eso.c revision 1.44 1 /* $NetBSD: eso.c,v 1.44 2006/10/12 01:31:29 christos Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.44 2006/10/12 01:31:29 christos Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/proc.h>
46
47 #include <dev/pci/pcidevs.h>
48 #include <dev/pci/pcivar.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/midi_if.h>
53
54 #include <dev/mulaw.h>
55 #include <dev/auconv.h>
56
57 #include <dev/ic/mpuvar.h>
58 #include <dev/ic/i8237reg.h>
59 #include <dev/pci/esoreg.h>
60 #include <dev/pci/esovar.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 /*
66 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
67 * XXX engine by allocating through the ISA DMA tag.
68 */
69 #if defined(amd64) || defined(i386)
70 #include "isa.h"
71 #if NISA > 0
72 #include <dev/isa/isavar.h>
73 #endif
74 #endif
75
76 #if defined(AUDIO_DEBUG) || defined(DEBUG)
77 #define DPRINTF(x) printf x
78 #else
79 #define DPRINTF(x)
80 #endif
81
82 struct eso_dma {
83 bus_dma_tag_t ed_dmat;
84 bus_dmamap_t ed_map;
85 caddr_t ed_addr;
86 bus_dma_segment_t ed_segs[1];
87 int ed_nsegs;
88 size_t ed_size;
89 struct eso_dma * ed_next;
90 };
91
92 #define KVADDR(dma) ((void *)(dma)->ed_addr)
93 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
94
95 /* Autoconfiguration interface */
96 static int eso_match(struct device *, struct cfdata *, void *);
97 static void eso_attach(struct device *, struct device *, void *);
98 static void eso_defer(struct device *);
99 static int eso_print(void *, const char *);
100
101 CFATTACH_DECL(eso, sizeof (struct eso_softc),
102 eso_match, eso_attach, NULL, NULL);
103
104 /* PCI interface */
105 static int eso_intr(void *);
106
107 /* MI audio layer interface */
108 static int eso_query_encoding(void *, struct audio_encoding *);
109 static int eso_set_params(void *, int, int, audio_params_t *,
110 audio_params_t *, stream_filter_list_t *,
111 stream_filter_list_t *);
112 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
113 static int eso_halt_output(void *);
114 static int eso_halt_input(void *);
115 static int eso_getdev(void *, struct audio_device *);
116 static int eso_set_port(void *, mixer_ctrl_t *);
117 static int eso_get_port(void *, mixer_ctrl_t *);
118 static int eso_query_devinfo(void *, mixer_devinfo_t *);
119 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int);
120 static void eso_freem(void *, void *, struct malloc_type *);
121 static size_t eso_round_buffersize(void *, int, size_t);
122 static paddr_t eso_mappage(void *, void *, off_t, int);
123 static int eso_get_props(void *);
124 static int eso_trigger_output(void *, void *, void *, int,
125 void (*)(void *), void *, const audio_params_t *);
126 static int eso_trigger_input(void *, void *, void *, int,
127 void (*)(void *), void *, const audio_params_t *);
128
129 static const struct audio_hw_if eso_hw_if = {
130 NULL, /* open */
131 NULL, /* close */
132 NULL, /* drain */
133 eso_query_encoding,
134 eso_set_params,
135 eso_round_blocksize,
136 NULL, /* commit_settings */
137 NULL, /* init_output */
138 NULL, /* init_input */
139 NULL, /* start_output */
140 NULL, /* start_input */
141 eso_halt_output,
142 eso_halt_input,
143 NULL, /* speaker_ctl */
144 eso_getdev,
145 NULL, /* setfd */
146 eso_set_port,
147 eso_get_port,
148 eso_query_devinfo,
149 eso_allocm,
150 eso_freem,
151 eso_round_buffersize,
152 eso_mappage,
153 eso_get_props,
154 eso_trigger_output,
155 eso_trigger_input,
156 NULL, /* dev_ioctl */
157 NULL, /* powerstate */
158 };
159
160 static const char * const eso_rev2model[] = {
161 "ES1938",
162 "ES1946",
163 "ES1946 Revision E"
164 };
165
166 #define ESO_NFORMATS 8
167 static const struct audio_format eso_formats[ESO_NFORMATS] = {
168 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
169 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
170 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
171 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
172 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
173 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
174 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
175 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
176 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
177 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
178 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
179 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
180 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
181 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
182 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
183 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
184 };
185
186
187 /*
188 * Utility routines
189 */
190 /* Register access etc. */
191 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
192 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
193 static uint8_t eso_read_rdr(struct eso_softc *);
194 static void eso_reload_master_vol(struct eso_softc *);
195 static int eso_reset(struct eso_softc *);
196 static void eso_set_gain(struct eso_softc *, unsigned int);
197 static int eso_set_recsrc(struct eso_softc *, unsigned int);
198 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
199 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
200 static int eso_set_preamp(struct eso_softc *, unsigned int);
201 static void eso_write_cmd(struct eso_softc *, uint8_t);
202 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
203 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
204 /* DMA memory allocation */
205 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
206 int, int, struct eso_dma *);
207 static void eso_freemem(struct eso_dma *);
208
209
210 static int
211 eso_match(struct device *parent __unused, struct cfdata *match __unused,
212 void *aux)
213 {
214 struct pci_attach_args *pa;
215
216 pa = aux;
217 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
218 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
219 return 1;
220
221 return 0;
222 }
223
224 static void
225 eso_attach(struct device *parent __unused, struct device *self, void *aux)
226 {
227 struct eso_softc *sc;
228 struct pci_attach_args *pa;
229 struct audio_attach_args aa;
230 pci_intr_handle_t ih;
231 bus_addr_t vcbase;
232 const char *intrstring;
233 int idx;
234 uint8_t a2mode, mvctl;
235
236 sc = (struct eso_softc *)self;
237 pa = aux;
238 aprint_naive(": Audio controller\n");
239
240 sc->sc_revision = PCI_REVISION(pa->pa_class);
241
242 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
243 if (sc->sc_revision <
244 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
245 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
246 else
247 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
248
249 /* Map I/O registers. */
250 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
251 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
252 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
253 return;
254 }
255 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
256 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
257 aprint_error("%s: can't map SB I/O space\n",
258 sc->sc_dev.dv_xname);
259 return;
260 }
261 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
262 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
263 aprint_error("%s: can't map VC I/O space\n",
264 sc->sc_dev.dv_xname);
265 /* Don't bail out yet: we can map it later, see below. */
266 vcbase = 0;
267 sc->sc_vcsize = 0x10; /* From the data sheet. */
268 }
269 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
270 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
271 aprint_error("%s: can't map MPU I/O space\n",
272 sc->sc_dev.dv_xname);
273 return;
274 }
275 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
276 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
277 aprint_error("%s: can't map Game I/O space\n",
278 sc->sc_dev.dv_xname);
279 return;
280 }
281
282 sc->sc_dmat = pa->pa_dmat;
283 sc->sc_dmas = NULL;
284 sc->sc_dmac_configured = 0;
285
286 /* Enable bus mastering. */
287 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
288 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
289 PCI_COMMAND_MASTER_ENABLE);
290
291 /* Reset the device; bail out upon failure. */
292 if (eso_reset(sc) != 0) {
293 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
294 return;
295 }
296
297 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
298 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
299 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
300 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
301
302 /* Enable the relevant (DMA) interrupts. */
303 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
304 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
305 ESO_IO_IRQCTL_MPUIRQ);
306
307 /* Set up A1's sample rate generator for new-style parameters. */
308 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
309 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
310 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
311
312 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
313 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
314 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
315 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
316 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
317
318 /* Set mixer regs to something reasonable, needs work. */
319 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
320 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
321 eso_set_monoinbypass(sc, 0);
322 eso_set_preamp(sc, 1);
323 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
324 int v;
325
326 switch (idx) {
327 case ESO_MIC_PLAY_VOL:
328 case ESO_LINE_PLAY_VOL:
329 case ESO_CD_PLAY_VOL:
330 case ESO_MONO_PLAY_VOL:
331 case ESO_AUXB_PLAY_VOL:
332 case ESO_DAC_REC_VOL:
333 case ESO_LINE_REC_VOL:
334 case ESO_SYNTH_REC_VOL:
335 case ESO_CD_REC_VOL:
336 case ESO_MONO_REC_VOL:
337 case ESO_AUXB_REC_VOL:
338 case ESO_SPATIALIZER:
339 v = 0;
340 break;
341 case ESO_MASTER_VOL:
342 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
343 break;
344 default:
345 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
346 break;
347 }
348 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
349 eso_set_gain(sc, idx);
350 }
351 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
352
353 /* Map and establish the interrupt. */
354 if (pci_intr_map(pa, &ih)) {
355 aprint_error("%s: couldn't map interrupt\n",
356 sc->sc_dev.dv_xname);
357 return;
358 }
359 intrstring = pci_intr_string(pa->pa_pc, ih);
360 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
361 if (sc->sc_ih == NULL) {
362 aprint_error("%s: couldn't establish interrupt",
363 sc->sc_dev.dv_xname);
364 if (intrstring != NULL)
365 aprint_normal(" at %s", intrstring);
366 aprint_normal("\n");
367 return;
368 }
369 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
370 intrstring);
371
372 /*
373 * Set up the DDMA Control register; a suitable I/O region has been
374 * supposedly mapped in the VC base address register.
