eso.c revision 1.52 1 /* $NetBSD: eso.c,v 1.52 2008/04/01 13:35:39 xtraeme Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.52 2008/04/01 13:35:39 xtraeme Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46 #include <sys/proc.h>
47
48 #include <dev/pci/pcidevs.h>
49 #include <dev/pci/pcivar.h>
50
51 #include <sys/audioio.h>
52 #include <dev/audio_if.h>
53 #include <dev/midi_if.h>
54
55 #include <dev/mulaw.h>
56 #include <dev/auconv.h>
57
58 #include <dev/ic/mpuvar.h>
59 #include <dev/ic/i8237reg.h>
60 #include <dev/pci/esoreg.h>
61 #include <dev/pci/esovar.h>
62
63 #include <sys/bus.h>
64 #include <sys/intr.h>
65
66 /*
67 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
68 * XXX engine by allocating through the ISA DMA tag.
69 */
70 #if defined(amd64) || defined(i386)
71 #include "isa.h"
72 #if NISA > 0
73 #include <dev/isa/isavar.h>
74 #endif
75 #endif
76
77 #if defined(AUDIO_DEBUG) || defined(DEBUG)
78 #define DPRINTF(x) printf x
79 #else
80 #define DPRINTF(x)
81 #endif
82
83 struct eso_dma {
84 bus_dma_tag_t ed_dmat;
85 bus_dmamap_t ed_map;
86 void * ed_kva;
87 bus_dma_segment_t ed_segs[1];
88 int ed_nsegs;
89 size_t ed_size;
90 SLIST_ENTRY(eso_dma) ed_slist;
91 };
92
93 #define KVADDR(dma) ((void *)(dma)->ed_kva)
94 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
95
96 /* Autoconfiguration interface */
97 static int eso_match(struct device *, struct cfdata *, void *);
98 static void eso_attach(struct device *, struct device *, void *);
99 static void eso_defer(struct device *);
100 static int eso_print(void *, const char *);
101
102 CFATTACH_DECL(eso, sizeof (struct eso_softc),
103 eso_match, eso_attach, NULL, NULL);
104
105 /* PCI interface */
106 static int eso_intr(void *);
107
108 /* MI audio layer interface */
109 static int eso_query_encoding(void *, struct audio_encoding *);
110 static int eso_set_params(void *, int, int, audio_params_t *,
111 audio_params_t *, stream_filter_list_t *,
112 stream_filter_list_t *);
113 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
114 static int eso_halt_output(void *);
115 static int eso_halt_input(void *);
116 static int eso_getdev(void *, struct audio_device *);
117 static int eso_set_port(void *, mixer_ctrl_t *);
118 static int eso_get_port(void *, mixer_ctrl_t *);
119 static int eso_query_devinfo(void *, mixer_devinfo_t *);
120 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int);
121 static void eso_freem(void *, void *, struct malloc_type *);
122 static size_t eso_round_buffersize(void *, int, size_t);
123 static paddr_t eso_mappage(void *, void *, off_t, int);
124 static int eso_get_props(void *);
125 static int eso_trigger_output(void *, void *, void *, int,
126 void (*)(void *), void *, const audio_params_t *);
127 static int eso_trigger_input(void *, void *, void *, int,
128 void (*)(void *), void *, const audio_params_t *);
129
130 static const struct audio_hw_if eso_hw_if = {
131 NULL, /* open */
132 NULL, /* close */
133 NULL, /* drain */
134 eso_query_encoding,
135 eso_set_params,
136 eso_round_blocksize,
137 NULL, /* commit_settings */
138 NULL, /* init_output */
139 NULL, /* init_input */
140 NULL, /* start_output */
141 NULL, /* start_input */
142 eso_halt_output,
143 eso_halt_input,
144 NULL, /* speaker_ctl */
145 eso_getdev,
146 NULL, /* setfd */
147 eso_set_port,
148 eso_get_port,
149 eso_query_devinfo,
150 eso_allocm,
151 eso_freem,
152 eso_round_buffersize,
153 eso_mappage,
154 eso_get_props,
155 eso_trigger_output,
156 eso_trigger_input,
157 NULL, /* dev_ioctl */
158 NULL, /* powerstate */
159 };
160
161 static const char * const eso_rev2model[] = {
162 "ES1938",
163 "ES1946",
164 "ES1946 Revision E"
165 };
166
167 #define ESO_NFORMATS 8
168 static const struct audio_format eso_formats[ESO_NFORMATS] = {
169 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
170 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
171 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
172 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
173 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
174 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
175 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
176 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
177 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
178 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
179 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
180 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
181 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
182 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
183 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
184 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
185 };
186
187
188 /*
189 * Utility routines
190 */
191 /* Register access etc. */
192 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
193 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
194 static uint8_t eso_read_rdr(struct eso_softc *);
195 static void eso_reload_master_vol(struct eso_softc *);
196 static int eso_reset(struct eso_softc *);
197 static void eso_set_gain(struct eso_softc *, unsigned int);
198 static int eso_set_recsrc(struct eso_softc *, unsigned int);
199 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
200 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
201 static int eso_set_preamp(struct eso_softc *, unsigned int);
202 static void eso_write_cmd(struct eso_softc *, uint8_t);
203 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
204 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
205 /* DMA memory allocation */
206 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
207 int, int, struct eso_dma *);
208 static void eso_freemem(struct eso_dma *);
209 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *);
210
211
212 static int
213 eso_match(struct device *parent, struct cfdata *match,
214 void *aux)
215 {
216 struct pci_attach_args *pa;
217
218 pa = aux;
219 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
220 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
221 return 1;
222
223 return 0;
224 }
225
226 static void
227 eso_attach(struct device *parent, struct device *self, void *aux)
228 {
229 struct eso_softc *sc;
230 struct pci_attach_args *pa;
231 struct audio_attach_args aa;
232 pci_intr_handle_t ih;
233 bus_addr_t vcbase;
234 const char *intrstring;
235 int idx;
236 uint8_t a2mode, mvctl;
237
238 sc = (struct eso_softc *)self;
239 pa = aux;
240 aprint_naive(": Audio controller\n");
241
242 sc->sc_revision = PCI_REVISION(pa->pa_class);
243
244 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
245 if (sc->sc_revision <
246 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
247 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
248 else
249 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
250
251 /* Map I/O registers. */
252 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
253 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
254 aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
255 return;
256 }
257 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
258 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
259 aprint_error("%s: can't map SB I/O space\n",
260 sc->sc_dev.dv_xname);
261 return;
262 }
263 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
264 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
265 aprint_error("%s: can't map VC I/O space\n",
266 sc->sc_dev.dv_xname);
267 /* Don't bail out yet: we can map it later, see below. */
268 vcbase = 0;
269 sc->sc_vcsize = 0x10; /* From the data sheet. */
270 }
271 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
272 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
273 aprint_error("%s: can't map MPU I/O space\n",
274 sc->sc_dev.dv_xname);
275 return;
276 }
277 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
278 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
279 aprint_error("%s: can't map Game I/O space\n",
280 sc->sc_dev.dv_xname);
281 return;
282 }
283
284 sc->sc_dmat = pa->pa_dmat;
285 SLIST_INIT(&sc->sc_dmas);
286 sc->sc_dmac_configured = 0;
287
288 /* Enable bus mastering. */
289 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
290 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
291 PCI_COMMAND_MASTER_ENABLE);
292
293 /* Reset the device; bail out upon failure. */
294 if (eso_reset(sc) != 0) {
295 aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
296 return;
297 }
298
299 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
300 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
301 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
302 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
303
304 /* Enable the relevant (DMA) interrupts. */
305 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
306 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
307 ESO_IO_IRQCTL_MPUIRQ);
308
309 /* Set up A1's sample rate generator for new-style parameters. */
310 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
311 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
312 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
313
314 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
315 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
316 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
317 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
318 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
319
320 /* Set mixer regs to something reasonable, needs work. */
321 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
322 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
323 eso_set_monoinbypass(sc, 0);
324 eso_set_preamp(sc, 1);
325 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
326 int v;
327
328 switch (idx) {
329 case ESO_MIC_PLAY_VOL:
330 case ESO_LINE_PLAY_VOL:
331 case ESO_CD_PLAY_VOL:
332 case ESO_MONO_PLAY_VOL:
333 case ESO_AUXB_PLAY_VOL:
334 case ESO_DAC_REC_VOL:
335 case ESO_LINE_REC_VOL:
336 case ESO_SYNTH_REC_VOL:
337 case ESO_CD_REC_VOL:
338 case ESO_MONO_REC_VOL:
339 case ESO_AUXB_REC_VOL:
340 case ESO_SPATIALIZER:
341 v = 0;
342 break;
343 case ESO_MASTER_VOL:
344 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
345 break;
346 default:
347 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
348 break;
349 }
350 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
351 eso_set_gain(sc, idx);
352 }
353 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
354
355 /* Map and establish the interrupt. */
356 if (pci_intr_map(pa, &ih)) {
357 aprint_error("%s: couldn't map interrupt\n",
358 sc->sc_dev.dv_xname);
359 return;
360 }
361 intrstring = pci_intr_string(pa->pa_pc, ih);
362 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
363 if (sc->sc_ih == NULL) {
364 aprint_error("%s: couldn't establish interrupt",
365 sc->sc_dev.dv_xname);
366 if (intrstring != NULL)
367 aprint_normal(" at %s", intrstring);
368 aprint_normal("\n");
369 return;
370 }
371 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
372 intrstring);
373
374 /*
375 * Set up the DDMA Control register; a suitable I/O region has been
376 * supposedly mapped in the VC base address register.
