eso.c revision 1.53 1 /* $NetBSD: eso.c,v 1.53 2008/04/10 19:13:36 cegger Exp $ */
2
3 /*
4 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.53 2008/04/10 19:13:36 cegger Exp $");
37
38 #include "mpu.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46 #include <sys/proc.h>
47
48 #include <dev/pci/pcidevs.h>
49 #include <dev/pci/pcivar.h>
50
51 #include <sys/audioio.h>
52 #include <dev/audio_if.h>
53 #include <dev/midi_if.h>
54
55 #include <dev/mulaw.h>
56 #include <dev/auconv.h>
57
58 #include <dev/ic/mpuvar.h>
59 #include <dev/ic/i8237reg.h>
60 #include <dev/pci/esoreg.h>
61 #include <dev/pci/esovar.h>
62
63 #include <sys/bus.h>
64 #include <sys/intr.h>
65
66 /*
67 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
68 * XXX engine by allocating through the ISA DMA tag.
69 */
70 #if defined(amd64) || defined(i386)
71 #include "isa.h"
72 #if NISA > 0
73 #include <dev/isa/isavar.h>
74 #endif
75 #endif
76
77 #if defined(AUDIO_DEBUG) || defined(DEBUG)
78 #define DPRINTF(x) printf x
79 #else
80 #define DPRINTF(x)
81 #endif
82
83 struct eso_dma {
84 bus_dma_tag_t ed_dmat;
85 bus_dmamap_t ed_map;
86 void * ed_kva;
87 bus_dma_segment_t ed_segs[1];
88 int ed_nsegs;
89 size_t ed_size;
90 SLIST_ENTRY(eso_dma) ed_slist;
91 };
92
93 #define KVADDR(dma) ((void *)(dma)->ed_kva)
94 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
95
96 /* Autoconfiguration interface */
97 static int eso_match(struct device *, struct cfdata *, void *);
98 static void eso_attach(struct device *, struct device *, void *);
99 static void eso_defer(struct device *);
100 static int eso_print(void *, const char *);
101
102 CFATTACH_DECL(eso, sizeof (struct eso_softc),
103 eso_match, eso_attach, NULL, NULL);
104
105 /* PCI interface */
106 static int eso_intr(void *);
107
108 /* MI audio layer interface */
109 static int eso_query_encoding(void *, struct audio_encoding *);
110 static int eso_set_params(void *, int, int, audio_params_t *,
111 audio_params_t *, stream_filter_list_t *,
112 stream_filter_list_t *);
113 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
114 static int eso_halt_output(void *);
115 static int eso_halt_input(void *);
116 static int eso_getdev(void *, struct audio_device *);
117 static int eso_set_port(void *, mixer_ctrl_t *);
118 static int eso_get_port(void *, mixer_ctrl_t *);
119 static int eso_query_devinfo(void *, mixer_devinfo_t *);
120 static void * eso_allocm(void *, int, size_t, struct malloc_type *, int);
121 static void eso_freem(void *, void *, struct malloc_type *);
122 static size_t eso_round_buffersize(void *, int, size_t);
123 static paddr_t eso_mappage(void *, void *, off_t, int);
124 static int eso_get_props(void *);
125 static int eso_trigger_output(void *, void *, void *, int,
126 void (*)(void *), void *, const audio_params_t *);
127 static int eso_trigger_input(void *, void *, void *, int,
128 void (*)(void *), void *, const audio_params_t *);
129
130 static const struct audio_hw_if eso_hw_if = {
131 NULL, /* open */
132 NULL, /* close */
133 NULL, /* drain */
134 eso_query_encoding,
135 eso_set_params,
136 eso_round_blocksize,
137 NULL, /* commit_settings */
138 NULL, /* init_output */
139 NULL, /* init_input */
140 NULL, /* start_output */
141 NULL, /* start_input */
142 eso_halt_output,
143 eso_halt_input,
144 NULL, /* speaker_ctl */
145 eso_getdev,
146 NULL, /* setfd */
147 eso_set_port,
148 eso_get_port,
149 eso_query_devinfo,
150 eso_allocm,
151 eso_freem,
152 eso_round_buffersize,
153 eso_mappage,
154 eso_get_props,
155 eso_trigger_output,
156 eso_trigger_input,
157 NULL, /* dev_ioctl */
158 NULL, /* powerstate */
159 };
160
161 static const char * const eso_rev2model[] = {
162 "ES1938",
163 "ES1946",
164 "ES1946 Revision E"
165 };
166
167 #define ESO_NFORMATS 8
168 static const struct audio_format eso_formats[ESO_NFORMATS] = {
169 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
170 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
171 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
172 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
173 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
174 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
175 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
176 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
177 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
178 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
179 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
180 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
181 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
182 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
183 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
184 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
185 };
186
187
188 /*
189 * Utility routines
190 */
191 /* Register access etc. */
192 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
193 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
194 static uint8_t eso_read_rdr(struct eso_softc *);
195 static void eso_reload_master_vol(struct eso_softc *);
196 static int eso_reset(struct eso_softc *);
197 static void eso_set_gain(struct eso_softc *, unsigned int);
198 static int eso_set_recsrc(struct eso_softc *, unsigned int);
199 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
200 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
201 static int eso_set_preamp(struct eso_softc *, unsigned int);
202 static void eso_write_cmd(struct eso_softc *, uint8_t);
203 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
204 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
205 /* DMA memory allocation */
206 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
207 int, int, struct eso_dma *);
208 static void eso_freemem(struct eso_dma *);
209 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *);
210
211
212 static int
213 eso_match(struct device *parent, struct cfdata *match,
214 void *aux)
215 {
216 struct pci_attach_args *pa;
217
218 pa = aux;
219 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
220 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
221 return 1;
222
223 return 0;
224 }
225
226 static void
227 eso_attach(struct device *parent, struct device *self, void *aux)
228 {
229 struct eso_softc *sc;
230 struct pci_attach_args *pa;
231 struct audio_attach_args aa;
232 pci_intr_handle_t ih;
233 bus_addr_t vcbase;
234 const char *intrstring;
235 int idx;
236 uint8_t a2mode, mvctl;
237
238 sc = (struct eso_softc *)self;
239 pa = aux;
240 aprint_naive(": Audio controller\n");
241
242 sc->sc_revision = PCI_REVISION(pa->pa_class);
243
244 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
245 if (sc->sc_revision <
246 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
247 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
248 else
249 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
250
251 /* Map I/O registers. */
252 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
253 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
254 aprint_error_dev(&sc->sc_dev, "can't map I/O space\n");
255 return;
256 }
257 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
258 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
259 aprint_error_dev(&sc->sc_dev, "can't map SB I/O space\n");
260 return;
261 }
262 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
263 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
264 aprint_error_dev(&sc->sc_dev, "can't map VC I/O space\n");
265 /* Don't bail out yet: we can map it later, see below. */
266 vcbase = 0;
267 sc->sc_vcsize = 0x10; /* From the data sheet. */
268 }
269 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
270 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
271 aprint_error_dev(&sc->sc_dev, "can't map MPU I/O space\n");
272 return;
273 }
274 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
275 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
276 aprint_error_dev(&sc->sc_dev, "can't map Game I/O space\n");
277 return;
278 }
279
280 sc->sc_dmat = pa->pa_dmat;
281 SLIST_INIT(&sc->sc_dmas);
282 sc->sc_dmac_configured = 0;
283
284 /* Enable bus mastering. */
285 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
286 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
287 PCI_COMMAND_MASTER_ENABLE);
288
289 /* Reset the device; bail out upon failure. */
290 if (eso_reset(sc) != 0) {
291 aprint_error_dev(&sc->sc_dev, "can't reset\n");
292 return;
293 }
294
295 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
296 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
297 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
298 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
299
300 /* Enable the relevant (DMA) interrupts. */
301 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
302 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
303 ESO_IO_IRQCTL_MPUIRQ);
304
305 /* Set up A1's sample rate generator for new-style parameters. */
306 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
307 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
308 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
309
310 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
311 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
312 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
313 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
314 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
315
316 /* Set mixer regs to something reasonable, needs work. */
317 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
318 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
319 eso_set_monoinbypass(sc, 0);
320 eso_set_preamp(sc, 1);
321 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
322 int v;
323
324 switch (idx) {
325 case ESO_MIC_PLAY_VOL:
326 case ESO_LINE_PLAY_VOL:
327 case ESO_CD_PLAY_VOL:
328 case ESO_MONO_PLAY_VOL:
329 case ESO_AUXB_PLAY_VOL:
330 case ESO_DAC_REC_VOL:
331 case ESO_LINE_REC_VOL:
332 case ESO_SYNTH_REC_VOL:
333 case ESO_CD_REC_VOL:
334 case ESO_MONO_REC_VOL:
335 case ESO_AUXB_REC_VOL:
336 case ESO_SPATIALIZER:
337 v = 0;
338 break;
339 case ESO_MASTER_VOL:
340 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
341 break;
342 default:
343 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
344 break;
345 }
346 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
347 eso_set_gain(sc, idx);
348 }
349 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
350
351 /* Map and establish the interrupt. */
352 if (pci_intr_map(pa, &ih)) {
353 aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
354 return;
355 }
356 intrstring = pci_intr_string(pa->pa_pc, ih);
357 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
358 if (sc->sc_ih == NULL) {
359 aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
360 if (intrstring != NULL)
361 aprint_normal(" at %s", intrstring);
362 aprint_normal("\n");
363 return;
364 }
365 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n",
366 intrstring);
367
368 /*
369 * Set up the DDMA Control register; a suitable I/O region has been
370 * supposedly mapped in the VC base address register.
