eso.c revision 1.38 1 /* $NetBSD: eso.c,v 1.38 2005/01/10 22:01:37 kent Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.38 2005/01/10 22:01:37 kent Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 /*
66 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
67 * XXX engine by allocating through the ISA DMA tag.
68 */
69 #if defined(amd64) || defined(i386)
70 #include "isa.h"
71 #if NISA > 0
72 #include <dev/isa/isavar.h>
73 #endif
74 #endif
75
76 #if defined(AUDIO_DEBUG) || defined(DEBUG)
77 #define DPRINTF(x) printf x
78 #else
79 #define DPRINTF(x)
80 #endif
81
82 struct eso_dma {
83 bus_dma_tag_t ed_dmat;
84 bus_dmamap_t ed_map;
85 caddr_t ed_addr;
86 bus_dma_segment_t ed_segs[1];
87 int ed_nsegs;
88 size_t ed_size;
89 struct eso_dma * ed_next;
90 };
91
92 #define KVADDR(dma) ((void *)(dma)->ed_addr)
93 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
94
95 /* Autoconfiguration interface */
96 static int eso_match __P((struct device *, struct cfdata *, void *));
97 static void eso_attach __P((struct device *, struct device *, void *));
98 static void eso_defer __P((struct device *));
99 static int eso_print __P((void *, const char *));
100
101 CFATTACH_DECL(eso, sizeof (struct eso_softc),
102 eso_match, eso_attach, NULL, NULL);
103
104 /* PCI interface */
105 static int eso_intr __P((void *));
106
107 /* MI audio layer interface */
108 static int eso_query_encoding __P((void *, struct audio_encoding *));
109 static int eso_set_params __P((void *, int, int, audio_params_t *,
110 audio_params_t *, stream_filter_list_t *,
111 stream_filter_list_t *));
112 static int eso_round_blocksize __P((void *, int, int, const audio_params_t *));
113 static int eso_halt_output __P((void *));
114 static int eso_halt_input __P((void *));
115 static int eso_getdev __P((void *, struct audio_device *));
116 static int eso_set_port __P((void *, mixer_ctrl_t *));
117 static int eso_get_port __P((void *, mixer_ctrl_t *));
118 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
119 static void * eso_allocm __P((void *, int, size_t, struct malloc_type *, int));
120 static void eso_freem __P((void *, void *, struct malloc_type *));
121 static size_t eso_round_buffersize __P((void *, int, size_t));
122 static paddr_t eso_mappage __P((void *, void *, off_t, int));
123 static int eso_get_props __P((void *));
124 static int eso_trigger_output __P((void *, void *, void *, int,
125 void (*)(void *), void *, const audio_params_t *));
126 static int eso_trigger_input __P((void *, void *, void *, int,
127 void (*)(void *), void *, const audio_params_t *));
128
129 static const struct audio_hw_if eso_hw_if = {
130 NULL, /* open */
131 NULL, /* close */
132 NULL, /* drain */
133 eso_query_encoding,
134 eso_set_params,
135 eso_round_blocksize,
136 NULL, /* commit_settings */
137 NULL, /* init_output */
138 NULL, /* init_input */
139 NULL, /* start_output */
140 NULL, /* start_input */
141 eso_halt_output,
142 eso_halt_input,
143 NULL, /* speaker_ctl */
144 eso_getdev,
145 NULL, /* setfd */
146 eso_set_port,
147 eso_get_port,
148 eso_query_devinfo,
149 eso_allocm,
150 eso_freem,
151 eso_round_buffersize,
152 eso_mappage,
153 eso_get_props,
154 eso_trigger_output,
155 eso_trigger_input,
156 NULL, /* dev_ioctl */
157 };
158
159 static const char * const eso_rev2model[] = {
160 "ES1938",
161 "ES1946",
162 "ES1946 Revision E"
163 };
164
165 #define ESO_NFORMATS 12
166 static const struct audio_format eso_formats[ESO_NFORMATS] = {
167 {NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
168 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
169 {NULL, AUMODE_PLAY, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
170 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
171 {NULL, AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
172 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
173 {NULL, AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_BE, 16, 16,
174 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
175 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
176 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
177 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
178 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
179 {NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
180 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
181 {NULL, AUMODE_PLAY, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
182 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
183 {NULL, AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
184 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
185 {NULL, AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_BE, 16, 16,
186 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
187 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
188 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
189 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
190 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
191 };
192
193
194 /*
195 * Utility routines
196 */
197 /* Register access etc. */
198 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
199 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
200 static uint8_t eso_read_rdr __P((struct eso_softc *));
201 static void eso_reload_master_vol __P((struct eso_softc *));
202 static int eso_reset __P((struct eso_softc *));
203 static void eso_set_gain __P((struct eso_softc *, unsigned int));
204 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
205 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
206 static int eso_set_monoinbypass __P((struct eso_softc *, unsigned int));
207 static int eso_set_preamp __P((struct eso_softc *, unsigned int));
208 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
209 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
210 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
211 /* DMA memory allocation */
212 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
213 int, int, struct eso_dma *));
214 static void eso_freemem __P((struct eso_dma *));
215
216
217 static int
218 eso_match(parent, match, aux)
219 struct device *parent;
220 struct cfdata *match;
221 void *aux;
222 {
223 struct pci_attach_args *pa = aux;
224
225 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
226 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
227 return (1);
228
229 return (0);
230 }
231
232 static void
233 eso_attach(parent, self, aux)
234 struct device *parent, *self;
235 void *aux;
236 {
237 struct eso_softc *sc = (struct eso_softc *)self;
238 struct pci_attach_args *pa = aux;
239 struct audio_attach_args aa;
240 pci_intr_handle_t ih;
241 bus_addr_t vcbase;
242 const char *intrstring;
243 int idx;
244 uint8_t a2mode, mvctl;
245
246 aprint_naive(": Audio controller\n");
247
248 sc->sc_revision = PCI_REVISION(pa->pa_class);
249
250 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
251 if (sc->sc_revision <
252 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
253 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
254 else
255 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
256
257 /* Map I/O registers. */
258 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
259 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
260 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
261 return;
262 }
263 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
264 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
265 aprint_error("%s: can't map SB I/O space\n",
266 sc->sc_dev.dv_xname);
267 return;
268 }
269 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
270 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
271 aprint_error("%s: can't map VC I/O space\n",
272 sc->sc_dev.dv_xname);
273 /* Don't bail out yet: we can map it later, see below. */
274 vcbase = 0;
275 sc->sc_vcsize = 0x10; /* From the data sheet. */
276 }
277 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
278 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
279 aprint_error("%s: can't map MPU I/O space\n",
280 sc->sc_dev.dv_xname);
281 return;
282 }
283 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
284 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
285 aprint_error("%s: can't map Game I/O space\n",
286 sc->sc_dev.dv_xname);
287 return;
288 }
289
290 sc->sc_dmat = pa->pa_dmat;
291 sc->sc_dmas = NULL;
292 sc->sc_dmac_configured = 0;
293
294 /* Enable bus mastering. */
295 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
296 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
297 PCI_COMMAND_MASTER_ENABLE);
298
299 /* Reset the device; bail out upon failure. */
300 if (eso_reset(sc) != 0) {
301 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
302 return;
303 }
304
305 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
306 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
307 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
308 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
309
310 /* Enable the relevant (DMA) interrupts. */
311 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
312 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
313 ESO_IO_IRQCTL_MPUIRQ);
314
315 /* Set up A1's sample rate generator for new-style parameters. */
316 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
317 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
318 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
319
320 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
321 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
322 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
323 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
324 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
325
326 /* Set mixer regs to something reasonable, needs work. */
327 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
328 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
329 eso_set_monoinbypass(sc, 0);
330 eso_set_preamp(sc, 1);
331 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
332 int v;
333
334 switch (idx) {
335 case ESO_MIC_PLAY_VOL:
336 case ESO_LINE_PLAY_VOL:
337 case ESO_CD_PLAY_VOL:
338 case ESO_MONO_PLAY_VOL:
339 case ESO_AUXB_PLAY_VOL:
340 case ESO_DAC_REC_VOL:
341 case ESO_LINE_REC_VOL:
342 case ESO_SYNTH_REC_VOL:
343 case ESO_CD_REC_VOL:
344 case ESO_MONO_REC_VOL:
345 case ESO_AUXB_REC_VOL:
346 case ESO_SPATIALIZER:
347 v = 0;
348 break;
349 case ESO_MASTER_VOL:
350 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
351 break;
352 default:
353 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
354 break;
355 }
356 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
357 eso_set_gain(sc, idx);
358 }
359 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
360
361 /* Map and establish the interrupt. */
362 if (pci_intr_map(pa, &ih)) {
363 aprint_error("%s: couldn't map interrupt\n",
364 sc->sc_dev.dv_xname);
365 return;
366 }
367 intrstring = pci_intr_string(pa->pa_pc, ih);
368 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
369 if (sc->sc_ih == NULL) {
370 aprint_error("%s: couldn't establish interrupt",
371 sc->sc_dev.dv_xname);
372 if (intrstring != NULL)
373 aprint_normal(" at %s", intrstring);
374 aprint_normal("\n");
375 return;
376 }
377 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
378 intrstring);
379
380 /*
381 * Set up the DDMA Control register; a suitable I/O region has been
382 * supposedly mapped in the VC base address register.