375 *
376 * The Solo-1 has an ... interesting silicon bug that causes it to
377 * not respond to I/O space accesses to the Audio 1 DMA controller
378 * if the latter's mapping base address is aligned on a 1K boundary.
379 * As a consequence, it is quite possible for the mapping provided
380 * in the VC BAR to be useless. To work around this, we defer this
381 * part until all autoconfiguration on our parent bus is completed
382 * and then try to map it ourselves in fulfillment of the constraint.
383 *
384 * According to the register map we may write to the low 16 bits
385 * only, but experimenting has shown we're safe.
386 * -kjk
387 */
388 if (ESO_VALID_DDMAC_BASE(vcbase)) {
389 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
390 vcbase | ESO_PCI_DDMAC_DE);
391 sc->sc_dmac_configured = 1;
392
393 aprint_normal(
394 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
395 sc->sc_dev.dv_xname, (unsigned long)vcbase);
396 } else {
397 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
398 sc->sc_dev.dv_xname, (unsigned long)vcbase));
399 sc->sc_pa = *pa;
400 config_defer(self, eso_defer);
401 }
402
403 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
404
405 aa.type = AUDIODEV_TYPE_OPL;
406 aa.hwif = NULL;
407 aa.hdl = NULL;
408 (void)config_found(&sc->sc_dev, &aa, audioprint);
409
410 aa.type = AUDIODEV_TYPE_MPU;
411 aa.hwif = NULL;
412 aa.hdl = NULL;
413 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
414 if (sc->sc_mpudev != NULL) {
415 /* Unmask the MPU irq. */
416 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
417 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
418 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
419 }
420
421 aa.type = AUDIODEV_TYPE_AUX;
422 aa.hwif = NULL;
423 aa.hdl = NULL;
424 (void)config_found(&sc->sc_dev, &aa, eso_print);
425 }
426
427 static void
428 eso_defer(struct device *self)
429 {
430 struct eso_softc *sc;
431 struct pci_attach_args *pa;
432 bus_addr_t addr, start;
433
434 sc = (struct eso_softc *)self;
435 pa = &sc->sc_pa;
436 aprint_normal("%s: ", sc->sc_dev.dv_xname);
437
438 /*
439 * This is outright ugly, but since we must not make assumptions
440 * on the underlying allocator's behaviour it's the most straight-
441 * forward way to implement it. Note that we skip over the first
442 * 1K region, which is typically occupied by an attached ISA bus.
443 */
444 for (start = 0x0400; start < 0xffff; start += 0x0400) {
445 if (bus_space_alloc(sc->sc_iot,
446 start + sc->sc_vcsize, start + 0x0400 - 1,
447 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
448 &sc->sc_dmac_ioh) != 0)
449 continue;
450
451 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
452 addr | ESO_PCI_DDMAC_DE);
453 sc->sc_dmac_iot = sc->sc_iot;
454 sc->sc_dmac_configured = 1;
455 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
456 (unsigned long)addr);
457
458 return;
459 }
460
461 aprint_error("can't map Audio 1 DMA into I/O space\n");
462 }
463
464 /* ARGSUSED */
465 static int
466 eso_print(void *aux __unused, const char *pnp)
467 {
468
469 /* Only joys can attach via this; easy. */
470 if (pnp)
471 aprint_normal("joy at %s:", pnp);
472
473 return UNCONF;
474 }
475
476 static void
477 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
478 {
479 int i;
480
481 /* Poll for busy indicator to become clear. */
482 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
483 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
484 & ESO_SB_RSR_BUSY) == 0) {
485 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
486 ESO_SB_WDR, cmd);
487 return;
488 } else {
489 delay(10);
490 }
491 }
492
493 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
494 return;
495 }
496
497 /* Write to a controller register */
498 static void
499 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
500 {
501
502 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
503
504 eso_write_cmd(sc, reg);
505 eso_write_cmd(sc, val);
506 }
507
508 /* Read out the Read Data Register */
509 static uint8_t
510 eso_read_rdr(struct eso_softc *sc)
511 {
512 int i;
513
514 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
515 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
516 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
517 return (bus_space_read_1(sc->sc_sb_iot,
518 sc->sc_sb_ioh, ESO_SB_RDR));
519 } else {
520 delay(10);
521 }
522 }
523
524 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
525 return (-1);
526 }
527
528 static uint8_t
529 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
530 {
531
532 eso_write_cmd(sc, ESO_CMD_RCR);
533 eso_write_cmd(sc, reg);
534 return eso_read_rdr(sc);
535 }
536
537 static void
538 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
539 {
540 int s;
541
542 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
543
544 s = splaudio();
545 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
546 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
547 splx(s);
548 }
549
550 static uint8_t
551 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
552 {
553 int s;
554 uint8_t val;
555
556 s = splaudio();
557 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
558 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
559 splx(s);
560
561 return val;
562 }
563
564 static int
565 eso_intr(void *hdl)
566 {
567 struct eso_softc *sc;
568 uint8_t irqctl;
569
570 sc = hdl;
571 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
572
573 /* If it wasn't ours, that's all she wrote. */
574 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
575 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
576 return 0;
577
578 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
579 /* Clear interrupt. */
580 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
581 ESO_SB_RBSR);
582
583 if (sc->sc_rintr)
584 sc->sc_rintr(sc->sc_rarg);
585 else
586 wakeup(&sc->sc_rintr);
587 }
588
589 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
590 /*
591 * Clear the A2 IRQ latch: the cached value reflects the
592 * current DAC settings with the IRQ latch bit not set.
593 */
594 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
595
596 if (sc->sc_pintr)
597 sc->sc_pintr(sc->sc_parg);
598 else
599 wakeup(&sc->sc_pintr);
600 }
601
602 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
603 /* Clear interrupt. */
604 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
605
606 /*
607 * Raise a flag to cause a lazy update of the in-softc gain
608 * values the next time the software mixer is read to keep
609 * interrupt service cost low. ~0 cannot occur otherwise
610 * as the master volume has a precision of 6 bits only.