371 *
372 * The Solo-1 has an ... interesting silicon bug that causes it to
373 * not respond to I/O space accesses to the Audio 1 DMA controller
374 * if the latter's mapping base address is aligned on a 1K boundary.
375 * As a consequence, it is quite possible for the mapping provided
376 * in the VC BAR to be useless. To work around this, we defer this
377 * part until all autoconfiguration on our parent bus is completed
378 * and then try to map it ourselves in fulfillment of the constraint.
379 *
380 * According to the register map we may write to the low 16 bits
381 * only, but experimenting has shown we're safe.
382 * -kjk
383 */
384 if (ESO_VALID_DDMAC_BASE(vcbase)) {
385 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
386 vcbase | ESO_PCI_DDMAC_DE);
387 sc->sc_dmac_configured = 1;
388
389 aprint_normal_dev(&sc->sc_dev,
390 "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
391 (unsigned long)vcbase);
392 } else {
393 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
394 device_xname(&sc->sc_dev), (unsigned long)vcbase));
395 sc->sc_pa = *pa;
396 config_defer(self, eso_defer);
397 }
398
399 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
400
401 aa.type = AUDIODEV_TYPE_OPL;
402 aa.hwif = NULL;
403 aa.hdl = NULL;
404 (void)config_found(&sc->sc_dev, &aa, audioprint);
405
406 aa.type = AUDIODEV_TYPE_MPU;
407 aa.hwif = NULL;
408 aa.hdl = NULL;
409 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
410 if (sc->sc_mpudev != NULL) {
411 /* Unmask the MPU irq. */
412 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
413 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
414 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
415 }
416
417 aa.type = AUDIODEV_TYPE_AUX;
418 aa.hwif = NULL;
419 aa.hdl = NULL;
420 (void)config_found(&sc->sc_dev, &aa, eso_print);
421 }
422
423 static void
424 eso_defer(struct device *self)
425 {
426 struct eso_softc *sc;
427 struct pci_attach_args *pa;
428 bus_addr_t addr, start;
429
430 sc = (struct eso_softc *)self;
431 pa = &sc->sc_pa;
432 aprint_normal_dev(&sc->sc_dev, "");
433
434 /*
435 * This is outright ugly, but since we must not make assumptions
436 * on the underlying allocator's behaviour it's the most straight-
437 * forward way to implement it. Note that we skip over the first
438 * 1K region, which is typically occupied by an attached ISA bus.
439 */
440 for (start = 0x0400; start < 0xffff; start += 0x0400) {
441 if (bus_space_alloc(sc->sc_iot,
442 start + sc->sc_vcsize, start + 0x0400 - 1,
443 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
444 &sc->sc_dmac_ioh) != 0)
445 continue;
446
447 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
448 addr | ESO_PCI_DDMAC_DE);
449 sc->sc_dmac_iot = sc->sc_iot;
450 sc->sc_dmac_configured = 1;
451 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
452 (unsigned long)addr);
453
454 return;
455 }
456
457 aprint_error("can't map Audio 1 DMA into I/O space\n");
458 }
459
460 /* ARGSUSED */
461 static int
462 eso_print(void *aux, const char *pnp)
463 {
464
465 /* Only joys can attach via this; easy. */
466 if (pnp)
467 aprint_normal("joy at %s:", pnp);
468
469 return UNCONF;
470 }
471
472 static void
473 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
474 {
475 int i;
476
477 /* Poll for busy indicator to become clear. */
478 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
479 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
480 & ESO_SB_RSR_BUSY) == 0) {
481 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
482 ESO_SB_WDR, cmd);
483 return;
484 } else {
485 delay(10);
486 }
487 }
488
489 printf("%s: WDR timeout\n", device_xname(&sc->sc_dev));
490 return;
491 }
492
493 /* Write to a controller register */
494 static void
495 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
496 {
497
498 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
499
500 eso_write_cmd(sc, reg);
501 eso_write_cmd(sc, val);
502 }
503
504 /* Read out the Read Data Register */
505 static uint8_t
506 eso_read_rdr(struct eso_softc *sc)
507 {
508 int i;
509
510 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
511 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
512 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
513 return (bus_space_read_1(sc->sc_sb_iot,
514 sc->sc_sb_ioh, ESO_SB_RDR));
515 } else {
516 delay(10);
517 }
518 }
519
520 printf("%s: RDR timeout\n", device_xname(&sc->sc_dev));
521 return (-1);
522 }
523
524 static uint8_t
525 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
526 {
527
528 eso_write_cmd(sc, ESO_CMD_RCR);
529 eso_write_cmd(sc, reg);
530 return eso_read_rdr(sc);
531 }
532
533 static void
534 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
535 {
536 int s;
537
538 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
539
540 s = splaudio();
541 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
542 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
543 splx(s);
544 }
545
546 static uint8_t
547 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
548 {
549 int s;
550 uint8_t val;
551
552 s = splaudio();
553 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
554 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
555 splx(s);
556
557 return val;
558 }
559
560 static int
561 eso_intr(void *hdl)
562 {
563 struct eso_softc *sc = hdl;
564 #if NMPU > 0
565 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
566 #endif
567 uint8_t irqctl;
568
569 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
570
571 /* If it wasn't ours, that's all she wrote. */
572 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
573 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
574 return 0;
575
576 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
577 /* Clear interrupt. */
578 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
579 ESO_SB_RBSR);
580
581 if (sc->sc_rintr)
582 sc->sc_rintr(sc->sc_rarg);
583 else
584 wakeup(&sc->sc_rintr);
585 }
586
587 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
588 /*
589 * Clear the A2 IRQ latch: the cached value reflects the
590 * current DAC settings with the IRQ latch bit not set.