383 *
384 * The Solo-1 has an ... interesting silicon bug that causes it to
385 * not respond to I/O space accesses to the Audio 1 DMA controller
386 * if the latter's mapping base address is aligned on a 1K boundary.
387 * As a consequence, it is quite possible for the mapping provided
388 * in the VC BAR to be useless. To work around this, we defer this
389 * part until all autoconfiguration on our parent bus is completed
390 * and then try to map it ourselves in fulfillment of the constraint.
391 *
392 * According to the register map we may write to the low 16 bits
393 * only, but experimenting has shown we're safe.
394 * -kjk
395 */
396 if (ESO_VALID_DDMAC_BASE(vcbase)) {
397 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
398 vcbase | ESO_PCI_DDMAC_DE);
399 sc->sc_dmac_configured = 1;
400
401 aprint_normal(
402 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
403 sc->sc_dev.dv_xname, (unsigned long)vcbase);
404 } else {
405 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
406 sc->sc_dev.dv_xname, (unsigned long)vcbase));
407 sc->sc_pa = *pa;
408 config_defer(self, eso_defer);
409 }
410
411 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
412
413 aa.type = AUDIODEV_TYPE_OPL;
414 aa.hwif = NULL;
415 aa.hdl = NULL;
416 (void)config_found(&sc->sc_dev, &aa, audioprint);
417
418 aa.type = AUDIODEV_TYPE_MPU;
419 aa.hwif = NULL;
420 aa.hdl = NULL;
421 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
422 if (sc->sc_mpudev != NULL) {
423 /* Unmask the MPU irq. */
424 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
425 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
426 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
427 }
428
429 aa.type = AUDIODEV_TYPE_AUX;
430 aa.hwif = NULL;
431 aa.hdl = NULL;
432 (void)config_found(&sc->sc_dev, &aa, eso_print);
433 }
434
435 static void
436 eso_defer(self)
437 struct device *self;
438 {
439 struct eso_softc *sc = (struct eso_softc *)self;
440 struct pci_attach_args *pa = &sc->sc_pa;
441 bus_addr_t addr, start;
442
443 aprint_normal("%s: ", sc->sc_dev.dv_xname);
444
445 /*
446 * This is outright ugly, but since we must not make assumptions
447 * on the underlying allocator's behaviour it's the most straight-
448 * forward way to implement it. Note that we skip over the first
449 * 1K region, which is typically occupied by an attached ISA bus.
450 */
451 for (start = 0x0400; start < 0xffff; start += 0x0400) {
452 if (bus_space_alloc(sc->sc_iot,
453 start + sc->sc_vcsize, start + 0x0400 - 1,
454 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
455 &sc->sc_dmac_ioh) != 0)
456 continue;
457
458 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
459 addr | ESO_PCI_DDMAC_DE);
460 sc->sc_dmac_iot = sc->sc_iot;
461 sc->sc_dmac_configured = 1;
462 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
463 (unsigned long)addr);
464
465 return;
466 }
467
468 aprint_error("can't map Audio 1 DMA into I/O space\n");
469 }
470
471 /* ARGSUSED */
472 static int
473 eso_print(aux, pnp)
474 void *aux;
475 const char *pnp;
476 {
477
478 /* Only joys can attach via this; easy. */
479 if (pnp)
480 aprint_normal("joy at %s:", pnp);
481
482 return (UNCONF);
483 }
484
485 static void
486 eso_write_cmd(sc, cmd)
487 struct eso_softc *sc;
488 uint8_t cmd;
489 {
490 int i;
491
492 /* Poll for busy indicator to become clear. */
493 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
494 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
495 & ESO_SB_RSR_BUSY) == 0) {
496 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
497 ESO_SB_WDR, cmd);
498 return;
499 } else {
500 delay(10);
501 }
502 }
503
504 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
505 return;
506 }
507
508 /* Write to a controller register */
509 static void
510 eso_write_ctlreg(sc, reg, val)
511 struct eso_softc *sc;
512 uint8_t reg, val;
513 {
514
515 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
516
517 eso_write_cmd(sc, reg);
518 eso_write_cmd(sc, val);
519 }
520
521 /* Read out the Read Data Register */
522 static uint8_t
523 eso_read_rdr(sc)
524 struct eso_softc *sc;
525 {
526 int i;
527
528 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
529 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
530 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
531 return (bus_space_read_1(sc->sc_sb_iot,
532 sc->sc_sb_ioh, ESO_SB_RDR));
533 } else {
534 delay(10);
535 }
536 }
537
538 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
539 return (-1);
540 }
541
542
543 static uint8_t
544 eso_read_ctlreg(sc, reg)
545 struct eso_softc *sc;
546 uint8_t reg;
547 {
548
549 eso_write_cmd(sc, ESO_CMD_RCR);
550 eso_write_cmd(sc, reg);
551 return (eso_read_rdr(sc));
552 }
553
554 static void
555 eso_write_mixreg(sc, reg, val)
556 struct eso_softc *sc;
557 uint8_t reg, val;
558 {
559 int s;
560
561 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
562
563 s = splaudio();
564 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
565 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
566 splx(s);
567 }
568
569 static uint8_t
570 eso_read_mixreg(sc, reg)
571 struct eso_softc *sc;
572 uint8_t reg;
573 {
574 int s;
575 uint8_t val;
576
577 s = splaudio();
578 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
579 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
580 splx(s);
581
582 return (val);
583 }
584
585 static int
586 eso_intr(hdl)
587 void *hdl;
588 {
589 struct eso_softc *sc = hdl;
590 uint8_t irqctl;
591
592 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
593
594 /* If it wasn't ours, that's all she wrote. */
595 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
596 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
597 return (0);
598
599 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
600 /* Clear interrupt. */
601 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
602 ESO_SB_RBSR);
603
604 if (sc->sc_rintr)
605 sc->sc_rintr(sc->sc_rarg);
606 else
607 wakeup(&sc->sc_rintr);
608 }
609
610 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
611 /*
612 * Clear the A2 IRQ latch: the cached value reflects the
613 * current DAC settings with the IRQ latch bit not set.
614 */
615 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
616
617 if (sc->sc_pintr)
618 sc->sc_pintr(sc->sc_parg);
619 else
620 wakeup(&sc->sc_pintr);
621 }
622
623 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
624 /* Clear interrupt. */
625 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
626
627 /*
628 * Raise a flag to cause a lazy update of the in-softc gain
629 * values the next time the software mixer is read to keep
630 * interrupt service cost low. ~0 cannot occur otherwise
631 * as the master volume has a precision of 6 bits only.
