eso.c revision 1.43 1 /* $NetBSD: eso.c,v 1.43 2006/08/30 01:14:24 christos Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.43 2006/08/30 01:14:24 christos Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 /*
66 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
67 * XXX engine by allocating through the ISA DMA tag.
68 */
69 #if defined(amd64) || defined(i386)
70 #include "isa.h"
71 #if NISA > 0
72 #include <dev/isa/isavar.h>
73 #endif
74 #endif
75
76 #if defined(AUDIO_DEBUG) || defined(DEBUG)
77 #define DPRINTF(x) printf x
78 #else
79 #define DPRINTF(x)
80 #endif
81
82 struct eso_dma {
83 bus_dma_tag_t ed_dmat;
84 bus_dmamap_t ed_map;
85 caddr_t ed_addr;
86 bus_dma_segment_t ed_segs[1];
87 int ed_nsegs;
88 size_t ed_size;
89 struct eso_dma * ed_next;
90 };
91
92 #define KVADDR(dma) ((void *)(dma)->ed_addr)
93 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
94
95 /* Autoconfiguration interface */
96 static int eso_match(struct device *, struct cfdata *, void *);
97 static void eso_attach(struct device *, struct device *, void *);
98 static void eso_defer(struct device *);
99 static int eso_print(void *, const char *);
100
101 CFATTACH_DECL(eso, sizeof (struct eso_softc),
102 eso_match, eso_attach, NULL, NULL);
103
104 /* PCI interface */
105 static int eso_intr(void *);
106
107 /* MI audio layer interface */
108 static int eso_query_encoding(void *, struct audio_encoding *);
109 static int eso_set_params(void *, int, int, audio_params_t *,
110 audio_params_t *, stream_filter_list_t *,
111 stream_filter_list_t *);
112 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
113 static int eso_halt_output(void *);
114 static int eso_halt_input(void *);
115 static int eso_getdev(void *, struct audio_device *);
116 static int eso_set_port(void *, mixer_ctrl_t *);
117 static int eso_get_port(void *, mixer_ctrl_t *);
118 static int eso_query_devinfo(void *, mixer_devinfo_t *);
119 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int);
120 static void eso_freem(void *, void *, struct malloc_type *);
121 static size_t eso_round_buffersize(void *, int, size_t);
122 static paddr_t eso_mappage(void *, void *, off_t, int);
123 static int eso_get_props(void *);
124 static int eso_trigger_output(void *, void *, void *, int,
125 void (*)(void *), void *, const audio_params_t *);
126 static int eso_trigger_input(void *, void *, void *, int,
127 void (*)(void *), void *, const audio_params_t *);
128
129 static const struct audio_hw_if eso_hw_if = {
130 NULL, /* open */
131 NULL, /* close */
132 NULL, /* drain */
133 eso_query_encoding,
134 eso_set_params,
135 eso_round_blocksize,
136 NULL, /* commit_settings */
137 NULL, /* init_output */
138 NULL, /* init_input */
139 NULL, /* start_output */
140 NULL, /* start_input */
141 eso_halt_output,
142 eso_halt_input,
143 NULL, /* speaker_ctl */
144 eso_getdev,
145 NULL, /* setfd */
146 eso_set_port,
147 eso_get_port,
148 eso_query_devinfo,
149 eso_allocm,
150 eso_freem,
151 eso_round_buffersize,
152 eso_mappage,
153 eso_get_props,
154 eso_trigger_output,
155 eso_trigger_input,
156 NULL, /* dev_ioctl */
157 NULL, /* powerstate */
158 };
159
160 static const char * const eso_rev2model[] = {
161 "ES1938",
162 "ES1946",
163 "ES1946 Revision E"
164 };
165
166 #define ESO_NFORMATS 8
167 static const struct audio_format eso_formats[ESO_NFORMATS] = {
168 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
169 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
170 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
171 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
172 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
173 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
174 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
175 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
176 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
177 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
178 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
179 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
180 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
181 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
182 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
183 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
184 };
185
186
187 /*
188 * Utility routines
189 */
190 /* Register access etc. */
191 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
192 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
193 static uint8_t eso_read_rdr(struct eso_softc *);
194 static void eso_reload_master_vol(struct eso_softc *);
195 static int eso_reset(struct eso_softc *);
196 static void eso_set_gain(struct eso_softc *, unsigned int);
197 static int eso_set_recsrc(struct eso_softc *, unsigned int);
198 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
199 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
200 static int eso_set_preamp(struct eso_softc *, unsigned int);
201 static void eso_write_cmd(struct eso_softc *, uint8_t);
202 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
203 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
204 /* DMA memory allocation */
205 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
206 int, int, struct eso_dma *);
207 static void eso_freemem(struct eso_dma *);
208
209
210 static int
211 eso_match(struct device *parent, struct cfdata *match, void *aux)
212 {
213 struct pci_attach_args *pa;
214
215 pa = aux;
216 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
217 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
218 return 1;
219
220 return 0;
221 }
222
223 static void
224 eso_attach(struct device *parent, struct device *self, void *aux)
225 {
226 struct eso_softc *sc;
227 struct pci_attach_args *pa;
228 struct audio_attach_args aa;
229 pci_intr_handle_t ih;
230 bus_addr_t vcbase;
231 const char *intrstring;
232 int idx;
233 uint8_t a2mode, mvctl;
234
235 sc = (struct eso_softc *)self;
236 pa = aux;
237 aprint_naive(": Audio controller\n");
238
239 sc->sc_revision = PCI_REVISION(pa->pa_class);
240
241 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
242 if (sc->sc_revision <
243 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
244 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
245 else
246 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
247
248 /* Map I/O registers. */
249 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
250 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
251 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
252 return;
253 }
254 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
255 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
256 aprint_error("%s: can't map SB I/O space\n",
257 sc->sc_dev.dv_xname);
258 return;
259 }
260 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
261 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
262 aprint_error("%s: can't map VC I/O space\n",
263 sc->sc_dev.dv_xname);
264 /* Don't bail out yet: we can map it later, see below. */
265 vcbase = 0;
266 sc->sc_vcsize = 0x10; /* From the data sheet. */
267 }
268 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
269 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
270 aprint_error("%s: can't map MPU I/O space\n",
271 sc->sc_dev.dv_xname);
272 return;
273 }
274 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
275 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
276 aprint_error("%s: can't map Game I/O space\n",
277 sc->sc_dev.dv_xname);
278 return;
279 }
280
281 sc->sc_dmat = pa->pa_dmat;
282 sc->sc_dmas = NULL;
283 sc->sc_dmac_configured = 0;
284
285 /* Enable bus mastering. */
286 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
287 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
288 PCI_COMMAND_MASTER_ENABLE);
289
290 /* Reset the device; bail out upon failure. */
291 if (eso_reset(sc) != 0) {
292 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
293 return;
294 }
295
296 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
297 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
298 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
299 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
300
301 /* Enable the relevant (DMA) interrupts. */
302 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
303 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
304 ESO_IO_IRQCTL_MPUIRQ);
305
306 /* Set up A1's sample rate generator for new-style parameters. */
307 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
308 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
309 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
310
311 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
312 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
313 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
314 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
315 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
316
317 /* Set mixer regs to something reasonable, needs work. */
318 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
319 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
320 eso_set_monoinbypass(sc, 0);
321 eso_set_preamp(sc, 1);
322 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
323 int v;
324
325 switch (idx) {
326 case ESO_MIC_PLAY_VOL:
327 case ESO_LINE_PLAY_VOL:
328 case ESO_CD_PLAY_VOL:
329 case ESO_MONO_PLAY_VOL:
330 case ESO_AUXB_PLAY_VOL:
331 case ESO_DAC_REC_VOL:
332 case ESO_LINE_REC_VOL:
333 case ESO_SYNTH_REC_VOL:
334 case ESO_CD_REC_VOL:
335 case ESO_MONO_REC_VOL:
336 case ESO_AUXB_REC_VOL:
337 case ESO_SPATIALIZER:
338 v = 0;
339 break;
340 case ESO_MASTER_VOL:
341 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
342 break;
343 default:
344 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
345 break;
346 }
347 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
348 eso_set_gain(sc, idx);
349 }
350 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
351
352 /* Map and establish the interrupt. */
353 if (pci_intr_map(pa, &ih)) {
354 aprint_error("%s: couldn't map interrupt\n",
355 sc->sc_dev.dv_xname);
356 return;
357 }
358 intrstring = pci_intr_string(pa->pa_pc, ih);
359 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
360 if (sc->sc_ih == NULL) {
361 aprint_error("%s: couldn't establish interrupt",
362 sc->sc_dev.dv_xname);
363 if (intrstring != NULL)
364 aprint_normal(" at %s", intrstring);
365 aprint_normal("\n");
366 return;
367 }
368 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
369 intrstring);
370
371 /*
372 * Set up the DDMA Control register; a suitable I/O region has been
373 * supposedly mapped in the VC base address register.
