy(dip->un.v.units.name, AudioNvolume);
   1286 		break;
   1287 
   1288 	case ESO_MIC_PREAMP:
   1289 		dip->mixer_class = ESO_MICROPHONE_CLASS;
   1290 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1291 		strcpy(dip->label.name, AudioNpreamp);
   1292 		dip->type = AUDIO_MIXER_ENUM;
   1293 		dip->un.e.num_mem = 2;
   1294 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1295 		dip->un.e.member[0].ord = 0;
   1296 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1297 		dip->un.e.member[1].ord = 1;
   1298 		break;
   1299 	case ESO_MICROPHONE_CLASS:
   1300 		dip->mixer_class = ESO_MICROPHONE_CLASS;
   1301 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1302 		strcpy(dip->label.name, AudioNmicrophone);
   1303 		dip->type = AUDIO_MIXER_CLASS;
   1304 		break;
   1305 
   1306 	case ESO_INPUT_CLASS:
   1307 		dip->mixer_class = ESO_INPUT_CLASS;
   1308 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1309 		strcpy(dip->label.name, AudioCinputs);
   1310 		dip->type = AUDIO_MIXER_CLASS;
   1311 		break;
   1312 
   1313 	case ESO_MASTER_VOL:
   1314 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1315 		dip->prev = AUDIO_MIXER_LAST;
   1316 		dip->next = ESO_MASTER_MUTE;
   1317 		strcpy(dip->label.name, AudioNmaster);
   1318 		dip->type = AUDIO_MIXER_VALUE;
   1319 		dip->un.v.num_channels = 2;
   1320 		strcpy(dip->un.v.units.name, AudioNvolume);
   1321 		break;
   1322 	case ESO_MASTER_MUTE:
   1323 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1324 		dip->prev = ESO_MASTER_VOL;
   1325 		dip->next = AUDIO_MIXER_LAST;
   1326 		strcpy(dip->label.name, AudioNmute);
   1327 		dip->type = AUDIO_MIXER_ENUM;
   1328 		dip->un.e.num_mem = 2;
   1329 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1330 		dip->un.e.member[0].ord = 0;
   1331 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1332 		dip->un.e.member[1].ord = 1;
   1333 		break;
   1334 
   1335 	case ESO_PCSPEAKER_VOL:
   1336 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1337 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1338 		strcpy(dip->label.name, "pc_speaker");
   1339 		dip->type = AUDIO_MIXER_VALUE;
   1340 		dip->un.v.num_channels = 1;
   1341 		strcpy(dip->un.v.units.name, AudioNvolume);
   1342 		break;
   1343 	case ESO_MONOOUT_SOURCE:
   1344 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1345 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1346 		strcpy(dip->label.name, "mono_out");
   1347 		dip->type = AUDIO_MIXER_ENUM;
   1348 		dip->un.e.num_mem = 3;
   1349 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
   1350 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
   1351 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
   1352 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
   1353 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
   1354 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
   1355 		break;
   1356 
   1357 	case ESO_MONOIN_BYPASS:
   1358 		dip->mixer_class = ESO_MONOIN_CLASS;
   1359 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1360 		strcpy(dip->label.name, "bypass");
   1361 		dip->type = AUDIO_MIXER_ENUM;
   1362 		dip->un.e.num_mem = 2;
   1363 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1364 		dip->un.e.member[0].ord = 0;
   1365 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1366 		dip->un.e.member[1].ord = 1;
   1367 		break;
   1368 	case ESO_MONOIN_CLASS:
   1369 		dip->mixer_class = ESO_MONOIN_CLASS;
   1370 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1371 		strcpy(dip->label.name, "mono_in");
   1372 		dip->type = AUDIO_MIXER_CLASS;
   1373 		break;
   1374 
   1375 	case ESO_SPATIALIZER:
   1376 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1377 		dip->prev = AUDIO_MIXER_LAST;
   1378 		dip->next = ESO_SPATIALIZER_ENABLE;
   1379 		strcpy(dip->label.name, AudioNspatial);
   1380 		dip->type = AUDIO_MIXER_VALUE;
   1381 		dip->un.v.num_channels = 1;
   1382 		strcpy(dip->un.v.units.name, "level");
   1383 		break;
   1384 	case ESO_SPATIALIZER_ENABLE:
   1385 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1386 		dip->prev = ESO_SPATIALIZER;
   1387 		dip->next = AUDIO_MIXER_LAST;
   1388 		strcpy(dip->label.name, "enable");
   1389 		dip->type = AUDIO_MIXER_ENUM;
   1390 		dip->un.e.num_mem = 2;
   1391 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1392 		dip->un.e.member[0].ord = 0;
   1393 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1394 		dip->un.e.member[1].ord = 1;
   1395 		break;
   1396 
   1397 	case ESO_OUTPUT_CLASS:
   1398 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1399 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1400 		strcpy(dip->label.name, AudioCoutputs);
   1401 		dip->type = AUDIO_MIXER_CLASS;
   1402 		break;
   1403 
   1404 	case ESO_RECORD_MONITOR:
   1405 		dip->mixer_class = ESO_MONITOR_CLASS;
   1406 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1407 		strcpy(dip->label.name, AudioNmute);
   1408 		dip->type = AUDIO_MIXER_ENUM;
   1409 		dip->un.e.num_mem = 2;
   1410 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1411 		dip->un.e.member[0].ord = 0;
   1412 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1413 		dip->un.e.member[1].ord = 1;
   1414 		break;
   1415 	case ESO_MONITOR_CLASS:
   1416 		dip->mixer_class = ESO_MONITOR_CLASS;
   1417 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1418 		strcpy(dip->label.name, AudioCmonitor);
   1419 		dip->type = AUDIO_MIXER_CLASS;
   1420 		break;
   1421 
   1422 	case ESO_RECORD_VOL:
   1423 		dip->mixer_class = ESO_RECORD_CLASS;
   1424 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1425 		strcpy(dip->label.name, AudioNrecord);
   1426 		dip->type = AUDIO_MIXER_VALUE;
   1427 		strcpy(dip->un.v.units.name, AudioNvolume);
   1428 		break;
   1429 	case ESO_RECORD_SOURCE:
   1430 		dip->mixer_class = ESO_RECORD_CLASS;
   1431 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1432 		strcpy(dip->label.name, AudioNsource);
   1433 		dip->type = AUDIO_MIXER_ENUM;
   1434 		dip->un.e.num_mem = 4;
   1435 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   1436 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
   1437 		strcpy(dip->un.e.member[1].label.name, AudioNline);
   1438 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
   1439 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
   1440 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
   1441 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
   1442 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
   1443 		break;
   1444 	case ESO_DAC_REC_VOL:
   1445 		dip->mixer_class = ESO_RECORD_CLASS;
   1446 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1447 		strcpy(dip->label.name, AudioNdac);
   1448 		dip->type = AUDIO_MIXER_VALUE;
   1449 		dip->un.v.num_channels = 2;
   1450 		strcpy(dip->un.v.units.name, AudioNvolume);
   1451 		break;
   1452 	case ESO_MIC_REC_VOL:
   1453 		dip->mixer_class = ESO_RECORD_CLASS;
   1454 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1455 		strcpy(dip->label.name, AudioNmicrophone);
   1456 		dip->type = AUDIO_MIXER_VALUE;
   1457 		dip->un.v.num_channels = 2;
   1458 		strcpy(dip->un.v.units.name, AudioNvolume);
   1459 		break;
   1460 	case ESO_LINE_REC_VOL:
   1461 		dip->mixer_class = ESO_RECORD_CLASS;
   1462 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1463 		strcpy(dip->label.name, AudioNline);
   1464 		dip->type = AUDIO_MIXER_VALUE;
   1465 		dip->un.v.num_channels = 2;
   1466 		strcpy(dip->un.v.units.name, AudioNvolume);
   1467 		break;
   1468 	case ESO_SYNTH_REC_VOL:
   1469 		dip->mixer_class = ESO_RECORD_CLASS;
   1470 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1471 		strcpy(dip->label.name, AudioNfmsynth);
   1472 		dip->type = AUDIO_MIXER_VALUE;
   1473 		dip->un.v.num_channels = 2;
   1474 		strcpy(dip->un.v.units.name, AudioNvolume);
   1475 		break;
   1476 	case ESO_MONO_REC_VOL:
   1477 		dip->mixer_class = ESO_RECORD_CLASS;
   1478 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1479 		strcpy(dip->label.name, "mono_in");
   1480 		dip->type = AUDIO_MIXER_VALUE;