611 */
612 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
613 }
614
615 #if NMPU > 0
616 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
617 mpu_intr(sc->sc_mpudev);
618 #endif
619
620 return 1;
621 }
622
623 /* Perform a software reset, including DMA FIFOs. */
624 static int
625 eso_reset(struct eso_softc *sc)
626 {
627 int i;
628
629 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
630 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
631 /* `Delay' suggested in the data sheet. */
632 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
633 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
634
635 /* Wait for reset to take effect. */
636 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
637 /* Poll for data to become available. */
638 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
639 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
640 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
641 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
642
643 /* Activate Solo-1 extension commands. */
644 eso_write_cmd(sc, ESO_CMD_EXTENB);
645 /* Reset mixer registers. */
646 eso_write_mixreg(sc, ESO_MIXREG_RESET,
647 ESO_MIXREG_RESET_RESET);
648
649 return 0;
650 } else {
651 delay(1000);
652 }
653 }
654
655 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
656 return -1;
657 }
658
659 static int
660 eso_query_encoding(void *hdl __unused, struct audio_encoding *fp)
661 {
662
663 switch (fp->index) {
664 case 0:
665 strcpy(fp->name, AudioEulinear);
666 fp->encoding = AUDIO_ENCODING_ULINEAR;
667 fp->precision = 8;
668 fp->flags = 0;
669 break;
670 case 1:
671 strcpy(fp->name, AudioEmulaw);
672 fp->encoding = AUDIO_ENCODING_ULAW;
673 fp->precision = 8;
674 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
675 break;
676 case 2:
677 strcpy(fp->name, AudioEalaw);
678 fp->encoding = AUDIO_ENCODING_ALAW;
679 fp->precision = 8;
680 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
681 break;
682 case 3:
683 strcpy(fp->name, AudioEslinear);
684 fp->encoding = AUDIO_ENCODING_SLINEAR;
685 fp->precision = 8;
686 fp->flags = 0;
687 break;
688 case 4:
689 strcpy(fp->name, AudioEslinear_le);
690 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
691 fp->precision = 16;
692 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
693 break;
694 case 5:
695 strcpy(fp->name, AudioEulinear_le);
696 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
697 fp->precision = 16;
698 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
699 break;
700 case 6:
701 strcpy(fp->name, AudioEslinear_be);
702 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
703 fp->precision = 16;
704 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
705 break;
706 case 7:
707 strcpy(fp->name, AudioEulinear_be);
708 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
709 fp->precision = 16;
710 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
711 break;
712 default:
713 return EINVAL;
714 }
715
716 return 0;
717 }
718
719 static int
720 eso_set_params(void *hdl, int setmode, int usemode __unused,
721 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
722 stream_filter_list_t *rfil)
723 {
724 struct eso_softc *sc;
725 struct audio_params *p;
726 stream_filter_list_t *fil;
727 int mode, r[2], rd[2], clk;
728 unsigned int srg, fltdiv;
729 int i;
730
731 sc = hdl;
732 for (mode = AUMODE_RECORD; mode != -1;
733 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
734 if ((setmode & mode) == 0)
735 continue;
736
737 p = (mode == AUMODE_PLAY) ? play : rec;
738
739 if (p->sample_rate < ESO_MINRATE ||
740 p->sample_rate > ESO_MAXRATE ||
741 (p->precision != 8 && p->precision != 16) ||
742 (p->channels != 1 && p->channels != 2))
743 return EINVAL;
744
745 /*
746 * We'll compute both possible sample rate dividers and pick
747 * the one with the least error.
748 */
749 #define ABS(x) ((x) < 0 ? -(x) : (x))
750 r[0] = ESO_CLK0 /
751 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
752 r[1] = ESO_CLK1 /
753 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
754
755 if (r[0] > r[1])
756 clk = p->sample_rate - r[1];
757 else
758 clk = p->sample_rate - r[0];
759 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
760
761 /* Roll-off frequency of 87%, as in the ES1888 driver. */
762 fltdiv = 256 - 200279L / r[clk];
763
764 /* Update to reflect the possibly inexact rate. */
765 p->sample_rate = r[clk];
766
767 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
768 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
769 mode, p, FALSE, fil);
770 if (i < 0)
771 return EINVAL;
772 if (mode == AUMODE_RECORD) {
773 /* Audio 1 */
774 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
775 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
776 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
777 } else {
778 /* Audio 2 */
779 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
780 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
781 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
782 }
783 #undef ABS
784
785 }
786
787 return 0;
788 }
789
790 static int
791 eso_round_blocksize(void *hdl __unused, int blk, int mode __unused,
792 const audio_params_t *param __unused)
793 {
794
795 return blk & -32; /* keep good alignment; at least 16 req'd */
796 }
797
798 static int
799 eso_halt_output(void *hdl)
800 {
801 struct eso_softc *sc;
802 int error, s;
803
804 sc = hdl;
805 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
806
807 /*
808 * Disable auto-initialize DMA, allowing the FIFO to drain and then
809 * stop. The interrupt callback pointer is cleared at this
810 * point so that an outstanding FIFO interrupt for the remaining data
811 * will be acknowledged without further processing.
812 *
813 * This does not immediately `abort' an operation in progress (c.f.
814 * audio(9)) but is the method to leave the FIFO behind in a clean
815 * state with the least hair. (Besides, that item needs to be
816 * rephrased for trigger_*()-based DMA environments.)
817 */
818 s = splaudio();
819 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
820 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
821 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
822 ESO_IO_A2DMAM_DMAENB);
823
824 sc->sc_pintr = NULL;
825 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
826 splx(s);
827
828 /* Shut down DMA completely. */
829 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
830 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
831
832 return error == EWOULDBLOCK ? 0 : error;
833 }
834
835 static int
836 eso_halt_input(void *hdl)
837 {
838 struct eso_softc *sc;
839 int error, s;
840
841 sc = hdl;
842 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
843
844 /* Just like eso_halt_output(), but for Audio 1. */
845 s = splaudio();
846 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
847 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
848 ESO_CTLREG_A1C2_DMAENB);
849 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
850 DMA37MD_WRITE | DMA37MD_DEMAND);
851
852 sc->sc_rintr = NULL;
853 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
854 splx(s);
855
856 /* Shut down DMA completely. */
857 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
858 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
859 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
860 ESO_DMAC_MASK_MASK);
861
862 return error == EWOULDBLOCK ? 0 : error;
863 }
864
865 static int
866 eso_getdev(void *hdl, struct audio_device *retp)
867 {
868 struct eso_softc *sc;
869
870 sc = hdl;
871 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
872 snprintf(retp->version, sizeof (retp->version), "0x%02x",
873 sc->sc_revision);
874 if (sc->sc_revision <
875 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
876 strncpy(retp->config, eso_rev2model[sc->sc_revision],
877 sizeof (retp->config));
878 else
879 strncpy(retp->config, "unknown", sizeof (retp->config));
880
881 return 0;
882 }
883
884 static int
885 eso_set_port(void *hdl, mixer_ctrl_t *cp)
886 {
887 struct eso_softc *sc;
888 unsigned int lgain, rgain;
889 uint8_t tmp;
890
891 sc = hdl;
892 switch (cp->dev) {
893 case ESO_DAC_PLAY_VOL:
894 case ESO_MIC_PLAY_VOL:
895 case ESO_LINE_PLAY_VOL:
896 case ESO_SYNTH_PLAY_VOL:
897 case ESO_CD_PLAY_VOL:
898 case ESO_AUXB_PLAY_VOL:
899 case ESO_RECORD_VOL:
900 case ESO_DAC_REC_VOL:
901 case ESO_MIC_REC_VOL:
902 case ESO_LINE_REC_VOL:
903 case ESO_SYNTH_REC_VOL:
904 case ESO_CD_REC_VOL:
905 case ESO_AUXB_REC_VOL:
906 if (cp->type != AUDIO_MIXER_VALUE)
907 return EINVAL;
908
909 /*
910 * Stereo-capable mixer ports: if we get a single-channel
911 * gain value passed in, then we duplicate it to both left
912 * and right channels.