591 */
592 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
593
594 if (sc->sc_pintr)
595 sc->sc_pintr(sc->sc_parg);
596 else
597 wakeup(&sc->sc_pintr);
598 }
599
600 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
601 /* Clear interrupt. */
602 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
603
604 /*
605 * Raise a flag to cause a lazy update of the in-softc gain
606 * values the next time the software mixer is read to keep
607 * interrupt service cost low. ~0 cannot occur otherwise
608 * as the master volume has a precision of 6 bits only.
609 */
610 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
611 }
612
613 #if NMPU > 0
614 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
615 mpu_intr(sc_mpu);
616 #endif
617
618 return 1;
619 }
620
621 /* Perform a software reset, including DMA FIFOs. */
622 static int
623 eso_reset(struct eso_softc *sc)
624 {
625 int i;
626
627 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
628 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
629 /* `Delay' suggested in the data sheet. */
630 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
631 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
632
633 /* Wait for reset to take effect. */
634 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
635 /* Poll for data to become available. */
636 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
637 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
638 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
639 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
640
641 /* Activate Solo-1 extension commands. */
642 eso_write_cmd(sc, ESO_CMD_EXTENB);
643 /* Reset mixer registers. */
644 eso_write_mixreg(sc, ESO_MIXREG_RESET,
645 ESO_MIXREG_RESET_RESET);
646
647 return 0;
648 } else {
649 delay(1000);
650 }
651 }
652
653 printf("%s: reset timeout\n", device_xname(&sc->sc_dev));
654 return -1;
655 }
656
657 static int
658 eso_query_encoding(void *hdl, struct audio_encoding *fp)
659 {
660
661 switch (fp->index) {
662 case 0:
663 strcpy(fp->name, AudioEulinear);
664 fp->encoding = AUDIO_ENCODING_ULINEAR;
665 fp->precision = 8;
666 fp->flags = 0;
667 break;
668 case 1:
669 strcpy(fp->name, AudioEmulaw);
670 fp->encoding = AUDIO_ENCODING_ULAW;
671 fp->precision = 8;
672 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
673 break;
674 case 2:
675 strcpy(fp->name, AudioEalaw);
676 fp->encoding = AUDIO_ENCODING_ALAW;
677 fp->precision = 8;
678 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
679 break;
680 case 3:
681 strcpy(fp->name, AudioEslinear);
682 fp->encoding = AUDIO_ENCODING_SLINEAR;
683 fp->precision = 8;
684 fp->flags = 0;
685 break;
686 case 4:
687 strcpy(fp->name, AudioEslinear_le);
688 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
689 fp->precision = 16;
690 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
691 break;
692 case 5:
693 strcpy(fp->name, AudioEulinear_le);
694 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
695 fp->precision = 16;
696 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
697 break;
698 case 6:
699 strcpy(fp->name, AudioEslinear_be);
700 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
701 fp->precision = 16;
702 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
703 break;
704 case 7:
705 strcpy(fp->name, AudioEulinear_be);
706 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
707 fp->precision = 16;
708 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
709 break;
710 default:
711 return EINVAL;
712 }
713
714 return 0;
715 }
716
717 static int
718 eso_set_params(void *hdl, int setmode, int usemode,
719 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
720 stream_filter_list_t *rfil)
721 {
722 struct eso_softc *sc;
723 struct audio_params *p;
724 stream_filter_list_t *fil;
725 int mode, r[2], rd[2], ar[2], clk;
726 unsigned int srg, fltdiv;
727 int i;
728
729 sc = hdl;
730 for (mode = AUMODE_RECORD; mode != -1;
731 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
732 if ((setmode & mode) == 0)
733 continue;
734
735 p = (mode == AUMODE_PLAY) ? play : rec;
736
737 if (p->sample_rate < ESO_MINRATE ||
738 p->sample_rate > ESO_MAXRATE ||
739 (p->precision != 8 && p->precision != 16) ||
740 (p->channels != 1 && p->channels != 2))
741 return EINVAL;
742
743 /*
744 * We'll compute both possible sample rate dividers and pick
745 * the one with the least error.
746 */
747 #define ABS(x) ((x) < 0 ? -(x) : (x))
748 r[0] = ESO_CLK0 /
749 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
750 r[1] = ESO_CLK1 /
751 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
752
753 ar[0] = p->sample_rate - r[0];
754 ar[1] = p->sample_rate - r[1];
755 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
756 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
757
758 /* Roll-off frequency of 87%, as in the ES1888 driver. */
759 fltdiv = 256 - 200279L / r[clk];
760
761 /* Update to reflect the possibly inexact rate. */
762 p->sample_rate = r[clk];
763
764 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
765 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
766 mode, p, FALSE, fil);
767 if (i < 0)
768 return EINVAL;
769 if (mode == AUMODE_RECORD) {
770 /* Audio 1 */
771 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
772 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
773 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
774 } else {
775 /* Audio 2 */
776 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
777 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
778 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
779 }
780 #undef ABS
781
782 }
783
784 return 0;
785 }
786
787 static int
788 eso_round_blocksize(void *hdl, int blk, int mode,
789 const audio_params_t *param)
790 {
791
792 return blk & -32; /* keep good alignment; at least 16 req'd */
793 }
794
795 static int
796 eso_halt_output(void *hdl)
797 {
798 struct eso_softc *sc;
799 int error, s;
800
801 sc = hdl;
802 DPRINTF(("%s: halt_output\n", device_xname(&sc->sc_dev)));
803
804 /*
805 * Disable auto-initialize DMA, allowing the FIFO to drain and then
806 * stop. The interrupt callback pointer is cleared at this
807 * point so that an outstanding FIFO interrupt for the remaining data
808 * will be acknowledged without further processing.
809 *
810 * This does not immediately `abort' an operation in progress (c.f.
811 * audio(9)) but is the method to leave the FIFO behind in a clean
812 * state with the least hair. (Besides, that item needs to be
813 * rephrased for trigger_*()-based DMA environments.)
814 */
815 s = splaudio();
816 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
817 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
818 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
819 ESO_IO_A2DMAM_DMAENB);
820
821 sc->sc_pintr = NULL;
822 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
823 splx(s);
824
825 /* Shut down DMA completely. */
826 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
827 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
828
829 return error == EWOULDBLOCK ? 0 : error;
830 }
831
832 static int
833 eso_halt_input(void *hdl)
834 {
835 struct eso_softc *sc;
836 int error, s;
837
838 sc = hdl;
839 DPRINTF(("%s: halt_input\n", device_xname(&sc->sc_dev)));
840
841 /* Just like eso_halt_output(), but for Audio 1. */
842 s = splaudio();
843 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
844 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
845 ESO_CTLREG_A1C2_DMAENB);
846 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
847 DMA37MD_WRITE | DMA37MD_DEMAND);
848
849 sc->sc_rintr = NULL;
850 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
851 splx(s);
852
853 /* Shut down DMA completely. */
854 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
855 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
856 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
857 ESO_DMAC_MASK_MASK);
858
859 return error == EWOULDBLOCK ? 0 : error;
860 }
861
862 static int
863 eso_getdev(void *hdl, struct audio_device *retp)
864 {
865 struct eso_softc *sc;
866
867 sc = hdl;
868 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
869 snprintf(retp->version, sizeof (retp->version), "0x%02x",
870 sc->sc_revision);
871 if (sc->sc_revision <
872 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
873 strncpy(retp->config, eso_rev2model[sc->sc_revision],
874 sizeof (retp->config));
875 else
876 strncpy(retp->config, "unknown", sizeof (retp->config));
877
878 return 0;
879 }
880
881 static int
882 eso_set_port(void *hdl, mixer_ctrl_t *cp)
883 {
884 struct eso_softc *sc;
885 unsigned int lgain, rgain;
886 uint8_t tmp;
887
888 sc = hdl;
889 switch (cp->dev) {
890 case ESO_DAC_PLAY_VOL:
891 case ESO_MIC_PLAY_VOL:
892 case ESO_LINE_PLAY_VOL:
893 case ESO_SYNTH_PLAY_VOL:
894 case ESO_CD_PLAY_VOL:
895 case ESO_AUXB_PLAY_VOL:
896 case ESO_RECORD_VOL:
897 case ESO_DAC_REC_VOL:
898 case ESO_MIC_REC_VOL:
899 case ESO_LINE_REC_VOL:
900 case ESO_SYNTH_REC_VOL:
901 case ESO_CD_REC_VOL:
902 case ESO_AUXB_REC_VOL:
903 if (cp->type != AUDIO_MIXER_VALUE)
904 return EINVAL;
905
906 /*
907 * Stereo-capable mixer ports: if we get a single-channel
908 * gain value passed in, then we duplicate it to both left
909 * and right channels.