377 *
378 * The Solo-1 has an ... interesting silicon bug that causes it to
379 * not respond to I/O space accesses to the Audio 1 DMA controller
380 * if the latter's mapping base address is aligned on a 1K boundary.
381 * As a consequence, it is quite possible for the mapping provided
382 * in the VC BAR to be useless. To work around this, we defer this
383 * part until all autoconfiguration on our parent bus is completed
384 * and then try to map it ourselves in fulfillment of the constraint.
385 *
386 * According to the register map we may write to the low 16 bits
387 * only, but experimenting has shown we're safe.
388 * -kjk
389 */
390 if (ESO_VALID_DDMAC_BASE(vcbase)) {
391 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
392 vcbase | ESO_PCI_DDMAC_DE);
393 sc->sc_dmac_configured = 1;
394
395 aprint_normal(
396 "%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
397 sc->sc_dev.dv_xname, (unsigned long)vcbase);
398 } else {
399 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
400 sc->sc_dev.dv_xname, (unsigned long)vcbase));
401 sc->sc_pa = *pa;
402 config_defer(self, eso_defer);
403 }
404
405 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
406
407 aa.type = AUDIODEV_TYPE_OPL;
408 aa.hwif = NULL;
409 aa.hdl = NULL;
410 (void)config_found(&sc->sc_dev, &aa, audioprint);
411
412 aa.type = AUDIODEV_TYPE_MPU;
413 aa.hwif = NULL;
414 aa.hdl = NULL;
415 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
416 if (sc->sc_mpudev != NULL) {
417 /* Unmask the MPU irq. */
418 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
419 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
420 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
421 }
422
423 aa.type = AUDIODEV_TYPE_AUX;
424 aa.hwif = NULL;
425 aa.hdl = NULL;
426 (void)config_found(&sc->sc_dev, &aa, eso_print);
427 }
428
429 static void
430 eso_defer(struct device *self)
431 {
432 struct eso_softc *sc;
433 struct pci_attach_args *pa;
434 bus_addr_t addr, start;
435
436 sc = (struct eso_softc *)self;
437 pa = &sc->sc_pa;
438 aprint_normal("%s: ", sc->sc_dev.dv_xname);
439
440 /*
441 * This is outright ugly, but since we must not make assumptions
442 * on the underlying allocator's behaviour it's the most straight-
443 * forward way to implement it. Note that we skip over the first
444 * 1K region, which is typically occupied by an attached ISA bus.
445 */
446 for (start = 0x0400; start < 0xffff; start += 0x0400) {
447 if (bus_space_alloc(sc->sc_iot,
448 start + sc->sc_vcsize, start + 0x0400 - 1,
449 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
450 &sc->sc_dmac_ioh) != 0)
451 continue;
452
453 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
454 addr | ESO_PCI_DDMAC_DE);
455 sc->sc_dmac_iot = sc->sc_iot;
456 sc->sc_dmac_configured = 1;
457 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
458 (unsigned long)addr);
459
460 return;
461 }
462
463 aprint_error("can't map Audio 1 DMA into I/O space\n");
464 }
465
466 /* ARGSUSED */
467 static int
468 eso_print(void *aux, const char *pnp)
469 {
470
471 /* Only joys can attach via this; easy. */
472 if (pnp)
473 aprint_normal("joy at %s:", pnp);
474
475 return UNCONF;
476 }
477
478 static void
479 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
480 {
481 int i;
482
483 /* Poll for busy indicator to become clear. */
484 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
485 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
486 & ESO_SB_RSR_BUSY) == 0) {
487 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
488 ESO_SB_WDR, cmd);
489 return;
490 } else {
491 delay(10);
492 }
493 }
494
495 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
496 return;
497 }
498
499 /* Write to a controller register */
500 static void
501 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
502 {
503
504 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
505
506 eso_write_cmd(sc, reg);
507 eso_write_cmd(sc, val);
508 }
509
510 /* Read out the Read Data Register */
511 static uint8_t
512 eso_read_rdr(struct eso_softc *sc)
513 {
514 int i;
515
516 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
517 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
518 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
519 return (bus_space_read_1(sc->sc_sb_iot,
520 sc->sc_sb_ioh, ESO_SB_RDR));
521 } else {
522 delay(10);
523 }
524 }
525
526 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
527 return (-1);
528 }
529
530 static uint8_t
531 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
532 {
533
534 eso_write_cmd(sc, ESO_CMD_RCR);
535 eso_write_cmd(sc, reg);
536 return eso_read_rdr(sc);
537 }
538
539 static void
540 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
541 {
542 int s;
543
544 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
545
546 s = splaudio();
547 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
548 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
549 splx(s);
550 }
551
552 static uint8_t
553 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
554 {
555 int s;
556 uint8_t val;
557
558 s = splaudio();
559 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
560 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
561 splx(s);
562
563 return val;
564 }
565
566 static int
567 eso_intr(void *hdl)
568 {
569 struct eso_softc *sc = hdl;
570 #if NMPU > 0
571 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
572 #endif
573 uint8_t irqctl;
574
575 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
576
577 /* If it wasn't ours, that's all she wrote. */
578 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
579 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
580 return 0;
581
582 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
583 /* Clear interrupt. */
584 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
585 ESO_SB_RBSR);
586
587 if (sc->sc_rintr)
588 sc->sc_rintr(sc->sc_rarg);
589 else
590 wakeup(&sc->sc_rintr);
591 }
592
593 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
594 /*
595 * Clear the A2 IRQ latch: the cached value reflects the
596 * current DAC settings with the IRQ latch bit not set.
