eso.c revision 1.40 1 /* $NetBSD: eso.c,v 1.40 2005/01/26 21:28:55 kleink Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.40 2005/01/26 21:28:55 kleink Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 /*
66 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
67 * XXX engine by allocating through the ISA DMA tag.
68 */
69 #if defined(amd64) || defined(i386)
70 #include "isa.h"
71 #if NISA > 0
72 #include <dev/isa/isavar.h>
73 #endif
74 #endif
75
76 #if defined(AUDIO_DEBUG) || defined(DEBUG)
77 #define DPRINTF(x) printf x
78 #else
79 #define DPRINTF(x)
80 #endif
81
82 struct eso_dma {
83 bus_dma_tag_t ed_dmat;
84 bus_dmamap_t ed_map;
85 caddr_t ed_addr;
86 bus_dma_segment_t ed_segs[1];
87 int ed_nsegs;
88 size_t ed_size;
89 struct eso_dma * ed_next;
90 };
91
92 #define KVADDR(dma) ((void *)(dma)->ed_addr)
93 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
94
95 /* Autoconfiguration interface */
96 static int eso_match(struct device *, struct cfdata *, void *);
97 static void eso_attach(struct device *, struct device *, void *);
98 static void eso_defer(struct device *);
99 static int eso_print(void *, const char *);
100
101 CFATTACH_DECL(eso, sizeof (struct eso_softc),
102 eso_match, eso_attach, NULL, NULL);
103
104 /* PCI interface */
105 static int eso_intr(void *);
106
107 /* MI audio layer interface */
108 static int eso_query_encoding(void *, struct audio_encoding *);
109 static int eso_set_params(void *, int, int, audio_params_t *,
110 audio_params_t *, stream_filter_list_t *,
111 stream_filter_list_t *);
112 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
113 static int eso_halt_output(void *);
114 static int eso_halt_input(void *);
115 static int eso_getdev(void *, struct audio_device *);
116 static int eso_set_port(void *, mixer_ctrl_t *);
117 static int eso_get_port(void *, mixer_ctrl_t *);
118 static int eso_query_devinfo(void *, mixer_devinfo_t *);
119 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int);
120 static void eso_freem(void *, void *, struct malloc_type *);
121 static size_t eso_round_buffersize(void *, int, size_t);
122 static paddr_t eso_mappage(void *, void *, off_t, int);
123 static int eso_get_props(void *);
124 static int eso_trigger_output(void *, void *, void *, int,
125 void (*)(void *), void *, const audio_params_t *);
126 static int eso_trigger_input(void *, void *, void *, int,
127 void (*)(void *), void *, const audio_params_t *);
128
129 static const struct audio_hw_if eso_hw_if = {
130 NULL, /* open */
131 NULL, /* close */
132 NULL, /* drain */
133 eso_query_encoding,
134 eso_set_params,
135 eso_round_blocksize,
136 NULL, /* commit_settings */
137 NULL, /* init_output */
138 NULL, /* init_input */
139 NULL, /* start_output */
140 NULL, /* start_input */
141 eso_halt_output,
142 eso_halt_input,
143 NULL, /* speaker_ctl */
144 eso_getdev,
145 NULL, /* setfd */
146 eso_set_port,
147 eso_get_port,
148 eso_query_devinfo,
149 eso_allocm,
150 eso_freem,
151 eso_round_buffersize,
152 eso_mappage,
153 eso_get_props,
154 eso_trigger_output,
155 eso_trigger_input,
156 NULL, /* dev_ioctl */
157 };
158
159 static const char * const eso_rev2model[] = {
160 "ES1938",
161 "ES1946",
162 "ES1946 Revision E"
163 };
164
165 #define ESO_NFORMATS 8
166 static const struct audio_format eso_formats[ESO_NFORMATS] = {
167 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
168 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
169 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
170 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
171 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
172 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
173 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
174 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
175 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
176 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
177 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
178 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
179 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
180 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
181 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
182 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
183 };
184
185
186 /*
187 * Utility routines
188 */
189 /* Register access etc. */
190 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
191 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
192 static uint8_t eso_read_rdr(struct eso_softc *);
193 static void eso_reload_master_vol(struct eso_softc *);
194 static int eso_reset(struct eso_softc *);
195 static void eso_set_gain(struct eso_softc *, unsigned int);
196 static int eso_set_recsrc(struct eso_softc *, unsigned int);
197 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
198 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
199 static int eso_set_preamp(struct eso_softc *, unsigned int);
200 static void eso_write_cmd(struct eso_softc *, uint8_t);
201 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
202 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
203 /* DMA memory allocation */
204 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
205 int, int, struct eso_dma *);
206 static void eso_freemem(struct eso_dma *);
207
208
209 static int
210 eso_match(struct device *parent, struct cfdata *match, void *aux)
211 {
212 struct pci_attach_args *pa;
213
214 pa = aux;
215 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
216 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
217 return 1;
218
219 return 0;
220 }
221
222 static void
223 eso_attach(struct device *parent, struct device *self, void *aux)
224 {
225 struct eso_softc *sc;
226 struct pci_attach_args *pa;
227 struct audio_attach_args aa;
228 pci_intr_handle_t ih;
229 bus_addr_t vcbase;
230 const char *intrstring;
231 int idx;
232 uint8_t a2mode, mvctl;
233
234 sc = (struct eso_softc *)self;
235 pa = aux;
236 aprint_naive(": Audio controller\n");
237
238 sc->sc_revision = PCI_REVISION(pa->pa_class);
239
240 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
241 if (sc->sc_revision <
242 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
243 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
244 else
245 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
246
247 /* Map I/O registers. */
248 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
249 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
250 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
251 return;
252 }
253 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
254 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
255 aprint_error("%s: can't map SB I/O space\n",
256 sc->sc_dev.dv_xname);
257 return;
258 }
259 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
260 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
261 aprint_error("%s: can't map VC I/O space\n",
262 sc->sc_dev.dv_xname);
263 /* Don't bail out yet: we can map it later, see below. */
264 vcbase = 0;
265 sc->sc_vcsize = 0x10; /* From the data sheet. */
266 }
267 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
268 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
269 aprint_error("%s: can't map MPU I/O space\n",
270 sc->sc_dev.dv_xname);
271 return;
272 }
273 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
274 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
275 aprint_error("%s: can't map Game I/O space\n",
276 sc->sc_dev.dv_xname);
277 return;
278 }
279
280 sc->sc_dmat = pa->pa_dmat;
281 sc->sc_dmas = NULL;
282 sc->sc_dmac_configured = 0;
283
284 /* Enable bus mastering. */
285 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
286 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
287 PCI_COMMAND_MASTER_ENABLE);
288
289 /* Reset the device; bail out upon failure. */
290 if (eso_reset(sc) != 0) {
291 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
292 return;
293 }
294
295 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
296 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
297 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
298 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
299
300 /* Enable the relevant (DMA) interrupts. */
301 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
302 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
303 ESO_IO_IRQCTL_MPUIRQ);
304
305 /* Set up A1's sample rate generator for new-style parameters. */
306 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
307 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
308 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
309
310 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
311 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
312 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
313 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
314 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
315
316 /* Set mixer regs to something reasonable, needs work. */
317 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
318 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
319 eso_set_monoinbypass(sc, 0);
320 eso_set_preamp(sc, 1);
321 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
322 int v;
323
324 switch (idx) {
325 case ESO_MIC_PLAY_VOL:
326 case ESO_LINE_PLAY_VOL:
327 case ESO_CD_PLAY_VOL:
328 case ESO_MONO_PLAY_VOL:
329 case ESO_AUXB_PLAY_VOL:
330 case ESO_DAC_REC_VOL:
331 case ESO_LINE_REC_VOL:
332 case ESO_SYNTH_REC_VOL:
333 case ESO_CD_REC_VOL:
334 case ESO_MONO_REC_VOL:
335 case ESO_AUXB_REC_VOL:
336 case ESO_SPATIALIZER:
337 v = 0;
338 break;
339 case ESO_MASTER_VOL:
340 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
341 break;
342 default:
343 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
344 break;
345 }
346 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
347 eso_set_gain(sc, idx);
348 }
349 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
350
351 /* Map and establish the interrupt. */
352 if (pci_intr_map(pa, &ih)) {
353 aprint_error("%s: couldn't map interrupt\n",
354 sc->sc_dev.dv_xname);
355 return;
356 }
357 intrstring = pci_intr_string(pa->pa_pc, ih);
358 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
359 if (sc->sc_ih == NULL) {
360 aprint_error("%s: couldn't establish interrupt",
361 sc->sc_dev.dv_xname);
362 if (intrstring != NULL)
363 aprint_normal(" at %s", intrstring);
364 aprint_normal("\n");
365 return;
366 }
367 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
368 intrstring);
369
370 /*
371 * Set up the DDMA Control register; a suitable I/O region has been
372 * supposedly mapped in the VC base address register.