910 */
911 switch (cp->un.value.num_channels) {
912 case 1:
913 lgain = rgain = ESO_GAIN_TO_4BIT(
914 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
915 break;
916 case 2:
917 lgain = ESO_GAIN_TO_4BIT(
918 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
919 rgain = ESO_GAIN_TO_4BIT(
920 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
921 break;
922 default:
923 return EINVAL;
924 }
925
926 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
927 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
928 eso_set_gain(sc, cp->dev);
929 break;
930
931 case ESO_MASTER_VOL:
932 if (cp->type != AUDIO_MIXER_VALUE)
933 return EINVAL;
934
935 /* Like above, but a precision of 6 bits. */
936 switch (cp->un.value.num_channels) {
937 case 1:
938 lgain = rgain = ESO_GAIN_TO_6BIT(
939 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
940 break;
941 case 2:
942 lgain = ESO_GAIN_TO_6BIT(
943 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
944 rgain = ESO_GAIN_TO_6BIT(
945 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
946 break;
947 default:
948 return EINVAL;
949 }
950
951 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
952 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
953 eso_set_gain(sc, cp->dev);
954 break;
955
956 case ESO_SPATIALIZER:
957 if (cp->type != AUDIO_MIXER_VALUE ||
958 cp->un.value.num_channels != 1)
959 return EINVAL;
960
961 sc->sc_gain[cp->dev][ESO_LEFT] =
962 sc->sc_gain[cp->dev][ESO_RIGHT] =
963 ESO_GAIN_TO_6BIT(
964 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
965 eso_set_gain(sc, cp->dev);
966 break;
967
968 case ESO_MONO_PLAY_VOL:
969 case ESO_MONO_REC_VOL:
970 if (cp->type != AUDIO_MIXER_VALUE ||
971 cp->un.value.num_channels != 1)
972 return EINVAL;
973
974 sc->sc_gain[cp->dev][ESO_LEFT] =
975 sc->sc_gain[cp->dev][ESO_RIGHT] =
976 ESO_GAIN_TO_4BIT(
977 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
978 eso_set_gain(sc, cp->dev);
979 break;
980
981 case ESO_PCSPEAKER_VOL:
982 if (cp->type != AUDIO_MIXER_VALUE ||
983 cp->un.value.num_channels != 1)
984 return EINVAL;
985
986 sc->sc_gain[cp->dev][ESO_LEFT] =
987 sc->sc_gain[cp->dev][ESO_RIGHT] =
988 ESO_GAIN_TO_3BIT(
989 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
990 eso_set_gain(sc, cp->dev);
991 break;
992
993 case ESO_SPATIALIZER_ENABLE:
994 if (cp->type != AUDIO_MIXER_ENUM)
995 return EINVAL;
996
997 sc->sc_spatializer = (cp->un.ord != 0);
998
999 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1000 if (sc->sc_spatializer)
1001 tmp |= ESO_MIXREG_SPAT_ENB;
1002 else
1003 tmp &= ~ESO_MIXREG_SPAT_ENB;
1004 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1005 tmp | ESO_MIXREG_SPAT_RSTREL);
1006 break;
1007
1008 case ESO_MASTER_MUTE:
1009 if (cp->type != AUDIO_MIXER_ENUM)
1010 return EINVAL;
1011
1012 sc->sc_mvmute = (cp->un.ord != 0);
1013
1014 if (sc->sc_mvmute) {
1015 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1016 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1017 ESO_MIXREG_LMVM_MUTE);
1018 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1019 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1020 ESO_MIXREG_RMVM_MUTE);
1021 } else {
1022 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1023 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1024 ~ESO_MIXREG_LMVM_MUTE);
1025 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1026 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1027 ~ESO_MIXREG_RMVM_MUTE);
1028 }
1029 break;
1030
1031 case ESO_MONOOUT_SOURCE:
1032 if (cp->type != AUDIO_MIXER_ENUM)
1033 return EINVAL;
1034
1035 return eso_set_monooutsrc(sc, cp->un.ord);
1036
1037 case ESO_MONOIN_BYPASS:
1038 if (cp->type != AUDIO_MIXER_ENUM)
1039 return EINVAL;
1040
1041 return (eso_set_monoinbypass(sc, cp->un.ord));
1042
1043 case ESO_RECORD_MONITOR:
1044 if (cp->type != AUDIO_MIXER_ENUM)
1045 return EINVAL;
1046
1047 sc->sc_recmon = (cp->un.ord != 0);
1048
1049 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1050 if (sc->sc_recmon)
1051 tmp |= ESO_CTLREG_ACTL_RECMON;
1052 else
1053 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1054 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1055 break;
1056
1057 case ESO_RECORD_SOURCE:
1058 if (cp->type != AUDIO_MIXER_ENUM)
1059 return EINVAL;
1060
1061 return eso_set_recsrc(sc, cp->un.ord);
1062
1063 case ESO_MIC_PREAMP:
1064 if (cp->type != AUDIO_MIXER_ENUM)
1065 return EINVAL;
1066
1067 return eso_set_preamp(sc, cp->un.ord);
1068
1069 default:
1070 return EINVAL;
1071 }
1072
1073 return 0;
1074 }
1075
1076 static int
1077 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1078 {
1079 struct eso_softc *sc;
1080
1081 sc = hdl;
1082 switch (cp->dev) {
1083 case ESO_MASTER_VOL:
1084 /* Reload from mixer after hardware volume control use. */
1085 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1086 eso_reload_master_vol(sc);
1087 /* FALLTHROUGH */
1088 case ESO_DAC_PLAY_VOL:
1089 case ESO_MIC_PLAY_VOL:
1090 case ESO_LINE_PLAY_VOL:
1091 case ESO_SYNTH_PLAY_VOL:
1092 case ESO_CD_PLAY_VOL:
1093 case ESO_AUXB_PLAY_VOL:
1094 case ESO_RECORD_VOL:
1095 case ESO_DAC_REC_VOL:
1096 case ESO_MIC_REC_VOL:
1097 case ESO_LINE_REC_VOL:
1098 case ESO_SYNTH_REC_VOL:
1099 case ESO_CD_REC_VOL:
1100 case ESO_AUXB_REC_VOL:
1101 /*
1102 * Stereo-capable ports: if a single-channel query is made,
1103 * just return the left channel's value (since single-channel
1104 * settings themselves are applied to both channels).