597 */
598 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
599
600 if (sc->sc_pintr)
601 sc->sc_pintr(sc->sc_parg);
602 else
603 wakeup(&sc->sc_pintr);
604 }
605
606 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
607 /* Clear interrupt. */
608 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
609
610 /*
611 * Raise a flag to cause a lazy update of the in-softc gain
612 * values the next time the software mixer is read to keep
613 * interrupt service cost low. ~0 cannot occur otherwise
614 * as the master volume has a precision of 6 bits only.
615 */
616 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
617 }
618
619 #if NMPU > 0
620 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
621 mpu_intr(sc_mpu);
622 #endif
623
624 return 1;
625 }
626
627 /* Perform a software reset, including DMA FIFOs. */
628 static int
629 eso_reset(struct eso_softc *sc)
630 {
631 int i;
632
633 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
634 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
635 /* `Delay' suggested in the data sheet. */
636 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
637 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
638
639 /* Wait for reset to take effect. */
640 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
641 /* Poll for data to become available. */
642 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
643 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
644 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
645 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
646
647 /* Activate Solo-1 extension commands. */
648 eso_write_cmd(sc, ESO_CMD_EXTENB);
649 /* Reset mixer registers. */
650 eso_write_mixreg(sc, ESO_MIXREG_RESET,
651 ESO_MIXREG_RESET_RESET);
652
653 return 0;
654 } else {
655 delay(1000);
656 }
657 }
658
659 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
660 return -1;
661 }
662
663 static int
664 eso_query_encoding(void *hdl, struct audio_encoding *fp)
665 {
666
667 switch (fp->index) {
668 case 0:
669 strcpy(fp->name, AudioEulinear);
670 fp->encoding = AUDIO_ENCODING_ULINEAR;
671 fp->precision = 8;
672 fp->flags = 0;
673 break;
674 case 1:
675 strcpy(fp->name, AudioEmulaw);
676 fp->encoding = AUDIO_ENCODING_ULAW;
677 fp->precision = 8;
678 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
679 break;
680 case 2:
681 strcpy(fp->name, AudioEalaw);
682 fp->encoding = AUDIO_ENCODING_ALAW;
683 fp->precision = 8;
684 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
685 break;
686 case 3:
687 strcpy(fp->name, AudioEslinear);
688 fp->encoding = AUDIO_ENCODING_SLINEAR;
689 fp->precision = 8;
690 fp->flags = 0;
691 break;
692 case 4:
693 strcpy(fp->name, AudioEslinear_le);
694 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
695 fp->precision = 16;
696 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
697 break;
698 case 5:
699 strcpy(fp->name, AudioEulinear_le);
700 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
701 fp->precision = 16;
702 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
703 break;
704 case 6:
705 strcpy(fp->name, AudioEslinear_be);
706 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
707 fp->precision = 16;
708 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
709 break;
710 case 7:
711 strcpy(fp->name, AudioEulinear_be);
712 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
713 fp->precision = 16;
714 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
715 break;
716 default:
717 return EINVAL;
718 }
719
720 return 0;
721 }
722
723 static int
724 eso_set_params(void *hdl, int setmode, int usemode,
725 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
726 stream_filter_list_t *rfil)
727 {
728 struct eso_softc *sc;
729 struct audio_params *p;
730 stream_filter_list_t *fil;
731 int mode, r[2], rd[2], ar[2], clk;
732 unsigned int srg, fltdiv;
733 int i;
734
735 sc = hdl;
736 for (mode = AUMODE_RECORD; mode != -1;
737 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
738 if ((setmode & mode) == 0)
739 continue;
740
741 p = (mode == AUMODE_PLAY) ? play : rec;
742
743 if (p->sample_rate < ESO_MINRATE ||
744 p->sample_rate > ESO_MAXRATE ||
745 (p->precision != 8 && p->precision != 16) ||
746 (p->channels != 1 && p->channels != 2))
747 return EINVAL;
748
749 /*
750 * We'll compute both possible sample rate dividers and pick
751 * the one with the least error.
752 */
753 #define ABS(x) ((x) < 0 ? -(x) : (x))
754 r[0] = ESO_CLK0 /
755 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
756 r[1] = ESO_CLK1 /
757 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
758
759 ar[0] = p->sample_rate - r[0];
760 ar[1] = p->sample_rate - r[1];
761 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
762 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
763
764 /* Roll-off frequency of 87%, as in the ES1888 driver. */
765 fltdiv = 256 - 200279L / r[clk];
766
767 /* Update to reflect the possibly inexact rate. */
768 p->sample_rate = r[clk];
769
770 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
771 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
772 mode, p, FALSE, fil);
773 if (i < 0)
774 return EINVAL;
775 if (mode == AUMODE_RECORD) {
776 /* Audio 1 */
777 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
778 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
779 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
780 } else {
781 /* Audio 2 */
782 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
783 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
784 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
785 }
786 #undef ABS
787
788 }
789
790 return 0;
791 }
792
793 static int
794 eso_round_blocksize(void *hdl, int blk, int mode,
795 const audio_params_t *param)
796 {
797
798 return blk & -32; /* keep good alignment; at least 16 req'd */
799 }
800
801 static int
802 eso_halt_output(void *hdl)
803 {
804 struct eso_softc *sc;
805 int error, s;
806
807 sc = hdl;
808 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
809
810 /*
811 * Disable auto-initialize DMA, allowing the FIFO to drain and then
812 * stop. The interrupt callback pointer is cleared at this
813 * point so that an outstanding FIFO interrupt for the remaining data
814 * will be acknowledged without further processing.
815 *
816 * This does not immediately `abort' an operation in progress (c.f.
817 * audio(9)) but is the method to leave the FIFO behind in a clean
818 * state with the least hair. (Besides, that item needs to be
819 * rephrased for trigger_*()-based DMA environments.)
820 */
821 s = splaudio();
822 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
823 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
824 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
825 ESO_IO_A2DMAM_DMAENB);
826
827 sc->sc_pintr = NULL;
828 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
829 splx(s);
830
831 /* Shut down DMA completely. */
832 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
833 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
834
835 return error == EWOULDBLOCK ? 0 : error;
836 }
837
838 static int
839 eso_halt_input(void *hdl)
840 {
841 struct eso_softc *sc;
842 int error, s;
843
844 sc = hdl;
845 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
846
847 /* Just like eso_halt_output(), but for Audio 1. */
848 s = splaudio();
849 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
850 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
851 ESO_CTLREG_A1C2_DMAENB);
852 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
853 DMA37MD_WRITE | DMA37MD_DEMAND);
854
855 sc->sc_rintr = NULL;
856 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
857 splx(s);
858
859 /* Shut down DMA completely. */
860 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
861 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
862 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
863 ESO_DMAC_MASK_MASK);
864
865 return error == EWOULDBLOCK ? 0 : error;
866 }
867
868 static int
869 eso_getdev(void *hdl, struct audio_device *retp)
870 {
871 struct eso_softc *sc;
872
873 sc = hdl;
874 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
875 snprintf(retp->version, sizeof (retp->version), "0x%02x",
876 sc->sc_revision);
877 if (sc->sc_revision <
878 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
879 strncpy(retp->config, eso_rev2model[sc->sc_revision],
880 sizeof (retp->config));
881 else
882 strncpy(retp->config, "unknown", sizeof (retp->config));
883
884 return 0;
885 }
886
887 static int
888 eso_set_port(void *hdl, mixer_ctrl_t *cp)
889 {
890 struct eso_softc *sc;
891 unsigned int lgain, rgain;
892 uint8_t tmp;
893
894 sc = hdl;
895 switch (cp->dev) {
896 case ESO_DAC_PLAY_VOL:
897 case ESO_MIC_PLAY_VOL:
898 case ESO_LINE_PLAY_VOL:
899 case ESO_SYNTH_PLAY_VOL:
900 case ESO_CD_PLAY_VOL:
901 case ESO_AUXB_PLAY_VOL:
902 case ESO_RECORD_VOL:
903 case ESO_DAC_REC_VOL:
904 case ESO_MIC_REC_VOL:
905 case ESO_LINE_REC_VOL:
906 case ESO_SYNTH_REC_VOL:
907 case ESO_CD_REC_VOL:
908 case ESO_AUXB_REC_VOL:
909 if (cp->type != AUDIO_MIXER_VALUE)
910 return EINVAL;
911
912 /*
913 * Stereo-capable mixer ports: if we get a single-channel
914 * gain value passed in, then we duplicate it to both left
915 * and right channels.