632 */
633 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
634 }
635
636 #if NMPU > 0
637 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
638 mpu_intr(sc->sc_mpudev);
639 #endif
640
641 return (1);
642 }
643
644 /* Perform a software reset, including DMA FIFOs. */
645 static int
646 eso_reset(sc)
647 struct eso_softc *sc;
648 {
649 int i;
650
651 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
652 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
653 /* `Delay' suggested in the data sheet. */
654 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
655 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
656
657 /* Wait for reset to take effect. */
658 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
659 /* Poll for data to become available. */
660 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
661 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
662 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
663 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
664
665 /* Activate Solo-1 extension commands. */
666 eso_write_cmd(sc, ESO_CMD_EXTENB);
667 /* Reset mixer registers. */
668 eso_write_mixreg(sc, ESO_MIXREG_RESET,
669 ESO_MIXREG_RESET_RESET);
670
671 return (0);
672 } else {
673 delay(1000);
674 }
675 }
676
677 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
678 return (-1);
679 }
680
681 static int
682 eso_query_encoding(hdl, fp)
683 void *hdl;
684 struct audio_encoding *fp;
685 {
686
687 switch (fp->index) {
688 case 0:
689 strcpy(fp->name, AudioEulinear);
690 fp->encoding = AUDIO_ENCODING_ULINEAR;
691 fp->precision = 8;
692 fp->flags = 0;
693 break;
694 case 1:
695 strcpy(fp->name, AudioEmulaw);
696 fp->encoding = AUDIO_ENCODING_ULAW;
697 fp->precision = 8;
698 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
699 break;
700 case 2:
701 strcpy(fp->name, AudioEalaw);
702 fp->encoding = AUDIO_ENCODING_ALAW;
703 fp->precision = 8;
704 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
705 break;
706 case 3:
707 strcpy(fp->name, AudioEslinear);
708 fp->encoding = AUDIO_ENCODING_SLINEAR;
709 fp->precision = 8;
710 fp->flags = 0;
711 break;
712 case 4:
713 strcpy(fp->name, AudioEslinear_le);
714 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
715 fp->precision = 16;
716 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
717 break;
718 case 5:
719 strcpy(fp->name, AudioEulinear_le);
720 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
721 fp->precision = 16;
722 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
723 break;
724 case 6:
725 strcpy(fp->name, AudioEslinear_be);
726 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
727 fp->precision = 16;
728 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
729 break;
730 case 7:
731 strcpy(fp->name, AudioEulinear_be);
732 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
733 fp->precision = 16;
734 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
735 break;
736 default:
737 return (EINVAL);
738 }
739
740 return (0);
741 }
742
743 static int
744 eso_set_params(hdl, setmode, usemode, play, rec, pfil, rfil)
745 void *hdl;
746 int setmode, usemode;
747 audio_params_t *play, *rec;
748 stream_filter_list_t *pfil, *rfil;
749 {
750 struct eso_softc *sc = hdl;
751 struct audio_params *p;
752 stream_filter_list_t *fil;
753 int mode, r[2], rd[2], clk;
754 unsigned int srg, fltdiv;
755 int i;
756
757 for (mode = AUMODE_RECORD; mode != -1;
758 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
759 if ((setmode & mode) == 0)
760 continue;
761
762 p = (mode == AUMODE_PLAY) ? play : rec;
763
764 if (p->sample_rate < ESO_MINRATE ||
765 p->sample_rate > ESO_MAXRATE ||
766 (p->precision != 8 && p->precision != 16) ||
767 (p->channels != 1 && p->channels != 2))
768 return (EINVAL);
769
770 /*
771 * We'll compute both possible sample rate dividers and pick
772 * the one with the least error.
773 */
774 #define ABS(x) ((x) < 0 ? -(x) : (x))
775 r[0] = ESO_CLK0 /
776 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
777 r[1] = ESO_CLK1 /
778 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
779
780 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
781 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
782
783 /* Roll-off frequency of 87%, as in the ES1888 driver. */
784 fltdiv = 256 - 200279L / r[clk];
785
786 /* Update to reflect the possibly inexact rate. */
787 p->sample_rate = r[clk];
788
789 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
790 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
791 mode, p, FALSE, fil);
792 if (i < 0)
793 return EINVAL;
794 if (mode == AUMODE_RECORD) {
795 /* Audio 1 */
796 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
797 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
798 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
799 } else {
800 /* Audio 2 */
801 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
802 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
803 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
804 }
805 #undef ABS
806
807 }
808
809 return (0);
810 }
811
812 static int
813 eso_round_blocksize(hdl, blk, mode, param)
814 void *hdl;
815 int blk;
816 int mode;
817 const audio_params_t *param;
818 {
819
820 return (blk & -32); /* keep good alignment; at least 16 req'd */
821 }
822
823 static int
824 eso_halt_output(hdl)
825 void *hdl;
826 {
827 struct eso_softc *sc = hdl;
828 int error, s;
829
830 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
831
832 /*
833 * Disable auto-initialize DMA, allowing the FIFO to drain and then
834 * stop. The interrupt callback pointer is cleared at this
835 * point so that an outstanding FIFO interrupt for the remaining data
836 * will be acknowledged without further processing.
837 *
838 * This does not immediately `abort' an operation in progress (c.f.
839 * audio(9)) but is the method to leave the FIFO behind in a clean
840 * state with the least hair. (Besides, that item needs to be
841 * rephrased for trigger_*()-based DMA environments.)
842 */
843 s = splaudio();
844 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
845 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
846 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
847 ESO_IO_A2DMAM_DMAENB);
848
849 sc->sc_pintr = NULL;
850 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
851 splx(s);
852
853 /* Shut down DMA completely. */
854 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
855 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
856
857 return (error == EWOULDBLOCK ? 0 : error);
858 }
859
860 static int
861 eso_halt_input(hdl)
862 void *hdl;
863 {
864 struct eso_softc *sc = hdl;
865 int error, s;
866
867 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
868
869 /* Just like eso_halt_output(), but for Audio 1. */
870 s = splaudio();
871 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
872 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
873 ESO_CTLREG_A1C2_DMAENB);
874 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
875 DMA37MD_WRITE | DMA37MD_DEMAND);
876
877 sc->sc_rintr = NULL;
878 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
879 splx(s);
880
881 /* Shut down DMA completely. */
882 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
883 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
884 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
885 ESO_DMAC_MASK_MASK);
886
887 return (error == EWOULDBLOCK ? 0 : error);
888 }
889
890 static int
891 eso_getdev(hdl, retp)
892 void *hdl;
893 struct audio_device *retp;
894 {
895 struct eso_softc *sc = hdl;
896
897 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
898 snprintf(retp->version, sizeof (retp->version), "0x%02x",
899 sc->sc_revision);
900 if (sc->sc_revision <
901 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
902 strncpy(retp->config, eso_rev2model[sc->sc_revision],
903 sizeof (retp->config));
904 else
905 strncpy(retp->config, "unknown", sizeof (retp->config));
906
907 return (0);
908 }
909
910 static int
911 eso_set_port(hdl, cp)
912 void *hdl;
913 mixer_ctrl_t *cp;
914 {
915 struct eso_softc *sc = hdl;
916 unsigned int lgain, rgain;
917 uint8_t tmp;
918
919 switch (cp->dev) {
920 case ESO_DAC_PLAY_VOL:
921 case ESO_MIC_PLAY_VOL:
922 case ESO_LINE_PLAY_VOL:
923 case ESO_SYNTH_PLAY_VOL:
924 case ESO_CD_PLAY_VOL:
925 case ESO_AUXB_PLAY_VOL:
926 case ESO_RECORD_VOL:
927 case ESO_DAC_REC_VOL:
928 case ESO_MIC_REC_VOL:
929 case ESO_LINE_REC_VOL:
930 case ESO_SYNTH_REC_VOL:
931 case ESO_CD_REC_VOL:
932 case ESO_AUXB_REC_VOL:
933 if (cp->type != AUDIO_MIXER_VALUE)
934 return (EINVAL);
935
936 /*
937 * Stereo-capable mixer ports: if we get a single-channel
938 * gain value passed in, then we duplicate it to both left
939 * and right channels.