374 *
375 * The Solo-1 has an ... interesting silicon bug that causes it to
376 * not respond to I/O space accesses to the Audio 1 DMA controller
377 * if the latter's mapping base address is aligned on a 1K boundary.
378 * As a consequence, it is quite possible for the mapping provided
379 * in the VC BAR to be useless. To work around this, we defer this
380 * part until all autoconfiguration on our parent bus is completed
381 * and then try to map it ourselves in fulfillment of the constraint.
382 *
383 * According to the register map we may write to the low 16 bits
384 * only, but experimenting has shown we're safe.
385 * -kjk
386 */
387 if (ESO_VALID_DDMAC_BASE(vcbase)) {
388 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
389 vcbase | ESO_PCI_DDMAC_DE);
390 sc->sc_dmac_configured = 1;
391
392 aprint_normal(
393 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
394 sc->sc_dev.dv_xname, (unsigned long)vcbase);
395 } else {
396 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
397 sc->sc_dev.dv_xname, (unsigned long)vcbase));
398 sc->sc_pa = *pa;
399 config_defer(self, eso_defer);
400 }
401
402 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
403
404 aa.type = AUDIODEV_TYPE_OPL;
405 aa.hwif = NULL;
406 aa.hdl = NULL;
407 (void)config_found(&sc->sc_dev, &aa, audioprint);
408
409 aa.type = AUDIODEV_TYPE_MPU;
410 aa.hwif = NULL;
411 aa.hdl = NULL;
412 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
413 if (sc->sc_mpudev != NULL) {
414 /* Unmask the MPU irq. */
415 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
416 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
417 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
418 }
419
420 aa.type = AUDIODEV_TYPE_AUX;
421 aa.hwif = NULL;
422 aa.hdl = NULL;
423 (void)config_found(&sc->sc_dev, &aa, eso_print);
424 }
425
426 static void
427 eso_defer(struct device *self)
428 {
429 struct eso_softc *sc;
430 struct pci_attach_args *pa;
431 bus_addr_t addr, start;
432
433 sc = (struct eso_softc *)self;
434 pa = &sc->sc_pa;
435 aprint_normal("%s: ", sc->sc_dev.dv_xname);
436
437 /*
438 * This is outright ugly, but since we must not make assumptions
439 * on the underlying allocator's behaviour it's the most straight-
440 * forward way to implement it. Note that we skip over the first
441 * 1K region, which is typically occupied by an attached ISA bus.
442 */
443 for (start = 0x0400; start < 0xffff; start += 0x0400) {
444 if (bus_space_alloc(sc->sc_iot,
445 start + sc->sc_vcsize, start + 0x0400 - 1,
446 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
447 &sc->sc_dmac_ioh) != 0)
448 continue;
449
450 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
451 addr | ESO_PCI_DDMAC_DE);
452 sc->sc_dmac_iot = sc->sc_iot;
453 sc->sc_dmac_configured = 1;
454 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
455 (unsigned long)addr);
456
457 return;
458 }
459
460 aprint_error("can't map Audio 1 DMA into I/O space\n");
461 }
462
463 /* ARGSUSED */
464 static int
465 eso_print(void *aux, const char *pnp)
466 {
467
468 /* Only joys can attach via this; easy. */
469 if (pnp)
470 aprint_normal("joy at %s:", pnp);
471
472 return UNCONF;
473 }
474
475 static void
476 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
477 {
478 int i;
479
480 /* Poll for busy indicator to become clear. */
481 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
482 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
483 & ESO_SB_RSR_BUSY) == 0) {
484 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
485 ESO_SB_WDR, cmd);
486 return;
487 } else {
488 delay(10);
489 }
490 }
491
492 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
493 return;
494 }
495
496 /* Write to a controller register */
497 static void
498 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
499 {
500
501 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
502
503 eso_write_cmd(sc, reg);
504 eso_write_cmd(sc, val);
505 }
506
507 /* Read out the Read Data Register */
508 static uint8_t
509 eso_read_rdr(struct eso_softc *sc)
510 {
511 int i;
512
513 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
514 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
515 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
516 return (bus_space_read_1(sc->sc_sb_iot,
517 sc->sc_sb_ioh, ESO_SB_RDR));
518 } else {
519 delay(10);
520 }
521 }
522
523 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
524 return (-1);
525 }
526
527 static uint8_t
528 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
529 {
530
531 eso_write_cmd(sc, ESO_CMD_RCR);
532 eso_write_cmd(sc, reg);
533 return eso_read_rdr(sc);
534 }
535
536 static void
537 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
538 {
539 int s;
540
541 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
542
543 s = splaudio();
544 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
545 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
546 splx(s);
547 }
548
549 static uint8_t
550 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
551 {
552 int s;
553 uint8_t val;
554
555 s = splaudio();
556 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
557 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
558 splx(s);
559
560 return val;
561 }
562
563 static int
564 eso_intr(void *hdl)
565 {
566 struct eso_softc *sc;
567 uint8_t irqctl;
568
569 sc = hdl;
570 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
571
572 /* If it wasn't ours, that's all she wrote. */
573 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
574 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
575 return 0;
576
577 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
578 /* Clear interrupt. */
579 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
580 ESO_SB_RBSR);
581
582 if (sc->sc_rintr)
583 sc->sc_rintr(sc->sc_rarg);
584 else
585 wakeup(&sc->sc_rintr);
586 }
587
588 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
589 /*
590 * Clear the A2 IRQ latch: the cached value reflects the
591 * current DAC settings with the IRQ latch bit not set.
592 */
593 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
594
595 if (sc->sc_pintr)
596 sc->sc_pintr(sc->sc_parg);
597 else
598 wakeup(&sc->sc_pintr);
599 }
600
601 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
602 /* Clear interrupt. */
603 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
604
605 /*
606 * Raise a flag to cause a lazy update of the in-softc gain
607 * values the next time the software mixer is read to keep
608 * interrupt service cost low. ~0 cannot occur otherwise
609 * as the master volume has a precision of 6 bits only.