916 */
917 switch (cp->un.value.num_channels) {
918 case 1:
919 lgain = rgain = ESO_GAIN_TO_4BIT(
920 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
921 break;
922 case 2:
923 lgain = ESO_GAIN_TO_4BIT(
924 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
925 rgain = ESO_GAIN_TO_4BIT(
926 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
927 break;
928 default:
929 return EINVAL;
930 }
931
932 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
933 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
934 eso_set_gain(sc, cp->dev);
935 break;
936
937 case ESO_MASTER_VOL:
938 if (cp->type != AUDIO_MIXER_VALUE)
939 return EINVAL;
940
941 /* Like above, but a precision of 6 bits. */
942 switch (cp->un.value.num_channels) {
943 case 1:
944 lgain = rgain = ESO_GAIN_TO_6BIT(
945 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
946 break;
947 case 2:
948 lgain = ESO_GAIN_TO_6BIT(
949 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
950 rgain = ESO_GAIN_TO_6BIT(
951 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
952 break;
953 default:
954 return EINVAL;
955 }
956
957 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
958 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
959 eso_set_gain(sc, cp->dev);
960 break;
961
962 case ESO_SPATIALIZER:
963 if (cp->type != AUDIO_MIXER_VALUE ||
964 cp->un.value.num_channels != 1)
965 return EINVAL;
966
967 sc->sc_gain[cp->dev][ESO_LEFT] =
968 sc->sc_gain[cp->dev][ESO_RIGHT] =
969 ESO_GAIN_TO_6BIT(
970 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
971 eso_set_gain(sc, cp->dev);
972 break;
973
974 case ESO_MONO_PLAY_VOL:
975 case ESO_MONO_REC_VOL:
976 if (cp->type != AUDIO_MIXER_VALUE ||
977 cp->un.value.num_channels != 1)
978 return EINVAL;
979
980 sc->sc_gain[cp->dev][ESO_LEFT] =
981 sc->sc_gain[cp->dev][ESO_RIGHT] =
982 ESO_GAIN_TO_4BIT(
983 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
984 eso_set_gain(sc, cp->dev);
985 break;
986
987 case ESO_PCSPEAKER_VOL:
988 if (cp->type != AUDIO_MIXER_VALUE ||
989 cp->un.value.num_channels != 1)
990 return EINVAL;
991
992 sc->sc_gain[cp->dev][ESO_LEFT] =
993 sc->sc_gain[cp->dev][ESO_RIGHT] =
994 ESO_GAIN_TO_3BIT(
995 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
996 eso_set_gain(sc, cp->dev);
997 break;
998
999 case ESO_SPATIALIZER_ENABLE:
1000 if (cp->type != AUDIO_MIXER_ENUM)
1001 return EINVAL;
1002
1003 sc->sc_spatializer = (cp->un.ord != 0);
1004
1005 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1006 if (sc->sc_spatializer)
1007 tmp |= ESO_MIXREG_SPAT_ENB;
1008 else
1009 tmp &= ~ESO_MIXREG_SPAT_ENB;
1010 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1011 tmp | ESO_MIXREG_SPAT_RSTREL);
1012 break;
1013
1014 case ESO_MASTER_MUTE:
1015 if (cp->type != AUDIO_MIXER_ENUM)
1016 return EINVAL;
1017
1018 sc->sc_mvmute = (cp->un.ord != 0);
1019
1020 if (sc->sc_mvmute) {
1021 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1022 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1023 ESO_MIXREG_LMVM_MUTE);
1024 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1025 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1026 ESO_MIXREG_RMVM_MUTE);
1027 } else {
1028 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1029 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1030 ~ESO_MIXREG_LMVM_MUTE);
1031 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1032 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1033 ~ESO_MIXREG_RMVM_MUTE);
1034 }
1035 break;
1036
1037 case ESO_MONOOUT_SOURCE:
1038 if (cp->type != AUDIO_MIXER_ENUM)
1039 return EINVAL;
1040
1041 return eso_set_monooutsrc(sc, cp->un.ord);
1042
1043 case ESO_MONOIN_BYPASS:
1044 if (cp->type != AUDIO_MIXER_ENUM)
1045 return EINVAL;
1046
1047 return (eso_set_monoinbypass(sc, cp->un.ord));
1048
1049 case ESO_RECORD_MONITOR:
1050 if (cp->type != AUDIO_MIXER_ENUM)
1051 return EINVAL;
1052
1053 sc->sc_recmon = (cp->un.ord != 0);
1054
1055 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1056 if (sc->sc_recmon)
1057 tmp |= ESO_CTLREG_ACTL_RECMON;
1058 else
1059 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1060 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1061 break;
1062
1063 case ESO_RECORD_SOURCE:
1064 if (cp->type != AUDIO_MIXER_ENUM)
1065 return EINVAL;
1066
1067 return eso_set_recsrc(sc, cp->un.ord);
1068
1069 case ESO_MIC_PREAMP:
1070 if (cp->type != AUDIO_MIXER_ENUM)
1071 return EINVAL;
1072
1073 return eso_set_preamp(sc, cp->un.ord);
1074
1075 default:
1076 return EINVAL;
1077 }
1078
1079 return 0;
1080 }
1081
1082 static int
1083 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1084 {
1085 struct eso_softc *sc;
1086
1087 sc = hdl;
1088 switch (cp->dev) {
1089 case ESO_MASTER_VOL:
1090 /* Reload from mixer after hardware volume control use. */
1091 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1092 eso_reload_master_vol(sc);
1093 /* FALLTHROUGH */
1094 case ESO_DAC_PLAY_VOL:
1095 case ESO_MIC_PLAY_VOL:
1096 case ESO_LINE_PLAY_VOL:
1097 case ESO_SYNTH_PLAY_VOL:
1098 case ESO_CD_PLAY_VOL:
1099 case ESO_AUXB_PLAY_VOL:
1100 case ESO_RECORD_VOL:
1101 case ESO_DAC_REC_VOL:
1102 case ESO_MIC_REC_VOL:
1103 case ESO_LINE_REC_VOL:
1104 case ESO_SYNTH_REC_VOL:
1105 case ESO_CD_REC_VOL:
1106 case ESO_AUXB_REC_VOL:
1107 /*
1108 * Stereo-capable ports: if a single-channel query is made,
1109 * just return the left channel's value (since single-channel
1110 * settings themselves are applied to both channels).