913 */
914 switch (cp->un.value.num_channels) {
915 case 1:
916 lgain = rgain = ESO_GAIN_TO_4BIT(
917 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
918 break;
919 case 2:
920 lgain = ESO_GAIN_TO_4BIT(
921 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
922 rgain = ESO_GAIN_TO_4BIT(
923 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
924 break;
925 default:
926 return EINVAL;
927 }
928
929 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
930 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
931 eso_set_gain(sc, cp->dev);
932 break;
933
934 case ESO_MASTER_VOL:
935 if (cp->type != AUDIO_MIXER_VALUE)
936 return EINVAL;
937
938 /* Like above, but a precision of 6 bits. */
939 switch (cp->un.value.num_channels) {
940 case 1:
941 lgain = rgain = ESO_GAIN_TO_6BIT(
942 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
943 break;
944 case 2:
945 lgain = ESO_GAIN_TO_6BIT(
946 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
947 rgain = ESO_GAIN_TO_6BIT(
948 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
949 break;
950 default:
951 return EINVAL;
952 }
953
954 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
955 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
956 eso_set_gain(sc, cp->dev);
957 break;
958
959 case ESO_SPATIALIZER:
960 if (cp->type != AUDIO_MIXER_VALUE ||
961 cp->un.value.num_channels != 1)
962 return EINVAL;
963
964 sc->sc_gain[cp->dev][ESO_LEFT] =
965 sc->sc_gain[cp->dev][ESO_RIGHT] =
966 ESO_GAIN_TO_6BIT(
967 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
968 eso_set_gain(sc, cp->dev);
969 break;
970
971 case ESO_MONO_PLAY_VOL:
972 case ESO_MONO_REC_VOL:
973 if (cp->type != AUDIO_MIXER_VALUE ||
974 cp->un.value.num_channels != 1)
975 return EINVAL;
976
977 sc->sc_gain[cp->dev][ESO_LEFT] =
978 sc->sc_gain[cp->dev][ESO_RIGHT] =
979 ESO_GAIN_TO_4BIT(
980 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
981 eso_set_gain(sc, cp->dev);
982 break;
983
984 case ESO_PCSPEAKER_VOL:
985 if (cp->type != AUDIO_MIXER_VALUE ||
986 cp->un.value.num_channels != 1)
987 return EINVAL;
988
989 sc->sc_gain[cp->dev][ESO_LEFT] =
990 sc->sc_gain[cp->dev][ESO_RIGHT] =
991 ESO_GAIN_TO_3BIT(
992 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
993 eso_set_gain(sc, cp->dev);
994 break;
995
996 case ESO_SPATIALIZER_ENABLE:
997 if (cp->type != AUDIO_MIXER_ENUM)
998 return EINVAL;
999
1000 sc->sc_spatializer = (cp->un.ord != 0);
1001
1002 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1003 if (sc->sc_spatializer)
1004 tmp |= ESO_MIXREG_SPAT_ENB;
1005 else
1006 tmp &= ~ESO_MIXREG_SPAT_ENB;
1007 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1008 tmp | ESO_MIXREG_SPAT_RSTREL);
1009 break;
1010
1011 case ESO_MASTER_MUTE:
1012 if (cp->type != AUDIO_MIXER_ENUM)
1013 return EINVAL;
1014
1015 sc->sc_mvmute = (cp->un.ord != 0);
1016
1017 if (sc->sc_mvmute) {
1018 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1019 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1020 ESO_MIXREG_LMVM_MUTE);
1021 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1022 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1023 ESO_MIXREG_RMVM_MUTE);
1024 } else {
1025 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1026 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1027 ~ESO_MIXREG_LMVM_MUTE);
1028 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1029 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1030 ~ESO_MIXREG_RMVM_MUTE);
1031 }
1032 break;
1033
1034 case ESO_MONOOUT_SOURCE:
1035 if (cp->type != AUDIO_MIXER_ENUM)
1036 return EINVAL;
1037
1038 return eso_set_monooutsrc(sc, cp->un.ord);
1039
1040 case ESO_MONOIN_BYPASS:
1041 if (cp->type != AUDIO_MIXER_ENUM)
1042 return EINVAL;
1043
1044 return (eso_set_monoinbypass(sc, cp->un.ord));
1045
1046 case ESO_RECORD_MONITOR:
1047 if (cp->type != AUDIO_MIXER_ENUM)
1048 return EINVAL;
1049
1050 sc->sc_recmon = (cp->un.ord != 0);
1051
1052 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1053 if (sc->sc_recmon)
1054 tmp |= ESO_CTLREG_ACTL_RECMON;
1055 else
1056 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1057 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1058 break;
1059
1060 case ESO_RECORD_SOURCE:
1061 if (cp->type != AUDIO_MIXER_ENUM)
1062 return EINVAL;
1063
1064 return eso_set_recsrc(sc, cp->un.ord);
1065
1066 case ESO_MIC_PREAMP:
1067 if (cp->type != AUDIO_MIXER_ENUM)
1068 return EINVAL;
1069
1070 return eso_set_preamp(sc, cp->un.ord);
1071
1072 default:
1073 return EINVAL;
1074 }
1075
1076 return 0;
1077 }
1078
1079 static int
1080 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1081 {
1082 struct eso_softc *sc;
1083
1084 sc = hdl;
1085 switch (cp->dev) {
1086 case ESO_MASTER_VOL:
1087 /* Reload from mixer after hardware volume control use. */
1088 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1089 eso_reload_master_vol(sc);
1090 /* FALLTHROUGH */
1091 case ESO_DAC_PLAY_VOL:
1092 case ESO_MIC_PLAY_VOL:
1093 case ESO_LINE_PLAY_VOL:
1094 case ESO_SYNTH_PLAY_VOL:
1095 case ESO_CD_PLAY_VOL:
1096 case ESO_AUXB_PLAY_VOL:
1097 case ESO_RECORD_VOL:
1098 case ESO_DAC_REC_VOL:
1099 case ESO_MIC_REC_VOL:
1100 case ESO_LINE_REC_VOL:
1101 case ESO_SYNTH_REC_VOL:
1102 case ESO_CD_REC_VOL:
1103 case ESO_AUXB_REC_VOL:
1104 /*
1105 * Stereo-capable ports: if a single-channel query is made,
1106 * just return the left channel's value (since single-channel
1107 * settings themselves are applied to both channels).