610 */
611 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
612 }
613
614 #if NMPU > 0
615 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
616 mpu_intr(sc->sc_mpudev);
617 #endif
618
619 return 1;
620 }
621
622 /* Perform a software reset, including DMA FIFOs. */
623 static int
624 eso_reset(struct eso_softc *sc)
625 {
626 int i;
627
628 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
629 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
630 /* `Delay' suggested in the data sheet. */
631 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
632 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
633
634 /* Wait for reset to take effect. */
635 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
636 /* Poll for data to become available. */
637 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
638 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
639 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
640 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
641
642 /* Activate Solo-1 extension commands. */
643 eso_write_cmd(sc, ESO_CMD_EXTENB);
644 /* Reset mixer registers. */
645 eso_write_mixreg(sc, ESO_MIXREG_RESET,
646 ESO_MIXREG_RESET_RESET);
647
648 return 0;
649 } else {
650 delay(1000);
651 }
652 }
653
654 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
655 return -1;
656 }
657
658 static int
659 eso_query_encoding(void *hdl, struct audio_encoding *fp)
660 {
661
662 switch (fp->index) {
663 case 0:
664 strcpy(fp->name, AudioEulinear);
665 fp->encoding = AUDIO_ENCODING_ULINEAR;
666 fp->precision = 8;
667 fp->flags = 0;
668 break;
669 case 1:
670 strcpy(fp->name, AudioEmulaw);
671 fp->encoding = AUDIO_ENCODING_ULAW;
672 fp->precision = 8;
673 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
674 break;
675 case 2:
676 strcpy(fp->name, AudioEalaw);
677 fp->encoding = AUDIO_ENCODING_ALAW;
678 fp->precision = 8;
679 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
680 break;
681 case 3:
682 strcpy(fp->name, AudioEslinear);
683 fp->encoding = AUDIO_ENCODING_SLINEAR;
684 fp->precision = 8;
685 fp->flags = 0;
686 break;
687 case 4:
688 strcpy(fp->name, AudioEslinear_le);
689 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
690 fp->precision = 16;
691 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
692 break;
693 case 5:
694 strcpy(fp->name, AudioEulinear_le);
695 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
696 fp->precision = 16;
697 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
698 break;
699 case 6:
700 strcpy(fp->name, AudioEslinear_be);
701 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
702 fp->precision = 16;
703 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
704 break;
705 case 7:
706 strcpy(fp->name, AudioEulinear_be);
707 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
708 fp->precision = 16;
709 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
710 break;
711 default:
712 return EINVAL;
713 }
714
715 return 0;
716 }
717
718 static int
719 eso_set_params(void *hdl, int setmode, int usemode, audio_params_t *play,
720 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
721 {
722 struct eso_softc *sc;
723 struct audio_params *p;
724 stream_filter_list_t *fil;
725 int mode, r[2], rd[2], clk;
726 unsigned int srg, fltdiv;
727 int i;
728
729 sc = hdl;
730 for (mode = AUMODE_RECORD; mode != -1;
731 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
732 if ((setmode & mode) == 0)
733 continue;
734
735 p = (mode == AUMODE_PLAY) ? play : rec;
736
737 if (p->sample_rate < ESO_MINRATE ||
738 p->sample_rate > ESO_MAXRATE ||
739 (p->precision != 8 && p->precision != 16) ||
740 (p->channels != 1 && p->channels != 2))
741 return EINVAL;
742
743 /*
744 * We'll compute both possible sample rate dividers and pick
745 * the one with the least error.
746 */
747 #define ABS(x) ((x) < 0 ? -(x) : (x))
748 r[0] = ESO_CLK0 /
749 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
750 r[1] = ESO_CLK1 /
751 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
752
753 if (r[0] > r[1])
754 clk = p->sample_rate - r[1];
755 else
756 clk = p->sample_rate - r[0];
757 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
758
759 /* Roll-off frequency of 87%, as in the ES1888 driver. */
760 fltdiv = 256 - 200279L / r[clk];
761
762 /* Update to reflect the possibly inexact rate. */
763 p->sample_rate = r[clk];
764
765 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
766 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
767 mode, p, FALSE, fil);
768 if (i < 0)
769 return EINVAL;
770 if (mode == AUMODE_RECORD) {
771 /* Audio 1 */
772 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
773 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
774 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
775 } else {
776 /* Audio 2 */
777 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
778 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
779 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
780 }
781 #undef ABS
782
783 }
784
785 return 0;
786 }
787
788 static int
789 eso_round_blocksize(void *hdl, int blk, int mode, const audio_params_t *param)
790 {
791
792 return blk & -32; /* keep good alignment; at least 16 req'd */
793 }
794
795 static int
796 eso_halt_output(void *hdl)
797 {
798 struct eso_softc *sc;
799 int error, s;
800
801 sc = hdl;
802 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
803
804 /*
805 * Disable auto-initialize DMA, allowing the FIFO to drain and then
806 * stop. The interrupt callback pointer is cleared at this
807 * point so that an outstanding FIFO interrupt for the remaining data
808 * will be acknowledged without further processing.
809 *
810 * This does not immediately `abort' an operation in progress (c.f.
811 * audio(9)) but is the method to leave the FIFO behind in a clean
812 * state with the least hair. (Besides, that item needs to be
813 * rephrased for trigger_*()-based DMA environments.)
814 */
815 s = splaudio();
816 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
817 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
818 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
819 ESO_IO_A2DMAM_DMAENB);
820
821 sc->sc_pintr = NULL;
822 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
823 splx(s);
824
825 /* Shut down DMA completely. */
826 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
827 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
828
829 return error == EWOULDBLOCK ? 0 : error;
830 }
831
832 static int
833 eso_halt_input(void *hdl)
834 {
835 struct eso_softc *sc;
836 int error, s;
837
838 sc = hdl;
839 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
840
841 /* Just like eso_halt_output(), but for Audio 1. */
842 s = splaudio();
843 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
844 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
845 ESO_CTLREG_A1C2_DMAENB);
846 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
847 DMA37MD_WRITE | DMA37MD_DEMAND);
848
849 sc->sc_rintr = NULL;
850 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
851 splx(s);
852
853 /* Shut down DMA completely. */
854 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
855 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
856 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
857 ESO_DMAC_MASK_MASK);
858
859 return error == EWOULDBLOCK ? 0 : error;
860 }
861
862 static int
863 eso_getdev(void *hdl, struct audio_device *retp)
864 {
865 struct eso_softc *sc;
866
867 sc = hdl;
868 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
869 snprintf(retp->version, sizeof (retp->version), "0x%02x",
870 sc->sc_revision);
871 if (sc->sc_revision <
872 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
873 strncpy(retp->config, eso_rev2model[sc->sc_revision],
874 sizeof (retp->config));
875 else
876 strncpy(retp->config, "unknown", sizeof (retp->config));
877
878 return 0;
879 }
880
881 static int
882 eso_set_port(void *hdl, mixer_ctrl_t *cp)
883 {
884 struct eso_softc *sc;
885 unsigned int lgain, rgain;
886 uint8_t tmp;
887
888 sc = hdl;
889 switch (cp->dev) {
890 case ESO_DAC_PLAY_VOL:
891 case ESO_MIC_PLAY_VOL:
892 case ESO_LINE_PLAY_VOL:
893 case ESO_SYNTH_PLAY_VOL:
894 case ESO_CD_PLAY_VOL:
895 case ESO_AUXB_PLAY_VOL:
896 case ESO_RECORD_VOL:
897 case ESO_DAC_REC_VOL:
898 case ESO_MIC_REC_VOL:
899 case ESO_LINE_REC_VOL:
900 case ESO_SYNTH_REC_VOL:
901 case ESO_CD_REC_VOL:
902 case ESO_AUXB_REC_VOL:
903 if (cp->type != AUDIO_MIXER_VALUE)
904 return EINVAL;
905
906 /*
907 * Stereo-capable mixer ports: if we get a single-channel
908 * gain value passed in, then we duplicate it to both left
909 * and right channels.
