eso.c revision 1.50 1 /* $NetBSD: eso.c,v 1.50 2007/03/04 06:02:18 christos Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.50 2007/03/04 06:02:18 christos Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46 #include <sys/proc.h>
47
48 #include <dev/pci/pcidevs.h>
49 #include <dev/pci/pcivar.h>
50
51 #include <sys/audioio.h>
52 #include <dev/audio_if.h>
53 #include <dev/midi_if.h>
54
55 #include <dev/mulaw.h>
56 #include <dev/auconv.h>
57
58 #include <dev/ic/mpuvar.h>
59 #include <dev/ic/i8237reg.h>
60 #include <dev/pci/esoreg.h>
61 #include <dev/pci/esovar.h>
62
63 #include <machine/bus.h>
64 #include <machine/intr.h>
65
66 /*
67 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
68 * XXX engine by allocating through the ISA DMA tag.
69 */
70 #if defined(amd64) || defined(i386)
71 #include "isa.h"
72 #if NISA > 0
73 #include <dev/isa/isavar.h>
74 #endif
75 #endif
76
77 #if defined(AUDIO_DEBUG) || defined(DEBUG)
78 #define DPRINTF(x) printf x
79 #else
80 #define DPRINTF(x)
81 #endif
82
83 struct eso_dma {
84 bus_dma_tag_t ed_dmat;
85 bus_dmamap_t ed_map;
86 void * ed_kva;
87 bus_dma_segment_t ed_segs[1];
88 int ed_nsegs;
89 size_t ed_size;
90 SLIST_ENTRY(eso_dma) ed_slist;
91 };
92
93 #define KVADDR(dma) ((void *)(dma)->ed_kva)
94 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
95
96 /* Autoconfiguration interface */
97 static int eso_match(struct device *, struct cfdata *, void *);
98 static void eso_attach(struct device *, struct device *, void *);
99 static void eso_defer(struct device *);
100 static int eso_print(void *, const char *);
101
102 CFATTACH_DECL(eso, sizeof (struct eso_softc),
103 eso_match, eso_attach, NULL, NULL);
104
105 /* PCI interface */
106 static int eso_intr(void *);
107
108 /* MI audio layer interface */
109 static int eso_query_encoding(void *, struct audio_encoding *);
110 static int eso_set_params(void *, int, int, audio_params_t *,
111 audio_params_t *, stream_filter_list_t *,
112 stream_filter_list_t *);
113 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
114 static int eso_halt_output(void *);
115 static int eso_halt_input(void *);
116 static int eso_getdev(void *, struct audio_device *);
117 static int eso_set_port(void *, mixer_ctrl_t *);
118 static int eso_get_port(void *, mixer_ctrl_t *);
119 static int eso_query_devinfo(void *, mixer_devinfo_t *);
120 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int);
121 static void eso_freem(void *, void *, struct malloc_type *);
122 static size_t eso_round_buffersize(void *, int, size_t);
123 static paddr_t eso_mappage(void *, void *, off_t, int);
124 static int eso_get_props(void *);
125 static int eso_trigger_output(void *, void *, void *, int,
126 void (*)(void *), void *, const audio_params_t *);
127 static int eso_trigger_input(void *, void *, void *, int,
128 void (*)(void *), void *, const audio_params_t *);
129
130 static const struct audio_hw_if eso_hw_if = {
131 NULL, /* open */
132 NULL, /* close */
133 NULL, /* drain */
134 eso_query_encoding,
135 eso_set_params,
136 eso_round_blocksize,
137 NULL, /* commit_settings */
138 NULL, /* init_output */
139 NULL, /* init_input */
140 NULL, /* start_output */
141 NULL, /* start_input */
142 eso_halt_output,
143 eso_halt_input,
144 NULL, /* speaker_ctl */
145 eso_getdev,
146 NULL, /* setfd */
147 eso_set_port,
148 eso_get_port,
149 eso_query_devinfo,
150 eso_allocm,
151 eso_freem,
152 eso_round_buffersize,
153 eso_mappage,
154 eso_get_props,
155 eso_trigger_output,
156 eso_trigger_input,
157 NULL, /* dev_ioctl */
158 NULL, /* powerstate */
159 };
160
161 static const char * const eso_rev2model[] = {
162 "ES1938",
163 "ES1946",
164 "ES1946 Revision E"
165 };
166
167 #define ESO_NFORMATS 8
168 static const struct audio_format eso_formats[ESO_NFORMATS] = {
169 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
170 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
171 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
172 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
173 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
174 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
175 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
176 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
177 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
178 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
179 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
180 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
181 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
182 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
183 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
184 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
185 };
186
187
188 /*
189 * Utility routines
190 */
191 /* Register access etc. */
192 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
193 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
194 static uint8_t eso_read_rdr(struct eso_softc *);
195 static void eso_reload_master_vol(struct eso_softc *);
196 static int eso_reset(struct eso_softc *);
197 static void eso_set_gain(struct eso_softc *, unsigned int);
198 static int eso_set_recsrc(struct eso_softc *, unsigned int);
199 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
200 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
201 static int eso_set_preamp(struct eso_softc *, unsigned int);
202 static void eso_write_cmd(struct eso_softc *, uint8_t);
203 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
204 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
205 /* DMA memory allocation */
206 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
207 int, int, struct eso_dma *);
208 static void eso_freemem(struct eso_dma *);
209 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *);
210
211
212 static int
213 eso_match(struct device *parent, struct cfdata *match,
214 void *aux)
215 {
216 struct pci_attach_args *pa;
217
218 pa = aux;
219 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
220 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
221 return 1;
222
223 return 0;
224 }
225
226 static void
227 eso_attach(struct device *parent, struct device *self, void *aux)
228 {
229 struct eso_softc *sc;
230 struct pci_attach_args *pa;
231 struct audio_attach_args aa;
232 pci_intr_handle_t ih;
233 bus_addr_t vcbase;
234 const char *intrstring;
235 int idx;
236 uint8_t a2mode, mvctl;
237
238 sc = (struct eso_softc *)self;
239 pa = aux;
240 aprint_naive(": Audio controller\n");
241
242 sc->sc_revision = PCI_REVISION(pa->pa_class);
243
244 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
245 if (sc->sc_revision <
246 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
247 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
248 else
249 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
250
251 /* Map I/O registers. */
252 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
253 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
254 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
255 return;
256 }
257 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
258 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
259 aprint_error("%s: can't map SB I/O space\n",
260 sc->sc_dev.dv_xname);
261 return;
262 }
263 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
264 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
265 aprint_error("%s: can't map VC I/O space\n",
266 sc->sc_dev.dv_xname);
267 /* Don't bail out yet: we can map it later, see below. */
268 vcbase = 0;
269 sc->sc_vcsize = 0x10; /* From the data sheet. */
270 }
271 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
272 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
273 aprint_error("%s: can't map MPU I/O space\n",
274 sc->sc_dev.dv_xname);
275 return;
276 }
277 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
278 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
279 aprint_error("%s: can't map Game I/O space\n",
280 sc->sc_dev.dv_xname);
281 return;
282 }
283
284 sc->sc_dmat = pa->pa_dmat;
285 SLIST_INIT(&sc->sc_dmas);
286 sc->sc_dmac_configured = 0;
287
288 /* Enable bus mastering. */
289 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
290 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
291 PCI_COMMAND_MASTER_ENABLE);
292
293 /* Reset the device; bail out upon failure. */
294 if (eso_reset(sc) != 0) {
295 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
296 return;
297 }
298
299 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
300 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
301 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
302 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
303
304 /* Enable the relevant (DMA) interrupts. */
305 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
306 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
307 ESO_IO_IRQCTL_MPUIRQ);
308
309 /* Set up A1's sample rate generator for new-style parameters. */
310 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
311 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
312 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
313
314 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
315 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
316 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
317 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
318 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
319
320 /* Set mixer regs to something reasonable, needs work. */
321 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
322 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
323 eso_set_monoinbypass(sc, 0);
324 eso_set_preamp(sc, 1);
325 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
326 int v;
327
328 switch (idx) {
329 case ESO_MIC_PLAY_VOL:
330 case ESO_LINE_PLAY_VOL:
331 case ESO_CD_PLAY_VOL:
332 case ESO_MONO_PLAY_VOL:
333 case ESO_AUXB_PLAY_VOL:
334 case ESO_DAC_REC_VOL:
335 case ESO_LINE_REC_VOL:
336 case ESO_SYNTH_REC_VOL:
337 case ESO_CD_REC_VOL:
338 case ESO_MONO_REC_VOL:
339 case ESO_AUXB_REC_VOL:
340 case ESO_SPATIALIZER:
341 v = 0;
342 break;
343 case ESO_MASTER_VOL:
344 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
345 break;
346 default:
347 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
348 break;
349 }
350 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
351 eso_set_gain(sc, idx);
352 }
353 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
354
355 /* Map and establish the interrupt. */
356 if (pci_intr_map(pa, &ih)) {
357 aprint_error("%s: couldn't map interrupt\n",
358 sc->sc_dev.dv_xname);
359 return;
360 }
361 intrstring = pci_intr_string(pa->pa_pc, ih);
362 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
363 if (sc->sc_ih == NULL) {
364 aprint_error("%s: couldn't establish interrupt",
365 sc->sc_dev.dv_xname);
366 if (intrstring != NULL)
367 aprint_normal(" at %s", intrstring);
368 aprint_normal("\n");
369 return;
370 }
371 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
372 intrstring);
373
374 /*
375 * Set up the DDMA Control register; a suitable I/O region has been
376 * supposedly mapped in the VC base address register.