373 *
374 * The Solo-1 has an ... interesting silicon bug that causes it to
375 * not respond to I/O space accesses to the Audio 1 DMA controller
376 * if the latter's mapping base address is aligned on a 1K boundary.
377 * As a consequence, it is quite possible for the mapping provided
378 * in the VC BAR to be useless. To work around this, we defer this
379 * part until all autoconfiguration on our parent bus is completed
380 * and then try to map it ourselves in fulfillment of the constraint.
381 *
382 * According to the register map we may write to the low 16 bits
383 * only, but experimenting has shown we're safe.
384 * -kjk
385 */
386 if (ESO_VALID_DDMAC_BASE(vcbase)) {
387 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
388 vcbase | ESO_PCI_DDMAC_DE);
389 sc->sc_dmac_configured = 1;
390
391 aprint_normal(
392 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
393 sc->sc_dev.dv_xname, (unsigned long)vcbase);
394 } else {
395 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
396 sc->sc_dev.dv_xname, (unsigned long)vcbase));
397 sc->sc_pa = *pa;
398 config_defer(self, eso_defer);
399 }
400
401 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
402
403 aa.type = AUDIODEV_TYPE_OPL;
404 aa.hwif = NULL;
405 aa.hdl = NULL;
406 (void)config_found(&sc->sc_dev, &aa, audioprint);
407
408 aa.type = AUDIODEV_TYPE_MPU;
409 aa.hwif = NULL;
410 aa.hdl = NULL;
411 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
412 if (sc->sc_mpudev != NULL) {
413 /* Unmask the MPU irq. */
414 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
415 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
416 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
417 }
418
419 aa.type = AUDIODEV_TYPE_AUX;
420 aa.hwif = NULL;
421 aa.hdl = NULL;
422 (void)config_found(&sc->sc_dev, &aa, eso_print);
423 }
424
425 static void
426 eso_defer(struct device *self)
427 {
428 struct eso_softc *sc;
429 struct pci_attach_args *pa;
430 bus_addr_t addr, start;
431
432 sc = (struct eso_softc *)self;
433 pa = &sc->sc_pa;
434 aprint_normal("%s: ", sc->sc_dev.dv_xname);
435
436 /*
437 * This is outright ugly, but since we must not make assumptions
438 * on the underlying allocator's behaviour it's the most straight-
439 * forward way to implement it. Note that we skip over the first
440 * 1K region, which is typically occupied by an attached ISA bus.
441 */
442 for (start = 0x0400; start < 0xffff; start += 0x0400) {
443 if (bus_space_alloc(sc->sc_iot,
444 start + sc->sc_vcsize, start + 0x0400 - 1,
445 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
446 &sc->sc_dmac_ioh) != 0)
447 continue;
448
449 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
450 addr | ESO_PCI_DDMAC_DE);
451 sc->sc_dmac_iot = sc->sc_iot;
452 sc->sc_dmac_configured = 1;
453 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
454 (unsigned long)addr);
455
456 return;
457 }
458
459 aprint_error("can't map Audio 1 DMA into I/O space\n");
460 }
461
462 /* ARGSUSED */
463 static int
464 eso_print(void *aux, const char *pnp)
465 {
466
467 /* Only joys can attach via this; easy. */
468 if (pnp)
469 aprint_normal("joy at %s:", pnp);
470
471 return UNCONF;
472 }
473
474 static void
475 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
476 {
477 int i;
478
479 /* Poll for busy indicator to become clear. */
480 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
481 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
482 & ESO_SB_RSR_BUSY) == 0) {
483 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
484 ESO_SB_WDR, cmd);
485 return;
486 } else {
487 delay(10);
488 }
489 }
490
491 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
492 return;
493 }
494
495 /* Write to a controller register */
496 static void
497 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
498 {
499
500 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
501
502 eso_write_cmd(sc, reg);
503 eso_write_cmd(sc, val);
504 }
505
506 /* Read out the Read Data Register */
507 static uint8_t
508 eso_read_rdr(struct eso_softc *sc)
509 {
510 int i;
511
512 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
513 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
514 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
515 return (bus_space_read_1(sc->sc_sb_iot,
516 sc->sc_sb_ioh, ESO_SB_RDR));
517 } else {
518 delay(10);
519 }
520 }
521
522 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
523 return (-1);
524 }
525
526 static uint8_t
527 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
528 {
529
530 eso_write_cmd(sc, ESO_CMD_RCR);
531 eso_write_cmd(sc, reg);
532 return eso_read_rdr(sc);
533 }
534
535 static void
536 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
537 {
538 int s;
539
540 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
541
542 s = splaudio();
543 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
544 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
545 splx(s);
546 }
547
548 static uint8_t
549 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
550 {
551 int s;
552 uint8_t val;
553
554 s = splaudio();
555 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
556 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
557 splx(s);
558
559 return val;
560 }
561
562 static int
563 eso_intr(void *hdl)
564 {
565 struct eso_softc *sc;
566 uint8_t irqctl;
567
568 sc = hdl;
569 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
570
571 /* If it wasn't ours, that's all she wrote. */
572 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
573 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
574 return 0;
575
576 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
577 /* Clear interrupt. */
578 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
579 ESO_SB_RBSR);
580
581 if (sc->sc_rintr)
582 sc->sc_rintr(sc->sc_rarg);
583 else
584 wakeup(&sc->sc_rintr);
585 }
586
587 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
588 /*
589 * Clear the A2 IRQ latch: the cached value reflects the
590 * current DAC settings with the IRQ latch bit not set.
591 */
592 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
593
594 if (sc->sc_pintr)
595 sc->sc_pintr(sc->sc_parg);
596 else
597 wakeup(&sc->sc_pintr);
598 }
599
600 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
601 /* Clear interrupt. */
602 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
603
604 /*
605 * Raise a flag to cause a lazy update of the in-softc gain
606 * values the next time the software mixer is read to keep
607 * interrupt service cost low. ~0 cannot occur otherwise
608 * as the master volume has a precision of 6 bits only.