910 */
911 switch (cp->un.value.num_channels) {
912 case 1:
913 lgain = rgain = ESO_GAIN_TO_4BIT(
914 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
915 break;
916 case 2:
917 lgain = ESO_GAIN_TO_4BIT(
918 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
919 rgain = ESO_GAIN_TO_4BIT(
920 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
921 break;
922 default:
923 return EINVAL;
924 }
925
926 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
927 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
928 eso_set_gain(sc, cp->dev);
929 break;
930
931 case ESO_MASTER_VOL:
932 if (cp->type != AUDIO_MIXER_VALUE)
933 return EINVAL;
934
935 /* Like above, but a precision of 6 bits. */
936 switch (cp->un.value.num_channels) {
937 case 1:
938 lgain = rgain = ESO_GAIN_TO_6BIT(
939 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
940 break;
941 case 2:
942 lgain = ESO_GAIN_TO_6BIT(
943 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
944 rgain = ESO_GAIN_TO_6BIT(
945 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
946 break;
947 default:
948 return EINVAL;
949 }
950
951 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
952 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
953 eso_set_gain(sc, cp->dev);
954 break;
955
956 case ESO_SPATIALIZER:
957 if (cp->type != AUDIO_MIXER_VALUE ||
958 cp->un.value.num_channels != 1)
959 return EINVAL;
960
961 sc->sc_gain[cp->dev][ESO_LEFT] =
962 sc->sc_gain[cp->dev][ESO_RIGHT] =
963 ESO_GAIN_TO_6BIT(
964 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
965 eso_set_gain(sc, cp->dev);
966 break;
967
968 case ESO_MONO_PLAY_VOL:
969 case ESO_MONO_REC_VOL:
970 if (cp->type != AUDIO_MIXER_VALUE ||
971 cp->un.value.num_channels != 1)
972 return EINVAL;
973
974 sc->sc_gain[cp->dev][ESO_LEFT] =
975 sc->sc_gain[cp->dev][ESO_RIGHT] =
976 ESO_GAIN_TO_4BIT(
977 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
978 eso_set_gain(sc, cp->dev);
979 break;
980
981 case ESO_PCSPEAKER_VOL:
982 if (cp->type != AUDIO_MIXER_VALUE ||
983 cp->un.value.num_channels != 1)
984 return EINVAL;
985
986 sc->sc_gain[cp->dev][ESO_LEFT] =
987 sc->sc_gain[cp->dev][ESO_RIGHT] =
988 ESO_GAIN_TO_3BIT(
989 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
990 eso_set_gain(sc, cp->dev);
991 break;
992
993 case ESO_SPATIALIZER_ENABLE:
994 if (cp->type != AUDIO_MIXER_ENUM)
995 return EINVAL;
996
997 sc->sc_spatializer = (cp->un.ord != 0);
998
999 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1000 if (sc->sc_spatializer)
1001 tmp |= ESO_MIXREG_SPAT_ENB;
1002 else
1003 tmp &= ~ESO_MIXREG_SPAT_ENB;
1004 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1005 tmp | ESO_MIXREG_SPAT_RSTREL);
1006 break;
1007
1008 case ESO_MASTER_MUTE:
1009 if (cp->type != AUDIO_MIXER_ENUM)
1010 return EINVAL;
1011
1012 sc->sc_mvmute = (cp->un.ord != 0);
1013
1014 if (sc->sc_mvmute) {
1015 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1016 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1017 ESO_MIXREG_LMVM_MUTE);
1018 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1019 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1020 ESO_MIXREG_RMVM_MUTE);
1021 } else {
1022 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1023 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1024 ~ESO_MIXREG_LMVM_MUTE);
1025 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1026 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1027 ~ESO_MIXREG_RMVM_MUTE);
1028 }
1029 break;
1030
1031 case ESO_MONOOUT_SOURCE:
1032 if (cp->type != AUDIO_MIXER_ENUM)
1033 return EINVAL;
1034
1035 return eso_set_monooutsrc(sc, cp->un.ord);
1036
1037 case ESO_MONOIN_BYPASS:
1038 if (cp->type != AUDIO_MIXER_ENUM)
1039 return EINVAL;
1040
1041 return (eso_set_monoinbypass(sc, cp->un.ord));
1042
1043 case ESO_RECORD_MONITOR:
1044 if (cp->type != AUDIO_MIXER_ENUM)
1045 return EINVAL;
1046
1047 sc->sc_recmon = (cp->un.ord != 0);
1048
1049 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1050 if (sc->sc_recmon)
1051 tmp |= ESO_CTLREG_ACTL_RECMON;
1052 else
1053 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1054 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1055 break;
1056
1057 case ESO_RECORD_SOURCE:
1058 if (cp->type != AUDIO_MIXER_ENUM)
1059 return EINVAL;
1060
1061 return eso_set_recsrc(sc, cp->un.ord);
1062
1063 case ESO_MIC_PREAMP:
1064 if (cp->type != AUDIO_MIXER_ENUM)
1065 return EINVAL;
1066
1067 return eso_set_preamp(sc, cp->un.ord);
1068
1069 default:
1070 return EINVAL;
1071 }
1072
1073 return 0;
1074 }
1075
1076 static int
1077 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1078 {
1079 struct eso_softc *sc;
1080
1081 sc = hdl;
1082 switch (cp->dev) {
1083 case ESO_MASTER_VOL:
1084 /* Reload from mixer after hardware volume control use. */
1085 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1086 eso_reload_master_vol(sc);
1087 /* FALLTHROUGH */
1088 case ESO_DAC_PLAY_VOL:
1089 case ESO_MIC_PLAY_VOL:
1090 case ESO_LINE_PLAY_VOL:
1091 case ESO_SYNTH_PLAY_VOL:
1092 case ESO_CD_PLAY_VOL:
1093 case ESO_AUXB_PLAY_VOL:
1094 case ESO_RECORD_VOL:
1095 case ESO_DAC_REC_VOL:
1096 case ESO_MIC_REC_VOL:
1097 case ESO_LINE_REC_VOL:
1098 case ESO_SYNTH_REC_VOL:
1099 case ESO_CD_REC_VOL:
1100 case ESO_AUXB_REC_VOL:
1101 /*
1102 * Stereo-capable ports: if a single-channel query is made,
1103 * just return the left channel's value (since single-channel
1104 * settings themselves are applied to both channels).