377 *
378 * The Solo-1 has an ... interesting silicon bug that causes it to
379 * not respond to I/O space accesses to the Audio 1 DMA controller
380 * if the latter's mapping base address is aligned on a 1K boundary.
381 * As a consequence, it is quite possible for the mapping provided
382 * in the VC BAR to be useless. To work around this, we defer this
383 * part until all autoconfiguration on our parent bus is completed
384 * and then try to map it ourselves in fulfillment of the constraint.
385 *
386 * According to the register map we may write to the low 16 bits
387 * only, but experimenting has shown we're safe.
388 * -kjk
389 */
390 if (ESO_VALID_DDMAC_BASE(vcbase)) {
391 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
392 vcbase | ESO_PCI_DDMAC_DE);
393 sc->sc_dmac_configured = 1;
394
395 aprint_normal(
396 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
397 sc->sc_dev.dv_xname, (unsigned long)vcbase);
398 } else {
399 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
400 sc->sc_dev.dv_xname, (unsigned long)vcbase));
401 sc->sc_pa = *pa;
402 config_defer(self, eso_defer);
403 }
404
405 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
406
407 aa.type = AUDIODEV_TYPE_OPL;
408 aa.hwif = NULL;
409 aa.hdl = NULL;
410 (void)config_found(&sc->sc_dev, &aa, audioprint);
411
412 aa.type = AUDIODEV_TYPE_MPU;
413 aa.hwif = NULL;
414 aa.hdl = NULL;
415 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
416 if (sc->sc_mpudev != NULL) {
417 /* Unmask the MPU irq. */
418 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
419 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
420 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
421 }
422
423 aa.type = AUDIODEV_TYPE_AUX;
424 aa.hwif = NULL;
425 aa.hdl = NULL;
426 (void)config_found(&sc->sc_dev, &aa, eso_print);
427 }
428
429 static void
430 eso_defer(struct device *self)
431 {
432 struct eso_softc *sc;
433 struct pci_attach_args *pa;
434 bus_addr_t addr, start;
435
436 sc = (struct eso_softc *)self;
437 pa = &sc->sc_pa;
438 aprint_normal("%s: ", sc->sc_dev.dv_xname);
439
440 /*
441 * This is outright ugly, but since we must not make assumptions
442 * on the underlying allocator's behaviour it's the most straight-
443 * forward way to implement it. Note that we skip over the first
444 * 1K region, which is typically occupied by an attached ISA bus.
445 */
446 for (start = 0x0400; start < 0xffff; start += 0x0400) {
447 if (bus_space_alloc(sc->sc_iot,
448 start + sc->sc_vcsize, start + 0x0400 - 1,
449 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
450 &sc->sc_dmac_ioh) != 0)
451 continue;
452
453 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
454 addr | ESO_PCI_DDMAC_DE);
455 sc->sc_dmac_iot = sc->sc_iot;
456 sc->sc_dmac_configured = 1;
457 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
458 (unsigned long)addr);
459
460 return;
461 }
462
463 aprint_error("can't map Audio 1 DMA into I/O space\n");
464 }
465
466 /* ARGSUSED */
467 static int
468 eso_print(void *aux, const char *pnp)
469 {
470
471 /* Only joys can attach via this; easy. */
472 if (pnp)
473 aprint_normal("joy at %s:", pnp);
474
475 return UNCONF;
476 }
477
478 static void
479 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
480 {
481 int i;
482
483 /* Poll for busy indicator to become clear. */
484 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
485 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
486 & ESO_SB_RSR_BUSY) == 0) {
487 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
488 ESO_SB_WDR, cmd);
489 return;
490 } else {
491 delay(10);
492 }
493 }
494
495 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
496 return;
497 }
498
499 /* Write to a controller register */
500 static void
501 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
502 {
503
504 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
505
506 eso_write_cmd(sc, reg);
507 eso_write_cmd(sc, val);
508 }
509
510 /* Read out the Read Data Register */
511 static uint8_t
512 eso_read_rdr(struct eso_softc *sc)
513 {
514 int i;
515
516 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
517 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
518 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
519 return (bus_space_read_1(sc->sc_sb_iot,
520 sc->sc_sb_ioh, ESO_SB_RDR));
521 } else {
522 delay(10);
523 }
524 }
525
526 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
527 return (-1);
528 }
529
530 static uint8_t
531 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
532 {
533
534 eso_write_cmd(sc, ESO_CMD_RCR);
535 eso_write_cmd(sc, reg);
536 return eso_read_rdr(sc);
537 }
538
539 static void
540 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
541 {
542 int s;
543
544 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
545
546 s = splaudio();
547 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
548 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
549 splx(s);
550 }
551
552 static uint8_t
553 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
554 {
555 int s;
556 uint8_t val;
557
558 s = splaudio();
559 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
560 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
561 splx(s);
562
563 return val;
564 }
565
566 static int
567 eso_intr(void *hdl)
568 {
569 struct eso_softc *sc;
570 uint8_t irqctl;
571
572 sc = hdl;
573 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
574
575 /* If it wasn't ours, that's all she wrote. */
576 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
577 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
578 return 0;
579
580 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
581 /* Clear interrupt. */
582 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
583 ESO_SB_RBSR);
584
585 if (sc->sc_rintr)
586 sc->sc_rintr(sc->sc_rarg);
587 else
588 wakeup(&sc->sc_rintr);
589 }
590
591 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
592 /*
593 * Clear the A2 IRQ latch: the cached value reflects the
594 * current DAC settings with the IRQ latch bit not set.