1105 */
1106 switch (cp->un.value.num_channels) {
1107 case 1:
1108 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1109 sc->sc_gain[cp->dev][ESO_LEFT];
1110 break;
1111 case 2:
1112 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1113 sc->sc_gain[cp->dev][ESO_LEFT];
1114 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1115 sc->sc_gain[cp->dev][ESO_RIGHT];
1116 break;
1117 default:
1118 return EINVAL;
1119 }
1120 break;
1121
1122 case ESO_MONO_PLAY_VOL:
1123 case ESO_PCSPEAKER_VOL:
1124 case ESO_MONO_REC_VOL:
1125 case ESO_SPATIALIZER:
1126 if (cp->un.value.num_channels != 1)
1127 return EINVAL;
1128 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1129 sc->sc_gain[cp->dev][ESO_LEFT];
1130 break;
1131
1132 case ESO_RECORD_MONITOR:
1133 cp->un.ord = sc->sc_recmon;
1134 break;
1135
1136 case ESO_RECORD_SOURCE:
1137 cp->un.ord = sc->sc_recsrc;
1138 break;
1139
1140 case ESO_MONOOUT_SOURCE:
1141 cp->un.ord = sc->sc_monooutsrc;
1142 break;
1143
1144 case ESO_MONOIN_BYPASS:
1145 cp->un.ord = sc->sc_monoinbypass;
1146 break;
1147
1148 case ESO_SPATIALIZER_ENABLE:
1149 cp->un.ord = sc->sc_spatializer;
1150 break;
1151
1152 case ESO_MIC_PREAMP:
1153 cp->un.ord = sc->sc_preamp;
1154 break;
1155
1156 case ESO_MASTER_MUTE:
1157 /* Reload from mixer after hardware volume control use. */
1158 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1159 eso_reload_master_vol(sc);
1160 cp->un.ord = sc->sc_mvmute;
1161 break;
1162
1163 default:
1164 return EINVAL;
1165 }
1166
1167 return 0;
1168 }
1169
1170 static int
1171 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1172 {
1173
1174 switch (dip->index) {
1175 case ESO_DAC_PLAY_VOL:
1176 dip->mixer_class = ESO_INPUT_CLASS;
1177 dip->next = dip->prev = AUDIO_MIXER_LAST;
1178 strcpy(dip->label.name, AudioNdac);
1179 dip->type = AUDIO_MIXER_VALUE;
1180 dip->un.v.num_channels = 2;
1181 strcpy(dip->un.v.units.name, AudioNvolume);
1182 break;
1183 case ESO_MIC_PLAY_VOL:
1184 dip->mixer_class = ESO_INPUT_CLASS;
1185 dip->next = dip->prev = AUDIO_MIXER_LAST;
1186 strcpy(dip->label.name, AudioNmicrophone);
1187 dip->type = AUDIO_MIXER_VALUE;
1188 dip->un.v.num_channels = 2;
1189 strcpy(dip->un.v.units.name, AudioNvolume);
1190 break;
1191 case ESO_LINE_PLAY_VOL:
1192 dip->mixer_class = ESO_INPUT_CLASS;
1193 dip->next = dip->prev = AUDIO_MIXER_LAST;
1194 strcpy(dip->label.name, AudioNline);
1195 dip->type = AUDIO_MIXER_VALUE;
1196 dip->un.v.num_channels = 2;
1197 strcpy(dip->un.v.units.name, AudioNvolume);
1198 break;
1199 case ESO_SYNTH_PLAY_VOL:
1200 dip->mixer_class = ESO_INPUT_CLASS;
1201 dip->next = dip->prev = AUDIO_MIXER_LAST;
1202 strcpy(dip->label.name, AudioNfmsynth);
1203 dip->type = AUDIO_MIXER_VALUE;
1204 dip->un.v.num_channels = 2;
1205 strcpy(dip->un.v.units.name, AudioNvolume);
1206 break;
1207 case ESO_MONO_PLAY_VOL:
1208 dip->mixer_class = ESO_INPUT_CLASS;
1209 dip->next = dip->prev = AUDIO_MIXER_LAST;
1210 strcpy(dip->label.name, "mono_in");
1211 dip->type = AUDIO_MIXER_VALUE;
1212 dip->un.v.num_channels = 1;
1213 strcpy(dip->un.v.units.name, AudioNvolume);
1214 break;
1215 case ESO_CD_PLAY_VOL:
1216 dip->mixer_class = ESO_INPUT_CLASS;
1217 dip->next = dip->prev = AUDIO_MIXER_LAST;
1218 strcpy(dip->label.name, AudioNcd);
1219 dip->type = AUDIO_MIXER_VALUE;
1220 dip->un.v.num_channels = 2;
1221 strcpy(dip->un.v.units.name, AudioNvolume);
1222 break;
1223 case ESO_AUXB_PLAY_VOL:
1224 dip->mixer_class = ESO_INPUT_CLASS;
1225 dip->next = dip->prev = AUDIO_MIXER_LAST;
1226 strcpy(dip->label.name, "auxb");
1227 dip->type = AUDIO_MIXER_VALUE;
1228 dip->un.v.num_channels = 2;
1229 strcpy(dip->un.v.units.name, AudioNvolume);
1230 break;
1231
1232 case ESO_MIC_PREAMP:
1233 dip->mixer_class = ESO_MICROPHONE_CLASS;
1234 dip->next = dip->prev = AUDIO_MIXER_LAST;
1235 strcpy(dip->label.name, AudioNpreamp);
1236 dip->type = AUDIO_MIXER_ENUM;
1237 dip->un.e.num_mem = 2;
1238 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1239 dip->un.e.member[0].ord = 0;
1240 strcpy(dip->un.e.member[1].label.name, AudioNon);
1241 dip->un.e.member[1].ord = 1;
1242 break;
1243 case ESO_MICROPHONE_CLASS:
1244 dip->mixer_class = ESO_MICROPHONE_CLASS;
1245 dip->next = dip->prev = AUDIO_MIXER_LAST;
1246 strcpy(dip->label.name, AudioNmicrophone);
1247 dip->type = AUDIO_MIXER_CLASS;
1248 break;
1249
1250 case ESO_INPUT_CLASS:
1251 dip->mixer_class = ESO_INPUT_CLASS;
1252 dip->next = dip->prev = AUDIO_MIXER_LAST;
1253 strcpy(dip->label.name, AudioCinputs);
1254 dip->type = AUDIO_MIXER_CLASS;
1255 break;
1256
1257 case ESO_MASTER_VOL:
1258 dip->mixer_class = ESO_OUTPUT_CLASS;
1259 dip->prev = AUDIO_MIXER_LAST;
1260 dip->next = ESO_MASTER_MUTE;
1261 strcpy(dip->label.name, AudioNmaster);
1262 dip->type = AUDIO_MIXER_VALUE;
1263 dip->un.v.num_channels = 2;
1264 strcpy(dip->un.v.units.name, AudioNvolume);
1265 break;
1266 case ESO_MASTER_MUTE:
1267 dip->mixer_class = ESO_OUTPUT_CLASS;
1268 dip->prev = ESO_MASTER_VOL;
1269 dip->next = AUDIO_MIXER_LAST;
1270 strcpy(dip->label.name, AudioNmute);
1271 dip->type = AUDIO_MIXER_ENUM;
1272 dip->un.e.num_mem = 2;
1273 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1274 dip->un.e.member[0].ord = 0;
1275 strcpy(dip->un.e.member[1].label.name, AudioNon);
1276 dip->un.e.member[1].ord = 1;
1277 break;
1278
1279 case ESO_PCSPEAKER_VOL:
1280 dip->mixer_class = ESO_OUTPUT_CLASS;
1281 dip->next = dip->prev = AUDIO_MIXER_LAST;
1282 strcpy(dip->label.name, "pc_speaker");
1283 dip->type = AUDIO_MIXER_VALUE;
1284 dip->un.v.num_channels = 1;
1285 strcpy(dip->un.v.units.name, AudioNvolume);
1286 break;
1287 case ESO_MONOOUT_SOURCE:
1288 dip->mixer_class = ESO_OUTPUT_CLASS;
1289 dip->next = dip->prev = AUDIO_MIXER_LAST;
1290 strcpy(dip->label.name, "mono_out");
1291 dip->type = AUDIO_MIXER_ENUM;
1292 dip->un.e.num_mem = 3;
1293 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1294 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1295 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1296 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1297 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1298 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1299 break;
1300
1301 case ESO_MONOIN_BYPASS:
1302 dip->mixer_class = ESO_MONOIN_CLASS;
1303 dip->next = dip->prev = AUDIO_MIXER_LAST;
1304 strcpy(dip->label.name, "bypass");
1305 dip->type = AUDIO_MIXER_ENUM;
1306 dip->un.e.num_mem = 2;
1307 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1308 dip->un.e.member[0].ord = 0;
1309 strcpy(dip->un.e.member[1].label.name, AudioNon);
1310 dip->un.e.member[1].ord = 1;
1311 break;
1312 case ESO_MONOIN_CLASS:
1313 dip->mixer_class = ESO_MONOIN_CLASS;
1314 dip->next = dip->prev = AUDIO_MIXER_LAST;
1315 strcpy(dip->label.name, "mono_in");
1316 dip->type = AUDIO_MIXER_CLASS;
1317 break;
1318
1319 case ESO_SPATIALIZER:
1320 dip->mixer_class = ESO_OUTPUT_CLASS;
1321 dip->prev = AUDIO_MIXER_LAST;
1322 dip->next = ESO_SPATIALIZER_ENABLE;
1323 strcpy(dip->label.name, AudioNspatial);
1324 dip->type = AUDIO_MIXER_VALUE;
1325 dip->un.v.num_channels = 1;