1105 */
1106 switch (cp->un.value.num_channels) {
1107 case 1:
1108 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1109 sc->sc_gain[cp->dev][ESO_LEFT];
1110 break;
1111 case 2:
1112 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1113 sc->sc_gain[cp->dev][ESO_LEFT];
1114 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1115 sc->sc_gain[cp->dev][ESO_RIGHT];
1116 break;
1117 default:
1118 return EINVAL;
1119 }
1120 break;
1121
1122 case ESO_MONO_PLAY_VOL:
1123 case ESO_PCSPEAKER_VOL:
1124 case ESO_MONO_REC_VOL:
1125 case ESO_SPATIALIZER:
1126 if (cp->un.value.num_channels != 1)
1127 return EINVAL;
1128 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1129 sc->sc_gain[cp->dev][ESO_LEFT];
1130 break;
1131
1132 case ESO_RECORD_MONITOR:
1133 cp->un.ord = sc->sc_recmon;
1134 break;
1135
1136 case ESO_RECORD_SOURCE:
1137 cp->un.ord = sc->sc_recsrc;
1138 break;
1139
1140 case ESO_MONOOUT_SOURCE:
1141 cp->un.ord = sc->sc_monooutsrc;
1142 break;
1143
1144 case ESO_MONOIN_BYPASS:
1145 cp->un.ord = sc->sc_monoinbypass;
1146 break;
1147
1148 case ESO_SPATIALIZER_ENABLE:
1149 cp->un.ord = sc->sc_spatializer;
1150 break;
1151
1152 case ESO_MIC_PREAMP:
1153 cp->un.ord = sc->sc_preamp;
1154 break;
1155
1156 case ESO_MASTER_MUTE:
1157 /* Reload from mixer after hardware volume control use. */
1158 eso_reload_master_vol(sc);
1159 cp->un.ord = sc->sc_mvmute;
1160 break;
1161
1162 default:
1163 return EINVAL;
1164 }
1165
1166 return 0;
1167 }
1168
1169 static int
1170 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1171 {
1172
1173 switch (dip->index) {
1174 case ESO_DAC_PLAY_VOL:
1175 dip->mixer_class = ESO_INPUT_CLASS;
1176 dip->next = dip->prev = AUDIO_MIXER_LAST;
1177 strcpy(dip->label.name, AudioNdac);
1178 dip->type = AUDIO_MIXER_VALUE;
1179 dip->un.v.num_channels = 2;
1180 strcpy(dip->un.v.units.name, AudioNvolume);
1181 break;
1182 case ESO_MIC_PLAY_VOL:
1183 dip->mixer_class = ESO_INPUT_CLASS;
1184 dip->next = dip->prev = AUDIO_MIXER_LAST;
1185 strcpy(dip->label.name, AudioNmicrophone);
1186 dip->type = AUDIO_MIXER_VALUE;
1187 dip->un.v.num_channels = 2;
1188 strcpy(dip->un.v.units.name, AudioNvolume);
1189 break;
1190 case ESO_LINE_PLAY_VOL:
1191 dip->mixer_class = ESO_INPUT_CLASS;
1192 dip->next = dip->prev = AUDIO_MIXER_LAST;
1193 strcpy(dip->label.name, AudioNline);
1194 dip->type = AUDIO_MIXER_VALUE;
1195 dip->un.v.num_channels = 2;
1196 strcpy(dip->un.v.units.name, AudioNvolume);
1197 break;
1198 case ESO_SYNTH_PLAY_VOL:
1199 dip->mixer_class = ESO_INPUT_CLASS;
1200 dip->next = dip->prev = AUDIO_MIXER_LAST;
1201 strcpy(dip->label.name, AudioNfmsynth);
1202 dip->type = AUDIO_MIXER_VALUE;
1203 dip->un.v.num_channels = 2;
1204 strcpy(dip->un.v.units.name, AudioNvolume);
1205 break;
1206 case ESO_MONO_PLAY_VOL:
1207 dip->mixer_class = ESO_INPUT_CLASS;
1208 dip->next = dip->prev = AUDIO_MIXER_LAST;
1209 strcpy(dip->label.name, "mono_in");
1210 dip->type = AUDIO_MIXER_VALUE;
1211 dip->un.v.num_channels = 1;
1212 strcpy(dip->un.v.units.name, AudioNvolume);
1213 break;
1214 case ESO_CD_PLAY_VOL:
1215 dip->mixer_class = ESO_INPUT_CLASS;
1216 dip->next = dip->prev = AUDIO_MIXER_LAST;
1217 strcpy(dip->label.name, AudioNcd);
1218 dip->type = AUDIO_MIXER_VALUE;
1219 dip->un.v.num_channels = 2;
1220 strcpy(dip->un.v.units.name, AudioNvolume);
1221 break;
1222 case ESO_AUXB_PLAY_VOL:
1223 dip->mixer_class = ESO_INPUT_CLASS;
1224 dip->next = dip->prev = AUDIO_MIXER_LAST;
1225 strcpy(dip->label.name, "auxb");
1226 dip->type = AUDIO_MIXER_VALUE;
1227 dip->un.v.num_channels = 2;
1228 strcpy(dip->un.v.units.name, AudioNvolume);
1229 break;
1230
1231 case ESO_MIC_PREAMP:
1232 dip->mixer_class = ESO_MICROPHONE_CLASS;
1233 dip->next = dip->prev = AUDIO_MIXER_LAST;
1234 strcpy(dip->label.name, AudioNpreamp);
1235 dip->type = AUDIO_MIXER_ENUM;
1236 dip->un.e.num_mem = 2;
1237 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1238 dip->un.e.member[0].ord = 0;
1239 strcpy(dip->un.e.member[1].label.name, AudioNon);
1240 dip->un.e.member[1].ord = 1;
1241 break;
1242 case ESO_MICROPHONE_CLASS:
1243 dip->mixer_class = ESO_MICROPHONE_CLASS;
1244 dip->next = dip->prev = AUDIO_MIXER_LAST;
1245 strcpy(dip->label.name, AudioNmicrophone);
1246 dip->type = AUDIO_MIXER_CLASS;
1247 break;
1248
1249 case ESO_INPUT_CLASS:
1250 dip->mixer_class = ESO_INPUT_CLASS;
1251 dip->next = dip->prev = AUDIO_MIXER_LAST;
1252 strcpy(dip->label.name, AudioCinputs);
1253 dip->type = AUDIO_MIXER_CLASS;
1254 break;
1255
1256 case ESO_MASTER_VOL:
1257 dip->mixer_class = ESO_OUTPUT_CLASS;
1258 dip->prev = AUDIO_MIXER_LAST;
1259 dip->next = ESO_MASTER_MUTE;
1260 strcpy(dip->label.name, AudioNmaster);
1261 dip->type = AUDIO_MIXER_VALUE;
1262 dip->un.v.num_channels = 2;
1263 strcpy(dip->un.v.units.name, AudioNvolume);
1264 break;
1265 case ESO_MASTER_MUTE:
1266 dip->mixer_class = ESO_OUTPUT_CLASS;
1267 dip->prev = ESO_MASTER_VOL;
1268 dip->next = AUDIO_MIXER_LAST;
1269 strcpy(dip->label.name, AudioNmute);
1270 dip->type = AUDIO_MIXER_ENUM;
1271 dip->un.e.num_mem = 2;
1272 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1273 dip->un.e.member[0].ord = 0;
1274 strcpy(dip->un.e.member[1].label.name, AudioNon);
1275 dip->un.e.member[1].ord = 1;
1276 break;
1277
1278 case ESO_PCSPEAKER_VOL:
1279 dip->mixer_class = ESO_OUTPUT_CLASS;
1280 dip->next = dip->prev = AUDIO_MIXER_LAST;
1281 strcpy(dip->label.name, "pc_speaker");
1282 dip->type = AUDIO_MIXER_VALUE;
1283 dip->un.v.num_channels = 1;
1284 strcpy(dip->un.v.units.name, AudioNvolume);
1285 break;
1286 case ESO_MONOOUT_SOURCE:
1287 dip->mixer_class = ESO_OUTPUT_CLASS;
1288 dip->next = dip->prev = AUDIO_MIXER_LAST;
1289 strcpy(dip->label.name, "mono_out");
1290 dip->type = AUDIO_MIXER_ENUM;
1291 dip->un.e.num_mem = 3;
1292 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1293 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1294 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1295 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1296 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1297 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1298 break;
1299
1300 case ESO_MONOIN_BYPASS:
1301 dip->mixer_class = ESO_MONOIN_CLASS;
1302 dip->next = dip->prev = AUDIO_MIXER_LAST;
1303 strcpy(dip->label.name, "bypass");
1304 dip->type = AUDIO_MIXER_ENUM;
1305 dip->un.e.num_mem = 2;
1306 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1307 dip->un.e.member[0].ord = 0;
1308 strcpy(dip->un.e.member[1].label.name, AudioNon);
1309 dip->un.e.member[1].ord = 1;
1310 break;
1311 case ESO_MONOIN_CLASS:
1312 dip->mixer_class = ESO_MONOIN_CLASS;
1313 dip->next = dip->prev = AUDIO_MIXER_LAST;
1314 strcpy(dip->label.name, "mono_in");
1315 dip->type = AUDIO_MIXER_CLASS;
1316 break;
1317
1318 case ESO_SPATIALIZER:
1319 dip->mixer_class = ESO_OUTPUT_CLASS;
1320 dip->prev = AUDIO_MIXER_LAST;