1111 */
1112 switch (cp->un.value.num_channels) {
1113 case 1:
1114 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1115 sc->sc_gain[cp->dev][ESO_LEFT];
1116 break;
1117 case 2:
1118 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1119 sc->sc_gain[cp->dev][ESO_LEFT];
1120 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1121 sc->sc_gain[cp->dev][ESO_RIGHT];
1122 break;
1123 default:
1124 return EINVAL;
1125 }
1126 break;
1127
1128 case ESO_MONO_PLAY_VOL:
1129 case ESO_PCSPEAKER_VOL:
1130 case ESO_MONO_REC_VOL:
1131 case ESO_SPATIALIZER:
1132 if (cp->un.value.num_channels != 1)
1133 return EINVAL;
1134 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1135 sc->sc_gain[cp->dev][ESO_LEFT];
1136 break;
1137
1138 case ESO_RECORD_MONITOR:
1139 cp->un.ord = sc->sc_recmon;
1140 break;
1141
1142 case ESO_RECORD_SOURCE:
1143 cp->un.ord = sc->sc_recsrc;
1144 break;
1145
1146 case ESO_MONOOUT_SOURCE:
1147 cp->un.ord = sc->sc_monooutsrc;
1148 break;
1149
1150 case ESO_MONOIN_BYPASS:
1151 cp->un.ord = sc->sc_monoinbypass;
1152 break;
1153
1154 case ESO_SPATIALIZER_ENABLE:
1155 cp->un.ord = sc->sc_spatializer;
1156 break;
1157
1158 case ESO_MIC_PREAMP:
1159 cp->un.ord = sc->sc_preamp;
1160 break;
1161
1162 case ESO_MASTER_MUTE:
1163 /* Reload from mixer after hardware volume control use. */
1164 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1165 eso_reload_master_vol(sc);
1166 cp->un.ord = sc->sc_mvmute;
1167 break;
1168
1169 default:
1170 return EINVAL;
1171 }
1172
1173 return 0;
1174 }
1175
1176 static int
1177 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1178 {
1179
1180 switch (dip->index) {
1181 case ESO_DAC_PLAY_VOL:
1182 dip->mixer_class = ESO_INPUT_CLASS;
1183 dip->next = dip->prev = AUDIO_MIXER_LAST;
1184 strcpy(dip->label.name, AudioNdac);
1185 dip->type = AUDIO_MIXER_VALUE;
1186 dip->un.v.num_channels = 2;
1187 strcpy(dip->un.v.units.name, AudioNvolume);
1188 break;
1189 case ESO_MIC_PLAY_VOL:
1190 dip->mixer_class = ESO_INPUT_CLASS;
1191 dip->next = dip->prev = AUDIO_MIXER_LAST;
1192 strcpy(dip->label.name, AudioNmicrophone);
1193 dip->type = AUDIO_MIXER_VALUE;
1194 dip->un.v.num_channels = 2;
1195 strcpy(dip->un.v.units.name, AudioNvolume);
1196 break;
1197 case ESO_LINE_PLAY_VOL:
1198 dip->mixer_class = ESO_INPUT_CLASS;
1199 dip->next = dip->prev = AUDIO_MIXER_LAST;
1200 strcpy(dip->label.name, AudioNline);
1201 dip->type = AUDIO_MIXER_VALUE;
1202 dip->un.v.num_channels = 2;
1203 strcpy(dip->un.v.units.name, AudioNvolume);
1204 break;
1205 case ESO_SYNTH_PLAY_VOL:
1206 dip->mixer_class = ESO_INPUT_CLASS;
1207 dip->next = dip->prev = AUDIO_MIXER_LAST;
1208 strcpy(dip->label.name, AudioNfmsynth);
1209 dip->type = AUDIO_MIXER_VALUE;
1210 dip->un.v.num_channels = 2;
1211 strcpy(dip->un.v.units.name, AudioNvolume);
1212 break;
1213 case ESO_MONO_PLAY_VOL:
1214 dip->mixer_class = ESO_INPUT_CLASS;
1215 dip->next = dip->prev = AUDIO_MIXER_LAST;
1216 strcpy(dip->label.name, "mono_in");
1217 dip->type = AUDIO_MIXER_VALUE;
1218 dip->un.v.num_channels = 1;
1219 strcpy(dip->un.v.units.name, AudioNvolume);
1220 break;
1221 case ESO_CD_PLAY_VOL:
1222 dip->mixer_class = ESO_INPUT_CLASS;
1223 dip->next = dip->prev = AUDIO_MIXER_LAST;
1224 strcpy(dip->label.name, AudioNcd);
1225 dip->type = AUDIO_MIXER_VALUE;
1226 dip->un.v.num_channels = 2;
1227 strcpy(dip->un.v.units.name, AudioNvolume);
1228 break;
1229 case ESO_AUXB_PLAY_VOL:
1230 dip->mixer_class = ESO_INPUT_CLASS;
1231 dip->next = dip->prev = AUDIO_MIXER_LAST;
1232 strcpy(dip->label.name, "auxb");
1233 dip->type = AUDIO_MIXER_VALUE;
1234 dip->un.v.num_channels = 2;
1235 strcpy(dip->un.v.units.name, AudioNvolume);
1236 break;
1237
1238 case ESO_MIC_PREAMP:
1239 dip->mixer_class = ESO_MICROPHONE_CLASS;
1240 dip->next = dip->prev = AUDIO_MIXER_LAST;
1241 strcpy(dip->label.name, AudioNpreamp);
1242 dip->type = AUDIO_MIXER_ENUM;
1243 dip->un.e.num_mem = 2;
1244 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1245 dip->un.e.member[0].ord = 0;
1246 strcpy(dip->un.e.member[1].label.name, AudioNon);
1247 dip->un.e.member[1].ord = 1;
1248 break;
1249 case ESO_MICROPHONE_CLASS:
1250 dip->mixer_class = ESO_MICROPHONE_CLASS;
1251 dip->next = dip->prev = AUDIO_MIXER_LAST;
1252 strcpy(dip->label.name, AudioNmicrophone);
1253 dip->type = AUDIO_MIXER_CLASS;
1254 break;
1255
1256 case ESO_INPUT_CLASS:
1257 dip->mixer_class = ESO_INPUT_CLASS;
1258 dip->next = dip->prev = AUDIO_MIXER_LAST;
1259 strcpy(dip->label.name, AudioCinputs);
1260 dip->type = AUDIO_MIXER_CLASS;
1261 break;
1262
1263 case ESO_MASTER_VOL:
1264 dip->mixer_class = ESO_OUTPUT_CLASS;
1265 dip->prev = AUDIO_MIXER_LAST;
1266 dip->next = ESO_MASTER_MUTE;
1267 strcpy(dip->label.name, AudioNmaster);
1268 dip->type = AUDIO_MIXER_VALUE;
1269 dip->un.v.num_channels = 2;
1270 strcpy(dip->un.v.units.name, AudioNvolume);
1271 break;
1272 case ESO_MASTER_MUTE:
1273 dip->mixer_class = ESO_OUTPUT_CLASS;
1274 dip->prev = ESO_MASTER_VOL;
1275 dip->next = AUDIO_MIXER_LAST;
1276 strcpy(dip->label.name, AudioNmute);
1277 dip->type = AUDIO_MIXER_ENUM;
1278 dip->un.e.num_mem = 2;
1279 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1280 dip->un.e.member[0].ord = 0;
1281 strcpy(dip->un.e.member[1].label.name, AudioNon);
1282 dip->un.e.member[1].ord = 1;
1283 break;
1284
1285 case ESO_PCSPEAKER_VOL:
1286 dip->mixer_class = ESO_OUTPUT_CLASS;
1287 dip->next = dip->prev = AUDIO_MIXER_LAST;
1288 strcpy(dip->label.name, "pc_speaker");
1289 dip->type = AUDIO_MIXER_VALUE;
1290 dip->un.v.num_channels = 1;
1291 strcpy(dip->un.v.units.name, AudioNvolume);
1292 break;
1293 case ESO_MONOOUT_SOURCE:
1294 dip->mixer_class = ESO_OUTPUT_CLASS;
1295 dip->next = dip->prev = AUDIO_MIXER_LAST;
1296 strcpy(dip->label.name, "mono_out");
1297 dip->type = AUDIO_MIXER_ENUM;
1298 dip->un.e.num_mem = 3;
1299 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1300 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1301 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1302 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1303 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1304 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1305 break;
1306
1307 case ESO_MONOIN_BYPASS:
1308 dip->mixer_class = ESO_MONOIN_CLASS;
1309 dip->next = dip->prev = AUDIO_MIXER_LAST;
1310 strcpy(dip->label.name, "bypass");
1311 dip->type = AUDIO_MIXER_ENUM;
1312 dip->un.e.num_mem = 2;
1313 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1314 dip->un.e.member[0].ord = 0;
1315 strcpy(dip->un.e.member[1].label.name, AudioNon);
1316 dip->un.e.member[1].ord = 1;
1317 break;