595 */
596 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
597
598 if (sc->sc_pintr)
599 sc->sc_pintr(sc->sc_parg);
600 else
601 wakeup(&sc->sc_pintr);
602 }
603
604 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
605 /* Clear interrupt. */
606 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
607
608 /*
609 * Raise a flag to cause a lazy update of the in-softc gain
610 * values the next time the software mixer is read to keep
611 * interrupt service cost low. ~0 cannot occur otherwise
612 * as the master volume has a precision of 6 bits only.
613 */
614 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
615 }
616
617 #if NMPU > 0
618 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
619 mpu_intr(sc->sc_mpudev);
620 #endif
621
622 return 1;
623 }
624
625 /* Perform a software reset, including DMA FIFOs. */
626 static int
627 eso_reset(struct eso_softc *sc)
628 {
629 int i;
630
631 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
632 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
633 /* `Delay' suggested in the data sheet. */
634 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
635 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
636
637 /* Wait for reset to take effect. */
638 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
639 /* Poll for data to become available. */
640 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
641 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
642 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
643 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
644
645 /* Activate Solo-1 extension commands. */
646 eso_write_cmd(sc, ESO_CMD_EXTENB);
647 /* Reset mixer registers. */
648 eso_write_mixreg(sc, ESO_MIXREG_RESET,
649 ESO_MIXREG_RESET_RESET);
650
651 return 0;
652 } else {
653 delay(1000);
654 }
655 }
656
657 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
658 return -1;
659 }
660
661 static int
662 eso_query_encoding(void *hdl, struct audio_encoding *fp)
663 {
664
665 switch (fp->index) {
666 case 0:
667 strcpy(fp->name, AudioEulinear);
668 fp->encoding = AUDIO_ENCODING_ULINEAR;
669 fp->precision = 8;
670 fp->flags = 0;
671 break;
672 case 1:
673 strcpy(fp->name, AudioEmulaw);
674 fp->encoding = AUDIO_ENCODING_ULAW;
675 fp->precision = 8;
676 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
677 break;
678 case 2:
679 strcpy(fp->name, AudioEalaw);
680 fp->encoding = AUDIO_ENCODING_ALAW;
681 fp->precision = 8;
682 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
683 break;
684 case 3:
685 strcpy(fp->name, AudioEslinear);
686 fp->encoding = AUDIO_ENCODING_SLINEAR;
687 fp->precision = 8;
688 fp->flags = 0;
689 break;
690 case 4:
691 strcpy(fp->name, AudioEslinear_le);
692 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
693 fp->precision = 16;
694 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
695 break;
696 case 5:
697 strcpy(fp->name, AudioEulinear_le);
698 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
699 fp->precision = 16;
700 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
701 break;
702 case 6:
703 strcpy(fp->name, AudioEslinear_be);
704 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
705 fp->precision = 16;
706 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
707 break;
708 case 7:
709 strcpy(fp->name, AudioEulinear_be);
710 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
711 fp->precision = 16;
712 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
713 break;
714 default:
715 return EINVAL;
716 }
717
718 return 0;
719 }
720
721 static int
722 eso_set_params(void *hdl, int setmode, int usemode,
723 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
724 stream_filter_list_t *rfil)
725 {
726 struct eso_softc *sc;
727 struct audio_params *p;
728 stream_filter_list_t *fil;
729 int mode, r[2], rd[2], ar[2], clk;
730 unsigned int srg, fltdiv;
731 int i;
732
733 sc = hdl;
734 for (mode = AUMODE_RECORD; mode != -1;
735 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
736 if ((setmode & mode) == 0)
737 continue;
738
739 p = (mode == AUMODE_PLAY) ? play : rec;
740
741 if (p->sample_rate < ESO_MINRATE ||
742 p->sample_rate > ESO_MAXRATE ||
743 (p->precision != 8 && p->precision != 16) ||
744 (p->channels != 1 && p->channels != 2))
745 return EINVAL;
746
747 /*
748 * We'll compute both possible sample rate dividers and pick
749 * the one with the least error.
750 */
751 #define ABS(x) ((x) < 0 ? -(x) : (x))
752 r[0] = ESO_CLK0 /
753 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
754 r[1] = ESO_CLK1 /
755 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
756
757 ar[0] = p->sample_rate - r[0];
758 ar[1] = p->sample_rate - r[1];
759 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
760 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
761
762 /* Roll-off frequency of 87%, as in the ES1888 driver. */
763 fltdiv = 256 - 200279L / r[clk];
764
765 /* Update to reflect the possibly inexact rate. */
766 p->sample_rate = r[clk];
767
768 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
769 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
770 mode, p, FALSE, fil);
771 if (i < 0)
772 return EINVAL;
773 if (mode == AUMODE_RECORD) {
774 /* Audio 1 */
775 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
776 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
777 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
778 } else {
779 /* Audio 2 */
780 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
781 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
782 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
783 }
784 #undef ABS
785
786 }
787
788 return 0;
789 }
790
791 static int
792 eso_round_blocksize(void *hdl, int blk, int mode,
793 const audio_params_t *param)
794 {
795
796 return blk & -32; /* keep good alignment; at least 16 req'd */
797 }
798
799 static int
800 eso_halt_output(void *hdl)
801 {
802 struct eso_softc *sc;
803 int error, s;
804
805 sc = hdl;
806 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
807
808 /*
809 * Disable auto-initialize DMA, allowing the FIFO to drain and then
810 * stop. The interrupt callback pointer is cleared at this
811 * point so that an outstanding FIFO interrupt for the remaining data
812 * will be acknowledged without further processing.
813 *
814 * This does not immediately `abort' an operation in progress (c.f.
815 * audio(9)) but is the method to leave the FIFO behind in a clean
816 * state with the least hair. (Besides, that item needs to be
817 * rephrased for trigger_*()-based DMA environments.)
818 */
819 s = splaudio();
820 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
821 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
822 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
823 ESO_IO_A2DMAM_DMAENB);
824
825 sc->sc_pintr = NULL;
826 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
827 splx(s);
828
829 /* Shut down DMA completely. */
830 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
831 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
832
833 return error == EWOULDBLOCK ? 0 : error;
834 }
835
836 static int
837 eso_halt_input(void *hdl)
838 {
839 struct eso_softc *sc;
840 int error, s;
841
842 sc = hdl;
843 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
844
845 /* Just like eso_halt_output(), but for Audio 1. */
846 s = splaudio();
847 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
848 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
849 ESO_CTLREG_A1C2_DMAENB);
850 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
851 DMA37MD_WRITE | DMA37MD_DEMAND);
852
853 sc->sc_rintr = NULL;
854 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
855 splx(s);
856
857 /* Shut down DMA completely. */
858 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
859 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
860 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
861 ESO_DMAC_MASK_MASK);
862
863 return error == EWOULDBLOCK ? 0 : error;
864 }
865
866 static int
867 eso_getdev(void *hdl, struct audio_device *retp)
868 {
869 struct eso_softc *sc;
870
871 sc = hdl;
872 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
873 snprintf(retp->version, sizeof (retp->version), "0x%02x",
874 sc->sc_revision);
875 if (sc->sc_revision <
876 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
877 strncpy(retp->config, eso_rev2model[sc->sc_revision],
878 sizeof (retp->config));
879 else
880 strncpy(retp->config, "unknown", sizeof (retp->config));
881
882 return 0;
883 }
884
885 static int
886 eso_set_port(void *hdl, mixer_ctrl_t *cp)
887 {
888 struct eso_softc *sc;
889 unsigned int lgain, rgain;
890 uint8_t tmp;
891
892 sc = hdl;
893 switch (cp->dev) {
894 case ESO_DAC_PLAY_VOL:
895 case ESO_MIC_PLAY_VOL:
896 case ESO_LINE_PLAY_VOL:
897 case ESO_SYNTH_PLAY_VOL:
898 case ESO_CD_PLAY_VOL:
899 case ESO_AUXB_PLAY_VOL:
900 case ESO_RECORD_VOL:
901 case ESO_DAC_REC_VOL:
902 case ESO_MIC_REC_VOL:
903 case ESO_LINE_REC_VOL:
904 case ESO_SYNTH_REC_VOL:
905 case ESO_CD_REC_VOL:
906 case ESO_AUXB_REC_VOL:
907 if (cp->type != AUDIO_MIXER_VALUE)
908 return EINVAL;
909
910 /*
911 * Stereo-capable mixer ports: if we get a single-channel
912 * gain value passed in, then we duplicate it to both left
913 * and right channels.