   1481 		dip->un.v.num_channels = 1; /* No lies */
   1482 		strcpy(dip->un.v.units.name, AudioNvolume);
   1483 		break;
   1484 	case ESO_CD_REC_VOL:
   1485 		dip->mixer_class = ESO_RECORD_CLASS;
   1486 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1487 		strcpy(dip->label.name, AudioNcd);
   1488 		dip->type = AUDIO_MIXER_VALUE;
   1489 		dip->un.v.num_channels = 2;
   1490 		strcpy(dip->un.v.units.name, AudioNvolume);
   1491 		break;
   1492 	case ESO_AUXB_REC_VOL:
   1493 		dip->mixer_class = ESO_RECORD_CLASS;
   1494 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1495 		strcpy(dip->label.name, "auxb");
   1496 		dip->type = AUDIO_MIXER_VALUE;
   1497 		dip->un.v.num_channels = 2;
   1498 		strcpy(dip->un.v.units.name, AudioNvolume);
   1499 		break;
   1500 	case ESO_RECORD_CLASS:
   1501 		dip->mixer_class = ESO_RECORD_CLASS;
   1502 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1503 		strcpy(dip->label.name, AudioCrecord);
   1504 		dip->type = AUDIO_MIXER_CLASS;
   1505 		break;
   1506 
   1507 	default:
   1508 		return (ENXIO);
   1509 	}
   1510 
   1511 	return (0);
   1512 }
   1513 
   1514 static int
   1515 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
   1516 	struct eso_softc *sc;
   1517 	size_t size;
   1518 	size_t align;
   1519 	size_t boundary;
   1520 	int flags;
   1521 	int direction;
   1522 	struct eso_dma *ed;
   1523 {
   1524 	int error, wait;
   1525 
   1526 	wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
   1527 	ed->ed_size = size;
   1528 
   1529 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
   1530 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
   1531 	    &ed->ed_nsegs, wait);
   1532 	if (error)
   1533 		goto out;
   1534 
   1535 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
   1536 	    ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
   1537 	if (error)
   1538 		goto free;
   1539 
   1540 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
   1541 	    wait, &ed->ed_map);
   1542 	if (error)
   1543 		goto unmap;
   1544 
   1545 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
   1546 	    ed->ed_size, NULL, wait |
   1547 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
   1548 	if (error)
   1549 		goto destroy;
   1550 
   1551 	return (0);
   1552 
   1553  destroy:
   1554 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
   1555  unmap:
   1556 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
   1557  free:
   1558 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
   1559  out:
   1560 	return (error);
   1561 }
   1562 
   1563 static void
   1564 eso_freemem(ed)
   1565 	struct eso_dma *ed;
   1566 {
   1567 
   1568 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
   1569 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
   1570 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
   1571 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
   1572 }
   1573 
   1574 static void *
   1575 eso_allocm(hdl, direction, size, type, flags)
   1576 	void *hdl;
   1577 	int direction;
   1578 	size_t size;
   1579 	struct malloc_type *type;
   1580 	int flags;
   1581 {
   1582 	struct eso_softc *sc = hdl;
   1583 	struct eso_dma *ed;
   1584 	size_t boundary;
   1585 	int error;
   1586 
   1587 	if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
   1588 		return (NULL);
   1589 
   1590 	/*
   1591 	 * Apparently the Audio 1 DMA controller's current address
   1592 	 * register can't roll over a 64K address boundary, so we have to
   1593 	 * take care of that ourselves.  Similarly, the Audio 2 DMA
   1594 	 * controller needs a 1M address boundary.
   1595 	 */
   1596 	if (direction == AUMODE_RECORD)
   1597 		boundary = 0x10000;
   1598 	else
   1599 		boundary = 0x100000;
   1600 
   1601 	/*
   1602 	 * XXX Work around allocation problems for Audio 1, which
   1603 	 * XXX implements the 24 low address bits only, with
   1604 	 * XXX machine-specific DMA tag use.
   1605 	 */
   1606 #ifdef alpha
   1607 	/*
   1608 	 * XXX Force allocation through the (ISA) SGMAP.