940 */
941 switch (cp->un.value.num_channels) {
942 case 1:
943 lgain = rgain = ESO_GAIN_TO_4BIT(
944 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
945 break;
946 case 2:
947 lgain = ESO_GAIN_TO_4BIT(
948 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
949 rgain = ESO_GAIN_TO_4BIT(
950 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
951 break;
952 default:
953 return (EINVAL);
954 }
955
956 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
957 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
958 eso_set_gain(sc, cp->dev);
959 break;
960
961 case ESO_MASTER_VOL:
962 if (cp->type != AUDIO_MIXER_VALUE)
963 return (EINVAL);
964
965 /* Like above, but a precision of 6 bits. */
966 switch (cp->un.value.num_channels) {
967 case 1:
968 lgain = rgain = ESO_GAIN_TO_6BIT(
969 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
970 break;
971 case 2:
972 lgain = ESO_GAIN_TO_6BIT(
973 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
974 rgain = ESO_GAIN_TO_6BIT(
975 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
976 break;
977 default:
978 return (EINVAL);
979 }
980
981 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
982 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
983 eso_set_gain(sc, cp->dev);
984 break;
985
986 case ESO_SPATIALIZER:
987 if (cp->type != AUDIO_MIXER_VALUE ||
988 cp->un.value.num_channels != 1)
989 return (EINVAL);
990
991 sc->sc_gain[cp->dev][ESO_LEFT] =
992 sc->sc_gain[cp->dev][ESO_RIGHT] =
993 ESO_GAIN_TO_6BIT(
994 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
995 eso_set_gain(sc, cp->dev);
996 break;
997
998 case ESO_MONO_PLAY_VOL:
999 case ESO_MONO_REC_VOL:
1000 if (cp->type != AUDIO_MIXER_VALUE ||
1001 cp->un.value.num_channels != 1)
1002 return (EINVAL);
1003
1004 sc->sc_gain[cp->dev][ESO_LEFT] =
1005 sc->sc_gain[cp->dev][ESO_RIGHT] =
1006 ESO_GAIN_TO_4BIT(
1007 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1008 eso_set_gain(sc, cp->dev);
1009 break;
1010
1011 case ESO_PCSPEAKER_VOL:
1012 if (cp->type != AUDIO_MIXER_VALUE ||
1013 cp->un.value.num_channels != 1)
1014 return (EINVAL);
1015
1016 sc->sc_gain[cp->dev][ESO_LEFT] =
1017 sc->sc_gain[cp->dev][ESO_RIGHT] =
1018 ESO_GAIN_TO_3BIT(
1019 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1020 eso_set_gain(sc, cp->dev);
1021 break;
1022
1023 case ESO_SPATIALIZER_ENABLE:
1024 if (cp->type != AUDIO_MIXER_ENUM)
1025 return (EINVAL);
1026
1027 sc->sc_spatializer = (cp->un.ord != 0);
1028
1029 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1030 if (sc->sc_spatializer)
1031 tmp |= ESO_MIXREG_SPAT_ENB;
1032 else
1033 tmp &= ~ESO_MIXREG_SPAT_ENB;
1034 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1035 tmp | ESO_MIXREG_SPAT_RSTREL);
1036 break;
1037
1038 case ESO_MASTER_MUTE:
1039 if (cp->type != AUDIO_MIXER_ENUM)
1040 return (EINVAL);
1041
1042 sc->sc_mvmute = (cp->un.ord != 0);
1043
1044 if (sc->sc_mvmute) {
1045 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1046 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1047 ESO_MIXREG_LMVM_MUTE);
1048 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1049 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1050 ESO_MIXREG_RMVM_MUTE);
1051 } else {
1052 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1053 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1054 ~ESO_MIXREG_LMVM_MUTE);
1055 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1056 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1057 ~ESO_MIXREG_RMVM_MUTE);
1058 }
1059 break;
1060
1061 case ESO_MONOOUT_SOURCE:
1062 if (cp->type != AUDIO_MIXER_ENUM)
1063 return (EINVAL);
1064
1065 return (eso_set_monooutsrc(sc, cp->un.ord));
1066
1067 case ESO_MONOIN_BYPASS:
1068 if (cp->type != AUDIO_MIXER_ENUM)
1069 return (EINVAL);
1070
1071 return (eso_set_monoinbypass(sc, cp->un.ord));
1072
1073 case ESO_RECORD_MONITOR:
1074 if (cp->type != AUDIO_MIXER_ENUM)
1075 return (EINVAL);
1076
1077 sc->sc_recmon = (cp->un.ord != 0);
1078
1079 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1080 if (sc->sc_recmon)
1081 tmp |= ESO_CTLREG_ACTL_RECMON;
1082 else
1083 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1084 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1085 break;
1086
1087 case ESO_RECORD_SOURCE:
1088 if (cp->type != AUDIO_MIXER_ENUM)
1089 return (EINVAL);
1090
1091 return (eso_set_recsrc(sc, cp->un.ord));
1092
1093 case ESO_MIC_PREAMP:
1094 if (cp->type != AUDIO_MIXER_ENUM)
1095 return (EINVAL);
1096
1097 return (eso_set_preamp(sc, cp->un.ord));
1098
1099 default:
1100 return (EINVAL);
1101 }
1102
1103 return (0);
1104 }
1105
1106 static int
1107 eso_get_port(hdl, cp)
1108 void *hdl;
1109 mixer_ctrl_t *cp;
1110 {
1111 struct eso_softc *sc = hdl;
1112
1113 switch (cp->dev) {
1114 case ESO_MASTER_VOL:
1115 /* Reload from mixer after hardware volume control use. */
1116 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1117 eso_reload_master_vol(sc);
1118 /* FALLTHROUGH */
1119 case ESO_DAC_PLAY_VOL:
1120 case ESO_MIC_PLAY_VOL:
1121 case ESO_LINE_PLAY_VOL:
1122 case ESO_SYNTH_PLAY_VOL:
1123 case ESO_CD_PLAY_VOL:
1124 case ESO_AUXB_PLAY_VOL:
1125 case ESO_RECORD_VOL:
1126 case ESO_DAC_REC_VOL:
1127 case ESO_MIC_REC_VOL:
1128 case ESO_LINE_REC_VOL:
1129 case ESO_SYNTH_REC_VOL:
1130 case ESO_CD_REC_VOL:
1131 case ESO_AUXB_REC_VOL:
1132 /*
1133 * Stereo-capable ports: if a single-channel query is made,
1134 * just return the left channel's value (since single-channel
1135 * settings themselves are applied to both channels).