1108 */
1109 switch (cp->un.value.num_channels) {
1110 case 1:
1111 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1112 sc->sc_gain[cp->dev][ESO_LEFT];
1113 break;
1114 case 2:
1115 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1116 sc->sc_gain[cp->dev][ESO_LEFT];
1117 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1118 sc->sc_gain[cp->dev][ESO_RIGHT];
1119 break;
1120 default:
1121 return EINVAL;
1122 }
1123 break;
1124
1125 case ESO_MONO_PLAY_VOL:
1126 case ESO_PCSPEAKER_VOL:
1127 case ESO_MONO_REC_VOL:
1128 case ESO_SPATIALIZER:
1129 if (cp->un.value.num_channels != 1)
1130 return EINVAL;
1131 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1132 sc->sc_gain[cp->dev][ESO_LEFT];
1133 break;
1134
1135 case ESO_RECORD_MONITOR:
1136 cp->un.ord = sc->sc_recmon;
1137 break;
1138
1139 case ESO_RECORD_SOURCE:
1140 cp->un.ord = sc->sc_recsrc;
1141 break;
1142
1143 case ESO_MONOOUT_SOURCE:
1144 cp->un.ord = sc->sc_monooutsrc;
1145 break;
1146
1147 case ESO_MONOIN_BYPASS:
1148 cp->un.ord = sc->sc_monoinbypass;
1149 break;
1150
1151 case ESO_SPATIALIZER_ENABLE:
1152 cp->un.ord = sc->sc_spatializer;
1153 break;
1154
1155 case ESO_MIC_PREAMP:
1156 cp->un.ord = sc->sc_preamp;
1157 break;
1158
1159 case ESO_MASTER_MUTE:
1160 /* Reload from mixer after hardware volume control use. */
1161 eso_reload_master_vol(sc);
1162 cp->un.ord = sc->sc_mvmute;
1163 break;
1164
1165 default:
1166 return EINVAL;
1167 }
1168
1169 return 0;
1170 }
1171
1172 static int
1173 eso_query_devinfo(void *hdl __unused, mixer_devinfo_t *dip)
1174 {
1175
1176 switch (dip->index) {
1177 case ESO_DAC_PLAY_VOL:
1178 dip->mixer_class = ESO_INPUT_CLASS;
1179 dip->next = dip->prev = AUDIO_MIXER_LAST;
1180 strcpy(dip->label.name, AudioNdac);
1181 dip->type = AUDIO_MIXER_VALUE;
1182 dip->un.v.num_channels = 2;
1183 strcpy(dip->un.v.units.name, AudioNvolume);
1184 break;
1185 case ESO_MIC_PLAY_VOL:
1186 dip->mixer_class = ESO_INPUT_CLASS;
1187 dip->next = dip->prev = AUDIO_MIXER_LAST;
1188 strcpy(dip->label.name, AudioNmicrophone);
1189 dip->type = AUDIO_MIXER_VALUE;
1190 dip->un.v.num_channels = 2;
1191 strcpy(dip->un.v.units.name, AudioNvolume);
1192 break;
1193 case ESO_LINE_PLAY_VOL:
1194 dip->mixer_class = ESO_INPUT_CLASS;
1195 dip->next = dip->prev = AUDIO_MIXER_LAST;
1196 strcpy(dip->label.name, AudioNline);
1197 dip->type = AUDIO_MIXER_VALUE;
1198 dip->un.v.num_channels = 2;
1199 strcpy(dip->un.v.units.name, AudioNvolume);
1200 break;
1201 case ESO_SYNTH_PLAY_VOL:
1202 dip->mixer_class = ESO_INPUT_CLASS;
1203 dip->next = dip->prev = AUDIO_MIXER_LAST;
1204 strcpy(dip->label.name, AudioNfmsynth);
1205 dip->type = AUDIO_MIXER_VALUE;
1206 dip->un.v.num_channels = 2;
1207 strcpy(dip->un.v.units.name, AudioNvolume);
1208 break;
1209 case ESO_MONO_PLAY_VOL:
1210 dip->mixer_class = ESO_INPUT_CLASS;
1211 dip->next = dip->prev = AUDIO_MIXER_LAST;
1212 strcpy(dip->label.name, "mono_in");
1213 dip->type = AUDIO_MIXER_VALUE;
1214 dip->un.v.num_channels = 1;
1215 strcpy(dip->un.v.units.name, AudioNvolume);
1216 break;
1217 case ESO_CD_PLAY_VOL:
1218 dip->mixer_class = ESO_INPUT_CLASS;
1219 dip->next = dip->prev = AUDIO_MIXER_LAST;
1220 strcpy(dip->label.name, AudioNcd);
1221 dip->type = AUDIO_MIXER_VALUE;
1222 dip->un.v.num_channels = 2;
1223 strcpy(dip->un.v.units.name, AudioNvolume);
1224 break;
1225 case ESO_AUXB_PLAY_VOL:
1226 dip->mixer_class = ESO_INPUT_CLASS;
1227 dip->next = dip->prev = AUDIO_MIXER_LAST;
1228 strcpy(dip->label.name, "auxb");
1229 dip->type = AUDIO_MIXER_VALUE;
1230 dip->un.v.num_channels = 2;
1231 strcpy(dip->un.v.units.name, AudioNvolume);
1232 break;
1233
1234 case ESO_MIC_PREAMP:
1235 dip->mixer_class = ESO_MICROPHONE_CLASS;
1236 dip->next = dip->prev = AUDIO_MIXER_LAST;
1237 strcpy(dip->label.name, AudioNpreamp);
1238 dip->type = AUDIO_MIXER_ENUM;
1239 dip->un.e.num_mem = 2;
1240 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1241 dip->un.e.member[0].ord = 0;
1242 strcpy(dip->un.e.member[1].label.name, AudioNon);
1243 dip->un.e.member[1].ord = 1;
1244 break;
1245 case ESO_MICROPHONE_CLASS:
1246 dip->mixer_class = ESO_MICROPHONE_CLASS;
1247 dip->next = dip->prev = AUDIO_MIXER_LAST;
1248 strcpy(dip->label.name, AudioNmicrophone);
1249 dip->type = AUDIO_MIXER_CLASS;
1250 break;
1251
1252 case ESO_INPUT_CLASS:
1253 dip->mixer_class = ESO_INPUT_CLASS;
1254 dip->next = dip->prev = AUDIO_MIXER_LAST;
1255 strcpy(dip->label.name, AudioCinputs);
1256 dip->type = AUDIO_MIXER_CLASS;
1257 break;
1258
1259 case ESO_MASTER_VOL:
1260 dip->mixer_class = ESO_OUTPUT_CLASS;
1261 dip->prev = AUDIO_MIXER_LAST;
1262 dip->next = ESO_MASTER_MUTE;
1263 strcpy(dip->label.name, AudioNmaster);
1264 dip->type = AUDIO_MIXER_VALUE;
1265 dip->un.v.num_channels = 2;
1266 strcpy(dip->un.v.units.name, AudioNvolume);
1267 break;
1268 case ESO_MASTER_MUTE:
1269 dip->mixer_class = ESO_OUTPUT_CLASS;
1270 dip->prev = ESO_MASTER_VOL;
1271 dip->next = AUDIO_MIXER_LAST;
1272 strcpy(dip->label.name, AudioNmute);
1273 dip->type = AUDIO_MIXER_ENUM;
1274 dip->un.e.num_mem = 2;
1275 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1276 dip->un.e.member[0].ord = 0;
1277 strcpy(dip->un.e.member[1].label.name, AudioNon);
1278 dip->un.e.member[1].ord = 1;
1279 break;
1280
1281 case ESO_PCSPEAKER_VOL:
1282 dip->mixer_class = ESO_OUTPUT_CLASS;
1283 dip->next = dip->prev = AUDIO_MIXER_LAST;
1284 strcpy(dip->label.name, "pc_speaker");
1285 dip->type = AUDIO_MIXER_VALUE;
1286 dip->un.v.num_channels = 1;
1287 strcpy(dip->un.v.units.name, AudioNvolume);
1288 break;
1289 case ESO_MONOOUT_SOURCE:
1290 dip->mixer_class = ESO_OUTPUT_CLASS;
1291 dip->next = dip->prev = AUDIO_MIXER_LAST;
1292 strcpy(dip->label.name, "mono_out");
1293 dip->type = AUDIO_MIXER_ENUM;
1294 dip->un.e.num_mem = 3;
1295 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1296 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1297 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1298 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1299 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1300 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1301 break;
1302
1303 case ESO_MONOIN_BYPASS:
1304 dip->mixer_class = ESO_MONOIN_CLASS;
1305 dip->next = dip->prev = AUDIO_MIXER_LAST;
1306 strcpy(dip->label.name, "bypass");
1307 dip->type = AUDIO_MIXER_ENUM;
1308 dip->un.e.num_mem = 2;
1309 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1310 dip->un.e.member[0].ord = 0;
1311 strcpy(dip->un.e.member[1].label.name, AudioNon);
1312 dip->un.e.member[1].ord = 1;
1313 break;
1314 case ESO_MONOIN_CLASS:
1315 dip->mixer_class = ESO_MONOIN_CLASS;
1316 dip->next = dip->prev = AUDIO_MIXER_LAST;
1317 strcpy(dip->label.name, "mono_in");
1318 dip->type = AUDIO_MIXER_CLASS;
1319 break;
1320
1321 case ESO_SPATIALIZER:
1322 dip->mixer_class = ESO_OUTPUT_CLASS;
1323 dip->prev = AUDIO_MIXER_LAST;