914 */
915 switch (cp->un.value.num_channels) {
916 case 1:
917 lgain = rgain = ESO_GAIN_TO_4BIT(
918 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
919 break;
920 case 2:
921 lgain = ESO_GAIN_TO_4BIT(
922 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
923 rgain = ESO_GAIN_TO_4BIT(
924 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
925 break;
926 default:
927 return EINVAL;
928 }
929
930 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
931 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
932 eso_set_gain(sc, cp->dev);
933 break;
934
935 case ESO_MASTER_VOL:
936 if (cp->type != AUDIO_MIXER_VALUE)
937 return EINVAL;
938
939 /* Like above, but a precision of 6 bits. */
940 switch (cp->un.value.num_channels) {
941 case 1:
942 lgain = rgain = ESO_GAIN_TO_6BIT(
943 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
944 break;
945 case 2:
946 lgain = ESO_GAIN_TO_6BIT(
947 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
948 rgain = ESO_GAIN_TO_6BIT(
949 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
950 break;
951 default:
952 return EINVAL;
953 }
954
955 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
956 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
957 eso_set_gain(sc, cp->dev);
958 break;
959
960 case ESO_SPATIALIZER:
961 if (cp->type != AUDIO_MIXER_VALUE ||
962 cp->un.value.num_channels != 1)
963 return EINVAL;
964
965 sc->sc_gain[cp->dev][ESO_LEFT] =
966 sc->sc_gain[cp->dev][ESO_RIGHT] =
967 ESO_GAIN_TO_6BIT(
968 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
969 eso_set_gain(sc, cp->dev);
970 break;
971
972 case ESO_MONO_PLAY_VOL:
973 case ESO_MONO_REC_VOL:
974 if (cp->type != AUDIO_MIXER_VALUE ||
975 cp->un.value.num_channels != 1)
976 return EINVAL;
977
978 sc->sc_gain[cp->dev][ESO_LEFT] =
979 sc->sc_gain[cp->dev][ESO_RIGHT] =
980 ESO_GAIN_TO_4BIT(
981 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
982 eso_set_gain(sc, cp->dev);
983 break;
984
985 case ESO_PCSPEAKER_VOL:
986 if (cp->type != AUDIO_MIXER_VALUE ||
987 cp->un.value.num_channels != 1)
988 return EINVAL;
989
990 sc->sc_gain[cp->dev][ESO_LEFT] =
991 sc->sc_gain[cp->dev][ESO_RIGHT] =
992 ESO_GAIN_TO_3BIT(
993 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
994 eso_set_gain(sc, cp->dev);
995 break;
996
997 case ESO_SPATIALIZER_ENABLE:
998 if (cp->type != AUDIO_MIXER_ENUM)
999 return EINVAL;
1000
1001 sc->sc_spatializer = (cp->un.ord != 0);
1002
1003 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1004 if (sc->sc_spatializer)
1005 tmp |= ESO_MIXREG_SPAT_ENB;
1006 else
1007 tmp &= ~ESO_MIXREG_SPAT_ENB;
1008 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1009 tmp | ESO_MIXREG_SPAT_RSTREL);
1010 break;
1011
1012 case ESO_MASTER_MUTE:
1013 if (cp->type != AUDIO_MIXER_ENUM)
1014 return EINVAL;
1015
1016 sc->sc_mvmute = (cp->un.ord != 0);
1017
1018 if (sc->sc_mvmute) {
1019 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1020 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1021 ESO_MIXREG_LMVM_MUTE);
1022 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1023 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1024 ESO_MIXREG_RMVM_MUTE);
1025 } else {
1026 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1027 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1028 ~ESO_MIXREG_LMVM_MUTE);
1029 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1030 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1031 ~ESO_MIXREG_RMVM_MUTE);
1032 }
1033 break;
1034
1035 case ESO_MONOOUT_SOURCE:
1036 if (cp->type != AUDIO_MIXER_ENUM)
1037 return EINVAL;
1038
1039 return eso_set_monooutsrc(sc, cp->un.ord);
1040
1041 case ESO_MONOIN_BYPASS:
1042 if (cp->type != AUDIO_MIXER_ENUM)
1043 return EINVAL;
1044
1045 return (eso_set_monoinbypass(sc, cp->un.ord));
1046
1047 case ESO_RECORD_MONITOR:
1048 if (cp->type != AUDIO_MIXER_ENUM)
1049 return EINVAL;
1050
1051 sc->sc_recmon = (cp->un.ord != 0);
1052
1053 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1054 if (sc->sc_recmon)
1055 tmp |= ESO_CTLREG_ACTL_RECMON;
1056 else
1057 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1058 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1059 break;
1060
1061 case ESO_RECORD_SOURCE:
1062 if (cp->type != AUDIO_MIXER_ENUM)
1063 return EINVAL;
1064
1065 return eso_set_recsrc(sc, cp->un.ord);
1066
1067 case ESO_MIC_PREAMP:
1068 if (cp->type != AUDIO_MIXER_ENUM)
1069 return EINVAL;
1070
1071 return eso_set_preamp(sc, cp->un.ord);
1072
1073 default:
1074 return EINVAL;
1075 }
1076
1077 return 0;
1078 }
1079
1080 static int
1081 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1082 {
1083 struct eso_softc *sc;
1084
1085 sc = hdl;
1086 switch (cp->dev) {
1087 case ESO_MASTER_VOL:
1088 /* Reload from mixer after hardware volume control use. */
1089 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1090 eso_reload_master_vol(sc);
1091 /* FALLTHROUGH */
1092 case ESO_DAC_PLAY_VOL:
1093 case ESO_MIC_PLAY_VOL:
1094 case ESO_LINE_PLAY_VOL:
1095 case ESO_SYNTH_PLAY_VOL:
1096 case ESO_CD_PLAY_VOL:
1097 case ESO_AUXB_PLAY_VOL:
1098 case ESO_RECORD_VOL:
1099 case ESO_DAC_REC_VOL:
1100 case ESO_MIC_REC_VOL:
1101 case ESO_LINE_REC_VOL:
1102 case ESO_SYNTH_REC_VOL:
1103 case ESO_CD_REC_VOL:
1104 case ESO_AUXB_REC_VOL:
1105 /*
1106 * Stereo-capable ports: if a single-channel query is made,
1107 * just return the left channel's value (since single-channel
1108 * settings themselves are applied to both channels).