1136 */
1137 switch (cp->un.value.num_channels) {
1138 case 1:
1139 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1140 sc->sc_gain[cp->dev][ESO_LEFT];
1141 break;
1142 case 2:
1143 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1144 sc->sc_gain[cp->dev][ESO_LEFT];
1145 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1146 sc->sc_gain[cp->dev][ESO_RIGHT];
1147 break;
1148 default:
1149 return (EINVAL);
1150 }
1151 break;
1152
1153 case ESO_MONO_PLAY_VOL:
1154 case ESO_PCSPEAKER_VOL:
1155 case ESO_MONO_REC_VOL:
1156 case ESO_SPATIALIZER:
1157 if (cp->un.value.num_channels != 1)
1158 return (EINVAL);
1159 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1160 sc->sc_gain[cp->dev][ESO_LEFT];
1161 break;
1162
1163 case ESO_RECORD_MONITOR:
1164 cp->un.ord = sc->sc_recmon;
1165 break;
1166
1167 case ESO_RECORD_SOURCE:
1168 cp->un.ord = sc->sc_recsrc;
1169 break;
1170
1171 case ESO_MONOOUT_SOURCE:
1172 cp->un.ord = sc->sc_monooutsrc;
1173 break;
1174
1175 case ESO_MONOIN_BYPASS:
1176 cp->un.ord = sc->sc_monoinbypass;
1177 break;
1178
1179 case ESO_SPATIALIZER_ENABLE:
1180 cp->un.ord = sc->sc_spatializer;
1181 break;
1182
1183 case ESO_MIC_PREAMP:
1184 cp->un.ord = sc->sc_preamp;
1185 break;
1186
1187 case ESO_MASTER_MUTE:
1188 /* Reload from mixer after hardware volume control use. */
1189 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1190 eso_reload_master_vol(sc);
1191 cp->un.ord = sc->sc_mvmute;
1192 break;
1193
1194 default:
1195 return (EINVAL);
1196 }
1197
1198
1199 return (0);
1200
1201 }
1202
1203 static int
1204 eso_query_devinfo(hdl, dip)
1205 void *hdl;
1206 mixer_devinfo_t *dip;
1207 {
1208
1209 switch (dip->index) {
1210 case ESO_DAC_PLAY_VOL:
1211 dip->mixer_class = ESO_INPUT_CLASS;
1212 dip->next = dip->prev = AUDIO_MIXER_LAST;
1213 strcpy(dip->label.name, AudioNdac);
1214 dip->type = AUDIO_MIXER_VALUE;
1215 dip->un.v.num_channels = 2;
1216 strcpy(dip->un.v.units.name, AudioNvolume);
1217 break;
1218 case ESO_MIC_PLAY_VOL:
1219 dip->mixer_class = ESO_INPUT_CLASS;
1220 dip->next = dip->prev = AUDIO_MIXER_LAST;
1221 strcpy(dip->label.name, AudioNmicrophone);
1222 dip->type = AUDIO_MIXER_VALUE;
1223 dip->un.v.num_channels = 2;
1224 strcpy(dip->un.v.units.name, AudioNvolume);
1225 break;
1226 case ESO_LINE_PLAY_VOL:
1227 dip->mixer_class = ESO_INPUT_CLASS;
1228 dip->next = dip->prev = AUDIO_MIXER_LAST;
1229 strcpy(dip->label.name, AudioNline);
1230 dip->type = AUDIO_MIXER_VALUE;
1231 dip->un.v.num_channels = 2;
1232 strcpy(dip->un.v.units.name, AudioNvolume);
1233 break;
1234 case ESO_SYNTH_PLAY_VOL:
1235 dip->mixer_class = ESO_INPUT_CLASS;
1236 dip->next = dip->prev = AUDIO_MIXER_LAST;
1237 strcpy(dip->label.name, AudioNfmsynth);
1238 dip->type = AUDIO_MIXER_VALUE;
1239 dip->un.v.num_channels = 2;
1240 strcpy(dip->un.v.units.name, AudioNvolume);
1241 break;
1242 case ESO_MONO_PLAY_VOL:
1243 dip->mixer_class = ESO_INPUT_CLASS;
1244 dip->next = dip->prev = AUDIO_MIXER_LAST;
1245 strcpy(dip->label.name, "mono_in");
1246 dip->type = AUDIO_MIXER_VALUE;
1247 dip->un.v.num_channels = 1;
1248 strcpy(dip->un.v.units.name, AudioNvolume);
1249 break;
1250 case ESO_CD_PLAY_VOL:
1251 dip->mixer_class = ESO_INPUT_CLASS;
1252 dip->next = dip->prev = AUDIO_MIXER_LAST;
1253 strcpy(dip->label.name, AudioNcd);
1254 dip->type = AUDIO_MIXER_VALUE;
1255 dip->un.v.num_channels = 2;
1256 strcpy(dip->un.v.units.name, AudioNvolume);
1257 break;
1258 case ESO_AUXB_PLAY_VOL:
1259 dip->mixer_class = ESO_INPUT_CLASS;
1260 dip->next = dip->prev = AUDIO_MIXER_LAST;
1261 strcpy(dip->label.name, "auxb");
1262 dip->type = AUDIO_MIXER_VALUE;
1263 dip->un.v.num_channels = 2;
1264 strcpy(dip->un.v.units.name, AudioNvolume);
1265 break;
1266
1267 case ESO_MIC_PREAMP:
1268 dip->mixer_class = ESO_MICROPHONE_CLASS;
1269 dip->next = dip->prev = AUDIO_MIXER_LAST;
1270 strcpy(dip->label.name, AudioNpreamp);
1271 dip->type = AUDIO_MIXER_ENUM;
1272 dip->un.e.num_mem = 2;
1273 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1274 dip->un.e.member[0].ord = 0;
1275 strcpy(dip->un.e.member[1].label.name, AudioNon);
1276 dip->un.e.member[1].ord = 1;
1277 break;
1278 case ESO_MICROPHONE_CLASS:
1279 dip->mixer_class = ESO_MICROPHONE_CLASS;
1280 dip->next = dip->prev = AUDIO_MIXER_LAST;
1281 strcpy(dip->label.name, AudioNmicrophone);
1282 dip->type = AUDIO_MIXER_CLASS;
1283 break;
1284
1285 case ESO_INPUT_CLASS:
1286 dip->mixer_class = ESO_INPUT_CLASS;
1287 dip->next = dip->prev = AUDIO_MIXER_LAST;
1288 strcpy(dip->label.name, AudioCinputs);
1289 dip->type = AUDIO_MIXER_CLASS;
1290 break;
1291
1292 case ESO_MASTER_VOL:
1293 dip->mixer_class = ESO_OUTPUT_CLASS;
1294 dip->prev = AUDIO_MIXER_LAST;
1295 dip->next = ESO_MASTER_MUTE;
1296 strcpy(dip->label.name, AudioNmaster);
1297 dip->type = AUDIO_MIXER_VALUE;
1298 dip->un.v.num_channels = 2;
1299 strcpy(dip->un.v.units.name, AudioNvolume);
1300 break;
1301 case ESO_MASTER_MUTE:
1302 dip->mixer_class = ESO_OUTPUT_CLASS;
1303 dip->prev = ESO_MASTER_VOL;
1304 dip->next = AUDIO_MIXER_LAST;
1305 strcpy(dip->label.name, AudioNmute);
1306 dip->type = AUDIO_MIXER_ENUM;
1307 dip->un.e.num_mem = 2;
1308 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1309 dip->un.e.member[0].ord = 0;
1310 strcpy(dip->un.e.member[1].label.name, AudioNon);
1311 dip->un.e.member[1].ord = 1;
1312 break;
1313
1314 case ESO_PCSPEAKER_VOL:
1315 dip->mixer_class = ESO_OUTPUT_CLASS;
1316 dip->next = dip->prev = AUDIO_MIXER_LAST;
1317 strcpy(dip->label.name, "pc_speaker");
1318 dip->type = AUDIO_MIXER_VALUE;
1319 dip->un.v.num_channels = 1;
1320 strcpy(dip->un.v.units.name, AudioNvolume);
1321 break;
1322 case ESO_MONOOUT_SOURCE:
1323 dip->mixer_class = ESO_OUTPUT_CLASS;
1324 dip->next = dip->prev = AUDIO_MIXER_LAST;
1325 strcpy(dip->label.name, "mono_out");
1326 dip->type = AUDIO_MIXER_ENUM;
1327 dip->un.e.num_mem = 3;
1328 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1329 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1330 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1331 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1332 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1333 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1334 break;
1335
1336 case ESO_MONOIN_BYPASS:
1337 dip->mixer_class = ESO_MONOIN_CLASS;
1338 dip->next = dip->prev = AUDIO_MIXER_LAST;
1339 strcpy(dip->label.name, "bypass");
1340 dip->type = AUDIO_MIXER_ENUM;
1341 dip->un.e.num_mem = 2;
1342 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1343 dip->un.e.member[0].ord = 0;
1344 strcpy(dip->un.e.member[1].label.name, AudioNon);
1345 dip->un.e.member[1].ord = 1;
1346 break;
1347 case ESO_MONOIN_CLASS:
1348 dip->mixer_class = ESO_MONOIN_CLASS;
1349 dip->next = dip->prev = AUDIO_MIXER_LAST;
1350 strcpy(dip->label.name, "mono_in");
1351 dip->type = AUDIO_MIXER_CLASS;
1352 break;
1353
1354 case ESO_SPATIALIZER:
1355 dip->mixer_class = ESO_OUTPUT_CLASS;
1356 dip->prev = AUDIO_MIXER_LAST;
1357 dip->next = ESO_SPATIALIZER_ENABLE;