1321 dip->next = ESO_SPATIALIZER_ENABLE;
1322 strcpy(dip->label.name, AudioNspatial);
1323 dip->type = AUDIO_MIXER_VALUE;
1324 dip->un.v.num_channels = 1;
1325 strcpy(dip->un.v.units.name, "level");
1326 break;
1327 case ESO_SPATIALIZER_ENABLE:
1328 dip->mixer_class = ESO_OUTPUT_CLASS;
1329 dip->prev = ESO_SPATIALIZER;
1330 dip->next = AUDIO_MIXER_LAST;
1331 strcpy(dip->label.name, "enable");
1332 dip->type = AUDIO_MIXER_ENUM;
1333 dip->un.e.num_mem = 2;
1334 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1335 dip->un.e.member[0].ord = 0;
1336 strcpy(dip->un.e.member[1].label.name, AudioNon);
1337 dip->un.e.member[1].ord = 1;
1338 break;
1339
1340 case ESO_OUTPUT_CLASS:
1341 dip->mixer_class = ESO_OUTPUT_CLASS;
1342 dip->next = dip->prev = AUDIO_MIXER_LAST;
1343 strcpy(dip->label.name, AudioCoutputs);
1344 dip->type = AUDIO_MIXER_CLASS;
1345 break;
1346
1347 case ESO_RECORD_MONITOR:
1348 dip->mixer_class = ESO_MONITOR_CLASS;
1349 dip->next = dip->prev = AUDIO_MIXER_LAST;
1350 strcpy(dip->label.name, AudioNmute);
1351 dip->type = AUDIO_MIXER_ENUM;
1352 dip->un.e.num_mem = 2;
1353 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1354 dip->un.e.member[0].ord = 0;
1355 strcpy(dip->un.e.member[1].label.name, AudioNon);
1356 dip->un.e.member[1].ord = 1;
1357 break;
1358 case ESO_MONITOR_CLASS:
1359 dip->mixer_class = ESO_MONITOR_CLASS;
1360 dip->next = dip->prev = AUDIO_MIXER_LAST;
1361 strcpy(dip->label.name, AudioCmonitor);
1362 dip->type = AUDIO_MIXER_CLASS;
1363 break;
1364
1365 case ESO_RECORD_VOL:
1366 dip->mixer_class = ESO_RECORD_CLASS;
1367 dip->next = dip->prev = AUDIO_MIXER_LAST;
1368 strcpy(dip->label.name, AudioNrecord);
1369 dip->type = AUDIO_MIXER_VALUE;
1370 strcpy(dip->un.v.units.name, AudioNvolume);
1371 break;
1372 case ESO_RECORD_SOURCE:
1373 dip->mixer_class = ESO_RECORD_CLASS;
1374 dip->next = dip->prev = AUDIO_MIXER_LAST;
1375 strcpy(dip->label.name, AudioNsource);
1376 dip->type = AUDIO_MIXER_ENUM;
1377 dip->un.e.num_mem = 4;
1378 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1379 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1380 strcpy(dip->un.e.member[1].label.name, AudioNline);
1381 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1382 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1383 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1384 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1385 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1386 break;
1387 case ESO_DAC_REC_VOL:
1388 dip->mixer_class = ESO_RECORD_CLASS;
1389 dip->next = dip->prev = AUDIO_MIXER_LAST;
1390 strcpy(dip->label.name, AudioNdac);
1391 dip->type = AUDIO_MIXER_VALUE;
1392 dip->un.v.num_channels = 2;
1393 strcpy(dip->un.v.units.name, AudioNvolume);
1394 break;
1395 case ESO_MIC_REC_VOL:
1396 dip->mixer_class = ESO_RECORD_CLASS;
1397 dip->next = dip->prev = AUDIO_MIXER_LAST;
1398 strcpy(dip->label.name, AudioNmicrophone);
1399 dip->type = AUDIO_MIXER_VALUE;
1400 dip->un.v.num_channels = 2;
1401 strcpy(dip->un.v.units.name, AudioNvolume);
1402 break;
1403 case ESO_LINE_REC_VOL:
1404 dip->mixer_class = ESO_RECORD_CLASS;
1405 dip->next = dip->prev = AUDIO_MIXER_LAST;
1406 strcpy(dip->label.name, AudioNline);
1407 dip->type = AUDIO_MIXER_VALUE;
1408 dip->un.v.num_channels = 2;
1409 strcpy(dip->un.v.units.name, AudioNvolume);
1410 break;
1411 case ESO_SYNTH_REC_VOL:
1412 dip->mixer_class = ESO_RECORD_CLASS;
1413 dip->next = dip->prev = AUDIO_MIXER_LAST;
1414 strcpy(dip->label.name, AudioNfmsynth);
1415 dip->type = AUDIO_MIXER_VALUE;
1416 dip->un.v.num_channels = 2;
1417 strcpy(dip->un.v.units.name, AudioNvolume);
1418 break;
1419 case ESO_MONO_REC_VOL:
1420 dip->mixer_class = ESO_RECORD_CLASS;
1421 dip->next = dip->prev = AUDIO_MIXER_LAST;
1422 strcpy(dip->label.name, "mono_in");
1423 dip->type = AUDIO_MIXER_VALUE;
1424 dip->un.v.num_channels = 1; /* No lies */
1425 strcpy(dip->un.v.units.name, AudioNvolume);
1426 break;
1427 case ESO_CD_REC_VOL:
1428 dip->mixer_class = ESO_RECORD_CLASS;
1429 dip->next = dip->prev = AUDIO_MIXER_LAST;
1430 strcpy(dip->label.name, AudioNcd);
1431 dip->type = AUDIO_MIXER_VALUE;
1432 dip->un.v.num_channels = 2;
1433 strcpy(dip->un.v.units.name, AudioNvolume);
1434 break;
1435 case ESO_AUXB_REC_VOL:
1436 dip->mixer_class = ESO_RECORD_CLASS;
1437 dip->next = dip->prev = AUDIO_MIXER_LAST;
1438 strcpy(dip->label.name, "auxb");
1439 dip->type = AUDIO_MIXER_VALUE;
1440 dip->un.v.num_channels = 2;
1441 strcpy(dip->un.v.units.name, AudioNvolume);
1442 break;
1443 case ESO_RECORD_CLASS:
1444 dip->mixer_class = ESO_RECORD_CLASS;
1445 dip->next = dip->prev = AUDIO_MIXER_LAST;
1446 strcpy(dip->label.name, AudioCrecord);
1447 dip->type = AUDIO_MIXER_CLASS;
1448 break;
1449
1450 default:
1451 return ENXIO;
1452 }
1453
1454 return 0;
1455 }
1456
1457 static int
1458 eso_allocmem(struct eso_softc *sc, size_t size, size_t align, size_t boundary,
1459 int flags, int direction, struct eso_dma *ed)
1460 {
1461 int error, wait;
1462
1463 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1464 ed->ed_size = size;
1465
1466 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1467 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1468 &ed->ed_nsegs, wait);
1469 if (error)
1470 goto out;
1471
1472 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1473 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1474 if (error)
1475 goto free;
1476
1477 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1478 wait, &ed->ed_map);
1479 if (error)
1480 goto unmap;
1481
1482 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1483 ed->ed_size, NULL, wait |
1484 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1485 if (error)
1486 goto destroy;
1487
1488 return 0;
1489
1490 destroy:
1491 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1492 unmap:
1493 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1494 free:
1495 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1496 out:
1497 return error;
1498 }
1499
1500 static void
1501 eso_freemem(struct eso_dma *ed)
1502 {
1503
1504 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1505 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1506 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1507 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1508 }
1509
1510 static void *
1511 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type,
1512 int flags)
1513 {
1514 struct eso_softc *sc;
1515 struct eso_dma *ed;
1516 size_t boundary;
1517 int error;
1518
1519 sc = hdl;
1520 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1521 return NULL;
1522
1523 /*
1524 * Apparently the Audio 1 DMA controller's current address
1525 * register can't roll over a 64K address boundary, so we have to
1526 * take care of that ourselves. Similarly, the Audio 2 DMA
1527 * controller needs a 1M address boundary.