1326 strcpy(dip->un.v.units.name, "level");
1327 break;
1328 case ESO_SPATIALIZER_ENABLE:
1329 dip->mixer_class = ESO_OUTPUT_CLASS;
1330 dip->prev = ESO_SPATIALIZER;
1331 dip->next = AUDIO_MIXER_LAST;
1332 strcpy(dip->label.name, "enable");
1333 dip->type = AUDIO_MIXER_ENUM;
1334 dip->un.e.num_mem = 2;
1335 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1336 dip->un.e.member[0].ord = 0;
1337 strcpy(dip->un.e.member[1].label.name, AudioNon);
1338 dip->un.e.member[1].ord = 1;
1339 break;
1340
1341 case ESO_OUTPUT_CLASS:
1342 dip->mixer_class = ESO_OUTPUT_CLASS;
1343 dip->next = dip->prev = AUDIO_MIXER_LAST;
1344 strcpy(dip->label.name, AudioCoutputs);
1345 dip->type = AUDIO_MIXER_CLASS;
1346 break;
1347
1348 case ESO_RECORD_MONITOR:
1349 dip->mixer_class = ESO_MONITOR_CLASS;
1350 dip->next = dip->prev = AUDIO_MIXER_LAST;
1351 strcpy(dip->label.name, AudioNmute);
1352 dip->type = AUDIO_MIXER_ENUM;
1353 dip->un.e.num_mem = 2;
1354 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1355 dip->un.e.member[0].ord = 0;
1356 strcpy(dip->un.e.member[1].label.name, AudioNon);
1357 dip->un.e.member[1].ord = 1;
1358 break;
1359 case ESO_MONITOR_CLASS:
1360 dip->mixer_class = ESO_MONITOR_CLASS;
1361 dip->next = dip->prev = AUDIO_MIXER_LAST;
1362 strcpy(dip->label.name, AudioCmonitor);
1363 dip->type = AUDIO_MIXER_CLASS;
1364 break;
1365
1366 case ESO_RECORD_VOL:
1367 dip->mixer_class = ESO_RECORD_CLASS;
1368 dip->next = dip->prev = AUDIO_MIXER_LAST;
1369 strcpy(dip->label.name, AudioNrecord);
1370 dip->type = AUDIO_MIXER_VALUE;
1371 strcpy(dip->un.v.units.name, AudioNvolume);
1372 break;
1373 case ESO_RECORD_SOURCE:
1374 dip->mixer_class = ESO_RECORD_CLASS;
1375 dip->next = dip->prev = AUDIO_MIXER_LAST;
1376 strcpy(dip->label.name, AudioNsource);
1377 dip->type = AUDIO_MIXER_ENUM;
1378 dip->un.e.num_mem = 4;
1379 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1380 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1381 strcpy(dip->un.e.member[1].label.name, AudioNline);
1382 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1383 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1384 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1385 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1386 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1387 break;
1388 case ESO_DAC_REC_VOL:
1389 dip->mixer_class = ESO_RECORD_CLASS;
1390 dip->next = dip->prev = AUDIO_MIXER_LAST;
1391 strcpy(dip->label.name, AudioNdac);
1392 dip->type = AUDIO_MIXER_VALUE;
1393 dip->un.v.num_channels = 2;
1394 strcpy(dip->un.v.units.name, AudioNvolume);
1395 break;
1396 case ESO_MIC_REC_VOL:
1397 dip->mixer_class = ESO_RECORD_CLASS;
1398 dip->next = dip->prev = AUDIO_MIXER_LAST;
1399 strcpy(dip->label.name, AudioNmicrophone);
1400 dip->type = AUDIO_MIXER_VALUE;
1401 dip->un.v.num_channels = 2;
1402 strcpy(dip->un.v.units.name, AudioNvolume);
1403 break;
1404 case ESO_LINE_REC_VOL:
1405 dip->mixer_class = ESO_RECORD_CLASS;
1406 dip->next = dip->prev = AUDIO_MIXER_LAST;
1407 strcpy(dip->label.name, AudioNline);
1408 dip->type = AUDIO_MIXER_VALUE;
1409 dip->un.v.num_channels = 2;
1410 strcpy(dip->un.v.units.name, AudioNvolume);
1411 break;
1412 case ESO_SYNTH_REC_VOL:
1413 dip->mixer_class = ESO_RECORD_CLASS;
1414 dip->next = dip->prev = AUDIO_MIXER_LAST;
1415 strcpy(dip->label.name, AudioNfmsynth);
1416 dip->type = AUDIO_MIXER_VALUE;
1417 dip->un.v.num_channels = 2;
1418 strcpy(dip->un.v.units.name, AudioNvolume);
1419 break;
1420 case ESO_MONO_REC_VOL:
1421 dip->mixer_class = ESO_RECORD_CLASS;
1422 dip->next = dip->prev = AUDIO_MIXER_LAST;
1423 strcpy(dip->label.name, "mono_in");
1424 dip->type = AUDIO_MIXER_VALUE;
1425 dip->un.v.num_channels = 1; /* No lies */
1426 strcpy(dip->un.v.units.name, AudioNvolume);
1427 break;
1428 case ESO_CD_REC_VOL:
1429 dip->mixer_class = ESO_RECORD_CLASS;
1430 dip->next = dip->prev = AUDIO_MIXER_LAST;
1431 strcpy(dip->label.name, AudioNcd);
1432 dip->type = AUDIO_MIXER_VALUE;
1433 dip->un.v.num_channels = 2;
1434 strcpy(dip->un.v.units.name, AudioNvolume);
1435 break;
1436 case ESO_AUXB_REC_VOL:
1437 dip->mixer_class = ESO_RECORD_CLASS;
1438 dip->next = dip->prev = AUDIO_MIXER_LAST;
1439 strcpy(dip->label.name, "auxb");
1440 dip->type = AUDIO_MIXER_VALUE;
1441 dip->un.v.num_channels = 2;
1442 strcpy(dip->un.v.units.name, AudioNvolume);
1443 break;
1444 case ESO_RECORD_CLASS:
1445 dip->mixer_class = ESO_RECORD_CLASS;
1446 dip->next = dip->prev = AUDIO_MIXER_LAST;
1447 strcpy(dip->label.name, AudioCrecord);
1448 dip->type = AUDIO_MIXER_CLASS;
1449 break;
1450
1451 default:
1452 return ENXIO;
1453 }
1454
1455 return 0;
1456 }
1457
1458 static int
1459 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1460 size_t boundary, int flags, int direction, struct eso_dma *ed)
1461 {
1462 int error, wait;
1463
1464 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1465 ed->ed_size = size;
1466
1467 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1468 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1469 &ed->ed_nsegs, wait);
1470 if (error)
1471 goto out;
1472
1473 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1474 ed->ed_size, &ed->ed_kva, wait | BUS_DMA_COHERENT);
1475 if (error)
1476 goto free;
1477
1478 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1479 wait, &ed->ed_map);
1480 if (error)
1481 goto unmap;
1482
1483 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1484 ed->ed_size, NULL, wait |
1485 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1486 if (error)
1487 goto destroy;
1488
1489 return 0;
1490
1491 destroy:
1492 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1493 unmap:
1494 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1495 free:
1496 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1497 out:
1498 return error;
1499 }
1500
1501 static void
1502 eso_freemem(struct eso_dma *ed)
1503 {
1504
1505 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1506 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1507 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1508 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1509 }
1510
1511 static struct eso_dma *
1512 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1513 {
1514 struct eso_dma *p;
1515
1516 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1517 if (KVADDR(p) == kva)
1518 return p;
1519 }
1520
1521 panic("%s: kva2dma: bad kva: %p", sc->sc_dev.dv_xname, kva);
1522 /* NOTREACHED */
1523 }
1524
1525 static void *
1526 eso_allocm(void *hdl, int direction, size_t size, struct malloc_type *type,
1527 int flags)
1528 {
1529 struct eso_softc *sc;
1530 struct eso_dma *ed;
1531 size_t boundary;
1532 int error;
1533
1534 sc = hdl;
1535 if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1536 return NULL;
1537
1538 /*
1539 * Apparently the Audio 1 DMA controller's current address
1540 * register can't roll over a 64K address boundary, so we have to
1541 * take care of that ourselves. Similarly, the Audio 2 DMA
1542 * controller needs a 1M address boundary.