609 */
610 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
611 }
612
613 #if NMPU > 0
614 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
615 mpu_intr(sc->sc_mpudev);
616 #endif
617
618 return 1;
619 }
620
621 /* Perform a software reset, including DMA FIFOs. */
622 static int
623 eso_reset(struct eso_softc *sc)
624 {
625 int i;
626
627 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
628 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
629 /* `Delay' suggested in the data sheet. */
630 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
631 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
632
633 /* Wait for reset to take effect. */
634 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
635 /* Poll for data to become available. */
636 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
637 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
638 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
639 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
640
641 /* Activate Solo-1 extension commands. */
642 eso_write_cmd(sc, ESO_CMD_EXTENB);
643 /* Reset mixer registers. */
644 eso_write_mixreg(sc, ESO_MIXREG_RESET,
645 ESO_MIXREG_RESET_RESET);
646
647 return 0;
648 } else {
649 delay(1000);
650 }
651 }
652
653 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
654 return -1;
655 }
656
657 static int
658 eso_query_encoding(void *hdl, struct audio_encoding *fp)
659 {
660
661 switch (fp->index) {
662 case 0:
663 strcpy(fp->name, AudioEulinear);
664 fp->encoding = AUDIO_ENCODING_ULINEAR;
665 fp->precision = 8;
666 fp->flags = 0;
667 break;
668 case 1:
669 strcpy(fp->name, AudioEmulaw);
670 fp->encoding = AUDIO_ENCODING_ULAW;
671 fp->precision = 8;
672 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
673 break;
674 case 2:
675 strcpy(fp->name, AudioEalaw);
676 fp->encoding = AUDIO_ENCODING_ALAW;
677 fp->precision = 8;
678 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
679 break;
680 case 3:
681 strcpy(fp->name, AudioEslinear);
682 fp->encoding = AUDIO_ENCODING_SLINEAR;
683 fp->precision = 8;
684 fp->flags = 0;
685 break;
686 case 4:
687 strcpy(fp->name, AudioEslinear_le);
688 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
689 fp->precision = 16;
690 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
691 break;
692 case 5:
693 strcpy(fp->name, AudioEulinear_le);
694 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
695 fp->precision = 16;
696 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
697 break;
698 case 6:
699 strcpy(fp->name, AudioEslinear_be);
700 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
701 fp->precision = 16;
702 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
703 break;
704 case 7:
705 strcpy(fp->name, AudioEulinear_be);
706 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
707 fp->precision = 16;
708 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
709 break;
710 default:
711 return EINVAL;
712 }
713
714 return 0;
715 }
716
717 static int
718 eso_set_params(void *hdl, int setmode, int usemode, audio_params_t *play,
719 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
720 {
721 struct eso_softc *sc;
722 struct audio_params *p;
723 stream_filter_list_t *fil;
724 int mode, r[2], rd[2], clk;
725 unsigned int srg, fltdiv;
726 int i;
727
728 sc = hdl;
729 for (mode = AUMODE_RECORD; mode != -1;
730 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
731 if ((setmode & mode) == 0)
732 continue;
733
734 p = (mode == AUMODE_PLAY) ? play : rec;
735
736 if (p->sample_rate < ESO_MINRATE ||
737 p->sample_rate > ESO_MAXRATE ||
738 (p->precision != 8 && p->precision != 16) ||
739 (p->channels != 1 && p->channels != 2))
740 return EINVAL;
741
742 /*
743 * We'll compute both possible sample rate dividers and pick
744 * the one with the least error.
745 */
746 #define ABS(x) ((x) < 0 ? -(x) : (x))
747 r[0] = ESO_CLK0 /
748 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
749 r[1] = ESO_CLK1 /
750 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
751
752 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
753 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
754
755 /* Roll-off frequency of 87%, as in the ES1888 driver. */
756 fltdiv = 256 - 200279L / r[clk];
757
758 /* Update to reflect the possibly inexact rate. */
759 p->sample_rate = r[clk];
760
761 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
762 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
763 mode, p, FALSE, fil);
764 if (i < 0)
765 return EINVAL;
766 if (mode == AUMODE_RECORD) {
767 /* Audio 1 */
768 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
769 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
770 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
771 } else {
772 /* Audio 2 */
773 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
774 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
775 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
776 }
777 #undef ABS
778
779 }
780
781 return 0;
782 }
783
784 static int
785 eso_round_blocksize(void *hdl, int blk, int mode, const audio_params_t *param)
786 {
787
788 return blk & -32; /* keep good alignment; at least 16 req'd */
789 }
790
791 static int
792 eso_halt_output(void *hdl)
793 {
794 struct eso_softc *sc;
795 int error, s;
796
797 sc = hdl;
798 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
799
800 /*
801 * Disable auto-initialize DMA, allowing the FIFO to drain and then
802 * stop. The interrupt callback pointer is cleared at this
803 * point so that an outstanding FIFO interrupt for the remaining data
804 * will be acknowledged without further processing.
805 *
806 * This does not immediately `abort' an operation in progress (c.f.
807 * audio(9)) but is the method to leave the FIFO behind in a clean
808 * state with the least hair. (Besides, that item needs to be
809 * rephrased for trigger_*()-based DMA environments.)
810 */
811 s = splaudio();
812 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
813 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
814 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
815 ESO_IO_A2DMAM_DMAENB);
816
817 sc->sc_pintr = NULL;
818 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
819 splx(s);
820
821 /* Shut down DMA completely. */
822 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
823 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
824
825 return error == EWOULDBLOCK ? 0 : error;
826 }
827
828 static int
829 eso_halt_input(void *hdl)
830 {
831 struct eso_softc *sc;
832 int error, s;
833
834 sc = hdl;
835 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
836
837 /* Just like eso_halt_output(), but for Audio 1. */
838 s = splaudio();
839 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
840 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
841 ESO_CTLREG_A1C2_DMAENB);
842 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
843 DMA37MD_WRITE | DMA37MD_DEMAND);
844
845 sc->sc_rintr = NULL;
846 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
847 splx(s);
848
849 /* Shut down DMA completely. */
850 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
851 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
852 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
853 ESO_DMAC_MASK_MASK);
854
855 return error == EWOULDBLOCK ? 0 : error;
856 }
857
858 static int
859 eso_getdev(void *hdl, struct audio_device *retp)
860 {
861 struct eso_softc *sc;
862
863 sc = hdl;
864 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
865 snprintf(retp->version, sizeof (retp->version), "0x%02x",
866 sc->sc_revision);
867 if (sc->sc_revision <
868 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
869 strncpy(retp->config, eso_rev2model[sc->sc_revision],
870 sizeof (retp->config));
871 else
872 strncpy(retp->config, "unknown", sizeof (retp->config));
873
874 return 0;
875 }
876
877 static int
878 eso_set_port(void *hdl, mixer_ctrl_t *cp)
879 {
880 struct eso_softc *sc;
881 unsigned int lgain, rgain;
882 uint8_t tmp;
883
884 sc = hdl;
885 switch (cp->dev) {
886 case ESO_DAC_PLAY_VOL:
887 case ESO_MIC_PLAY_VOL:
888 case ESO_LINE_PLAY_VOL:
889 case ESO_SYNTH_PLAY_VOL:
890 case ESO_CD_PLAY_VOL:
891 case ESO_AUXB_PLAY_VOL:
892 case ESO_RECORD_VOL:
893 case ESO_DAC_REC_VOL:
894 case ESO_MIC_REC_VOL:
895 case ESO_LINE_REC_VOL:
896 case ESO_SYNTH_REC_VOL:
897 case ESO_CD_REC_VOL:
898 case ESO_AUXB_REC_VOL:
899 if (cp->type != AUDIO_MIXER_VALUE)
900 return EINVAL;
901
902 /*
903 * Stereo-capable mixer ports: if we get a single-channel
904 * gain value passed in, then we duplicate it to both left
905 * and right channels.