1324 dip->next = ESO_SPATIALIZER_ENABLE;
1325 strcpy(dip->label.name, AudioNspatial);
1326 dip->type = AUDIO_MIXER_VALUE;
1327 dip->un.v.num_channels = 1;
1328 strcpy(dip->un.v.units.name, "level");
1329 break;
1330 case ESO_SPATIALIZER_ENABLE:
1331 dip->mixer_class = ESO_OUTPUT_CLASS;
1332 dip->prev = ESO_SPATIALIZER;
1333 dip->next = AUDIO_MIXER_LAST;
1334 strcpy(dip->label.name, "enable");
1335 dip->type = AUDIO_MIXER_ENUM;
1336 dip->un.e.num_mem = 2;
1337 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1338 dip->un.e.member[0].ord = 0;
1339 strcpy(dip->un.e.member[1].label.name, AudioNon);
1340 dip->un.e.member[1].ord = 1;
1341 break;
1342
1343 case ESO_OUTPUT_CLASS:
1344 dip->mixer_class = ESO_OUTPUT_CLASS;
1345 dip->next = dip->prev = AUDIO_MIXER_LAST;
1346 strcpy(dip->label.name, AudioCoutputs);
1347 dip->type = AUDIO_MIXER_CLASS;
1348 break;
1349
1350 case ESO_RECORD_MONITOR:
1351 dip->mixer_class = ESO_MONITOR_CLASS;
1352 dip->next = dip->prev = AUDIO_MIXER_LAST;
1353 strcpy(dip->label.name, AudioNmute);
1354 dip->type = AUDIO_MIXER_ENUM;
1355 dip->un.e.num_mem = 2;
1356 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1357 dip->un.e.member[0].ord = 0;
1358 strcpy(dip->un.e.member[1].label.name, AudioNon);
1359 dip->un.e.member[1].ord = 1;
1360 break;
1361 case ESO_MONITOR_CLASS:
1362 dip->mixer_class = ESO_MONITOR_CLASS;
1363 dip->next = dip->prev = AUDIO_MIXER_LAST;
1364 strcpy(dip->label.name, AudioCmonitor);
1365 dip->type = AUDIO_MIXER_CLASS;
1366 break;
1367
1368 case ESO_RECORD_VOL:
1369 dip->mixer_class = ESO_RECORD_CLASS;
1370 dip->next = dip->prev = AUDIO_MIXER_LAST;
1371 strcpy(dip->label.name, AudioNrecord);
1372 dip->type = AUDIO_MIXER_VALUE;
1373 strcpy(dip->un.v.units.name, AudioNvolume);
1374 break;
1375 case ESO_RECORD_SOURCE:
1376 dip->mixer_class = ESO_RECORD_CLASS;
1377 dip->next = dip->prev = AUDIO_MIXER_LAST;
1378 strcpy(dip->label.name, AudioNsource);
1379 dip->type = AUDIO_MIXER_ENUM;
1380 dip->un.e.num_mem = 4;
1381 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1382 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1383 strcpy(dip->un.e.member[1].label.name, AudioNline);
1384 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1385 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1386 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1387 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1388 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1389 break;
1390 case ESO_DAC_REC_VOL:
1391 dip->mixer_class = ESO_RECORD_CLASS;
1392 dip->next = dip->prev = AUDIO_MIXER_LAST;
1393 strcpy(dip->label.name, AudioNdac);
1394 dip->type = AUDIO_MIXER_VALUE;
1395 dip->un.v.num_channels = 2;
1396 strcpy(dip->un.v.units.name, AudioNvolume);
1397 break;
1398 case ESO_MIC_REC_VOL:
1399 dip->mixer_class = ESO_RECORD_CLASS;
1400 dip->next = dip->prev = AUDIO_MIXER_LAST;
1401 strcpy(dip->label.name, AudioNmicrophone);
1402 dip->type = AUDIO_MIXER_VALUE;
1403 dip->un.v.num_channels = 2;
1404 strcpy(dip->un.v.units.name, AudioNvolume);
1405 break;
1406 case ESO_LINE_REC_VOL:
1407 dip->mixer_class = ESO_RECORD_CLASS;
1408 dip->next = dip->prev = AUDIO_MIXER_LAST;
1409 strcpy(dip->label.name, AudioNline);
1410 dip->type = AUDIO_MIXER_VALUE;
1411 dip->un.v.num_channels = 2;
1412 strcpy(dip->un.v.units.name, AudioNvolume);
1413 break;
1414 case ESO_SYNTH_REC_VOL:
1415 dip->mixer_class = ESO_RECORD_CLASS;
1416 dip->next = dip->prev = AUDIO_MIXER_LAST;
1417 strcpy(dip->label.name, AudioNfmsynth);
1418 dip->type = AUDIO_MIXER_VALUE;
1419 dip->un.v.num_channels = 2;
1420 strcpy(dip->un.v.units.name, AudioNvolume);
1421 break;
1422 case ESO_MONO_REC_VOL:
1423 dip->mixer_class = ESO_RECORD_CLASS;
1424 dip->next = dip->prev = AUDIO_MIXER_LAST;
1425 strcpy(dip->label.name, "mono_in");
1426 dip->type = AUDIO_MIXER_VALUE;
1427 dip->un.v.num_channels = 1; /* No lies */
1428 strcpy(dip->un.v.units.name, AudioNvolume);
1429 break;
1430 case ESO_CD_REC_VOL:
1431 dip->mixer_class = ESO_RECORD_CLASS;
1432 dip->next = dip->prev = AUDIO_MIXER_LAST;
1433 strcpy(dip->label.name, AudioNcd);
1434 dip->type = AUDIO_MIXER_VALUE;
1435 dip->un.v.num_channels = 2;
1436 strcpy(dip->un.v.units.name, AudioNvolume);
1437 break;
1438 case ESO_AUXB_REC_VOL:
1439 dip->mixer_class = ESO_RECORD_CLASS;
1440 dip->next = dip->prev = AUDIO_MIXER_LAST;
1441 strcpy(dip->label.name, "auxb");
1442 dip->type = AUDIO_MIXER_VALUE;
1443 dip->un.v.num_channels = 2;
1444 strcpy(dip->un.v.units.name, AudioNvolume);
1445 break;
1446 case ESO_RECORD_CLASS:
1447 dip->mixer_class = ESO_RECORD_CLASS;
1448 dip->next = dip->prev = AUDIO_MIXER_LAST;
1449 strcpy(dip->label.name, AudioCrecord);
1450 dip->type = AUDIO_MIXER_CLASS;
1451 break;
1452
1453 default:
1454 return ENXIO;
1455 }
1456
1457 return 0;
1458 }
1459
1460 static int
1461 eso_allocmem(struct eso_softc *sc __unused, size_t size, size_t align,
1462 size_t boundary, int flags, int direction, struct eso_dma *ed)
1463 {
1464 int error, wait;
1465
1466 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1467 ed->ed_size = size;
1468
1469 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1470 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1471 &ed->ed_nsegs, wait);
1472 if (error)
1473 goto out;
1474
1475 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1476 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1477 if (error)
1478 goto free;
1479
1480 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1481 wait, &ed->ed_map);
1482 if (error)
1483 goto unmap;
1484
1485 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1486 ed->ed_size, NULL, wait |
1487 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1488 if (error)
1489 goto destroy;
1490
1491 return 0;
1492
1493 destroy:
1494 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1495 unmap:
1496 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1497 free:
1498 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1499 out:
1500 return error;
1501 }
1502
1503 static void
1504 eso_freemem(struct eso_dma *ed)
1505 {
1506
1507 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1508 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1509 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1510 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1511 }
1512
1513 static void *
1514 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type,
1515 int flags)
1516 {
1517 struct eso_softc *sc;
1518 struct eso_dma *ed;
1519 size_t boundary;
1520 int error;
1521
1522 sc = hdl;
1523 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1524 return NULL;
1525
1526 /*
1527 * Apparently the Audio 1 DMA controller's current address
1528 * register can't roll over a 64K address boundary, so we have to
1529 * take care of that ourselves. Similarly, the Audio 2 DMA
1530 * controller needs a 1M address boundary.