1543 */
1544 if (direction == AUMODE_RECORD)
1545 boundary = 0x10000;
1546 else
1547 boundary = 0x100000;
1548
1549 /*
1550 * XXX Work around allocation problems for Audio 1, which
1551 * XXX implements the 24 low address bits only, with
1552 * XXX machine-specific DMA tag use.
1553 */
1554 #ifdef alpha
1555 /*
1556 * XXX Force allocation through the (ISA) SGMAP.
1557 */
1558 if (direction == AUMODE_RECORD)
1559 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1560 else
1561 #elif defined(amd64) || defined(i386)
1562 /*
1563 * XXX Force allocation through the ISA DMA tag.
1564 */
1565 if (direction == AUMODE_RECORD)
1566 ed->ed_dmat = &isa_bus_dma_tag;
1567 else
1568 #endif
1569 ed->ed_dmat = sc->sc_dmat;
1570
1571 error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1572 if (error) {
1573 free(ed, type);
1574 return NULL;
1575 }
1576 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1577
1578 return KVADDR(ed);
1579 }
1580
1581 static void
1582 eso_freem(void *hdl, void *addr, struct malloc_type *type)
1583 {
1584 struct eso_softc *sc;
1585 struct eso_dma *p;
1586
1587 sc = hdl;
1588 p = eso_kva2dma(sc, addr);
1589
1590 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1591 eso_freemem(p);
1592 free(p, type);
1593 }
1594
1595 static size_t
1596 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1597 {
1598 size_t maxsize;
1599
1600 /*
1601 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1602 * bytes. This is because IO_A2DMAC is a two byte value
1603 * indicating the literal byte count, and the 4 least significant
1604 * bits are read-only. Zero is not used as a special case for
1605 * 0x10000.
1606 *
1607 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1608 * be represented.
1609 */
1610 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1611
1612 if (bufsize > maxsize)
1613 bufsize = maxsize;
1614
1615 return bufsize;
1616 }
1617
1618 static paddr_t
1619 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1620 {
1621 struct eso_softc *sc;
1622 struct eso_dma *ed;
1623
1624 sc = hdl;
1625 if (offs < 0)
1626 return -1;
1627 ed = eso_kva2dma(sc, addr);
1628
1629 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1630 offs, prot, BUS_DMA_WAITOK);
1631 }
1632
1633 /* ARGSUSED */
1634 static int
1635 eso_get_props(void *hdl)
1636 {
1637
1638 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1639 AUDIO_PROP_FULLDUPLEX;
1640 }
1641
1642 static int
1643 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1644 void (*intr)(void *), void *arg, const audio_params_t *param)
1645 {
1646 struct eso_softc *sc;
1647 struct eso_dma *ed;
1648 uint8_t a2c1;
1649
1650 sc = hdl;
1651 DPRINTF((
1652 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1653 device_xname(&sc->sc_dev), start, end, blksize, intr, arg));
1654 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1655 device_xname(&sc->sc_dev), param->sample_rate, param->encoding,
1656 param->precision, param->channels));
1657
1658 /* Find DMA buffer. */
1659 ed = eso_kva2dma(sc, start);
1660 DPRINTF(("%s: dmaaddr %lx\n",
1661 device_xname(&sc->sc_dev), (unsigned long)DMAADDR(ed)));
1662
1663 sc->sc_pintr = intr;
1664 sc->sc_parg = arg;
1665
1666 /* Compute drain timeout. */
1667 sc->sc_pdrain = (blksize * NBBY * hz) /
1668 (param->sample_rate * param->channels *
1669 param->precision) + 2; /* slop */
1670
1671 /* DMA transfer count (in `words'!) reload using 2's complement. */
1672 blksize = -(blksize >> 1);
1673 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1674 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1675
1676 /* Update DAC to reflect DMA count and audio parameters. */
1677 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1678 if (param->precision == 16)
1679 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1680 else
1681 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1682 if (param->channels == 2)
1683 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1684 else
1685 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1686 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1687 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1688 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1689 else
1690 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1691 /* Unmask IRQ. */
1692 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1693 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1694
1695 /* Set up DMA controller. */
1696 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1697 DMAADDR(ed));
1698 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1699 (uint8_t *)end - (uint8_t *)start);
1700 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1701 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1702
1703 /* Start DMA. */
1704 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1705 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1706 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1707 ESO_MIXREG_A2C1_AUTO;
1708 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1709
1710 return 0;
1711 }
1712
1713 static int
1714 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1715 void (*intr)(void *), void *arg, const audio_params_t *param)
1716 {
1717 struct eso_softc *sc;
1718 struct eso_dma *ed;
1719 uint8_t actl, a1c1;
1720
1721 sc = hdl;
1722 DPRINTF((
1723 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1724 device_xname(&sc->sc_dev), start, end, blksize, intr, arg));
1725 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1726 device_xname(&sc->sc_dev), param->sample_rate, param->encoding,
1727 param->precision, param->channels));
1728
1729 /*
1730 * If we failed to configure the Audio 1 DMA controller, bail here
1731 * while retaining availability of the DAC direction (in Audio 2).