906 */
907 switch (cp->un.value.num_channels) {
908 case 1:
909 lgain = rgain = ESO_GAIN_TO_4BIT(
910 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
911 break;
912 case 2:
913 lgain = ESO_GAIN_TO_4BIT(
914 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
915 rgain = ESO_GAIN_TO_4BIT(
916 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
917 break;
918 default:
919 return EINVAL;
920 }
921
922 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
923 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
924 eso_set_gain(sc, cp->dev);
925 break;
926
927 case ESO_MASTER_VOL:
928 if (cp->type != AUDIO_MIXER_VALUE)
929 return EINVAL;
930
931 /* Like above, but a precision of 6 bits. */
932 switch (cp->un.value.num_channels) {
933 case 1:
934 lgain = rgain = ESO_GAIN_TO_6BIT(
935 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
936 break;
937 case 2:
938 lgain = ESO_GAIN_TO_6BIT(
939 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
940 rgain = ESO_GAIN_TO_6BIT(
941 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
942 break;
943 default:
944 return EINVAL;
945 }
946
947 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
948 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
949 eso_set_gain(sc, cp->dev);
950 break;
951
952 case ESO_SPATIALIZER:
953 if (cp->type != AUDIO_MIXER_VALUE ||
954 cp->un.value.num_channels != 1)
955 return EINVAL;
956
957 sc->sc_gain[cp->dev][ESO_LEFT] =
958 sc->sc_gain[cp->dev][ESO_RIGHT] =
959 ESO_GAIN_TO_6BIT(
960 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
961 eso_set_gain(sc, cp->dev);
962 break;
963
964 case ESO_MONO_PLAY_VOL:
965 case ESO_MONO_REC_VOL:
966 if (cp->type != AUDIO_MIXER_VALUE ||
967 cp->un.value.num_channels != 1)
968 return EINVAL;
969
970 sc->sc_gain[cp->dev][ESO_LEFT] =
971 sc->sc_gain[cp->dev][ESO_RIGHT] =
972 ESO_GAIN_TO_4BIT(
973 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
974 eso_set_gain(sc, cp->dev);
975 break;
976
977 case ESO_PCSPEAKER_VOL:
978 if (cp->type != AUDIO_MIXER_VALUE ||
979 cp->un.value.num_channels != 1)
980 return EINVAL;
981
982 sc->sc_gain[cp->dev][ESO_LEFT] =
983 sc->sc_gain[cp->dev][ESO_RIGHT] =
984 ESO_GAIN_TO_3BIT(
985 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
986 eso_set_gain(sc, cp->dev);
987 break;
988
989 case ESO_SPATIALIZER_ENABLE:
990 if (cp->type != AUDIO_MIXER_ENUM)
991 return EINVAL;
992
993 sc->sc_spatializer = (cp->un.ord != 0);
994
995 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
996 if (sc->sc_spatializer)
997 tmp |= ESO_MIXREG_SPAT_ENB;
998 else
999 tmp &= ~ESO_MIXREG_SPAT_ENB;
1000 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1001 tmp | ESO_MIXREG_SPAT_RSTREL);
1002 break;
1003
1004 case ESO_MASTER_MUTE:
1005 if (cp->type != AUDIO_MIXER_ENUM)
1006 return EINVAL;
1007
1008 sc->sc_mvmute = (cp->un.ord != 0);
1009
1010 if (sc->sc_mvmute) {
1011 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1012 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1013 ESO_MIXREG_LMVM_MUTE);
1014 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1015 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1016 ESO_MIXREG_RMVM_MUTE);
1017 } else {
1018 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1019 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1020 ~ESO_MIXREG_LMVM_MUTE);
1021 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1022 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1023 ~ESO_MIXREG_RMVM_MUTE);
1024 }
1025 break;
1026
1027 case ESO_MONOOUT_SOURCE:
1028 if (cp->type != AUDIO_MIXER_ENUM)
1029 return EINVAL;
1030
1031 return eso_set_monooutsrc(sc, cp->un.ord);
1032
1033 case ESO_MONOIN_BYPASS:
1034 if (cp->type != AUDIO_MIXER_ENUM)
1035 return EINVAL;
1036
1037 return (eso_set_monoinbypass(sc, cp->un.ord));
1038
1039 case ESO_RECORD_MONITOR:
1040 if (cp->type != AUDIO_MIXER_ENUM)
1041 return EINVAL;
1042
1043 sc->sc_recmon = (cp->un.ord != 0);
1044
1045 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1046 if (sc->sc_recmon)
1047 tmp |= ESO_CTLREG_ACTL_RECMON;
1048 else
1049 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1050 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1051 break;
1052
1053 case ESO_RECORD_SOURCE:
1054 if (cp->type != AUDIO_MIXER_ENUM)
1055 return EINVAL;
1056
1057 return eso_set_recsrc(sc, cp->un.ord);
1058
1059 case ESO_MIC_PREAMP:
1060 if (cp->type != AUDIO_MIXER_ENUM)
1061 return EINVAL;
1062
1063 return eso_set_preamp(sc, cp->un.ord);
1064
1065 default:
1066 return EINVAL;
1067 }
1068
1069 return 0;
1070 }
1071
1072 static int
1073 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1074 {
1075 struct eso_softc *sc;
1076
1077 sc = hdl;
1078 switch (cp->dev) {
1079 case ESO_MASTER_VOL:
1080 /* Reload from mixer after hardware volume control use. */
1081 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1082 eso_reload_master_vol(sc);
1083 /* FALLTHROUGH */
1084 case ESO_DAC_PLAY_VOL:
1085 case ESO_MIC_PLAY_VOL:
1086 case ESO_LINE_PLAY_VOL:
1087 case ESO_SYNTH_PLAY_VOL:
1088 case ESO_CD_PLAY_VOL:
1089 case ESO_AUXB_PLAY_VOL:
1090 case ESO_RECORD_VOL:
1091 case ESO_DAC_REC_VOL:
1092 case ESO_MIC_REC_VOL:
1093 case ESO_LINE_REC_VOL:
1094 case ESO_SYNTH_REC_VOL:
1095 case ESO_CD_REC_VOL:
1096 case ESO_AUXB_REC_VOL:
1097 /*
1098 * Stereo-capable ports: if a single-channel query is made,
1099 * just return the left channel's value (since single-channel
1100 * settings themselves are applied to both channels).