1318 case ESO_MONOIN_CLASS:
1319 dip->mixer_class = ESO_MONOIN_CLASS;
1320 dip->next = dip->prev = AUDIO_MIXER_LAST;
1321 strcpy(dip->label.name, "mono_in");
1322 dip->type = AUDIO_MIXER_CLASS;
1323 break;
1324
1325 case ESO_SPATIALIZER:
1326 dip->mixer_class = ESO_OUTPUT_CLASS;
1327 dip->prev = AUDIO_MIXER_LAST;
1328 dip->next = ESO_SPATIALIZER_ENABLE;
1329 strcpy(dip->label.name, AudioNspatial);
1330 dip->type = AUDIO_MIXER_VALUE;
1331 dip->un.v.num_channels = 1;
1332 strcpy(dip->un.v.units.name, "level");
1333 break;
1334 case ESO_SPATIALIZER_ENABLE:
1335 dip->mixer_class = ESO_OUTPUT_CLASS;
1336 dip->prev = ESO_SPATIALIZER;
1337 dip->next = AUDIO_MIXER_LAST;
1338 strcpy(dip->label.name, "enable");
1339 dip->type = AUDIO_MIXER_ENUM;
1340 dip->un.e.num_mem = 2;
1341 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1342 dip->un.e.member[0].ord = 0;
1343 strcpy(dip->un.e.member[1].label.name, AudioNon);
1344 dip->un.e.member[1].ord = 1;
1345 break;
1346
1347 case ESO_OUTPUT_CLASS:
1348 dip->mixer_class = ESO_OUTPUT_CLASS;
1349 dip->next = dip->prev = AUDIO_MIXER_LAST;
1350 strcpy(dip->label.name, AudioCoutputs);
1351 dip->type = AUDIO_MIXER_CLASS;
1352 break;
1353
1354 case ESO_RECORD_MONITOR:
1355 dip->mixer_class = ESO_MONITOR_CLASS;
1356 dip->next = dip->prev = AUDIO_MIXER_LAST;
1357 strcpy(dip->label.name, AudioNmute);
1358 dip->type = AUDIO_MIXER_ENUM;
1359 dip->un.e.num_mem = 2;
1360 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1361 dip->un.e.member[0].ord = 0;
1362 strcpy(dip->un.e.member[1].label.name, AudioNon);
1363 dip->un.e.member[1].ord = 1;
1364 break;
1365 case ESO_MONITOR_CLASS:
1366 dip->mixer_class = ESO_MONITOR_CLASS;
1367 dip->next = dip->prev = AUDIO_MIXER_LAST;
1368 strcpy(dip->label.name, AudioCmonitor);
1369 dip->type = AUDIO_MIXER_CLASS;
1370 break;
1371
1372 case ESO_RECORD_VOL:
1373 dip->mixer_class = ESO_RECORD_CLASS;
1374 dip->next = dip->prev = AUDIO_MIXER_LAST;
1375 strcpy(dip->label.name, AudioNrecord);
1376 dip->type = AUDIO_MIXER_VALUE;
1377 strcpy(dip->un.v.units.name, AudioNvolume);
1378 break;
1379 case ESO_RECORD_SOURCE:
1380 dip->mixer_class = ESO_RECORD_CLASS;
1381 dip->next = dip->prev = AUDIO_MIXER_LAST;
1382 strcpy(dip->label.name, AudioNsource);
1383 dip->type = AUDIO_MIXER_ENUM;
1384 dip->un.e.num_mem = 4;
1385 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1386 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1387 strcpy(dip->un.e.member[1].label.name, AudioNline);
1388 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1389 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1390 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1391 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1392 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1393 break;
1394 case ESO_DAC_REC_VOL:
1395 dip->mixer_class = ESO_RECORD_CLASS;
1396 dip->next = dip->prev = AUDIO_MIXER_LAST;
1397 strcpy(dip->label.name, AudioNdac);
1398 dip->type = AUDIO_MIXER_VALUE;
1399 dip->un.v.num_channels = 2;
1400 strcpy(dip->un.v.units.name, AudioNvolume);
1401 break;
1402 case ESO_MIC_REC_VOL:
1403 dip->mixer_class = ESO_RECORD_CLASS;
1404 dip->next = dip->prev = AUDIO_MIXER_LAST;
1405 strcpy(dip->label.name, AudioNmicrophone);
1406 dip->type = AUDIO_MIXER_VALUE;
1407 dip->un.v.num_channels = 2;
1408 strcpy(dip->un.v.units.name, AudioNvolume);
1409 break;
1410 case ESO_LINE_REC_VOL:
1411 dip->mixer_class = ESO_RECORD_CLASS;
1412 dip->next = dip->prev = AUDIO_MIXER_LAST;
1413 strcpy(dip->label.name, AudioNline);
1414 dip->type = AUDIO_MIXER_VALUE;
1415 dip->un.v.num_channels = 2;
1416 strcpy(dip->un.v.units.name, AudioNvolume);
1417 break;
1418 case ESO_SYNTH_REC_VOL:
1419 dip->mixer_class = ESO_RECORD_CLASS;
1420 dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 strcpy(dip->label.name, AudioNfmsynth);
1422 dip->type = AUDIO_MIXER_VALUE;
1423 dip->un.v.num_channels = 2;
1424 strcpy(dip->un.v.units.name, AudioNvolume);
1425 break;
1426 case ESO_MONO_REC_VOL:
1427 dip->mixer_class = ESO_RECORD_CLASS;
1428 dip->next = dip->prev = AUDIO_MIXER_LAST;
1429 strcpy(dip->label.name, "mono_in");
1430 dip->type = AUDIO_MIXER_VALUE;
1431 dip->un.v.num_channels = 1; /* No lies */
1432 strcpy(dip->un.v.units.name, AudioNvolume);
1433 break;
1434 case ESO_CD_REC_VOL:
1435 dip->mixer_class = ESO_RECORD_CLASS;
1436 dip->next = dip->prev = AUDIO_MIXER_LAST;
1437 strcpy(dip->label.name, AudioNcd);
1438 dip->type = AUDIO_MIXER_VALUE;
1439 dip->un.v.num_channels = 2;
1440 strcpy(dip->un.v.units.name, AudioNvolume);
1441 break;
1442 case ESO_AUXB_REC_VOL:
1443 dip->mixer_class = ESO_RECORD_CLASS;
1444 dip->next = dip->prev = AUDIO_MIXER_LAST;
1445 strcpy(dip->label.name, "auxb");
1446 dip->type = AUDIO_MIXER_VALUE;
1447 dip->un.v.num_channels = 2;
1448 strcpy(dip->un.v.units.name, AudioNvolume);
1449 break;
1450 case ESO_RECORD_CLASS:
1451 dip->mixer_class = ESO_RECORD_CLASS;
1452 dip->next = dip->prev = AUDIO_MIXER_LAST;
1453 strcpy(dip->label.name, AudioCrecord);
1454 dip->type = AUDIO_MIXER_CLASS;
1455 break;
1456
1457 default:
1458 return ENXIO;
1459 }
1460
1461 return 0;
1462 }
1463
1464 static int
1465 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1466 size_t boundary, int flags, int direction, struct eso_dma *ed)
1467 {
1468 int error, wait;
1469
1470 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1471 ed->ed_size = size;
1472
1473 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1474 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1475 &ed->ed_nsegs, wait);
1476 if (error)
1477 goto out;
1478
1479 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1480 ed->ed_size, &ed->ed_kva, wait | BUS_DMA_COHERENT);
1481 if (error)
1482 goto free;
1483
1484 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1485 wait, &ed->ed_map);
1486 if (error)
1487 goto unmap;
1488
1489 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1490 ed->ed_size, NULL, wait |
1491 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1492 if (error)
1493 goto destroy;
1494
1495 return 0;
1496
1497 destroy:
1498 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1499 unmap:
1500 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1501 free:
1502 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1503 out:
1504 return error;
1505 }
1506
1507 static void
1508 eso_freemem(struct eso_dma *ed)
1509 {
1510
1511 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1512 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1513 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1514 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1515 }
1516