1358 strcpy(dip->label.name, AudioNspatial);
1359 dip->type = AUDIO_MIXER_VALUE;
1360 dip->un.v.num_channels = 1;
1361 strcpy(dip->un.v.units.name, "level");
1362 break;
1363 case ESO_SPATIALIZER_ENABLE:
1364 dip->mixer_class = ESO_OUTPUT_CLASS;
1365 dip->prev = ESO_SPATIALIZER;
1366 dip->next = AUDIO_MIXER_LAST;
1367 strcpy(dip->label.name, "enable");
1368 dip->type = AUDIO_MIXER_ENUM;
1369 dip->un.e.num_mem = 2;
1370 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1371 dip->un.e.member[0].ord = 0;
1372 strcpy(dip->un.e.member[1].label.name, AudioNon);
1373 dip->un.e.member[1].ord = 1;
1374 break;
1375
1376 case ESO_OUTPUT_CLASS:
1377 dip->mixer_class = ESO_OUTPUT_CLASS;
1378 dip->next = dip->prev = AUDIO_MIXER_LAST;
1379 strcpy(dip->label.name, AudioCoutputs);
1380 dip->type = AUDIO_MIXER_CLASS;
1381 break;
1382
1383 case ESO_RECORD_MONITOR:
1384 dip->mixer_class = ESO_MONITOR_CLASS;
1385 dip->next = dip->prev = AUDIO_MIXER_LAST;
1386 strcpy(dip->label.name, AudioNmute);
1387 dip->type = AUDIO_MIXER_ENUM;
1388 dip->un.e.num_mem = 2;
1389 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1390 dip->un.e.member[0].ord = 0;
1391 strcpy(dip->un.e.member[1].label.name, AudioNon);
1392 dip->un.e.member[1].ord = 1;
1393 break;
1394 case ESO_MONITOR_CLASS:
1395 dip->mixer_class = ESO_MONITOR_CLASS;
1396 dip->next = dip->prev = AUDIO_MIXER_LAST;
1397 strcpy(dip->label.name, AudioCmonitor);
1398 dip->type = AUDIO_MIXER_CLASS;
1399 break;
1400
1401 case ESO_RECORD_VOL:
1402 dip->mixer_class = ESO_RECORD_CLASS;
1403 dip->next = dip->prev = AUDIO_MIXER_LAST;
1404 strcpy(dip->label.name, AudioNrecord);
1405 dip->type = AUDIO_MIXER_VALUE;
1406 strcpy(dip->un.v.units.name, AudioNvolume);
1407 break;
1408 case ESO_RECORD_SOURCE:
1409 dip->mixer_class = ESO_RECORD_CLASS;
1410 dip->next = dip->prev = AUDIO_MIXER_LAST;
1411 strcpy(dip->label.name, AudioNsource);
1412 dip->type = AUDIO_MIXER_ENUM;
1413 dip->un.e.num_mem = 4;
1414 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1415 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1416 strcpy(dip->un.e.member[1].label.name, AudioNline);
1417 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1418 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1419 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1420 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1421 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1422 break;
1423 case ESO_DAC_REC_VOL:
1424 dip->mixer_class = ESO_RECORD_CLASS;
1425 dip->next = dip->prev = AUDIO_MIXER_LAST;
1426 strcpy(dip->label.name, AudioNdac);
1427 dip->type = AUDIO_MIXER_VALUE;
1428 dip->un.v.num_channels = 2;
1429 strcpy(dip->un.v.units.name, AudioNvolume);
1430 break;
1431 case ESO_MIC_REC_VOL:
1432 dip->mixer_class = ESO_RECORD_CLASS;
1433 dip->next = dip->prev = AUDIO_MIXER_LAST;
1434 strcpy(dip->label.name, AudioNmicrophone);
1435 dip->type = AUDIO_MIXER_VALUE;
1436 dip->un.v.num_channels = 2;
1437 strcpy(dip->un.v.units.name, AudioNvolume);
1438 break;
1439 case ESO_LINE_REC_VOL:
1440 dip->mixer_class = ESO_RECORD_CLASS;
1441 dip->next = dip->prev = AUDIO_MIXER_LAST;
1442 strcpy(dip->label.name, AudioNline);
1443 dip->type = AUDIO_MIXER_VALUE;
1444 dip->un.v.num_channels = 2;
1445 strcpy(dip->un.v.units.name, AudioNvolume);
1446 break;
1447 case ESO_SYNTH_REC_VOL:
1448 dip->mixer_class = ESO_RECORD_CLASS;
1449 dip->next = dip->prev = AUDIO_MIXER_LAST;
1450 strcpy(dip->label.name, AudioNfmsynth);
1451 dip->type = AUDIO_MIXER_VALUE;
1452 dip->un.v.num_channels = 2;
1453 strcpy(dip->un.v.units.name, AudioNvolume);
1454 break;
1455 case ESO_MONO_REC_VOL:
1456 dip->mixer_class = ESO_RECORD_CLASS;
1457 dip->next = dip->prev = AUDIO_MIXER_LAST;
1458 strcpy(dip->label.name, "mono_in");
1459 dip->type = AUDIO_MIXER_VALUE;
1460 dip->un.v.num_channels = 1; /* No lies */
1461 strcpy(dip->un.v.units.name, AudioNvolume);
1462 break;
1463 case ESO_CD_REC_VOL:
1464 dip->mixer_class = ESO_RECORD_CLASS;
1465 dip->next = dip->prev = AUDIO_MIXER_LAST;
1466 strcpy(dip->label.name, AudioNcd);
1467 dip->type = AUDIO_MIXER_VALUE;
1468 dip->un.v.num_channels = 2;
1469 strcpy(dip->un.v.units.name, AudioNvolume);
1470 break;
1471 case ESO_AUXB_REC_VOL:
1472 dip->mixer_class = ESO_RECORD_CLASS;
1473 dip->next = dip->prev = AUDIO_MIXER_LAST;
1474 strcpy(dip->label.name, "auxb");
1475 dip->type = AUDIO_MIXER_VALUE;
1476 dip->un.v.num_channels = 2;
1477 strcpy(dip->un.v.units.name, AudioNvolume);
1478 break;
1479 case ESO_RECORD_CLASS:
1480 dip->mixer_class = ESO_RECORD_CLASS;
1481 dip->next = dip->prev = AUDIO_MIXER_LAST;
1482 strcpy(dip->label.name, AudioCrecord);
1483 dip->type = AUDIO_MIXER_CLASS;
1484 break;
1485
1486 default:
1487 return (ENXIO);
1488 }
1489
1490 return (0);
1491 }
1492
1493 static int
1494 eso_allocmem(sc, size, align, boundary, flags, direction, ed)
1495 struct eso_softc *sc;
1496 size_t size;
1497 size_t align;
1498 size_t boundary;
1499 int flags;
1500 int direction;
1501 struct eso_dma *ed;
1502 {
1503 int error, wait;
1504
1505 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1506 ed->ed_size = size;
1507
1508 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1509 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1510 &ed->ed_nsegs, wait);
1511 if (error)
1512 goto out;
1513
1514 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1515 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1516 if (error)
1517 goto free;
1518
1519 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1520 wait, &ed->ed_map);
1521 if (error)
1522 goto unmap;
1523
1524 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1525 ed->ed_size, NULL, wait |
1526 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1527 if (error)
1528 goto destroy;
1529
1530 return (0);
1531
1532 destroy:
1533 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1534 unmap:
1535 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1536 free:
1537 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1538 out:
1539 return (error);
1540 }
1541
1542 static void
1543 eso_freemem(ed)
1544 struct eso_dma *ed;
1545 {
1546
1547 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1548 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1549 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1550 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1551 }
1552
1553 static void *
1554 eso_allocm(hdl, direction, size, type, flags)
1555 void *hdl;
1556 int direction;
1557 size_t size;
1558 struct malloc_type *type;
1559 int flags;
1560 {
1561 struct eso_softc *sc = hdl;
1562 struct eso_dma *ed;
1563 size_t boundary;
1564 int error;
1565
1566 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1567 return (NULL);
1568
1569 /*
1570 * Apparently the Audio 1 DMA controller's current address
1571 * register can't roll over a 64K address boundary, so we have to
1572 * take care of that ourselves. Similarly, the Audio 2 DMA
1573 * controller needs a 1M address boundary.