1528 */
1529 if (direction == AUMODE_RECORD)
1530 boundary = 0x10000;
1531 else
1532 boundary = 0x100000;
1533
1534 /*
1535 * XXX Work around allocation problems for Audio 1, which
1536 * XXX implements the 24 low address bits only, with
1537 * XXX machine-specific DMA tag use.
1538 */
1539 #ifdef alpha
1540 /*
1541 * XXX Force allocation through the (ISA) SGMAP.
1542 */
1543 if (direction == AUMODE_RECORD)
1544 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1545 else
1546 #elif defined(amd64) || defined(i386)
1547 /*
1548 * XXX Force allocation through the ISA DMA tag.
1549 */
1550 if (direction == AUMODE_RECORD)
1551 ed->ed_dmat = &isa_bus_dma_tag;
1552 else
1553 #endif
1554 ed->ed_dmat = sc->sc_dmat;
1555
1556 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1557 if (error) {
1558 free(ed, type);
1559 return NULL;
1560 }
1561 ed->ed_next = sc->sc_dmas;
1562 sc->sc_dmas = ed;
1563
1564 return KVADDR(ed);
1565 }
1566
1567 static void
1568 eso_freem(void *hdl, void *addr, struct malloc_type *type)
1569 {
1570 struct eso_softc *sc;
1571 struct eso_dma *p, **pp;
1572
1573 sc = hdl;
1574 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1575 if (KVADDR(p) == addr) {
1576 eso_freemem(p);
1577 *pp = p->ed_next;
1578 free(p, type);
1579 return;
1580 }
1581 }
1582 }
1583
1584 static size_t
1585 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1586 {
1587 size_t maxsize;
1588
1589 /*
1590 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1591 * bytes. This is because IO_A2DMAC is a two byte value
1592 * indicating the literal byte count, and the 4 least significant
1593 * bits are read-only. Zero is not used as a special case for
1594 * 0x10000.
1595 *
1596 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1597 * be represented.
1598 */
1599 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1600
1601 if (bufsize > maxsize)
1602 bufsize = maxsize;
1603
1604 return bufsize;
1605 }
1606
1607 static paddr_t
1608 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1609 {
1610 struct eso_softc *sc;
1611 struct eso_dma *ed;
1612
1613 sc = hdl;
1614 if (offs < 0)
1615 return -1;
1616 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1617 ed = ed->ed_next)
1618 continue;
1619 if (ed == NULL)
1620 return -1;
1621
1622 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1623 offs, prot, BUS_DMA_WAITOK);
1624 }
1625
1626 /* ARGSUSED */
1627 static int
1628 eso_get_props(void *hdl)
1629 {
1630
1631 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1632 AUDIO_PROP_FULLDUPLEX;
1633 }
1634
1635 static int
1636 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1637 void (*intr)(void *), void *arg, const audio_params_t *param)
1638 {
1639 struct eso_softc *sc;
1640 struct eso_dma *ed;
1641 uint8_t a2c1;
1642
1643 sc = hdl;
1644 DPRINTF((
1645 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1646 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1647 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1648 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1649 param->precision, param->channels));
1650
1651 /* Find DMA buffer. */
1652 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1653 ed = ed->ed_next)
1654 continue;
1655 if (ed == NULL) {
1656 printf("%s: trigger_output: bad addr %p\n",
1657 sc->sc_dev.dv_xname, start);
1658 return EINVAL;
1659 }
1660 DPRINTF(("%s: dmaaddr %lx\n",
1661 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1662
1663 sc->sc_pintr = intr;
1664 sc->sc_parg = arg;
1665
1666 /* Compute drain timeout. */
1667 sc->sc_pdrain = (blksize * NBBY * hz) /
1668 (param->sample_rate * param->channels *
1669 param->precision) + 2; /* slop */
1670
1671 /* DMA transfer count (in `words'!) reload using 2's complement. */
1672 blksize = -(blksize >> 1);
1673 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1674 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1675
1676 /* Update DAC to reflect DMA count and audio parameters. */
1677 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1678 if (param->precision == 16)
1679 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1680 else
1681 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1682 if (param->channels == 2)
1683 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1684 else
1685 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1686 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1687 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1688 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1689 else
1690 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1691 /* Unmask IRQ. */
1692 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1693 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1694
1695 /* Set up DMA controller. */
1696 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1697 DMAADDR(ed));
1698 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1699 (uint8_t *)end - (uint8_t *)start);
1700 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1701 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1702
1703 /* Start DMA. */
1704 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1705 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1706 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1707 ESO_MIXREG_A2C1_AUTO;
1708 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1709
1710 return 0;
1711 }
1712
1713 static int
1714 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1715 void (*intr)(void *), void *arg, const audio_params_t *param)
1716 {
1717 struct eso_softc *sc;
1718 struct eso_dma *ed;
1719 uint8_t actl, a1c1;
1720
1721 sc = hdl;
1722 DPRINTF((
1723 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1724 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1725 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1726 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1727 param->precision, param->channels));
1728
1729 /*
1730 * If we failed to configure the Audio 1 DMA controller, bail here
1731 * while retaining availability of the DAC direction (in Audio 2).