1517 static struct eso_dma *
1518 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1519 {
1520 struct eso_dma *p;
1521
1522 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1523 if (KVADDR(p) == kva)
1524 return p;
1525 }
1526
1527 panic("%s: kva2dma: bad kva: %p", sc->sc_dev.dv_xname, kva);
1528 /* NOTREACHED */
1529 }
1530
1531 static void *
1532 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type,
1533 int flags)
1534 {
1535 struct eso_softc *sc;
1536 struct eso_dma *ed;
1537 size_t boundary;
1538 int error;
1539
1540 sc = hdl;
1541 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1542 return NULL;
1543
1544 /*
1545 * Apparently the Audio 1 DMA controller's current address
1546 * register can't roll over a 64K address boundary, so we have to
1547 * take care of that ourselves. Similarly, the Audio 2 DMA
1548 * controller needs a 1M address boundary.
1549 */
1550 if (direction == AUMODE_RECORD)
1551 boundary = 0x10000;
1552 else
1553 boundary = 0x100000;
1554
1555 /*
1556 * XXX Work around allocation problems for Audio 1, which
1557 * XXX implements the 24 low address bits only, with
1558 * XXX machine-specific DMA tag use.
1559 */
1560 #ifdef alpha
1561 /*
1562 * XXX Force allocation through the (ISA) SGMAP.
1563 */
1564 if (direction == AUMODE_RECORD)
1565 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1566 else
1567 #elif defined(amd64) || defined(i386)
1568 /*
1569 * XXX Force allocation through the ISA DMA tag.
1570 */
1571 if (direction == AUMODE_RECORD)
1572 ed->ed_dmat = &isa_bus_dma_tag;
1573 else
1574 #endif
1575 ed->ed_dmat = sc->sc_dmat;
1576
1577 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1578 if (error) {
1579 free(ed, type);
1580 return NULL;
1581 }
1582 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1583
1584 return KVADDR(ed);
1585 }
1586
1587 static void
1588 eso_freem(void *hdl, void *addr, struct malloc_type *type)
1589 {
1590 struct eso_softc *sc;
1591 struct eso_dma *p;
1592
1593 sc = hdl;
1594 p = eso_kva2dma(sc, addr);
1595
1596 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1597 eso_freemem(p);
1598 free(p, type);
1599 }
1600
1601 static size_t
1602 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1603 {
1604 size_t maxsize;
1605
1606 /*
1607 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1608 * bytes. This is because IO_A2DMAC is a two byte value
1609 * indicating the literal byte count, and the 4 least significant
1610 * bits are read-only. Zero is not used as a special case for
1611 * 0x10000.
1612 *
1613 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1614 * be represented.
1615 */
1616 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1617
1618 if (bufsize > maxsize)
1619 bufsize = maxsize;
1620
1621 return bufsize;
1622 }
1623
1624 static paddr_t
1625 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1626 {
1627 struct eso_softc *sc;
1628 struct eso_dma *ed;
1629
1630 sc = hdl;
1631 if (offs < 0)
1632 return -1;
1633 ed = eso_kva2dma(sc, addr);
1634
1635 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1636 offs, prot, BUS_DMA_WAITOK);
1637 }
1638
1639 /* ARGSUSED */
1640 static int
1641 eso_get_props(void *hdl)
1642 {
1643
1644 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1645 AUDIO_PROP_FULLDUPLEX;
1646 }
1647
1648 static int
1649 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1650 void (*intr)(void *), void *arg, const audio_params_t *param)
1651 {
1652 struct eso_softc *sc;
1653 struct eso_dma *ed;
1654 uint8_t a2c1;
1655
1656 sc = hdl;
1657 DPRINTF((
1658 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1659 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1660 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1661 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1662 param->precision, param->channels));
1663
1664 /* Find DMA buffer. */
1665 ed = eso_kva2dma(sc, start);
1666 DPRINTF(("%s: dmaaddr %lx\n",
1667 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1668
1669 sc->sc_pintr = intr;
1670 sc->sc_parg = arg;
1671
1672 /* Compute drain timeout. */
1673 sc->sc_pdrain = (blksize * NBBY * hz) /
1674 (param->sample_rate * param->channels *
1675 param->precision) + 2; /* slop */
1676
1677 /* DMA transfer count (in `words'!) reload using 2's complement. */
1678 blksize = -(blksize >> 1);
1679 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1680 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1681
1682 /* Update DAC to reflect DMA count and audio parameters. */
1683 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1684 if (param->precision == 16)
1685 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1686 else
1687 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1688 if (param->channels == 2)
1689 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1690 else
1691 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1692 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1693 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1694 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1695 else
1696 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1697 /* Unmask IRQ. */
1698 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1699 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1700
1701 /* Set up DMA controller. */
1702 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1703 DMAADDR(ed));
1704 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1705 (uint8_t *)end - (uint8_t *)start);
1706 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1707 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1708
1709 /* Start DMA. */
1710 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1711 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1712 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1713 ESO_MIXREG_A2C1_AUTO;
1714 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1715
1716 return 0;
1717 }
1718
1719 static int
1720 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1721 void (*intr)(void *), void *arg, const audio_params_t *param)
1722 {
1723 struct eso_softc *sc;
1724 struct eso_dma *ed;
1725 uint8_t actl, a1c1;
1726
1727 sc = hdl;
1728 DPRINTF((
1729 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1730 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1731 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1732 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1733 param->precision, param->channels));
1734
1735 /*
1736 * If we failed to configure the Audio 1 DMA controller, bail here
1737 * while retaining availability of the DAC direction (in Audio 2).