1732 */
1733 if (!sc->sc_dmac_configured)
1734 return EIO;
1735
1736 /* Find DMA buffer. */
1737 ed = eso_kva2dma(sc, start);
1738 DPRINTF(("%s: dmaaddr %lx\n",
1739 device_xname(&sc->sc_dev), (unsigned long)DMAADDR(ed)));
1740
1741 sc->sc_rintr = intr;
1742 sc->sc_rarg = arg;
1743
1744 /* Compute drain timeout. */
1745 sc->sc_rdrain = (blksize * NBBY * hz) /
1746 (param->sample_rate * param->channels *
1747 param->precision) + 2; /* slop */
1748
1749 /* Set up ADC DMA converter parameters. */
1750 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1751 if (param->channels == 2) {
1752 actl &= ~ESO_CTLREG_ACTL_MONO;
1753 actl |= ESO_CTLREG_ACTL_STEREO;
1754 } else {
1755 actl &= ~ESO_CTLREG_ACTL_STEREO;
1756 actl |= ESO_CTLREG_ACTL_MONO;
1757 }
1758 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1759
1760 /* Set up Transfer Type: maybe move to attach time? */
1761 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1762
1763 /* DMA transfer count reload using 2's complement. */
1764 blksize = -blksize;
1765 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1766 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1767
1768 /* Set up and enable Audio 1 DMA FIFO. */
1769 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1770 if (param->precision == 16)
1771 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1772 if (param->channels == 2)
1773 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1774 else
1775 a1c1 |= ESO_CTLREG_A1C1_MONO;
1776 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1777 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1778 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1779 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1780
1781 /* Set up ADC IRQ/DRQ parameters. */
1782 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1783 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1784 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1785 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1786
1787 /* Set up and enable DMA controller. */
1788 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1789 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1790 ESO_DMAC_MASK_MASK);
1791 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1792 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1793 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1794 DMAADDR(ed));
1795 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1796 (uint8_t *)end - (uint8_t *)start - 1);
1797 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1798
1799 /* Start DMA. */
1800 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1801 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1802 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1803
1804 return 0;
1805 }
1806
1807 /*
1808 * Mixer utility functions.
1809 */
1810 static int
1811 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1812 {
1813 mixer_devinfo_t di;
1814 int i;
1815
1816 di.index = ESO_RECORD_SOURCE;
1817 if (eso_query_devinfo(sc, &di) != 0)
1818 panic("eso_set_recsrc: eso_query_devinfo failed");
1819
1820 for (i = 0; i < di.un.e.num_mem; i++) {
1821 if (recsrc == di.un.e.member[i].ord) {
1822 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1823 sc->sc_recsrc = recsrc;
1824 return 0;
1825 }
1826 }
1827
1828 return EINVAL;
1829 }
1830
1831 static int
1832 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1833 {
1834 mixer_devinfo_t di;
1835 int i;
1836 uint8_t mpm;
1837
1838 di.index = ESO_MONOOUT_SOURCE;
1839 if (eso_query_devinfo(sc, &di) != 0)
1840 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1841
1842 for (i = 0; i < di.un.e.num_mem; i++) {
1843 if (monooutsrc == di.un.e.member[i].ord) {
1844 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1845 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1846 mpm |= monooutsrc;
1847 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1848 sc->sc_monooutsrc = monooutsrc;
1849 return 0;
1850 }
1851 }
1852
1853 return EINVAL;
1854 }
1855
1856 static int
1857 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1858 {
1859 mixer_devinfo_t di;
1860 int i;
1861 uint8_t mpm;
1862
1863 di.index = ESO_MONOIN_BYPASS;
1864 if (eso_query_devinfo(sc, &di) != 0)
1865 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1866
1867 for (i = 0; i < di.un.e.num_mem; i++) {
1868 if (monoinbypass == di.un.e.member[i].ord) {
1869 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1870 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1871 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1872 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1873 sc->sc_monoinbypass = monoinbypass;
1874 return 0;
1875 }
1876 }
1877
1878 return EINVAL;
1879 }
1880
1881 static int
1882 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
1883 {
1884 mixer_devinfo_t di;
1885 int i;
1886 uint8_t mpm;
1887
1888 di.index = ESO_MIC_PREAMP;
1889 if (eso_query_devinfo(sc, &di) != 0)
1890 panic("eso_set_preamp: eso_query_devinfo failed");
1891
1892 for (i = 0; i < di.un.e.num_mem; i++) {
1893 if (preamp == di.un.e.member[i].ord) {
1894 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1895 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1896 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1897 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1898 sc->sc_preamp = preamp;
1899 return 0;
1900 }
1901 }
1902
1903 return EINVAL;
1904 }
1905
1906 /*
1907 * Reload Master Volume and Mute values in softc from mixer; used when
1908 * those have previously been invalidated by use of hardware volume controls.
1909 */
1910 static void
1911 eso_reload_master_vol(struct eso_softc *sc)
1912 {
1913 uint8_t mv;
1914
1915 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1916 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1917 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1918 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1919 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1920 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1921 /* Currently both channels are muted simultaneously; either is OK. */
1922 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1923 }
1924
1925 static void
1926 eso_set_gain(struct eso_softc *sc, unsigned int port)
1927 {
1928 uint8_t mixreg, tmp;
1929
1930 switch (port) {
1931 case ESO_DAC_PLAY_VOL:
1932 mixreg = ESO_MIXREG_PVR_A2;
1933 break;
1934 case ESO_MIC_PLAY_VOL:
1935 mixreg = ESO_MIXREG_PVR_MIC;
1936 break;
1937 case ESO_LINE_PLAY_VOL:
1938 mixreg = ESO_MIXREG_PVR_LINE;
1939 break;
1940 case ESO_SYNTH_PLAY_VOL:
1941 mixreg = ESO_MIXREG_PVR_SYNTH;
1942 break;
1943 case ESO_CD_PLAY_VOL:
1944 mixreg = ESO_MIXREG_PVR_CD;
1945 break;
1946 case ESO_AUXB_PLAY_VOL:
1947 mixreg = ESO_MIXREG_PVR_AUXB;
1948 break;
1949
1950 case ESO_DAC_REC_VOL:
1951 mixreg = ESO_MIXREG_RVR_A2;
1952 break;
1953 case ESO_MIC_REC_VOL:
1954 mixreg = ESO_MIXREG_RVR_MIC;
1955 break;
1956 case ESO_LINE_REC_VOL:
1957 mixreg = ESO_MIXREG_RVR_LINE;
1958 break;
1959 case ESO_SYNTH_REC_VOL:
1960 mixreg = ESO_MIXREG_RVR_SYNTH;
1961 break;
1962 case ESO_CD_REC_VOL:
1963 mixreg = ESO_MIXREG_RVR_CD;
1964 break;
1965 case ESO_AUXB_REC_VOL:
1966 mixreg = ESO_MIXREG_RVR_AUXB;
1967 break;
1968 case ESO_MONO_PLAY_VOL:
1969 mixreg = ESO_MIXREG_PVR_MONO;
1970 break;
1971 case ESO_MONO_REC_VOL:
1972 mixreg = ESO_MIXREG_RVR_MONO;
1973 break;
1974
1975 case ESO_PCSPEAKER_VOL:
1976 /* Special case - only 3-bit, mono, and reserved bits. */
1977 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1978 tmp &= ESO_MIXREG_PCSVR_RESV;
1979 /* Map bits 7:5 -> 2:0. */
1980 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1981 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1982 return;
1983
1984 case ESO_MASTER_VOL:
1985 /* Special case - separate regs, and 6-bit precision. */
1986 /* Map bits 7:2 -> 5:0, reflect mute settings. */
1987 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1988 (sc->sc_gain[port][ESO_LEFT] >> 2) |
1989 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
1990 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1991 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
1992 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
1993 return;
1994
1995 case ESO_SPATIALIZER:
1996 /* Special case - only `mono', and higher precision. */
1997 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1998 sc->sc_gain[port][ESO_LEFT]);
1999 return;
2000
2001 case ESO_RECORD_VOL:
2002 /* Very Special case, controller register. */
2003 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2004 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2005 return;
2006
2007 default:
2008 #ifdef DIAGNOSTIC
2009 panic("eso_set_gain: bad port %u", port);
2010 /* NOTREACHED */
2011 #else
2012 return;
2013 #endif
2014 }
2015
2016 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2017 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2018 }
2019