   1609 	 */
   1610 	if (direction == AUMODE_RECORD)
   1611 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
   1612 	else
   1613 #elif defined(amd64) || defined(i386)
   1614 	/*
   1615 	 * XXX Force allocation through the ISA DMA tag.
   1616 	 */
   1617 	if (direction == AUMODE_RECORD)
   1618 		ed->ed_dmat = &isa_bus_dma_tag;
   1619 	else
   1620 #endif
   1621 		ed->ed_dmat = sc->sc_dmat;
   1622 
   1623 	error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
   1624 	if (error) {
   1625 		free(ed, type);
   1626 		return (NULL);
   1627 	}
   1628 	ed->ed_next = sc->sc_dmas;
   1629 	sc->sc_dmas = ed;
   1630 
   1631 	return (KVADDR(ed));
   1632 }
   1633 
   1634 static void
   1635 eso_freem(hdl, addr, type)
   1636 	void *hdl;
   1637 	void *addr;
   1638 	struct malloc_type *type;
   1639 {
   1640 	struct eso_softc *sc = hdl;
   1641 	struct eso_dma *p, **pp;
   1642 
   1643 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
   1644 		if (KVADDR(p) == addr) {
   1645 			eso_freemem(p);
   1646 			*pp = p->ed_next;
   1647 			free(p, type);
   1648 			return;
   1649 		}
   1650 	}
   1651 }
   1652 
   1653 static size_t
   1654 eso_round_buffersize(hdl, direction, bufsize)
   1655 	void *hdl;
   1656 	int direction;
   1657 	size_t bufsize;
   1658 {
   1659 	size_t maxsize;
   1660 
   1661 	/*
   1662 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
   1663 	 * bytes.  This is because IO_A2DMAC is a two byte value
   1664 	 * indicating the literal byte count, and the 4 least significant
   1665 	 * bits are read-only.  Zero is not used as a special case for
   1666 	 * 0x10000.
   1667 	 *
   1668 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
   1669 	 * be represented.
   1670 	 */
   1671 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
   1672 
   1673 	if (bufsize > maxsize)
   1674 		bufsize = maxsize;
   1675 
   1676 	return (bufsize);
   1677 }
   1678 
   1679 static paddr_t
   1680 eso_mappage(hdl, addr, offs, prot)
   1681 	void *hdl;
   1682 	void *addr;
   1683 	off_t offs;
   1684 	int prot;
   1685 {
   1686 	struct eso_softc *sc = hdl;
   1687 	struct eso_dma *ed;
   1688 
   1689 	if (offs < 0)
   1690 		return (-1);
   1691 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
   1692 	     ed = ed->ed_next)
   1693 		;
   1694 	if (ed == NULL)
   1695 		return (-1);
   1696 
   1697 	return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
   1698 	    offs, prot, BUS_DMA_WAITOK));
   1699 }
   1700 
   1701 /* ARGSUSED */
   1702 static int
   1703 eso_get_props(hdl)
   1704 	void *hdl;
   1705 {
   1706 
   1707 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   1708 	    AUDIO_PROP_FULLDUPLEX);
   1709 }
   1710 
   1711 static int
   1712 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
   1713 	void *hdl;
   1714 	void *start, *end;
   1715 	int blksize;
   1716 	void (*intr) __P((void *));
   1717 	void *arg;
   1718 	struct audio_params *param;
   1719 {
   1720 	struct eso_softc *sc = hdl;
   1721 	struct eso_dma *ed;
   1722 	uint8_t a2c1;
   1723 
   1724 	DPRINTF((
   1725 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
   1726 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
   1727 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
   1728 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
   1729 	    param->precision, param->channels, param->sw_code, param->factor));
   1730 
   1731 	/* Find DMA buffer. */
   1732 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
   1733 	     ed = ed->ed_next)
   1734 		;
   1735 	if (ed == NULL) {
   1736 		printf("%s: trigger_output: bad addr %p\n",
   1737 		    sc->sc_dev.dv_xname, start);
   1738 		return (EINVAL);
   1739 	}
   1740 	DPRINTF(("%s: dmaaddr %lx\n",
   1741 	    sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
   1742 
   1743 	sc->sc_pintr = intr;
   1744 	sc->sc_parg = arg;
   1745 
   1746 	/* Compute drain timeout. */
   1747 	sc->sc_pdrain = (blksize * NBBY * hz) /
   1748 	    (param->sample_rate * param->channels *
   1749 	     param->precision * param->factor) + 2;	/* slop */
   1750 
   1751 	/* DMA transfer count (in `words'!) reload using 2's complement. */
   1752 	blksize = -(blksize >> 1);
   1753 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
   1754 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
   1755 
   1756 	/* Update DAC to reflect DMA count and audio parameters. */
   1757 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
   1758 	if (param->precision * param->factor == 16)
   1759 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
   1760 	else
   1761 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
   1762 	if (param->channels == 2)
   1763 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
   1764 	else
   1765 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
   1766 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1767 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1768 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
   1769 	else
   1770 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