1109 */
1110 switch (cp->un.value.num_channels) {
1111 case 1:
1112 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1113 sc->sc_gain[cp->dev][ESO_LEFT];
1114 break;
1115 case 2:
1116 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1117 sc->sc_gain[cp->dev][ESO_LEFT];
1118 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1119 sc->sc_gain[cp->dev][ESO_RIGHT];
1120 break;
1121 default:
1122 return EINVAL;
1123 }
1124 break;
1125
1126 case ESO_MONO_PLAY_VOL:
1127 case ESO_PCSPEAKER_VOL:
1128 case ESO_MONO_REC_VOL:
1129 case ESO_SPATIALIZER:
1130 if (cp->un.value.num_channels != 1)
1131 return EINVAL;
1132 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1133 sc->sc_gain[cp->dev][ESO_LEFT];
1134 break;
1135
1136 case ESO_RECORD_MONITOR:
1137 cp->un.ord = sc->sc_recmon;
1138 break;
1139
1140 case ESO_RECORD_SOURCE:
1141 cp->un.ord = sc->sc_recsrc;
1142 break;
1143
1144 case ESO_MONOOUT_SOURCE:
1145 cp->un.ord = sc->sc_monooutsrc;
1146 break;
1147
1148 case ESO_MONOIN_BYPASS:
1149 cp->un.ord = sc->sc_monoinbypass;
1150 break;
1151
1152 case ESO_SPATIALIZER_ENABLE:
1153 cp->un.ord = sc->sc_spatializer;
1154 break;
1155
1156 case ESO_MIC_PREAMP:
1157 cp->un.ord = sc->sc_preamp;
1158 break;
1159
1160 case ESO_MASTER_MUTE:
1161 /* Reload from mixer after hardware volume control use. */
1162 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1163 eso_reload_master_vol(sc);
1164 cp->un.ord = sc->sc_mvmute;
1165 break;
1166
1167 default:
1168 return EINVAL;
1169 }
1170
1171 return 0;
1172 }
1173
1174 static int
1175 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1176 {
1177
1178 switch (dip->index) {
1179 case ESO_DAC_PLAY_VOL:
1180 dip->mixer_class = ESO_INPUT_CLASS;
1181 dip->next = dip->prev = AUDIO_MIXER_LAST;
1182 strcpy(dip->label.name, AudioNdac);
1183 dip->type = AUDIO_MIXER_VALUE;
1184 dip->un.v.num_channels = 2;
1185 strcpy(dip->un.v.units.name, AudioNvolume);
1186 break;
1187 case ESO_MIC_PLAY_VOL:
1188 dip->mixer_class = ESO_INPUT_CLASS;
1189 dip->next = dip->prev = AUDIO_MIXER_LAST;
1190 strcpy(dip->label.name, AudioNmicrophone);
1191 dip->type = AUDIO_MIXER_VALUE;
1192 dip->un.v.num_channels = 2;
1193 strcpy(dip->un.v.units.name, AudioNvolume);
1194 break;
1195 case ESO_LINE_PLAY_VOL:
1196 dip->mixer_class = ESO_INPUT_CLASS;
1197 dip->next = dip->prev = AUDIO_MIXER_LAST;
1198 strcpy(dip->label.name, AudioNline);
1199 dip->type = AUDIO_MIXER_VALUE;
1200 dip->un.v.num_channels = 2;
1201 strcpy(dip->un.v.units.name, AudioNvolume);
1202 break;
1203 case ESO_SYNTH_PLAY_VOL:
1204 dip->mixer_class = ESO_INPUT_CLASS;
1205 dip->next = dip->prev = AUDIO_MIXER_LAST;
1206 strcpy(dip->label.name, AudioNfmsynth);
1207 dip->type = AUDIO_MIXER_VALUE;
1208 dip->un.v.num_channels = 2;
1209 strcpy(dip->un.v.units.name, AudioNvolume);
1210 break;
1211 case ESO_MONO_PLAY_VOL:
1212 dip->mixer_class = ESO_INPUT_CLASS;
1213 dip->next = dip->prev = AUDIO_MIXER_LAST;
1214 strcpy(dip->label.name, "mono_in");
1215 dip->type = AUDIO_MIXER_VALUE;
1216 dip->un.v.num_channels = 1;
1217 strcpy(dip->un.v.units.name, AudioNvolume);
1218 break;
1219 case ESO_CD_PLAY_VOL:
1220 dip->mixer_class = ESO_INPUT_CLASS;
1221 dip->next = dip->prev = AUDIO_MIXER_LAST;
1222 strcpy(dip->label.name, AudioNcd);
1223 dip->type = AUDIO_MIXER_VALUE;
1224 dip->un.v.num_channels = 2;
1225 strcpy(dip->un.v.units.name, AudioNvolume);
1226 break;
1227 case ESO_AUXB_PLAY_VOL:
1228 dip->mixer_class = ESO_INPUT_CLASS;
1229 dip->next = dip->prev = AUDIO_MIXER_LAST;
1230 strcpy(dip->label.name, "auxb");
1231 dip->type = AUDIO_MIXER_VALUE;
1232 dip->un.v.num_channels = 2;
1233 strcpy(dip->un.v.units.name, AudioNvolume);
1234 break;
1235
1236 case ESO_MIC_PREAMP:
1237 dip->mixer_class = ESO_MICROPHONE_CLASS;
1238 dip->next = dip->prev = AUDIO_MIXER_LAST;
1239 strcpy(dip->label.name, AudioNpreamp);
1240 dip->type = AUDIO_MIXER_ENUM;
1241 dip->un.e.num_mem = 2;
1242 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1243 dip->un.e.member[0].ord = 0;
1244 strcpy(dip->un.e.member[1].label.name, AudioNon);
1245 dip->un.e.member[1].ord = 1;
1246 break;
1247 case ESO_MICROPHONE_CLASS:
1248 dip->mixer_class = ESO_MICROPHONE_CLASS;
1249 dip->next = dip->prev = AUDIO_MIXER_LAST;
1250 strcpy(dip->label.name, AudioNmicrophone);
1251 dip->type = AUDIO_MIXER_CLASS;
1252 break;
1253
1254 case ESO_INPUT_CLASS:
1255 dip->mixer_class = ESO_INPUT_CLASS;
1256 dip->next = dip->prev = AUDIO_MIXER_LAST;
1257 strcpy(dip->label.name, AudioCinputs);
1258 dip->type = AUDIO_MIXER_CLASS;
1259 break;
1260
1261 case ESO_MASTER_VOL:
1262 dip->mixer_class = ESO_OUTPUT_CLASS;
1263 dip->prev = AUDIO_MIXER_LAST;
1264 dip->next = ESO_MASTER_MUTE;
1265 strcpy(dip->label.name, AudioNmaster);
1266 dip->type = AUDIO_MIXER_VALUE;
1267 dip->un.v.num_channels = 2;
1268 strcpy(dip->un.v.units.name, AudioNvolume);
1269 break;
1270 case ESO_MASTER_MUTE:
1271 dip->mixer_class = ESO_OUTPUT_CLASS;
1272 dip->prev = ESO_MASTER_VOL;
1273 dip->next = AUDIO_MIXER_LAST;
1274 strcpy(dip->label.name, AudioNmute);
1275 dip->type = AUDIO_MIXER_ENUM;
1276 dip->un.e.num_mem = 2;
1277 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1278 dip->un.e.member[0].ord = 0;
1279 strcpy(dip->un.e.member[1].label.name, AudioNon);
1280 dip->un.e.member[1].ord = 1;
1281 break;
1282
1283 case ESO_PCSPEAKER_VOL:
1284 dip->mixer_class = ESO_OUTPUT_CLASS;
1285 dip->next = dip->prev = AUDIO_MIXER_LAST;
1286 strcpy(dip->label.name, "pc_speaker");
1287 dip->type = AUDIO_MIXER_VALUE;
1288 dip->un.v.num_channels = 1;
1289 strcpy(dip->un.v.units.name, AudioNvolume);
1290 break;
1291 case ESO_MONOOUT_SOURCE:
1292 dip->mixer_class = ESO_OUTPUT_CLASS;
1293 dip->next = dip->prev = AUDIO_MIXER_LAST;
1294 strcpy(dip->label.name, "mono_out");
1295 dip->type = AUDIO_MIXER_ENUM;
1296 dip->un.e.num_mem = 3;
1297 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1298 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1299 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1300 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1301 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1302 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1303 break;
1304
1305 case ESO_MONOIN_BYPASS:
1306 dip->mixer_class = ESO_MONOIN_CLASS;
1307 dip->next = dip->prev = AUDIO_MIXER_LAST;
1308 strcpy(dip->label.name, "bypass");
1309 dip->type = AUDIO_MIXER_ENUM;
1310 dip->un.e.num_mem = 2;
1311 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1312 dip->un.e.member[0].ord = 0;
1313 strcpy(dip->un.e.member[1].label.name, AudioNon);
1314 dip->un.e.member[1].ord = 1;
1315 break;