1101 */
1102 switch (cp->un.value.num_channels) {
1103 case 1:
1104 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1105 sc->sc_gain[cp->dev][ESO_LEFT];
1106 break;
1107 case 2:
1108 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1109 sc->sc_gain[cp->dev][ESO_LEFT];
1110 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1111 sc->sc_gain[cp->dev][ESO_RIGHT];
1112 break;
1113 default:
1114 return EINVAL;
1115 }
1116 break;
1117
1118 case ESO_MONO_PLAY_VOL:
1119 case ESO_PCSPEAKER_VOL:
1120 case ESO_MONO_REC_VOL:
1121 case ESO_SPATIALIZER:
1122 if (cp->un.value.num_channels != 1)
1123 return EINVAL;
1124 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1125 sc->sc_gain[cp->dev][ESO_LEFT];
1126 break;
1127
1128 case ESO_RECORD_MONITOR:
1129 cp->un.ord = sc->sc_recmon;
1130 break;
1131
1132 case ESO_RECORD_SOURCE:
1133 cp->un.ord = sc->sc_recsrc;
1134 break;
1135
1136 case ESO_MONOOUT_SOURCE:
1137 cp->un.ord = sc->sc_monooutsrc;
1138 break;
1139
1140 case ESO_MONOIN_BYPASS:
1141 cp->un.ord = sc->sc_monoinbypass;
1142 break;
1143
1144 case ESO_SPATIALIZER_ENABLE:
1145 cp->un.ord = sc->sc_spatializer;
1146 break;
1147
1148 case ESO_MIC_PREAMP:
1149 cp->un.ord = sc->sc_preamp;
1150 break;
1151
1152 case ESO_MASTER_MUTE:
1153 /* Reload from mixer after hardware volume control use. */
1154 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1155 eso_reload_master_vol(sc);
1156 cp->un.ord = sc->sc_mvmute;
1157 break;
1158
1159 default:
1160 return EINVAL;
1161 }
1162
1163 return 0;
1164 }
1165
1166 static int
1167 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1168 {
1169
1170 switch (dip->index) {
1171 case ESO_DAC_PLAY_VOL:
1172 dip->mixer_class = ESO_INPUT_CLASS;
1173 dip->next = dip->prev = AUDIO_MIXER_LAST;
1174 strcpy(dip->label.name, AudioNdac);
1175 dip->type = AUDIO_MIXER_VALUE;
1176 dip->un.v.num_channels = 2;
1177 strcpy(dip->un.v.units.name, AudioNvolume);
1178 break;
1179 case ESO_MIC_PLAY_VOL:
1180 dip->mixer_class = ESO_INPUT_CLASS;
1181 dip->next = dip->prev = AUDIO_MIXER_LAST;
1182 strcpy(dip->label.name, AudioNmicrophone);
1183 dip->type = AUDIO_MIXER_VALUE;
1184 dip->un.v.num_channels = 2;
1185 strcpy(dip->un.v.units.name, AudioNvolume);
1186 break;
1187 case ESO_LINE_PLAY_VOL:
1188 dip->mixer_class = ESO_INPUT_CLASS;
1189 dip->next = dip->prev = AUDIO_MIXER_LAST;
1190 strcpy(dip->label.name, AudioNline);
1191 dip->type = AUDIO_MIXER_VALUE;
1192 dip->un.v.num_channels = 2;
1193 strcpy(dip->un.v.units.name, AudioNvolume);
1194 break;
1195 case ESO_SYNTH_PLAY_VOL:
1196 dip->mixer_class = ESO_INPUT_CLASS;
1197 dip->next = dip->prev = AUDIO_MIXER_LAST;
1198 strcpy(dip->label.name, AudioNfmsynth);
1199 dip->type = AUDIO_MIXER_VALUE;
1200 dip->un.v.num_channels = 2;
1201 strcpy(dip->un.v.units.name, AudioNvolume);
1202 break;
1203 case ESO_MONO_PLAY_VOL:
1204 dip->mixer_class = ESO_INPUT_CLASS;
1205 dip->next = dip->prev = AUDIO_MIXER_LAST;
1206 strcpy(dip->label.name, "mono_in");
1207 dip->type = AUDIO_MIXER_VALUE;
1208 dip->un.v.num_channels = 1;
1209 strcpy(dip->un.v.units.name, AudioNvolume);
1210 break;
1211 case ESO_CD_PLAY_VOL:
1212 dip->mixer_class = ESO_INPUT_CLASS;
1213 dip->next = dip->prev = AUDIO_MIXER_LAST;
1214 strcpy(dip->label.name, AudioNcd);
1215 dip->type = AUDIO_MIXER_VALUE;
1216 dip->un.v.num_channels = 2;
1217 strcpy(dip->un.v.units.name, AudioNvolume);
1218 break;
1219 case ESO_AUXB_PLAY_VOL:
1220 dip->mixer_class = ESO_INPUT_CLASS;
1221 dip->next = dip->prev = AUDIO_MIXER_LAST;
1222 strcpy(dip->label.name, "auxb");
1223 dip->type = AUDIO_MIXER_VALUE;
1224 dip->un.v.num_channels = 2;
1225 strcpy(dip->un.v.units.name, AudioNvolume);
1226 break;
1227
1228 case ESO_MIC_PREAMP:
1229 dip->mixer_class = ESO_MICROPHONE_CLASS;
1230 dip->next = dip->prev = AUDIO_MIXER_LAST;
1231 strcpy(dip->label.name, AudioNpreamp);
1232 dip->type = AUDIO_MIXER_ENUM;
1233 dip->un.e.num_mem = 2;
1234 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1235 dip->un.e.member[0].ord = 0;
1236 strcpy(dip->un.e.member[1].label.name, AudioNon);
1237 dip->un.e.member[1].ord = 1;
1238 break;
1239 case ESO_MICROPHONE_CLASS:
1240 dip->mixer_class = ESO_MICROPHONE_CLASS;
1241 dip->next = dip->prev = AUDIO_MIXER_LAST;
1242 strcpy(dip->label.name, AudioNmicrophone);
1243 dip->type = AUDIO_MIXER_CLASS;
1244 break;
1245
1246 case ESO_INPUT_CLASS:
1247 dip->mixer_class = ESO_INPUT_CLASS;
1248 dip->next = dip->prev = AUDIO_MIXER_LAST;
1249 strcpy(dip->label.name, AudioCinputs);
1250 dip->type = AUDIO_MIXER_CLASS;
1251 break;
1252
1253 case ESO_MASTER_VOL:
1254 dip->mixer_class = ESO_OUTPUT_CLASS;
1255 dip->prev = AUDIO_MIXER_LAST;
1256 dip->next = ESO_MASTER_MUTE;
1257 strcpy(dip->label.name, AudioNmaster);
1258 dip->type = AUDIO_MIXER_VALUE;
1259 dip->un.v.num_channels = 2;
1260 strcpy(dip->un.v.units.name, AudioNvolume);
1261 break;
1262 case ESO_MASTER_MUTE:
1263 dip->mixer_class = ESO_OUTPUT_CLASS;
1264 dip->prev = ESO_MASTER_VOL;
1265 dip->next = AUDIO_MIXER_LAST;
1266 strcpy(dip->label.name, AudioNmute);
1267 dip->type = AUDIO_MIXER_ENUM;
1268 dip->un.e.num_mem = 2;
1269 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1270 dip->un.e.member[0].ord = 0;
1271 strcpy(dip->un.e.member[1].label.name, AudioNon);
1272 dip->un.e.member[1].ord = 1;
1273 break;
1274
1275 case ESO_PCSPEAKER_VOL:
1276 dip->mixer_class = ESO_OUTPUT_CLASS;
1277 dip->next = dip->prev = AUDIO_MIXER_LAST;
1278 strcpy(dip->label.name, "pc_speaker");
1279 dip->type = AUDIO_MIXER_VALUE;
1280 dip->un.v.num_channels = 1;
1281 strcpy(dip->un.v.units.name, AudioNvolume);
1282 break;
1283 case ESO_MONOOUT_SOURCE:
1284 dip->mixer_class = ESO_OUTPUT_CLASS;
1285 dip->next = dip->prev = AUDIO_MIXER_LAST;
1286 strcpy(dip->label.name, "mono_out");
1287 dip->type = AUDIO_MIXER_ENUM;
1288 dip->un.e.num_mem = 3;
1289 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1290 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1291 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1292 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1293 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1294 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1295 break;
1296
1297 case ESO_MONOIN_BYPASS:
1298 dip->mixer_class = ESO_MONOIN_CLASS;
1299 dip->next = dip->prev = AUDIO_MIXER_LAST;
1300 strcpy(dip->label.name, "bypass");
1301 dip->type = AUDIO_MIXER_ENUM;
1302 dip->un.e.num_mem = 2;
1303 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1304 dip->un.e.member[0].ord = 0;
1305 strcpy(dip->un.e.member[1].label.name, AudioNon);
1306 dip->un.e.member[1].ord = 1;
1307 break;
1308 case ESO_MONOIN_CLASS:
1309 dip->mixer_class = ESO_MONOIN_CLASS;
1310 dip->next = dip->prev = AUDIO_MIXER_LAST;
1311 strcpy(dip->label.name, "mono_in");
1312 dip->type = AUDIO_MIXER_CLASS;
1313 break;
1314
1315 case ESO_SPATIALIZER:
1316 dip->mixer_class = ESO_OUTPUT_CLASS;