   1771 	/* Unmask IRQ. */
   1772 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
   1773 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
   1774 
   1775 	/* Set up DMA controller. */
   1776 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
   1777 	    DMAADDR(ed));
   1778 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
   1779 	    (uint8_t *)end - (uint8_t *)start);
   1780 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
   1781 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
   1782 
   1783 	/* Start DMA. */
   1784 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
   1785 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
   1786 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
   1787 	    ESO_MIXREG_A2C1_AUTO;
   1788 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
   1789 
   1790 	return (0);
   1791 }
   1792 
   1793 static int
   1794 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
   1795 	void *hdl;
   1796 	void *start, *end;
   1797 	int blksize;
   1798 	void (*intr) __P((void *));
   1799 	void *arg;
   1800 	struct audio_params *param;
   1801 {
   1802 	struct eso_softc *sc = hdl;
   1803 	struct eso_dma *ed;
   1804 	uint8_t actl, a1c1;
   1805 
   1806 	DPRINTF((
   1807 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
   1808 	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
   1809 	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
   1810 	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
   1811 	    param->precision, param->channels, param->sw_code, param->factor));
   1812 
   1813 	/*
   1814 	 * If we failed to configure the Audio 1 DMA controller, bail here
   1815 	 * while retaining availability of the DAC direction (in Audio 2).
   1816 	 */
   1817 	if (!sc->sc_dmac_configured)
   1818 		return (EIO);
   1819 
   1820 	/* Find DMA buffer. */
   1821 	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
   1822 	     ed = ed->ed_next)
   1823 		;
   1824 	if (ed == NULL) {
   1825 		printf("%s: trigger_output: bad addr %p\n",
   1826 		    sc->sc_dev.dv_xname, start);
   1827 		return (EINVAL);
   1828 	}
   1829 	DPRINTF(("%s: dmaaddr %lx\n",
   1830 	    sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
   1831 
   1832 	sc->sc_rintr = intr;
   1833 	sc->sc_rarg = arg;
   1834 
   1835 	/* Compute drain timeout. */
   1836 	sc->sc_rdrain = (blksize * NBBY * hz) /
   1837 	    (param->sample_rate * param->channels *
   1838 	     param->precision * param->factor) + 2;	/* slop */
   1839 
   1840 	/* Set up ADC DMA converter parameters. */
   1841 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
   1842 	if (param->channels == 2) {
   1843 		actl &= ~ESO_CTLREG_ACTL_MONO;
   1844 		actl |= ESO_CTLREG_ACTL_STEREO;
   1845 	} else {
   1846 		actl &= ~ESO_CTLREG_ACTL_STEREO;
   1847 		actl |= ESO_CTLREG_ACTL_MONO;
   1848 	}
   1849 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
   1850 
   1851 	/* Set up Transfer Type: maybe move to attach time? */
   1852 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
   1853 
   1854 	/* DMA transfer count reload using 2's complement. */
   1855 	blksize = -blksize;
   1856 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
   1857 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
   1858 
   1859 	/* Set up and enable Audio 1 DMA FIFO. */
   1860 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
   1861 	if (param->precision * param->factor == 16)
   1862 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
   1863 	if (param->channels == 2)
   1864 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
   1865 	else
   1866 		a1c1 |= ESO_CTLREG_A1C1_MONO;
   1867 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1868 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1869 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
   1870 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
   1871 
   1872 	/* Set up ADC IRQ/DRQ parameters. */
   1873 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
   1874 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
   1875 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
   1876 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
   1877 
   1878 	/* Set up and enable DMA controller. */
   1879 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
   1880 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
   1881 	    ESO_DMAC_MASK_MASK);
   1882 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
   1883 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
   1884 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
   1885 	    DMAADDR(ed));
   1886 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
   1887 	    (uint8_t *)end - (uint8_t *)start - 1);
   1888 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
   1889 
   1890 	/* Start DMA. */
   1891 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
   1892 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
   1893 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
   1894 
   1895 	return (0);
   1896 }
   1897 
   1898 /*
   1899  * Mixer utility functions.