1316 case ESO_MONOIN_CLASS:
1317 dip->mixer_class = ESO_MONOIN_CLASS;
1318 dip->next = dip->prev = AUDIO_MIXER_LAST;
1319 strcpy(dip->label.name, "mono_in");
1320 dip->type = AUDIO_MIXER_CLASS;
1321 break;
1322
1323 case ESO_SPATIALIZER:
1324 dip->mixer_class = ESO_OUTPUT_CLASS;
1325 dip->prev = AUDIO_MIXER_LAST;
1326 dip->next = ESO_SPATIALIZER_ENABLE;
1327 strcpy(dip->label.name, AudioNspatial);
1328 dip->type = AUDIO_MIXER_VALUE;
1329 dip->un.v.num_channels = 1;
1330 strcpy(dip->un.v.units.name, "level");
1331 break;
1332 case ESO_SPATIALIZER_ENABLE:
1333 dip->mixer_class = ESO_OUTPUT_CLASS;
1334 dip->prev = ESO_SPATIALIZER;
1335 dip->next = AUDIO_MIXER_LAST;
1336 strcpy(dip->label.name, "enable");
1337 dip->type = AUDIO_MIXER_ENUM;
1338 dip->un.e.num_mem = 2;
1339 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1340 dip->un.e.member[0].ord = 0;
1341 strcpy(dip->un.e.member[1].label.name, AudioNon);
1342 dip->un.e.member[1].ord = 1;
1343 break;
1344
1345 case ESO_OUTPUT_CLASS:
1346 dip->mixer_class = ESO_OUTPUT_CLASS;
1347 dip->next = dip->prev = AUDIO_MIXER_LAST;
1348 strcpy(dip->label.name, AudioCoutputs);
1349 dip->type = AUDIO_MIXER_CLASS;
1350 break;
1351
1352 case ESO_RECORD_MONITOR:
1353 dip->mixer_class = ESO_MONITOR_CLASS;
1354 dip->next = dip->prev = AUDIO_MIXER_LAST;
1355 strcpy(dip->label.name, AudioNmute);
1356 dip->type = AUDIO_MIXER_ENUM;
1357 dip->un.e.num_mem = 2;
1358 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1359 dip->un.e.member[0].ord = 0;
1360 strcpy(dip->un.e.member[1].label.name, AudioNon);
1361 dip->un.e.member[1].ord = 1;
1362 break;
1363 case ESO_MONITOR_CLASS:
1364 dip->mixer_class = ESO_MONITOR_CLASS;
1365 dip->next = dip->prev = AUDIO_MIXER_LAST;
1366 strcpy(dip->label.name, AudioCmonitor);
1367 dip->type = AUDIO_MIXER_CLASS;
1368 break;
1369
1370 case ESO_RECORD_VOL:
1371 dip->mixer_class = ESO_RECORD_CLASS;
1372 dip->next = dip->prev = AUDIO_MIXER_LAST;
1373 strcpy(dip->label.name, AudioNrecord);
1374 dip->type = AUDIO_MIXER_VALUE;
1375 strcpy(dip->un.v.units.name, AudioNvolume);
1376 break;
1377 case ESO_RECORD_SOURCE:
1378 dip->mixer_class = ESO_RECORD_CLASS;
1379 dip->next = dip->prev = AUDIO_MIXER_LAST;
1380 strcpy(dip->label.name, AudioNsource);
1381 dip->type = AUDIO_MIXER_ENUM;
1382 dip->un.e.num_mem = 4;
1383 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1384 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1385 strcpy(dip->un.e.member[1].label.name, AudioNline);
1386 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1387 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1388 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1389 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1390 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1391 break;
1392 case ESO_DAC_REC_VOL:
1393 dip->mixer_class = ESO_RECORD_CLASS;
1394 dip->next = dip->prev = AUDIO_MIXER_LAST;
1395 strcpy(dip->label.name, AudioNdac);
1396 dip->type = AUDIO_MIXER_VALUE;
1397 dip->un.v.num_channels = 2;
1398 strcpy(dip->un.v.units.name, AudioNvolume);
1399 break;
1400 case ESO_MIC_REC_VOL:
1401 dip->mixer_class = ESO_RECORD_CLASS;
1402 dip->next = dip->prev = AUDIO_MIXER_LAST;
1403 strcpy(dip->label.name, AudioNmicrophone);
1404 dip->type = AUDIO_MIXER_VALUE;
1405 dip->un.v.num_channels = 2;
1406 strcpy(dip->un.v.units.name, AudioNvolume);
1407 break;
1408 case ESO_LINE_REC_VOL:
1409 dip->mixer_class = ESO_RECORD_CLASS;
1410 dip->next = dip->prev = AUDIO_MIXER_LAST;
1411 strcpy(dip->label.name, AudioNline);
1412 dip->type = AUDIO_MIXER_VALUE;
1413 dip->un.v.num_channels = 2;
1414 strcpy(dip->un.v.units.name, AudioNvolume);
1415 break;
1416 case ESO_SYNTH_REC_VOL:
1417 dip->mixer_class = ESO_RECORD_CLASS;
1418 dip->next = dip->prev = AUDIO_MIXER_LAST;
1419 strcpy(dip->label.name, AudioNfmsynth);
1420 dip->type = AUDIO_MIXER_VALUE;
1421 dip->un.v.num_channels = 2;
1422 strcpy(dip->un.v.units.name, AudioNvolume);
1423 break;
1424 case ESO_MONO_REC_VOL:
1425 dip->mixer_class = ESO_RECORD_CLASS;
1426 dip->next = dip->prev = AUDIO_MIXER_LAST;
1427 strcpy(dip->label.name, "mono_in");
1428 dip->type = AUDIO_MIXER_VALUE;
1429 dip->un.v.num_channels = 1; /* No lies */
1430 strcpy(dip->un.v.units.name, AudioNvolume);
1431 break;
1432 case ESO_CD_REC_VOL:
1433 dip->mixer_class = ESO_RECORD_CLASS;
1434 dip->next = dip->prev = AUDIO_MIXER_LAST;
1435 strcpy(dip->label.name, AudioNcd);
1436 dip->type = AUDIO_MIXER_VALUE;
1437 dip->un.v.num_channels = 2;
1438 strcpy(dip->un.v.units.name, AudioNvolume);
1439 break;
1440 case ESO_AUXB_REC_VOL:
1441 dip->mixer_class = ESO_RECORD_CLASS;
1442 dip->next = dip->prev = AUDIO_MIXER_LAST;
1443 strcpy(dip->label.name, "auxb");
1444 dip->type = AUDIO_MIXER_VALUE;
1445 dip->un.v.num_channels = 2;
1446 strcpy(dip->un.v.units.name, AudioNvolume);
1447 break;
1448 case ESO_RECORD_CLASS:
1449 dip->mixer_class = ESO_RECORD_CLASS;
1450 dip->next = dip->prev = AUDIO_MIXER_LAST;
1451 strcpy(dip->label.name, AudioCrecord);
1452 dip->type = AUDIO_MIXER_CLASS;
1453 break;
1454
1455 default:
1456 return ENXIO;
1457 }
1458
1459 return 0;
1460 }
1461
1462 static int
1463 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1464 size_t boundary, int flags, int direction, struct eso_dma *ed)
1465 {
1466 int error, wait;
1467
1468 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1469 ed->ed_size = size;
1470
1471 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1472 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1473 &ed->ed_nsegs, wait);
1474 if (error)
1475 goto out;
1476
1477 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1478 ed->ed_size, &ed->ed_kva, wait | BUS_DMA_COHERENT);
1479 if (error)
1480 goto free;
1481
1482 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1483 wait, &ed->ed_map);
1484 if (error)
1485 goto unmap;
1486
1487 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1488 ed->ed_size, NULL, wait |
1489 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1490 if (error)
1491 goto destroy;
1492
1493 return 0;
1494
1495 destroy:
1496 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1497 unmap:
1498 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1499 free:
1500 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1501 out:
1502 return error;
1503 }
1504
1505 static void
1506 eso_freemem(struct eso_dma *ed)
1507 {
1508
1509 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1510 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1511 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1512 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1513 }
1514