1317 dip->prev = AUDIO_MIXER_LAST;
1318 dip->next = ESO_SPATIALIZER_ENABLE;
1319 strcpy(dip->label.name, AudioNspatial);
1320 dip->type = AUDIO_MIXER_VALUE;
1321 dip->un.v.num_channels = 1;
1322 strcpy(dip->un.v.units.name, "level");
1323 break;
1324 case ESO_SPATIALIZER_ENABLE:
1325 dip->mixer_class = ESO_OUTPUT_CLASS;
1326 dip->prev = ESO_SPATIALIZER;
1327 dip->next = AUDIO_MIXER_LAST;
1328 strcpy(dip->label.name, "enable");
1329 dip->type = AUDIO_MIXER_ENUM;
1330 dip->un.e.num_mem = 2;
1331 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1332 dip->un.e.member[0].ord = 0;
1333 strcpy(dip->un.e.member[1].label.name, AudioNon);
1334 dip->un.e.member[1].ord = 1;
1335 break;
1336
1337 case ESO_OUTPUT_CLASS:
1338 dip->mixer_class = ESO_OUTPUT_CLASS;
1339 dip->next = dip->prev = AUDIO_MIXER_LAST;
1340 strcpy(dip->label.name, AudioCoutputs);
1341 dip->type = AUDIO_MIXER_CLASS;
1342 break;
1343
1344 case ESO_RECORD_MONITOR:
1345 dip->mixer_class = ESO_MONITOR_CLASS;
1346 dip->next = dip->prev = AUDIO_MIXER_LAST;
1347 strcpy(dip->label.name, AudioNmute);
1348 dip->type = AUDIO_MIXER_ENUM;
1349 dip->un.e.num_mem = 2;
1350 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1351 dip->un.e.member[0].ord = 0;
1352 strcpy(dip->un.e.member[1].label.name, AudioNon);
1353 dip->un.e.member[1].ord = 1;
1354 break;
1355 case ESO_MONITOR_CLASS:
1356 dip->mixer_class = ESO_MONITOR_CLASS;
1357 dip->next = dip->prev = AUDIO_MIXER_LAST;
1358 strcpy(dip->label.name, AudioCmonitor);
1359 dip->type = AUDIO_MIXER_CLASS;
1360 break;
1361
1362 case ESO_RECORD_VOL:
1363 dip->mixer_class = ESO_RECORD_CLASS;
1364 dip->next = dip->prev = AUDIO_MIXER_LAST;
1365 strcpy(dip->label.name, AudioNrecord);
1366 dip->type = AUDIO_MIXER_VALUE;
1367 strcpy(dip->un.v.units.name, AudioNvolume);
1368 break;
1369 case ESO_RECORD_SOURCE:
1370 dip->mixer_class = ESO_RECORD_CLASS;
1371 dip->next = dip->prev = AUDIO_MIXER_LAST;
1372 strcpy(dip->label.name, AudioNsource);
1373 dip->type = AUDIO_MIXER_ENUM;
1374 dip->un.e.num_mem = 4;
1375 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1376 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1377 strcpy(dip->un.e.member[1].label.name, AudioNline);
1378 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1379 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1380 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1381 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1382 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1383 break;
1384 case ESO_DAC_REC_VOL:
1385 dip->mixer_class = ESO_RECORD_CLASS;
1386 dip->next = dip->prev = AUDIO_MIXER_LAST;
1387 strcpy(dip->label.name, AudioNdac);
1388 dip->type = AUDIO_MIXER_VALUE;
1389 dip->un.v.num_channels = 2;
1390 strcpy(dip->un.v.units.name, AudioNvolume);
1391 break;
1392 case ESO_MIC_REC_VOL:
1393 dip->mixer_class = ESO_RECORD_CLASS;
1394 dip->next = dip->prev = AUDIO_MIXER_LAST;
1395 strcpy(dip->label.name, AudioNmicrophone);
1396 dip->type = AUDIO_MIXER_VALUE;
1397 dip->un.v.num_channels = 2;
1398 strcpy(dip->un.v.units.name, AudioNvolume);
1399 break;
1400 case ESO_LINE_REC_VOL:
1401 dip->mixer_class = ESO_RECORD_CLASS;
1402 dip->next = dip->prev = AUDIO_MIXER_LAST;
1403 strcpy(dip->label.name, AudioNline);
1404 dip->type = AUDIO_MIXER_VALUE;
1405 dip->un.v.num_channels = 2;
1406 strcpy(dip->un.v.units.name, AudioNvolume);
1407 break;
1408 case ESO_SYNTH_REC_VOL:
1409 dip->mixer_class = ESO_RECORD_CLASS;
1410 dip->next = dip->prev = AUDIO_MIXER_LAST;
1411 strcpy(dip->label.name, AudioNfmsynth);
1412 dip->type = AUDIO_MIXER_VALUE;
1413 dip->un.v.num_channels = 2;
1414 strcpy(dip->un.v.units.name, AudioNvolume);
1415 break;
1416 case ESO_MONO_REC_VOL:
1417 dip->mixer_class = ESO_RECORD_CLASS;
1418 dip->next = dip->prev = AUDIO_MIXER_LAST;
1419 strcpy(dip->label.name, "mono_in");
1420 dip->type = AUDIO_MIXER_VALUE;
1421 dip->un.v.num_channels = 1; /* No lies */
1422 strcpy(dip->un.v.units.name, AudioNvolume);
1423 break;
1424 case ESO_CD_REC_VOL:
1425 dip->mixer_class = ESO_RECORD_CLASS;
1426 dip->next = dip->prev = AUDIO_MIXER_LAST;
1427 strcpy(dip->label.name, AudioNcd);
1428 dip->type = AUDIO_MIXER_VALUE;
1429 dip->un.v.num_channels = 2;
1430 strcpy(dip->un.v.units.name, AudioNvolume);
1431 break;
1432 case ESO_AUXB_REC_VOL:
1433 dip->mixer_class = ESO_RECORD_CLASS;
1434 dip->next = dip->prev = AUDIO_MIXER_LAST;
1435 strcpy(dip->label.name, "auxb");
1436 dip->type = AUDIO_MIXER_VALUE;
1437 dip->un.v.num_channels = 2;
1438 strcpy(dip->un.v.units.name, AudioNvolume);
1439 break;
1440 case ESO_RECORD_CLASS:
1441 dip->mixer_class = ESO_RECORD_CLASS;
1442 dip->next = dip->prev = AUDIO_MIXER_LAST;
1443 strcpy(dip->label.name, AudioCrecord);
1444 dip->type = AUDIO_MIXER_CLASS;
1445 break;
1446
1447 default:
1448 return ENXIO;
1449 }
1450
1451 return 0;
1452 }
1453
1454 static int
1455 eso_allocmem(struct eso_softc *sc, size_t size, size_t align, size_t boundary,
1456 int flags, int direction, struct eso_dma *ed)
1457 {
1458 int error, wait;
1459
1460 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1461 ed->ed_size = size;
1462
1463 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1464 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1465 &ed->ed_nsegs, wait);
1466 if (error)
1467 goto out;
1468
1469 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1470 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1471 if (error)
1472 goto free;
1473
1474 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1475 wait, &ed->ed_map);
1476 if (error)
1477 goto unmap;
1478
1479 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1480 ed->ed_size, NULL, wait |
1481 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1482 if (error)
1483 goto destroy;
1484
1485 return 0;
1486
1487 destroy:
1488 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1489 unmap:
1490 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1491 free:
1492 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1493 out:
1494 return error;
1495 }
1496
1497 static void
1498 eso_freemem(struct eso_dma *ed)
1499 {
1500
1501 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1502 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1503 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1504 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1505 }
1506
1507 static void *
1508 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type,
1509 int flags)
1510 {
1511 struct eso_softc *sc;
1512 struct eso_dma *ed;
1513 size_t boundary;
1514 int error;
1515
1516 sc = hdl;
1517 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1518 return NULL;
1519
1520 /*
1521 * Apparently the Audio 1 DMA controller's current address
1522 * register can't roll over a 64K address boundary, so we have to
1523 * take care of that ourselves. Similarly, the Audio 2 DMA
1524 * controller needs a 1M address boundary.