1574 */
1575 if (direction == AUMODE_RECORD)
1576 boundary = 0x10000;
1577 else
1578 boundary = 0x100000;
1579
1580 /*
1581 * XXX Work around allocation problems for Audio 1, which
1582 * XXX implements the 24 low address bits only, with
1583 * XXX machine-specific DMA tag use.
1584 */
1585 #ifdef alpha
1586 /*
1587 * XXX Force allocation through the (ISA) SGMAP.
1588 */
1589 if (direction == AUMODE_RECORD)
1590 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1591 else
1592 #elif defined(amd64) || defined(i386)
1593 /*
1594 * XXX Force allocation through the ISA DMA tag.
1595 */
1596 if (direction == AUMODE_RECORD)
1597 ed->ed_dmat = &isa_bus_dma_tag;
1598 else
1599 #endif
1600 ed->ed_dmat = sc->sc_dmat;
1601
1602 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1603 if (error) {
1604 free(ed, type);
1605 return (NULL);
1606 }
1607 ed->ed_next = sc->sc_dmas;
1608 sc->sc_dmas = ed;
1609
1610 return (KVADDR(ed));
1611 }
1612
1613 static void
1614 eso_freem(hdl, addr, type)
1615 void *hdl;
1616 void *addr;
1617 struct malloc_type *type;
1618 {
1619 struct eso_softc *sc = hdl;
1620 struct eso_dma *p, **pp;
1621
1622 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1623 if (KVADDR(p) == addr) {
1624 eso_freemem(p);
1625 *pp = p->ed_next;
1626 free(p, type);
1627 return;
1628 }
1629 }
1630 }
1631
1632 static size_t
1633 eso_round_buffersize(hdl, direction, bufsize)
1634 void *hdl;
1635 int direction;
1636 size_t bufsize;
1637 {
1638 size_t maxsize;
1639
1640 /*
1641 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1642 * bytes. This is because IO_A2DMAC is a two byte value
1643 * indicating the literal byte count, and the 4 least significant
1644 * bits are read-only. Zero is not used as a special case for
1645 * 0x10000.
1646 *
1647 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1648 * be represented.
1649 */
1650 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1651
1652 if (bufsize > maxsize)
1653 bufsize = maxsize;
1654
1655 return (bufsize);
1656 }
1657
1658 static paddr_t
1659 eso_mappage(hdl, addr, offs, prot)
1660 void *hdl;
1661 void *addr;
1662 off_t offs;
1663 int prot;
1664 {
1665 struct eso_softc *sc = hdl;
1666 struct eso_dma *ed;
1667
1668 if (offs < 0)
1669 return (-1);
1670 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1671 ed = ed->ed_next)
1672 ;
1673 if (ed == NULL)
1674 return (-1);
1675
1676 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1677 offs, prot, BUS_DMA_WAITOK));
1678 }
1679
1680 /* ARGSUSED */
1681 static int
1682 eso_get_props(hdl)
1683 void *hdl;
1684 {
1685
1686 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1687 AUDIO_PROP_FULLDUPLEX);
1688 }
1689
1690 static int
1691 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1692 void *hdl;
1693 void *start, *end;
1694 int blksize;
1695 void (*intr) __P((void *));
1696 void *arg;
1697 const audio_params_t *param;
1698 {
1699 struct eso_softc *sc = hdl;
1700 struct eso_dma *ed;
1701 uint8_t a2c1;
1702
1703 DPRINTF((
1704 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1705 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1706 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1707 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1708 param->precision, param->channels));
1709
1710 /* Find DMA buffer. */
1711 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1712 ed = ed->ed_next)
1713 ;
1714 if (ed == NULL) {
1715 printf("%s: trigger_output: bad addr %p\n",
1716 sc->sc_dev.dv_xname, start);
1717 return (EINVAL);
1718 }
1719 DPRINTF(("%s: dmaaddr %lx\n",
1720 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1721
1722 sc->sc_pintr = intr;
1723 sc->sc_parg = arg;
1724
1725 /* Compute drain timeout. */
1726 sc->sc_pdrain = (blksize * NBBY * hz) /
1727 (param->sample_rate * param->channels *
1728 param->precision) + 2; /* slop */
1729
1730 /* DMA transfer count (in `words'!) reload using 2's complement. */
1731 blksize = -(blksize >> 1);
1732 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1733 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1734
1735 /* Update DAC to reflect DMA count and audio parameters. */
1736 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1737 if (param->precision == 16)
1738 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1739 else
1740 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1741 if (param->channels == 2)
1742 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1743 else
1744 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1745 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1746 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1747 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1748 else
1749 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1750 /* Unmask IRQ. */
1751 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1752 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1753
1754 /* Set up DMA controller. */
1755 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1756 DMAADDR(ed));
1757 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1758 (uint8_t *)end - (uint8_t *)start);
1759 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1760 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1761
1762 /* Start DMA. */
1763 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1764 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1765 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1766 ESO_MIXREG_A2C1_AUTO;
1767 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1768
1769 return (0);
1770 }
1771
1772 static int
1773 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1774 void *hdl;
1775 void *start, *end;
1776 int blksize;
1777 void (*intr) __P((void *));
1778 void *arg;
1779 const audio_params_t *param;
1780 {
1781 struct eso_softc *sc = hdl;
1782 struct eso_dma *ed;
1783 uint8_t actl, a1c1;
1784
1785 DPRINTF((
1786 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1787 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1788 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1789 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1790 param->precision, param->channels));
1791
1792 /*
1793 * If we failed to configure the Audio 1 DMA controller, bail here
1794 * while retaining availability of the DAC direction (in Audio 2).
1795 */
1796 if (!sc->sc_dmac_configured)
1797 return (EIO);
1798
1799 /* Find DMA buffer. */
1800 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1801 ed = ed->ed_next)
1802 ;
1803 if (ed == NULL) {
1804 printf("%s: trigger_output: bad addr %p\n",
1805 sc->sc_dev.dv_xname, start);
1806 return (EINVAL);
1807 }
1808 DPRINTF(("%s: dmaaddr %lx\n",
1809 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1810
1811 sc->sc_rintr = intr;
1812 sc->sc_rarg = arg;
1813
1814 /* Compute drain timeout. */
1815 sc->sc_rdrain = (blksize * NBBY * hz) /
1816 (param->sample_rate * param->channels *
1817 param->precision) + 2; /* slop */
1818
1819 /* Set up ADC DMA converter parameters. */
1820 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1821 if (param->channels == 2) {
1822 actl &= ~ESO_CTLREG_ACTL_MONO;
1823 actl |= ESO_CTLREG_ACTL_STEREO;
1824 } else {
1825 actl &= ~ESO_CTLREG_ACTL_STEREO;
1826 actl |= ESO_CTLREG_ACTL_MONO;
1827 }
1828 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1829
1830 /* Set up Transfer Type: maybe move to attach time? */
1831 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1832
1833 /* DMA transfer count reload using 2's complement. */
1834 blksize = -blksize;
1835 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1836 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1837
1838 /* Set up and enable Audio 1 DMA FIFO. */
1839 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1840 if (param->precision == 16)
1841 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1842 if (param->channels == 2)
1843 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1844 else
1845 a1c1 |= ESO_CTLREG_A1C1_MONO;
1846 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1847 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1848 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1849 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1850
1851 /* Set up ADC IRQ/DRQ parameters. */
1852 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1853 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1854 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1855 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1856
1857 /* Set up and enable DMA controller. */
1858 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1859 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1860 ESO_DMAC_MASK_MASK);
1861 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1862 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1863 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1864 DMAADDR(ed));
1865 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1866 (uint8_t *)end - (uint8_t *)start - 1);
1867 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1868
1869 /* Start DMA. */
1870 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1871 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1872 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1873
1874 return (0);
1875 }
1876
1877 /*
1878 * Mixer utility functions.