1515 static struct eso_dma *
1516 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1517 {
1518 struct eso_dma *p;
1519
1520 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1521 if (KVADDR(p) == kva)
1522 return p;
1523 }
1524
1525 panic("%s: kva2dma: bad kva: %p", sc->sc_dev.dv_xname, kva);
1526 /* NOTREACHED */
1527 }
1528
1529 static void *
1530 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type,
1531 int flags)
1532 {
1533 struct eso_softc *sc;
1534 struct eso_dma *ed;
1535 size_t boundary;
1536 int error;
1537
1538 sc = hdl;
1539 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1540 return NULL;
1541
1542 /*
1543 * Apparently the Audio 1 DMA controller's current address
1544 * register can't roll over a 64K address boundary, so we have to
1545 * take care of that ourselves. Similarly, the Audio 2 DMA
1546 * controller needs a 1M address boundary.
1547 */
1548 if (direction == AUMODE_RECORD)
1549 boundary = 0x10000;
1550 else
1551 boundary = 0x100000;
1552
1553 /*
1554 * XXX Work around allocation problems for Audio 1, which
1555 * XXX implements the 24 low address bits only, with
1556 * XXX machine-specific DMA tag use.
1557 */
1558 #ifdef alpha
1559 /*
1560 * XXX Force allocation through the (ISA) SGMAP.
1561 */
1562 if (direction == AUMODE_RECORD)
1563 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1564 else
1565 #elif defined(amd64) || defined(i386)
1566 /*
1567 * XXX Force allocation through the ISA DMA tag.
1568 */
1569 if (direction == AUMODE_RECORD)
1570 ed->ed_dmat = &isa_bus_dma_tag;
1571 else
1572 #endif
1573 ed->ed_dmat = sc->sc_dmat;
1574
1575 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1576 if (error) {
1577 free(ed, type);
1578 return NULL;
1579 }
1580 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1581
1582 return KVADDR(ed);
1583 }
1584
1585 static void
1586 eso_freem(void *hdl, void *addr, struct malloc_type *type)
1587 {
1588 struct eso_softc *sc;
1589 struct eso_dma *p;
1590
1591 sc = hdl;
1592 p = eso_kva2dma(sc, addr);
1593
1594 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1595 eso_freemem(p);
1596 free(p, type);
1597 }
1598
1599 static size_t
1600 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1601 {
1602 size_t maxsize;
1603
1604 /*
1605 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1606 * bytes. This is because IO_A2DMAC is a two byte value
1607 * indicating the literal byte count, and the 4 least significant
1608 * bits are read-only. Zero is not used as a special case for
1609 * 0x10000.
1610 *
1611 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1612 * be represented.
1613 */
1614 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1615
1616 if (bufsize > maxsize)
1617 bufsize = maxsize;
1618
1619 return bufsize;
1620 }
1621
1622 static paddr_t
1623 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1624 {
1625 struct eso_softc *sc;
1626 struct eso_dma *ed;
1627
1628 sc = hdl;
1629 if (offs < 0)
1630 return -1;
1631 ed = eso_kva2dma(sc, addr);
1632
1633 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1634 offs, prot, BUS_DMA_WAITOK);
1635 }
1636
1637 /* ARGSUSED */
1638 static int
1639 eso_get_props(void *hdl)
1640 {
1641
1642 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1643 AUDIO_PROP_FULLDUPLEX;
1644 }
1645
1646 static int
1647 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1648 void (*intr)(void *), void *arg, const audio_params_t *param)
1649 {
1650 struct eso_softc *sc;
1651 struct eso_dma *ed;
1652 uint8_t a2c1;
1653
1654 sc = hdl;
1655 DPRINTF((
1656 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1657 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1658 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1659 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1660 param->precision, param->channels));
1661
1662 /* Find DMA buffer. */
1663 ed = eso_kva2dma(sc, start);
1664 DPRINTF(("%s: dmaaddr %lx\n",
1665 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1666
1667 sc->sc_pintr = intr;
1668 sc->sc_parg = arg;
1669
1670 /* Compute drain timeout. */
1671 sc->sc_pdrain = (blksize * NBBY * hz) /
1672 (param->sample_rate * param->channels *
1673 param->precision) + 2; /* slop */
1674
1675 /* DMA transfer count (in `words'!) reload using 2's complement. */
1676 blksize = -(blksize >> 1);
1677 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1678 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1679
1680 /* Update DAC to reflect DMA count and audio parameters. */
1681 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1682 if (param->precision == 16)
1683 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1684 else
1685 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1686 if (param->channels == 2)
1687 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1688 else
1689 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1690 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1691 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1692 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1693 else
1694 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1695 /* Unmask IRQ. */
1696 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1697 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1698
1699 /* Set up DMA controller. */
1700 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1701 DMAADDR(ed));
1702 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1703 (uint8_t *)end - (uint8_t *)start);
1704 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1705 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1706
1707 /* Start DMA. */
1708 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1709 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1710 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1711 ESO_MIXREG_A2C1_AUTO;
1712 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1713
1714 return 0;
1715 }
1716
1717 static int
1718 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1719 void (*intr)(void *), void *arg, const audio_params_t *param)
1720 {
1721 struct eso_softc *sc;
1722 struct eso_dma *ed;
1723 uint8_t actl, a1c1;
1724
1725 sc = hdl;
1726 DPRINTF((
1727 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1728 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1729 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1730 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1731 param->precision, param->channels));
1732
1733 /*
1734 * If we failed to configure the Audio 1 DMA controller, bail here
1735 * while retaining availability of the DAC direction (in Audio 2).