   1900  */
   1901 static int
   1902 eso_set_recsrc(sc, recsrc)
   1903 	struct eso_softc *sc;
   1904 	unsigned int recsrc;
   1905 {
   1906 	mixer_devinfo_t di;
   1907 	int i;
   1908 
   1909 	di.index = ESO_RECORD_SOURCE;
   1910 	if (eso_query_devinfo(sc, &di) != 0)
   1911 		panic("eso_set_recsrc: eso_query_devinfo failed");
   1912 
   1913 	for (i = 0; i < di.un.e.num_mem; i++) {
   1914 		if (recsrc == di.un.e.member[i].ord) {
   1915 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
   1916 			sc->sc_recsrc = recsrc;
   1917 			return (0);
   1918 		}
   1919 	}
   1920 
   1921 	return (EINVAL);
   1922 }
   1923 
   1924 static int
   1925 eso_set_monooutsrc(sc, monooutsrc)
   1926 	struct eso_softc *sc;
   1927 	unsigned int monooutsrc;
   1928 {
   1929 	mixer_devinfo_t di;
   1930 	int i;
   1931 	uint8_t mpm;
   1932 
   1933 	di.index = ESO_MONOOUT_SOURCE;
   1934 	if (eso_query_devinfo(sc, &di) != 0)
   1935 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
   1936 
   1937 	for (i = 0; i < di.un.e.num_mem; i++) {
   1938 		if (monooutsrc == di.un.e.member[i].ord) {
   1939 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1940 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
   1941 			mpm |= monooutsrc;
   1942 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1943 			sc->sc_monooutsrc = monooutsrc;
   1944 			return (0);
   1945 		}
   1946 	}
   1947 
   1948 	return (EINVAL);
   1949 }
   1950 
   1951 static int
   1952 eso_set_monoinbypass(sc, monoinbypass)
   1953 	struct eso_softc *sc;
   1954 	unsigned int monoinbypass;
   1955 {
   1956 	mixer_devinfo_t di;
   1957 	int i;
   1958 	uint8_t mpm;
   1959 
   1960 	di.index = ESO_MONOIN_BYPASS;
   1961 	if (eso_query_devinfo(sc, &di) != 0)
   1962 		panic("eso_set_monoinbypass: eso_query_devinfo failed");
   1963 
   1964 	for (i = 0; i < di.un.e.num_mem; i++) {
   1965 		if (monoinbypass == di.un.e.member[i].ord) {
   1966 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1967 			mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
   1968 			mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
   1969 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1970 			sc->sc_monoinbypass = monoinbypass;
   1971 			return (0);
   1972 		}
   1973 	}
   1974 
   1975 	return (EINVAL);
   1976 }
   1977 
   1978 static int
   1979 eso_set_preamp(sc, preamp)
   1980 	struct eso_softc *sc;
   1981 	unsigned int preamp;
   1982 {
   1983 	mixer_devinfo_t di;
   1984 	int i;
   1985 	uint8_t mpm;
   1986 
   1987 	di.index = ESO_MIC_PREAMP;
   1988 	if (eso_query_devinfo(sc, &di) != 0)
   1989 		panic("eso_set_preamp: eso_query_devinfo failed");
   1990 
   1991 	for (i = 0; i < di.un.e.num_mem; i++) {
   1992 		if (preamp == di.un.e.member[i].ord) {
   1993 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1994 			mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
   1995 			mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
   1996 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1997 			sc->sc_preamp = preamp;
   1998 			return (0);
   1999 		}
   2000 	}
   2001 
   2002 	return (EINVAL);
   2003 }
   2004 
   2005 /*
   2006  * Reload Master Volume and Mute values in softc from mixer; used when
   2007  * those have previously been invalidated by use of hardware volume controls.