1525 */
1526 if (direction == AUMODE_RECORD)
1527 boundary = 0x10000;
1528 else
1529 boundary = 0x100000;
1530
1531 /*
1532 * XXX Work around allocation problems for Audio 1, which
1533 * XXX implements the 24 low address bits only, with
1534 * XXX machine-specific DMA tag use.
1535 */
1536 #ifdef alpha
1537 /*
1538 * XXX Force allocation through the (ISA) SGMAP.
1539 */
1540 if (direction == AUMODE_RECORD)
1541 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1542 else
1543 #elif defined(amd64) || defined(i386)
1544 /*
1545 * XXX Force allocation through the ISA DMA tag.
1546 */
1547 if (direction == AUMODE_RECORD)
1548 ed->ed_dmat = &isa_bus_dma_tag;
1549 else
1550 #endif
1551 ed->ed_dmat = sc->sc_dmat;
1552
1553 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1554 if (error) {
1555 free(ed, type);
1556 return NULL;
1557 }
1558 ed->ed_next = sc->sc_dmas;
1559 sc->sc_dmas = ed;
1560
1561 return KVADDR(ed);
1562 }
1563
1564 static void
1565 eso_freem(void *hdl, void *addr, struct malloc_type *type)
1566 {
1567 struct eso_softc *sc;
1568 struct eso_dma *p, **pp;
1569
1570 sc = hdl;
1571 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1572 if (KVADDR(p) == addr) {
1573 eso_freemem(p);
1574 *pp = p->ed_next;
1575 free(p, type);
1576 return;
1577 }
1578 }
1579 }
1580
1581 static size_t
1582 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1583 {
1584 size_t maxsize;
1585
1586 /*
1587 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1588 * bytes. This is because IO_A2DMAC is a two byte value
1589 * indicating the literal byte count, and the 4 least significant
1590 * bits are read-only. Zero is not used as a special case for
1591 * 0x10000.
1592 *
1593 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1594 * be represented.
1595 */
1596 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1597
1598 if (bufsize > maxsize)
1599 bufsize = maxsize;
1600
1601 return bufsize;
1602 }
1603
1604 static paddr_t
1605 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1606 {
1607 struct eso_softc *sc;
1608 struct eso_dma *ed;
1609
1610 sc = hdl;
1611 if (offs < 0)
1612 return -1;
1613 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1614 ed = ed->ed_next)
1615 continue;
1616 if (ed == NULL)
1617 return -1;
1618
1619 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1620 offs, prot, BUS_DMA_WAITOK);
1621 }
1622
1623 /* ARGSUSED */
1624 static int
1625 eso_get_props(void *hdl)
1626 {
1627
1628 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1629 AUDIO_PROP_FULLDUPLEX;
1630 }
1631
1632 static int
1633 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1634 void (*intr)(void *), void *arg, const audio_params_t *param)
1635 {
1636 struct eso_softc *sc;
1637 struct eso_dma *ed;
1638 uint8_t a2c1;
1639
1640 sc = hdl;
1641 DPRINTF((
1642 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1643 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1644 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1645 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1646 param->precision, param->channels));
1647
1648 /* Find DMA buffer. */
1649 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1650 ed = ed->ed_next)
1651 continue;
1652 if (ed == NULL) {
1653 printf("%s: trigger_output: bad addr %p\n",
1654 sc->sc_dev.dv_xname, start);
1655 return EINVAL;
1656 }
1657 DPRINTF(("%s: dmaaddr %lx\n",
1658 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1659
1660 sc->sc_pintr = intr;
1661 sc->sc_parg = arg;
1662
1663 /* Compute drain timeout. */
1664 sc->sc_pdrain = (blksize * NBBY * hz) /
1665 (param->sample_rate * param->channels *
1666 param->precision) + 2; /* slop */
1667
1668 /* DMA transfer count (in `words'!) reload using 2's complement. */
1669 blksize = -(blksize >> 1);
1670 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1671 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1672
1673 /* Update DAC to reflect DMA count and audio parameters. */
1674 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1675 if (param->precision == 16)
1676 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1677 else
1678 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1679 if (param->channels == 2)
1680 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1681 else
1682 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1683 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1684 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1685 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1686 else
1687 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1688 /* Unmask IRQ. */
1689 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1690 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1691
1692 /* Set up DMA controller. */
1693 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1694 DMAADDR(ed));
1695 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1696 (uint8_t *)end - (uint8_t *)start);
1697 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1698 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1699
1700 /* Start DMA. */
1701 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1702 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1703 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1704 ESO_MIXREG_A2C1_AUTO;
1705 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1706
1707 return 0;
1708 }
1709
1710 static int
1711 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1712 void (*intr)(void *), void *arg, const audio_params_t *param)
1713 {
1714 struct eso_softc *sc;
1715 struct eso_dma *ed;
1716 uint8_t actl, a1c1;
1717
1718 sc = hdl;
1719 DPRINTF((
1720 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1721 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1722 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1723 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1724 param->precision, param->channels));
1725
1726 /*
1727 * If we failed to configure the Audio 1 DMA controller, bail here
1728 * while retaining availability of the DAC direction (in Audio 2).