1531 */
1532 if (direction == AUMODE_RECORD)
1533 boundary = 0x10000;
1534 else
1535 boundary = 0x100000;
1536
1537 /*
1538 * XXX Work around allocation problems for Audio 1, which
1539 * XXX implements the 24 low address bits only, with
1540 * XXX machine-specific DMA tag use.
1541 */
1542 #ifdef alpha
1543 /*
1544 * XXX Force allocation through the (ISA) SGMAP.
1545 */
1546 if (direction == AUMODE_RECORD)
1547 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1548 else
1549 #elif defined(amd64) || defined(i386)
1550 /*
1551 * XXX Force allocation through the ISA DMA tag.
1552 */
1553 if (direction == AUMODE_RECORD)
1554 ed->ed_dmat = &isa_bus_dma_tag;
1555 else
1556 #endif
1557 ed->ed_dmat = sc->sc_dmat;
1558
1559 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1560 if (error) {
1561 free(ed, type);
1562 return NULL;
1563 }
1564 ed->ed_next = sc->sc_dmas;
1565 sc->sc_dmas = ed;
1566
1567 return KVADDR(ed);
1568 }
1569
1570 static void
1571 eso_freem(void *hdl, void *addr, struct malloc_type *type)
1572 {
1573 struct eso_softc *sc;
1574 struct eso_dma *p, **pp;
1575
1576 sc = hdl;
1577 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1578 if (KVADDR(p) == addr) {
1579 eso_freemem(p);
1580 *pp = p->ed_next;
1581 free(p, type);
1582 return;
1583 }
1584 }
1585 }
1586
1587 static size_t
1588 eso_round_buffersize(void *hdl __unused, int direction, size_t bufsize)
1589 {
1590 size_t maxsize;
1591
1592 /*
1593 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1594 * bytes. This is because IO_A2DMAC is a two byte value
1595 * indicating the literal byte count, and the 4 least significant
1596 * bits are read-only. Zero is not used as a special case for
1597 * 0x10000.
1598 *
1599 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1600 * be represented.
1601 */
1602 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1603
1604 if (bufsize > maxsize)
1605 bufsize = maxsize;
1606
1607 return bufsize;
1608 }
1609
1610 static paddr_t
1611 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1612 {
1613 struct eso_softc *sc;
1614 struct eso_dma *ed;
1615
1616 sc = hdl;
1617 if (offs < 0)
1618 return -1;
1619 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1620 ed = ed->ed_next)
1621 continue;
1622 if (ed == NULL)
1623 return -1;
1624
1625 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1626 offs, prot, BUS_DMA_WAITOK);
1627 }
1628
1629 /* ARGSUSED */
1630 static int
1631 eso_get_props(void *hdl __unused)
1632 {
1633
1634 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1635 AUDIO_PROP_FULLDUPLEX;
1636 }
1637
1638 static int
1639 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1640 void (*intr)(void *), void *arg, const audio_params_t *param)
1641 {
1642 struct eso_softc *sc;
1643 struct eso_dma *ed;
1644 uint8_t a2c1;
1645
1646 sc = hdl;
1647 DPRINTF((
1648 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1649 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1650 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1651 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1652 param->precision, param->channels));
1653
1654 /* Find DMA buffer. */
1655 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1656 ed = ed->ed_next)
1657 continue;
1658 if (ed == NULL) {
1659 printf("%s: trigger_output: bad addr %p\n",
1660 sc->sc_dev.dv_xname, start);
1661 return EINVAL;
1662 }
1663 DPRINTF(("%s: dmaaddr %lx\n",
1664 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1665
1666 sc->sc_pintr = intr;
1667 sc->sc_parg = arg;
1668
1669 /* Compute drain timeout. */
1670 sc->sc_pdrain = (blksize * NBBY * hz) /
1671 (param->sample_rate * param->channels *
1672 param->precision) + 2; /* slop */
1673
1674 /* DMA transfer count (in `words'!) reload using 2's complement. */
1675 blksize = -(blksize >> 1);
1676 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1677 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1678
1679 /* Update DAC to reflect DMA count and audio parameters. */
1680 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1681 if (param->precision == 16)
1682 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1683 else
1684 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1685 if (param->channels == 2)
1686 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1687 else
1688 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1689 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1690 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1691 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1692 else
1693 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1694 /* Unmask IRQ. */
1695 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1696 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1697
1698 /* Set up DMA controller. */
1699 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1700 DMAADDR(ed));
1701 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1702 (uint8_t *)end - (uint8_t *)start);
1703 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1704 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1705
1706 /* Start DMA. */
1707 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1708 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1709 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1710 ESO_MIXREG_A2C1_AUTO;
1711 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1712
1713 return 0;
1714 }
1715
1716 static int
1717 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1718 void (*intr)(void *), void *arg, const audio_params_t *param)
1719 {
1720 struct eso_softc *sc;
1721 struct eso_dma *ed;
1722 uint8_t actl, a1c1;
1723
1724 sc = hdl;
1725 DPRINTF((
1726 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1727 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1728 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1729 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1730 param->precision, param->channels));
1731
1732 /*
1733 * If we failed to configure the Audio 1 DMA controller, bail here
1734 * while retaining availability of the DAC direction (in Audio 2).