   2008  */
   2009 static void
   2010 eso_reload_master_vol(sc)
   2011 	struct eso_softc *sc;
   2012 {
   2013 	uint8_t mv;
   2014 
   2015 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
   2016 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
   2017 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
   2018 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
   2019 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
   2020 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
   2021 	/* Currently both channels are muted simultaneously; either is OK. */
   2022 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
   2023 }
   2024 
   2025 static void
   2026 eso_set_gain(sc, port)
   2027 	struct eso_softc *sc;
   2028 	unsigned int port;
   2029 {
   2030 	uint8_t mixreg, tmp;
   2031 
   2032 	switch (port) {
   2033 	case ESO_DAC_PLAY_VOL:
   2034 		mixreg = ESO_MIXREG_PVR_A2;
   2035 		break;
   2036 	case ESO_MIC_PLAY_VOL:
   2037 		mixreg = ESO_MIXREG_PVR_MIC;
   2038 		break;
   2039 	case ESO_LINE_PLAY_VOL:
   2040 		mixreg = ESO_MIXREG_PVR_LINE;
   2041 		break;
   2042 	case ESO_SYNTH_PLAY_VOL:
   2043 		mixreg = ESO_MIXREG_PVR_SYNTH;
   2044 		break;
   2045 	case ESO_CD_PLAY_VOL:
   2046 		mixreg = ESO_MIXREG_PVR_CD;
   2047 		break;
   2048 	case ESO_AUXB_PLAY_VOL:
   2049 		mixreg = ESO_MIXREG_PVR_AUXB;
   2050 		break;
   2051 
   2052 	case ESO_DAC_REC_VOL:
   2053 		mixreg = ESO_MIXREG_RVR_A2;
   2054 		break;
   2055 	case ESO_MIC_REC_VOL:
   2056 		mixreg = ESO_MIXREG_RVR_MIC;
   2057 		break;
   2058 	case ESO_LINE_REC_VOL:
   2059 		mixreg = ESO_MIXREG_RVR_LINE;
   2060 		break;
   2061 	case ESO_SYNTH_REC_VOL:
   2062 		mixreg = ESO_MIXREG_RVR_SYNTH;
   2063 		break;
   2064 	case ESO_CD_REC_VOL:
   2065 		mixreg = ESO_MIXREG_RVR_CD;
   2066 		break;
   2067 	case ESO_AUXB_REC_VOL:
   2068 		mixreg = ESO_MIXREG_RVR_AUXB;
   2069 		break;
   2070 	case ESO_MONO_PLAY_VOL:
   2071 		mixreg = ESO_MIXREG_PVR_MONO;
   2072 		break;
   2073 	case ESO_MONO_REC_VOL:
   2074 		mixreg = ESO_MIXREG_RVR_MONO;
   2075 		break;
   2076 
   2077 	case ESO_PCSPEAKER_VOL:
   2078 		/* Special case - only 3-bit, mono, and reserved bits. */
   2079 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
   2080 		tmp &= ESO_MIXREG_PCSVR_RESV;
   2081 		/* Map bits 7:5 -> 2:0. */
   2082 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
   2083 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
   2084 		return;
   2085 
   2086 	case ESO_MASTER_VOL:
   2087 		/* Special case - separate regs, and 6-bit precision. */
   2088 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
   2089 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   2090 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
   2091 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
   2092 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   2093 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
   2094 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
   2095 		return;
   2096 
   2097 	case ESO_SPATIALIZER:
   2098 		/* Special case - only `mono', and higher precision. */
   2099 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
   2100 		    sc->sc_gain[port][ESO_LEFT]);
   2101 		return;
   2102 
   2103 	case ESO_RECORD_VOL:
   2104 		/* Very Special case, controller register. */
   2105 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
   2106 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
   2107 		return;
   2108 
   2109 	default:
   2110 #ifdef DIAGNOSTIC
   2111 		panic("eso_set_gain: bad port %u", port);
   2112 		/* NOTREACHED */
   2113 #else
   2114 		return;
   2115 #endif
   2116 		}
   2117 
   2118 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
   2119 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
   2120 }
   2121