1732 */
1733 if (!sc->sc_dmac_configured)
1734 return EIO;
1735
1736 /* Find DMA buffer. */
1737 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1738 ed = ed->ed_next)
1739 continue;
1740 if (ed == NULL) {
1741 printf("%s: trigger_output: bad addr %p\n",
1742 sc->sc_dev.dv_xname, start);
1743 return EINVAL;
1744 }
1745 DPRINTF(("%s: dmaaddr %lx\n",
1746 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1747
1748 sc->sc_rintr = intr;
1749 sc->sc_rarg = arg;
1750
1751 /* Compute drain timeout. */
1752 sc->sc_rdrain = (blksize * NBBY * hz) /
1753 (param->sample_rate * param->channels *
1754 param->precision) + 2; /* slop */
1755
1756 /* Set up ADC DMA converter parameters. */
1757 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1758 if (param->channels == 2) {
1759 actl &= ~ESO_CTLREG_ACTL_MONO;
1760 actl |= ESO_CTLREG_ACTL_STEREO;
1761 } else {
1762 actl &= ~ESO_CTLREG_ACTL_STEREO;
1763 actl |= ESO_CTLREG_ACTL_MONO;
1764 }
1765 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1766
1767 /* Set up Transfer Type: maybe move to attach time? */
1768 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1769
1770 /* DMA transfer count reload using 2's complement. */
1771 blksize = -blksize;
1772 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1773 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1774
1775 /* Set up and enable Audio 1 DMA FIFO. */
1776 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1777 if (param->precision == 16)
1778 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1779 if (param->channels == 2)
1780 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1781 else
1782 a1c1 |= ESO_CTLREG_A1C1_MONO;
1783 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1784 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1785 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1786 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1787
1788 /* Set up ADC IRQ/DRQ parameters. */
1789 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1790 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1791 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1792 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1793
1794 /* Set up and enable DMA controller. */
1795 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1796 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1797 ESO_DMAC_MASK_MASK);
1798 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1799 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1800 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1801 DMAADDR(ed));
1802 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1803 (uint8_t *)end - (uint8_t *)start - 1);
1804 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1805
1806 /* Start DMA. */
1807 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1808 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1809 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1810
1811 return 0;
1812 }
1813
1814 /*
1815 * Mixer utility functions.
1816 */
1817 static int
1818 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1819 {
1820 mixer_devinfo_t di;
1821 int i;
1822
1823 di.index = ESO_RECORD_SOURCE;
1824 if (eso_query_devinfo(sc, &di) != 0)
1825 panic("eso_set_recsrc: eso_query_devinfo failed");
1826
1827 for (i = 0; i < di.un.e.num_mem; i++) {
1828 if (recsrc == di.un.e.member[i].ord) {
1829 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1830 sc->sc_recsrc = recsrc;
1831 return 0;
1832 }
1833 }
1834
1835 return EINVAL;
1836 }
1837
1838 static int
1839 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1840 {
1841 mixer_devinfo_t di;
1842 int i;
1843 uint8_t mpm;
1844
1845 di.index = ESO_MONOOUT_SOURCE;
1846 if (eso_query_devinfo(sc, &di) != 0)
1847 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1848
1849 for (i = 0; i < di.un.e.num_mem; i++) {
1850 if (monooutsrc == di.un.e.member[i].ord) {
1851 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1852 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1853 mpm |= monooutsrc;
1854 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1855 sc->sc_monooutsrc = monooutsrc;
1856 return 0;
1857 }
1858 }
1859
1860 return EINVAL;
1861 }
1862
1863 static int
1864 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1865 {
1866 mixer_devinfo_t di;
1867 int i;
1868 uint8_t mpm;
1869
1870 di.index = ESO_MONOIN_BYPASS;
1871 if (eso_query_devinfo(sc, &di) != 0)
1872 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1873
1874 for (i = 0; i < di.un.e.num_mem; i++) {
1875 if (monoinbypass == di.un.e.member[i].ord) {
1876 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1877 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1878 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1879 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1880 sc->sc_monoinbypass = monoinbypass;
1881 return 0;
1882 }
1883 }
1884
1885 return EINVAL;
1886 }
1887
1888 static int
1889 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
1890 {
1891 mixer_devinfo_t di;
1892 int i;
1893 uint8_t mpm;
1894
1895 di.index = ESO_MIC_PREAMP;
1896 if (eso_query_devinfo(sc, &di) != 0)
1897 panic("eso_set_preamp: eso_query_devinfo failed");
1898
1899 for (i = 0; i < di.un.e.num_mem; i++) {
1900 if (preamp == di.un.e.member[i].ord) {
1901 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1902 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1903 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1904 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1905 sc->sc_preamp = preamp;
1906 return 0;
1907 }
1908 }
1909
1910 return EINVAL;
1911 }
1912
1913 /*
1914 * Reload Master Volume and Mute values in softc from mixer; used when
1915 * those have previously been invalidated by use of hardware volume controls.
1916 */
1917 static void
1918 eso_reload_master_vol(struct eso_softc *sc)
1919 {
1920 uint8_t mv;
1921
1922 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1923 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1924 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1925 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1926 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1927 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1928 /* Currently both channels are muted simultaneously; either is OK. */
1929 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1930 }
1931
1932 static void
1933 eso_set_gain(struct eso_softc *sc, unsigned int port)
1934 {
1935 uint8_t mixreg, tmp;
1936
1937 switch (port) {
1938 case ESO_DAC_PLAY_VOL:
1939 mixreg = ESO_MIXREG_PVR_A2;
1940 break;
1941 case ESO_MIC_PLAY_VOL:
1942 mixreg = ESO_MIXREG_PVR_MIC;
1943 break;
1944 case ESO_LINE_PLAY_VOL:
1945 mixreg = ESO_MIXREG_PVR_LINE;
1946 break;
1947 case ESO_SYNTH_PLAY_VOL:
1948 mixreg = ESO_MIXREG_PVR_SYNTH;
1949 break;
1950 case ESO_CD_PLAY_VOL:
1951 mixreg = ESO_MIXREG_PVR_CD;
1952 break;
1953 case ESO_AUXB_PLAY_VOL:
1954 mixreg = ESO_MIXREG_PVR_AUXB;
1955 break;
1956
1957 case ESO_DAC_REC_VOL:
1958 mixreg = ESO_MIXREG_RVR_A2;
1959 break;
1960 case ESO_MIC_REC_VOL:
1961 mixreg = ESO_MIXREG_RVR_MIC;
1962 break;
1963 case ESO_LINE_REC_VOL:
1964 mixreg = ESO_MIXREG_RVR_LINE;
1965 break;
1966 case ESO_SYNTH_REC_VOL:
1967 mixreg = ESO_MIXREG_RVR_SYNTH;
1968 break;
1969 case ESO_CD_REC_VOL:
1970 mixreg = ESO_MIXREG_RVR_CD;
1971 break;
1972 case ESO_AUXB_REC_VOL:
1973 mixreg = ESO_MIXREG_RVR_AUXB;
1974 break;
1975 case ESO_MONO_PLAY_VOL:
1976 mixreg = ESO_MIXREG_PVR_MONO;
1977 break;
1978 case ESO_MONO_REC_VOL:
1979 mixreg = ESO_MIXREG_RVR_MONO;
1980 break;
1981
1982 case ESO_PCSPEAKER_VOL:
1983 /* Special case - only 3-bit, mono, and reserved bits. */
1984 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1985 tmp &= ESO_MIXREG_PCSVR_RESV;
1986 /* Map bits 7:5 -> 2:0. */
1987 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1988 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1989 return;
1990
1991 case ESO_MASTER_VOL:
1992 /* Special case - separate regs, and 6-bit precision. */
1993 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1994 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1995 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1996 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1997 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1998 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1999 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2000 return;
2001
2002 case ESO_SPATIALIZER:
2003 /* Special case - only `mono', and higher precision. */
2004 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2005 sc->sc_gain[port][ESO_LEFT]);
2006 return;
2007
2008 case ESO_RECORD_VOL:
2009 /* Very Special case, controller register. */
2010 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2011 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2012 return;
2013
2014 default:
2015 #ifdef DIAGNOSTIC
2016 panic("eso_set_gain: bad port %u", port);
2017 /* NOTREACHED */
2018 #else
2019 return;
2020 #endif
2021 }
2022
2023 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2024 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2025 }
2026