1729 */
1730 if (!sc->sc_dmac_configured)
1731 return EIO;
1732
1733 /* Find DMA buffer. */
1734 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1735 ed = ed->ed_next)
1736 continue;
1737 if (ed == NULL) {
1738 printf("%s: trigger_output: bad addr %p\n",
1739 sc->sc_dev.dv_xname, start);
1740 return EINVAL;
1741 }
1742 DPRINTF(("%s: dmaaddr %lx\n",
1743 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1744
1745 sc->sc_rintr = intr;
1746 sc->sc_rarg = arg;
1747
1748 /* Compute drain timeout. */
1749 sc->sc_rdrain = (blksize * NBBY * hz) /
1750 (param->sample_rate * param->channels *
1751 param->precision) + 2; /* slop */
1752
1753 /* Set up ADC DMA converter parameters. */
1754 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1755 if (param->channels == 2) {
1756 actl &= ~ESO_CTLREG_ACTL_MONO;
1757 actl |= ESO_CTLREG_ACTL_STEREO;
1758 } else {
1759 actl &= ~ESO_CTLREG_ACTL_STEREO;
1760 actl |= ESO_CTLREG_ACTL_MONO;
1761 }
1762 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1763
1764 /* Set up Transfer Type: maybe move to attach time? */
1765 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1766
1767 /* DMA transfer count reload using 2's complement. */
1768 blksize = -blksize;
1769 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1770 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1771
1772 /* Set up and enable Audio 1 DMA FIFO. */
1773 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1774 if (param->precision == 16)
1775 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1776 if (param->channels == 2)
1777 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1778 else
1779 a1c1 |= ESO_CTLREG_A1C1_MONO;
1780 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1781 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1782 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1783 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1784
1785 /* Set up ADC IRQ/DRQ parameters. */
1786 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1787 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1788 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1789 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1790
1791 /* Set up and enable DMA controller. */
1792 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1793 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1794 ESO_DMAC_MASK_MASK);
1795 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1796 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1797 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1798 DMAADDR(ed));
1799 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1800 (uint8_t *)end - (uint8_t *)start - 1);
1801 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1802
1803 /* Start DMA. */
1804 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1805 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1806 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1807
1808 return 0;
1809 }
1810
1811 /*
1812 * Mixer utility functions.
1813 */
1814 static int
1815 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1816 {
1817 mixer_devinfo_t di;
1818 int i;
1819
1820 di.index = ESO_RECORD_SOURCE;
1821 if (eso_query_devinfo(sc, &di) != 0)
1822 panic("eso_set_recsrc: eso_query_devinfo failed");
1823
1824 for (i = 0; i < di.un.e.num_mem; i++) {
1825 if (recsrc == di.un.e.member[i].ord) {
1826 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1827 sc->sc_recsrc = recsrc;
1828 return 0;
1829 }
1830 }
1831
1832 return EINVAL;
1833 }
1834
1835 static int
1836 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1837 {
1838 mixer_devinfo_t di;
1839 int i;
1840 uint8_t mpm;
1841
1842 di.index = ESO_MONOOUT_SOURCE;
1843 if (eso_query_devinfo(sc, &di) != 0)
1844 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1845
1846 for (i = 0; i < di.un.e.num_mem; i++) {
1847 if (monooutsrc == di.un.e.member[i].ord) {
1848 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1849 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1850 mpm |= monooutsrc;
1851 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1852 sc->sc_monooutsrc = monooutsrc;
1853 return 0;
1854 }
1855 }
1856
1857 return EINVAL;
1858 }
1859
1860 static int
1861 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1862 {
1863 mixer_devinfo_t di;
1864 int i;
1865 uint8_t mpm;
1866
1867 di.index = ESO_MONOIN_BYPASS;
1868 if (eso_query_devinfo(sc, &di) != 0)
1869 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1870
1871 for (i = 0; i < di.un.e.num_mem; i++) {
1872 if (monoinbypass == di.un.e.member[i].ord) {
1873 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1874 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1875 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1876 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1877 sc->sc_monoinbypass = monoinbypass;
1878 return 0;
1879 }
1880 }
1881
1882 return EINVAL;
1883 }
1884
1885 static int
1886 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
1887 {
1888 mixer_devinfo_t di;
1889 int i;
1890 uint8_t mpm;
1891
1892 di.index = ESO_MIC_PREAMP;
1893 if (eso_query_devinfo(sc, &di) != 0)
1894 panic("eso_set_preamp: eso_query_devinfo failed");
1895
1896 for (i = 0; i < di.un.e.num_mem; i++) {
1897 if (preamp == di.un.e.member[i].ord) {
1898 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1899 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1900 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1901 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1902 sc->sc_preamp = preamp;
1903 return 0;
1904 }
1905 }
1906
1907 return EINVAL;
1908 }
1909
1910 /*
1911 * Reload Master Volume and Mute values in softc from mixer; used when
1912 * those have previously been invalidated by use of hardware volume controls.
1913 */
1914 static void
1915 eso_reload_master_vol(struct eso_softc *sc)
1916 {
1917 uint8_t mv;
1918
1919 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1920 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1921 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1922 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1923 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1924 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1925 /* Currently both channels are muted simultaneously; either is OK. */
1926 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1927 }
1928
1929 static void
1930 eso_set_gain(struct eso_softc *sc, unsigned int port)
1931 {
1932 uint8_t mixreg, tmp;
1933
1934 switch (port) {
1935 case ESO_DAC_PLAY_VOL:
1936 mixreg = ESO_MIXREG_PVR_A2;
1937 break;
1938 case ESO_MIC_PLAY_VOL:
1939 mixreg = ESO_MIXREG_PVR_MIC;
1940 break;
1941 case ESO_LINE_PLAY_VOL:
1942 mixreg = ESO_MIXREG_PVR_LINE;
1943 break;
1944 case ESO_SYNTH_PLAY_VOL:
1945 mixreg = ESO_MIXREG_PVR_SYNTH;
1946 break;
1947 case ESO_CD_PLAY_VOL:
1948 mixreg = ESO_MIXREG_PVR_CD;
1949 break;
1950 case ESO_AUXB_PLAY_VOL:
1951 mixreg = ESO_MIXREG_PVR_AUXB;
1952 break;
1953
1954 case ESO_DAC_REC_VOL:
1955 mixreg = ESO_MIXREG_RVR_A2;
1956 break;
1957 case ESO_MIC_REC_VOL:
1958 mixreg = ESO_MIXREG_RVR_MIC;
1959 break;
1960 case ESO_LINE_REC_VOL:
1961 mixreg = ESO_MIXREG_RVR_LINE;
1962 break;
1963 case ESO_SYNTH_REC_VOL:
1964 mixreg = ESO_MIXREG_RVR_SYNTH;
1965 break;
1966 case ESO_CD_REC_VOL:
1967 mixreg = ESO_MIXREG_RVR_CD;
1968 break;
1969 case ESO_AUXB_REC_VOL:
1970 mixreg = ESO_MIXREG_RVR_AUXB;
1971 break;
1972 case ESO_MONO_PLAY_VOL:
1973 mixreg = ESO_MIXREG_PVR_MONO;
1974 break;
1975 case ESO_MONO_REC_VOL:
1976 mixreg = ESO_MIXREG_RVR_MONO;
1977 break;
1978
1979 case ESO_PCSPEAKER_VOL:
1980 /* Special case - only 3-bit, mono, and reserved bits. */
1981 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1982 tmp &= ESO_MIXREG_PCSVR_RESV;
1983 /* Map bits 7:5 -> 2:0. */
1984 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1985 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1986 return;
1987
1988 case ESO_MASTER_VOL:
1989 /* Special case - separate regs, and 6-bit precision. */
1990 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1991 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1992 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1993 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1994 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1995 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1996 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1997 return;
1998
1999 case ESO_SPATIALIZER:
2000 /* Special case - only `mono', and higher precision. */
2001 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2002 sc->sc_gain[port][ESO_LEFT]);
2003 return;
2004
2005 case ESO_RECORD_VOL:
2006 /* Very Special case, controller register. */
2007 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2008 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2009 return;
2010
2011 default:
2012 #ifdef DIAGNOSTIC
2013 panic("eso_set_gain: bad port %u", port);
2014 /* NOTREACHED */
2015 #else
2016 return;
2017 #endif
2018 }
2019
2020 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2021 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2022 }
2023