1735 */
1736 if (!sc->sc_dmac_configured)
1737 return EIO;
1738
1739 /* Find DMA buffer. */
1740 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1741 ed = ed->ed_next)
1742 continue;
1743 if (ed == NULL) {
1744 printf("%s: trigger_output: bad addr %p\n",
1745 sc->sc_dev.dv_xname, start);
1746 return EINVAL;
1747 }
1748 DPRINTF(("%s: dmaaddr %lx\n",
1749 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1750
1751 sc->sc_rintr = intr;
1752 sc->sc_rarg = arg;
1753
1754 /* Compute drain timeout. */
1755 sc->sc_rdrain = (blksize * NBBY * hz) /
1756 (param->sample_rate * param->channels *
1757 param->precision) + 2; /* slop */
1758
1759 /* Set up ADC DMA converter parameters. */
1760 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1761 if (param->channels == 2) {
1762 actl &= ~ESO_CTLREG_ACTL_MONO;
1763 actl |= ESO_CTLREG_ACTL_STEREO;
1764 } else {
1765 actl &= ~ESO_CTLREG_ACTL_STEREO;
1766 actl |= ESO_CTLREG_ACTL_MONO;
1767 }
1768 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1769
1770 /* Set up Transfer Type: maybe move to attach time? */
1771 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1772
1773 /* DMA transfer count reload using 2's complement. */
1774 blksize = -blksize;
1775 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1776 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1777
1778 /* Set up and enable Audio 1 DMA FIFO. */
1779 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1780 if (param->precision == 16)
1781 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1782 if (param->channels == 2)
1783 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1784 else
1785 a1c1 |= ESO_CTLREG_A1C1_MONO;
1786 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1787 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1788 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1789 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1790
1791 /* Set up ADC IRQ/DRQ parameters. */
1792 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1793 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1794 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1795 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1796
1797 /* Set up and enable DMA controller. */
1798 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1799 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1800 ESO_DMAC_MASK_MASK);
1801 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1802 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1803 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1804 DMAADDR(ed));
1805 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1806 (uint8_t *)end - (uint8_t *)start - 1);
1807 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1808
1809 /* Start DMA. */
1810 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1811 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1812 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1813
1814 return 0;
1815 }
1816
1817 /*
1818 * Mixer utility functions.
1819 */
1820 static int
1821 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1822 {
1823 mixer_devinfo_t di;
1824 int i;
1825
1826 di.index = ESO_RECORD_SOURCE;
1827 if (eso_query_devinfo(sc, &di) != 0)
1828 panic("eso_set_recsrc: eso_query_devinfo failed");
1829
1830 for (i = 0; i < di.un.e.num_mem; i++) {
1831 if (recsrc == di.un.e.member[i].ord) {
1832 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1833 sc->sc_recsrc = recsrc;
1834 return 0;
1835 }
1836 }
1837
1838 return EINVAL;
1839 }
1840
1841 static int
1842 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1843 {
1844 mixer_devinfo_t di;
1845 int i;
1846 uint8_t mpm;
1847
1848 di.index = ESO_MONOOUT_SOURCE;
1849 if (eso_query_devinfo(sc, &di) != 0)
1850 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1851
1852 for (i = 0; i < di.un.e.num_mem; i++) {
1853 if (monooutsrc == di.un.e.member[i].ord) {
1854 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1855 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1856 mpm |= monooutsrc;
1857 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1858 sc->sc_monooutsrc = monooutsrc;
1859 return 0;
1860 }
1861 }
1862
1863 return EINVAL;
1864 }
1865
1866 static int
1867 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1868 {
1869 mixer_devinfo_t di;
1870 int i;
1871 uint8_t mpm;
1872
1873 di.index = ESO_MONOIN_BYPASS;
1874 if (eso_query_devinfo(sc, &di) != 0)
1875 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1876
1877 for (i = 0; i < di.un.e.num_mem; i++) {
1878 if (monoinbypass == di.un.e.member[i].ord) {
1879 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1880 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1881 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1882 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1883 sc->sc_monoinbypass = monoinbypass;
1884 return 0;
1885 }
1886 }
1887
1888 return EINVAL;
1889 }
1890
1891 static int
1892 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
1893 {
1894 mixer_devinfo_t di;
1895 int i;
1896 uint8_t mpm;
1897
1898 di.index = ESO_MIC_PREAMP;
1899 if (eso_query_devinfo(sc, &di) != 0)
1900 panic("eso_set_preamp: eso_query_devinfo failed");
1901
1902 for (i = 0; i < di.un.e.num_mem; i++) {
1903 if (preamp == di.un.e.member[i].ord) {
1904 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1905 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1906 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1907 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1908 sc->sc_preamp = preamp;
1909 return 0;
1910 }
1911 }
1912
1913 return EINVAL;
1914 }
1915
1916 /*
1917 * Reload Master Volume and Mute values in softc from mixer; used when
1918 * those have previously been invalidated by use of hardware volume controls.
1919 */
1920 static void
1921 eso_reload_master_vol(struct eso_softc *sc)
1922 {
1923 uint8_t mv;
1924
1925 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1926 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1927 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1928 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1929 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1930 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1931 /* Currently both channels are muted simultaneously; either is OK. */
1932 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1933 }
1934
1935 static void
1936 eso_set_gain(struct eso_softc *sc, unsigned int port)
1937 {
1938 uint8_t mixreg, tmp;
1939
1940 switch (port) {
1941 case ESO_DAC_PLAY_VOL:
1942 mixreg = ESO_MIXREG_PVR_A2;
1943 break;
1944 case ESO_MIC_PLAY_VOL:
1945 mixreg = ESO_MIXREG_PVR_MIC;
1946 break;
1947 case ESO_LINE_PLAY_VOL:
1948 mixreg = ESO_MIXREG_PVR_LINE;
1949 break;
1950 case ESO_SYNTH_PLAY_VOL:
1951 mixreg = ESO_MIXREG_PVR_SYNTH;
1952 break;
1953 case ESO_CD_PLAY_VOL:
1954 mixreg = ESO_MIXREG_PVR_CD;
1955 break;
1956 case ESO_AUXB_PLAY_VOL:
1957 mixreg = ESO_MIXREG_PVR_AUXB;
1958 break;
1959
1960 case ESO_DAC_REC_VOL:
1961 mixreg = ESO_MIXREG_RVR_A2;
1962 break;
1963 case ESO_MIC_REC_VOL:
1964 mixreg = ESO_MIXREG_RVR_MIC;
1965 break;
1966 case ESO_LINE_REC_VOL:
1967 mixreg = ESO_MIXREG_RVR_LINE;
1968 break;
1969 case ESO_SYNTH_REC_VOL:
1970 mixreg = ESO_MIXREG_RVR_SYNTH;
1971 break;
1972 case ESO_CD_REC_VOL:
1973 mixreg = ESO_MIXREG_RVR_CD;
1974 break;
1975 case ESO_AUXB_REC_VOL:
1976 mixreg = ESO_MIXREG_RVR_AUXB;
1977 break;
1978 case ESO_MONO_PLAY_VOL:
1979 mixreg = ESO_MIXREG_PVR_MONO;
1980 break;
1981 case ESO_MONO_REC_VOL:
1982 mixreg = ESO_MIXREG_RVR_MONO;
1983 break;
1984
1985 case ESO_PCSPEAKER_VOL:
1986 /* Special case - only 3-bit, mono, and reserved bits. */
1987 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1988 tmp &= ESO_MIXREG_PCSVR_RESV;
1989 /* Map bits 7:5 -> 2:0. */
1990 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1991 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1992 return;
1993
1994 case ESO_MASTER_VOL:
1995 /* Special case - separate regs, and 6-bit precision. */
1996 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1997 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1998 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1999 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2000 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2001 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2002 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2003 return;
2004
2005 case ESO_SPATIALIZER:
2006 /* Special case - only `mono', and higher precision. */
2007 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2008 sc->sc_gain[port][ESO_LEFT]);
2009 return;
2010
2011 case ESO_RECORD_VOL:
2012 /* Very Special case, controller register. */
2013 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2014 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2015 return;
2016
2017 default:
2018 #ifdef DIAGNOSTIC
2019 panic("eso_set_gain: bad port %u", port);
2020 /* NOTREACHED */
2021 #else
2022 return;
2023 #endif
2024 }
2025
2026 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2027 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2028 }
2029