1736 */
1737 if (!sc->sc_dmac_configured)
1738 return EIO;
1739
1740 /* Find DMA buffer. */
1741 ed = eso_kva2dma(sc, start);
1742 DPRINTF(("%s: dmaaddr %lx\n",
1743 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1744
1745 sc->sc_rintr = intr;
1746 sc->sc_rarg = arg;
1747
1748 /* Compute drain timeout. */
1749 sc->sc_rdrain = (blksize * NBBY * hz) /
1750 (param->sample_rate * param->channels *
1751 param->precision) + 2; /* slop */
1752
1753 /* Set up ADC DMA converter parameters. */
1754 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1755 if (param->channels == 2) {
1756 actl &= ~ESO_CTLREG_ACTL_MONO;
1757 actl |= ESO_CTLREG_ACTL_STEREO;
1758 } else {
1759 actl &= ~ESO_CTLREG_ACTL_STEREO;
1760 actl |= ESO_CTLREG_ACTL_MONO;
1761 }
1762 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1763
1764 /* Set up Transfer Type: maybe move to attach time? */
1765 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1766
1767 /* DMA transfer count reload using 2's complement. */
1768 blksize = -blksize;
1769 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1770 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1771
1772 /* Set up and enable Audio 1 DMA FIFO. */
1773 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1774 if (param->precision == 16)
1775 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1776 if (param->channels == 2)
1777 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1778 else
1779 a1c1 |= ESO_CTLREG_A1C1_MONO;
1780 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1781 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1782 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1783 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1784
1785 /* Set up ADC IRQ/DRQ parameters. */
1786 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1787 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1788 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1789 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1790
1791 /* Set up and enable DMA controller. */
1792 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1793 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1794 ESO_DMAC_MASK_MASK);
1795 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1796 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1797 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1798 DMAADDR(ed));
1799 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1800 (uint8_t *)end - (uint8_t *)start - 1);
1801 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1802
1803 /* Start DMA. */
1804 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1805 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1806 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1807
1808 return 0;
1809 }
1810
1811 /*
1812 * Mixer utility functions.
1813 */
1814 static int
1815 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1816 {
1817 mixer_devinfo_t di;
1818 int i;
1819
1820 di.index = ESO_RECORD_SOURCE;
1821 if (eso_query_devinfo(sc, &di) != 0)
1822 panic("eso_set_recsrc: eso_query_devinfo failed");
1823
1824 for (i = 0; i < di.un.e.num_mem; i++) {
1825 if (recsrc == di.un.e.member[i].ord) {
1826 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1827 sc->sc_recsrc = recsrc;
1828 return 0;
1829 }
1830 }
1831
1832 return EINVAL;
1833 }
1834
1835 static int
1836 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1837 {
1838 mixer_devinfo_t di;
1839 int i;
1840 uint8_t mpm;
1841
1842 di.index = ESO_MONOOUT_SOURCE;
1843 if (eso_query_devinfo(sc, &di) != 0)
1844 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1845
1846 for (i = 0; i < di.un.e.num_mem; i++) {
1847 if (monooutsrc == di.un.e.member[i].ord) {
1848 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1849 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1850 mpm |= monooutsrc;
1851 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1852 sc->sc_monooutsrc = monooutsrc;
1853 return 0;
1854 }
1855 }
1856
1857 return EINVAL;
1858 }
1859
1860 static int
1861 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1862 {
1863 mixer_devinfo_t di;
1864 int i;
1865 uint8_t mpm;
1866
1867 di.index = ESO_MONOIN_BYPASS;
1868 if (eso_query_devinfo(sc, &di) != 0)
1869 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1870
1871 for (i = 0; i < di.un.e.num_mem; i++) {
1872 if (monoinbypass == di.un.e.member[i].ord) {
1873 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1874 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1875 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1876 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1877 sc->sc_monoinbypass = monoinbypass;
1878 return 0;
1879 }
1880 }
1881
1882 return EINVAL;
1883 }
1884
1885 static int
1886 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
1887 {
1888 mixer_devinfo_t di;
1889 int i;
1890 uint8_t mpm;
1891
1892 di.index = ESO_MIC_PREAMP;
1893 if (eso_query_devinfo(sc, &di) != 0)
1894 panic("eso_set_preamp: eso_query_devinfo failed");
1895
1896 for (i = 0; i < di.un.e.num_mem; i++) {
1897 if (preamp == di.un.e.member[i].ord) {
1898 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1899 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1900 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1901 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1902 sc->sc_preamp = preamp;
1903 return 0;
1904 }
1905 }
1906
1907 return EINVAL;
1908 }
1909
1910 /*
1911 * Reload Master Volume and Mute values in softc from mixer; used when
1912 * those have previously been invalidated by use of hardware volume controls.
1913 */
1914 static void
1915 eso_reload_master_vol(struct eso_softc *sc)
1916 {
1917 uint8_t mv;
1918
1919 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1920 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1921 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1922 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1923 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1924 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1925 /* Currently both channels are muted simultaneously; either is OK. */
1926 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1927 }
1928
1929 static void
1930 eso_set_gain(struct eso_softc *sc, unsigned int port)
1931 {
1932 uint8_t mixreg, tmp;
1933
1934 switch (port) {
1935 case ESO_DAC_PLAY_VOL:
1936 mixreg = ESO_MIXREG_PVR_A2;
1937 break;
1938 case ESO_MIC_PLAY_VOL:
1939 mixreg = ESO_MIXREG_PVR_MIC;
1940 break;
1941 case ESO_LINE_PLAY_VOL:
1942 mixreg = ESO_MIXREG_PVR_LINE;
1943 break;
1944 case ESO_SYNTH_PLAY_VOL:
1945 mixreg = ESO_MIXREG_PVR_SYNTH;
1946 break;
1947 case ESO_CD_PLAY_VOL:
1948 mixreg = ESO_MIXREG_PVR_CD;
1949 break;
1950 case ESO_AUXB_PLAY_VOL:
1951 mixreg = ESO_MIXREG_PVR_AUXB;
1952 break;
1953
1954 case ESO_DAC_REC_VOL:
1955 mixreg = ESO_MIXREG_RVR_A2;
1956 break;
1957 case ESO_MIC_REC_VOL:
1958 mixreg = ESO_MIXREG_RVR_MIC;
1959 break;
1960 case ESO_LINE_REC_VOL:
1961 mixreg = ESO_MIXREG_RVR_LINE;
1962 break;
1963 case ESO_SYNTH_REC_VOL:
1964 mixreg = ESO_MIXREG_RVR_SYNTH;
1965 break;
1966 case ESO_CD_REC_VOL:
1967 mixreg = ESO_MIXREG_RVR_CD;
1968 break;
1969 case ESO_AUXB_REC_VOL:
1970 mixreg = ESO_MIXREG_RVR_AUXB;
1971 break;
1972 case ESO_MONO_PLAY_VOL:
1973 mixreg = ESO_MIXREG_PVR_MONO;
1974 break;
1975 case ESO_MONO_REC_VOL:
1976 mixreg = ESO_MIXREG_RVR_MONO;
1977 break;
1978
1979 case ESO_PCSPEAKER_VOL:
1980 /* Special case - only 3-bit, mono, and reserved bits. */
1981 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1982 tmp &= ESO_MIXREG_PCSVR_RESV;
1983 /* Map bits 7:5 -> 2:0. */
1984 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1985 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1986 return;
1987
1988 case ESO_MASTER_VOL:
1989 /* Special case - separate regs, and 6-bit precision. */
1990 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1991 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1992 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1993 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1994 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1995 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1996 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1997 return;
1998
1999 case ESO_SPATIALIZER:
2000 /* Special case - only `mono', and higher precision. */
2001 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2002 sc->sc_gain[port][ESO_LEFT]);
2003 return;
2004
2005 case ESO_RECORD_VOL:
2006 /* Very Special case, controller register. */
2007 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2008 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2009 return;
2010
2011 default:
2012 #ifdef DIAGNOSTIC
2013 panic("eso_set_gain: bad port %u", port);
2014 /* NOTREACHED */
2015 #else
2016 return;
2017 #endif
2018 }
2019
2020 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2021 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2022 }
2023