1879 */
1880 static int
1881 eso_set_recsrc(sc, recsrc)
1882 struct eso_softc *sc;
1883 unsigned int recsrc;
1884 {
1885 mixer_devinfo_t di;
1886 int i;
1887
1888 di.index = ESO_RECORD_SOURCE;
1889 if (eso_query_devinfo(sc, &di) != 0)
1890 panic("eso_set_recsrc: eso_query_devinfo failed");
1891
1892 for (i = 0; i < di.un.e.num_mem; i++) {
1893 if (recsrc == di.un.e.member[i].ord) {
1894 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1895 sc->sc_recsrc = recsrc;
1896 return (0);
1897 }
1898 }
1899
1900 return (EINVAL);
1901 }
1902
1903 static int
1904 eso_set_monooutsrc(sc, monooutsrc)
1905 struct eso_softc *sc;
1906 unsigned int monooutsrc;
1907 {
1908 mixer_devinfo_t di;
1909 int i;
1910 uint8_t mpm;
1911
1912 di.index = ESO_MONOOUT_SOURCE;
1913 if (eso_query_devinfo(sc, &di) != 0)
1914 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1915
1916 for (i = 0; i < di.un.e.num_mem; i++) {
1917 if (monooutsrc == di.un.e.member[i].ord) {
1918 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1919 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1920 mpm |= monooutsrc;
1921 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1922 sc->sc_monooutsrc = monooutsrc;
1923 return (0);
1924 }
1925 }
1926
1927 return (EINVAL);
1928 }
1929
1930 static int
1931 eso_set_monoinbypass(sc, monoinbypass)
1932 struct eso_softc *sc;
1933 unsigned int monoinbypass;
1934 {
1935 mixer_devinfo_t di;
1936 int i;
1937 uint8_t mpm;
1938
1939 di.index = ESO_MONOIN_BYPASS;
1940 if (eso_query_devinfo(sc, &di) != 0)
1941 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1942
1943 for (i = 0; i < di.un.e.num_mem; i++) {
1944 if (monoinbypass == di.un.e.member[i].ord) {
1945 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1946 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1947 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1948 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1949 sc->sc_monoinbypass = monoinbypass;
1950 return (0);
1951 }
1952 }
1953
1954 return (EINVAL);
1955 }
1956
1957 static int
1958 eso_set_preamp(sc, preamp)
1959 struct eso_softc *sc;
1960 unsigned int preamp;
1961 {
1962 mixer_devinfo_t di;
1963 int i;
1964 uint8_t mpm;
1965
1966 di.index = ESO_MIC_PREAMP;
1967 if (eso_query_devinfo(sc, &di) != 0)
1968 panic("eso_set_preamp: eso_query_devinfo failed");
1969
1970 for (i = 0; i < di.un.e.num_mem; i++) {
1971 if (preamp == di.un.e.member[i].ord) {
1972 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1973 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1974 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1975 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1976 sc->sc_preamp = preamp;
1977 return (0);
1978 }
1979 }
1980
1981 return (EINVAL);
1982 }
1983
1984 /*
1985 * Reload Master Volume and Mute values in softc from mixer; used when
1986 * those have previously been invalidated by use of hardware volume controls.
1987 */
1988 static void
1989 eso_reload_master_vol(sc)
1990 struct eso_softc *sc;
1991 {
1992 uint8_t mv;
1993
1994 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1995 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1996 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1997 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1998 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1999 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
2000 /* Currently both channels are muted simultaneously; either is OK. */
2001 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
2002 }
2003
2004 static void
2005 eso_set_gain(sc, port)
2006 struct eso_softc *sc;
2007 unsigned int port;
2008 {
2009 uint8_t mixreg, tmp;
2010
2011 switch (port) {
2012 case ESO_DAC_PLAY_VOL:
2013 mixreg = ESO_MIXREG_PVR_A2;
2014 break;
2015 case ESO_MIC_PLAY_VOL:
2016 mixreg = ESO_MIXREG_PVR_MIC;
2017 break;
2018 case ESO_LINE_PLAY_VOL:
2019 mixreg = ESO_MIXREG_PVR_LINE;
2020 break;
2021 case ESO_SYNTH_PLAY_VOL:
2022 mixreg = ESO_MIXREG_PVR_SYNTH;
2023 break;
2024 case ESO_CD_PLAY_VOL:
2025 mixreg = ESO_MIXREG_PVR_CD;
2026 break;
2027 case ESO_AUXB_PLAY_VOL:
2028 mixreg = ESO_MIXREG_PVR_AUXB;
2029 break;
2030
2031 case ESO_DAC_REC_VOL:
2032 mixreg = ESO_MIXREG_RVR_A2;
2033 break;
2034 case ESO_MIC_REC_VOL:
2035 mixreg = ESO_MIXREG_RVR_MIC;
2036 break;
2037 case ESO_LINE_REC_VOL:
2038 mixreg = ESO_MIXREG_RVR_LINE;
2039 break;
2040 case ESO_SYNTH_REC_VOL:
2041 mixreg = ESO_MIXREG_RVR_SYNTH;
2042 break;
2043 case ESO_CD_REC_VOL:
2044 mixreg = ESO_MIXREG_RVR_CD;
2045 break;
2046 case ESO_AUXB_REC_VOL:
2047 mixreg = ESO_MIXREG_RVR_AUXB;
2048 break;
2049 case ESO_MONO_PLAY_VOL:
2050 mixreg = ESO_MIXREG_PVR_MONO;
2051 break;
2052 case ESO_MONO_REC_VOL:
2053 mixreg = ESO_MIXREG_RVR_MONO;
2054 break;
2055
2056 case ESO_PCSPEAKER_VOL:
2057 /* Special case - only 3-bit, mono, and reserved bits. */
2058 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2059 tmp &= ESO_MIXREG_PCSVR_RESV;
2060 /* Map bits 7:5 -> 2:0. */
2061 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2062 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2063 return;
2064
2065 case ESO_MASTER_VOL:
2066 /* Special case - separate regs, and 6-bit precision. */
2067 /* Map bits 7:2 -> 5:0, reflect mute settings. */
2068 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2069 (sc->sc_gain[port][ESO_LEFT] >> 2) |
2070 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2071 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2072 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2073 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2074 return;
2075
2076 case ESO_SPATIALIZER:
2077 /* Special case - only `mono', and higher precision. */
2078 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2079 sc->sc_gain[port][ESO_LEFT]);
2080 return;
2081
2082 case ESO_RECORD_VOL:
2083 /* Very Special case, controller register. */
2084 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2085 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2086 return;
2087
2088 default:
2089 #ifdef DIAGNOSTIC
2090 panic("eso_set_gain: bad port %u", port);
2091 /* NOTREACHED */
2092 #else
2093 return;
2094 #endif
2095 }
2096
2097 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2098 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2099 }
2100