1738 */
1739 if (!sc->sc_dmac_configured)
1740 return EIO;
1741
1742 /* Find DMA buffer. */
1743 ed = eso_kva2dma(sc, start);
1744 DPRINTF(("%s: dmaaddr %lx\n",
1745 sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1746
1747 sc->sc_rintr = intr;
1748 sc->sc_rarg = arg;
1749
1750 /* Compute drain timeout. */
1751 sc->sc_rdrain = (blksize * NBBY * hz) /
1752 (param->sample_rate * param->channels *
1753 param->precision) + 2; /* slop */
1754
1755 /* Set up ADC DMA converter parameters. */
1756 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1757 if (param->channels == 2) {
1758 actl &= ~ESO_CTLREG_ACTL_MONO;
1759 actl |= ESO_CTLREG_ACTL_STEREO;
1760 } else {
1761 actl &= ~ESO_CTLREG_ACTL_STEREO;
1762 actl |= ESO_CTLREG_ACTL_MONO;
1763 }
1764 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1765
1766 /* Set up Transfer Type: maybe move to attach time? */
1767 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1768
1769 /* DMA transfer count reload using 2's complement. */
1770 blksize = -blksize;
1771 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1772 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1773
1774 /* Set up and enable Audio 1 DMA FIFO. */
1775 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1776 if (param->precision == 16)
1777 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1778 if (param->channels == 2)
1779 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1780 else
1781 a1c1 |= ESO_CTLREG_A1C1_MONO;
1782 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1783 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1784 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1785 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1786
1787 /* Set up ADC IRQ/DRQ parameters. */
1788 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1789 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1790 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1791 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1792
1793 /* Set up and enable DMA controller. */
1794 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1795 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1796 ESO_DMAC_MASK_MASK);
1797 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1798 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1799 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1800 DMAADDR(ed));
1801 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1802 (uint8_t *)end - (uint8_t *)start - 1);
1803 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1804
1805 /* Start DMA. */
1806 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1807 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1808 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1809
1810 return 0;
1811 }
1812
1813 /*
1814 * Mixer utility functions.
1815 */
1816 static int
1817 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1818 {
1819 mixer_devinfo_t di;
1820 int i;
1821
1822 di.index = ESO_RECORD_SOURCE;
1823 if (eso_query_devinfo(sc, &di) != 0)
1824 panic("eso_set_recsrc: eso_query_devinfo failed");
1825
1826 for (i = 0; i < di.un.e.num_mem; i++) {
1827 if (recsrc == di.un.e.member[i].ord) {
1828 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1829 sc->sc_recsrc = recsrc;
1830 return 0;
1831 }
1832 }
1833
1834 return EINVAL;
1835 }
1836
1837 static int
1838 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1839 {
1840 mixer_devinfo_t di;
1841 int i;
1842 uint8_t mpm;
1843
1844 di.index = ESO_MONOOUT_SOURCE;
1845 if (eso_query_devinfo(sc, &di) != 0)
1846 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1847
1848 for (i = 0; i < di.un.e.num_mem; i++) {
1849 if (monooutsrc == di.un.e.member[i].ord) {
1850 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1851 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1852 mpm |= monooutsrc;
1853 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1854 sc->sc_monooutsrc = monooutsrc;
1855 return 0;
1856 }
1857 }
1858
1859 return EINVAL;
1860 }
1861
1862 static int
1863 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1864 {
1865 mixer_devinfo_t di;
1866 int i;
1867 uint8_t mpm;
1868
1869 di.index = ESO_MONOIN_BYPASS;
1870 if (eso_query_devinfo(sc, &di) != 0)
1871 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1872
1873 for (i = 0; i < di.un.e.num_mem; i++) {
1874 if (monoinbypass == di.un.e.member[i].ord) {
1875 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1876 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1877 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1878 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1879 sc->sc_monoinbypass = monoinbypass;
1880 return 0;
1881 }
1882 }
1883
1884 return EINVAL;
1885 }
1886
1887 static int
1888 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
1889 {
1890 mixer_devinfo_t di;
1891 int i;
1892 uint8_t mpm;
1893
1894 di.index = ESO_MIC_PREAMP;
1895 if (eso_query_devinfo(sc, &di) != 0)
1896 panic("eso_set_preamp: eso_query_devinfo failed");
1897
1898 for (i = 0; i < di.un.e.num_mem; i++) {
1899 if (preamp == di.un.e.member[i].ord) {
1900 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1901 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1902 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1903 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1904 sc->sc_preamp = preamp;
1905 return 0;
1906 }
1907 }
1908
1909 return EINVAL;
1910 }
1911
1912 /*
1913 * Reload Master Volume and Mute values in softc from mixer; used when
1914 * those have previously been invalidated by use of hardware volume controls.
1915 */
1916 static void
1917 eso_reload_master_vol(struct eso_softc *sc)
1918 {
1919 uint8_t mv;
1920
1921 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1922 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1923 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1924 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1925 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1926 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1927 /* Currently both channels are muted simultaneously; either is OK. */
1928 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1929 }
1930
1931 static void
1932 eso_set_gain(struct eso_softc *sc, unsigned int port)
1933 {
1934 uint8_t mixreg, tmp;
1935
1936 switch (port) {
1937 case ESO_DAC_PLAY_VOL:
1938 mixreg = ESO_MIXREG_PVR_A2;
1939 break;
1940 case ESO_MIC_PLAY_VOL:
1941 mixreg = ESO_MIXREG_PVR_MIC;
1942 break;
1943 case ESO_LINE_PLAY_VOL:
1944 mixreg = ESO_MIXREG_PVR_LINE;
1945 break;
1946 case ESO_SYNTH_PLAY_VOL:
1947 mixreg = ESO_MIXREG_PVR_SYNTH;
1948 break;
1949 case ESO_CD_PLAY_VOL:
1950 mixreg = ESO_MIXREG_PVR_CD;
1951 break;
1952 case ESO_AUXB_PLAY_VOL:
1953 mixreg = ESO_MIXREG_PVR_AUXB;
1954 break;
1955
1956 case ESO_DAC_REC_VOL:
1957 mixreg = ESO_MIXREG_RVR_A2;
1958 break;
1959 case ESO_MIC_REC_VOL:
1960 mixreg = ESO_MIXREG_RVR_MIC;
1961 break;
1962 case ESO_LINE_REC_VOL:
1963 mixreg = ESO_MIXREG_RVR_LINE;
1964 break;
1965 case ESO_SYNTH_REC_VOL:
1966 mixreg = ESO_MIXREG_RVR_SYNTH;
1967 break;
1968 case ESO_CD_REC_VOL:
1969 mixreg = ESO_MIXREG_RVR_CD;
1970 break;
1971 case ESO_AUXB_REC_VOL:
1972 mixreg = ESO_MIXREG_RVR_AUXB;
1973 break;
1974 case ESO_MONO_PLAY_VOL:
1975 mixreg = ESO_MIXREG_PVR_MONO;
1976 break;
1977 case ESO_MONO_REC_VOL:
1978 mixreg = ESO_MIXREG_RVR_MONO;
1979 break;
1980
1981 case ESO_PCSPEAKER_VOL:
1982 /* Special case - only 3-bit, mono, and reserved bits. */
1983 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1984 tmp &= ESO_MIXREG_PCSVR_RESV;
1985 /* Map bits 7:5 -> 2:0. */
1986 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1987 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1988 return;
1989
1990 case ESO_MASTER_VOL:
1991 /* Special case - separate regs, and 6-bit precision. */
1992 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1993 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1994 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1995 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1996 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1997 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1998 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1999 return;
2000
2001 case ESO_SPATIALIZER:
2002 /* Special case - only `mono', and higher precision. */
2003 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2004 sc->sc_gain[port][ESO_LEFT]);
2005 return;
2006
2007 case ESO_RECORD_VOL:
2008 /* Very Special case, controller register. */
2009 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2010 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2011 return;
2012
2013 default:
2014 #ifdef DIAGNOSTIC
2015 panic("eso_set_gain: bad port %u", port);
2016 /* NOTREACHED */
2017 #else
2018 return;
2019 #endif
2020 }
2021
2022 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2023 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2024 }
2025