eso.c revision 1.61 1 /* $NetBSD: eso.c,v 1.61 2012/08/12 18:39:32 gson Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. The name of the author may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
50 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
51 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
52 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
54 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
55 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 */
59
60 /*
61 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.61 2012/08/12 18:39:32 gson Exp $");
66
67 #include "mpu.h"
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/device.h>
74 #include <sys/queue.h>
75 #include <sys/proc.h>
76
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/pcivar.h>
79
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82
83 #include <dev/mulaw.h>
84 #include <dev/auconv.h>
85
86 #include <dev/ic/mpuvar.h>
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/esoreg.h>
89 #include <dev/pci/esovar.h>
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93
94 /*
95 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
96 * XXX engine by allocating through the ISA DMA tag.
97 */
98 #if defined(amd64) || defined(i386)
99 #include "isa.h"
100 #if NISA > 0
101 #include <dev/isa/isavar.h>
102 #endif
103 #endif
104
105 #if defined(AUDIO_DEBUG) || defined(DEBUG)
106 #define DPRINTF(x) printf x
107 #else
108 #define DPRINTF(x)
109 #endif
110
111 struct eso_dma {
112 bus_dma_tag_t ed_dmat;
113 bus_dmamap_t ed_map;
114 void * ed_kva;
115 bus_dma_segment_t ed_segs[1];
116 int ed_nsegs;
117 size_t ed_size;
118 SLIST_ENTRY(eso_dma) ed_slist;
119 };
120
121 #define KVADDR(dma) ((void *)(dma)->ed_kva)
122 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
123
124 /* Autoconfiguration interface */
125 static int eso_match(device_t, cfdata_t, void *);
126 static void eso_attach(device_t, device_t, void *);
127 static void eso_defer(device_t);
128 static int eso_print(void *, const char *);
129
130 CFATTACH_DECL(eso, sizeof (struct eso_softc),
131 eso_match, eso_attach, NULL, NULL);
132
133 /* PCI interface */
134 static int eso_intr(void *);
135
136 /* MI audio layer interface */
137 static int eso_query_encoding(void *, struct audio_encoding *);
138 static int eso_set_params(void *, int, int, audio_params_t *,
139 audio_params_t *, stream_filter_list_t *,
140 stream_filter_list_t *);
141 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
142 static int eso_halt_output(void *);
143 static int eso_halt_input(void *);
144 static int eso_getdev(void *, struct audio_device *);
145 static int eso_set_port(void *, mixer_ctrl_t *);
146 static int eso_get_port(void *, mixer_ctrl_t *);
147 static int eso_query_devinfo(void *, mixer_devinfo_t *);
148 static void * eso_allocm(void *, int, size_t);
149 static void eso_freem(void *, void *, size_t);
150 static size_t eso_round_buffersize(void *, int, size_t);
151 static paddr_t eso_mappage(void *, void *, off_t, int);
152 static int eso_get_props(void *);
153 static int eso_trigger_output(void *, void *, void *, int,
154 void (*)(void *), void *, const audio_params_t *);
155 static int eso_trigger_input(void *, void *, void *, int,
156 void (*)(void *), void *, const audio_params_t *);
157 static void eso_get_locks(void *, kmutex_t **, kmutex_t **);
158
159 static const struct audio_hw_if eso_hw_if = {
160 NULL, /* open */
161 NULL, /* close */
162 NULL, /* drain */
163 eso_query_encoding,
164 eso_set_params,
165 eso_round_blocksize,
166 NULL, /* commit_settings */
167 NULL, /* init_output */
168 NULL, /* init_input */
169 NULL, /* start_output */
170 NULL, /* start_input */
171 eso_halt_output,
172 eso_halt_input,
173 NULL, /* speaker_ctl */
174 eso_getdev,
175 NULL, /* setfd */
176 eso_set_port,
177 eso_get_port,
178 eso_query_devinfo,
179 eso_allocm,
180 eso_freem,
181 eso_round_buffersize,
182 eso_mappage,
183 eso_get_props,
184 eso_trigger_output,
185 eso_trigger_input,
186 NULL, /* dev_ioctl */
187 eso_get_locks,
188 };
189
190 static const char * const eso_rev2model[] = {
191 "ES1938",
192 "ES1946",
193 "ES1946 Revision E"
194 };
195
196 #define ESO_NFORMATS 8
197 static const struct audio_format eso_formats[ESO_NFORMATS] = {
198 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
199 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
200 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
201 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
202 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
203 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
204 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
205 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
206 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
207 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
208 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
209 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
210 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
211 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
212 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
213 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
214 };
215
216
217 /*
218 * Utility routines
219 */
220 /* Register access etc. */
221 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
222 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
223 static uint8_t eso_read_rdr(struct eso_softc *);
224 static void eso_reload_master_vol(struct eso_softc *);
225 static int eso_reset(struct eso_softc *);
226 static void eso_set_gain(struct eso_softc *, unsigned int);
227 static int eso_set_recsrc(struct eso_softc *, unsigned int);
228 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
229 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
230 static int eso_set_preamp(struct eso_softc *, unsigned int);
231 static void eso_write_cmd(struct eso_softc *, uint8_t);
232 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
233 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
234 /* DMA memory allocation */
235 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
236 int, struct eso_dma *);
237 static void eso_freemem(struct eso_dma *);
238 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *);
239
240
241 static int
242 eso_match(device_t parent, cfdata_t match, void *aux)
243 {
244 struct pci_attach_args *pa;
245
246 pa = aux;
247 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
248 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
249 return 1;
250
251 return 0;
252 }
253
254 static void
255 eso_attach(device_t parent, device_t self, void *aux)
256 {
257 struct eso_softc *sc;
258 struct pci_attach_args *pa;
259 struct audio_attach_args aa;
260 pci_intr_handle_t ih;
261 bus_addr_t vcbase;
262 const char *intrstring;
263 int idx, error;
264 uint8_t a2mode, mvctl;
265
266 sc = device_private(self);
267 pa = aux;
268 aprint_naive(": Audio controller\n");
269
270 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
271 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
272
273 sc->sc_revision = PCI_REVISION(pa->pa_class);
274 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
275 if (sc->sc_revision <
276 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
277 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
278 else
279 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
280
281 /* Map I/O registers. */
282 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
283 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
284 aprint_error_dev(&sc->sc_dev, "can't map I/O space\n");
285 return;
286 }
287 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
288 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
289 aprint_error_dev(&sc->sc_dev, "can't map SB I/O space\n");
290 return;
291 }
292 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
293 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
294 aprint_error_dev(&sc->sc_dev, "can't map VC I/O space\n");
295 /* Don't bail out yet: we can map it later, see below. */
296 vcbase = 0;
297 sc->sc_vcsize = 0x10; /* From the data sheet. */
298 }
299 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
300 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
301 aprint_error_dev(&sc->sc_dev, "can't map MPU I/O space\n");
302 return;
303 }
304 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
305 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
306 aprint_error_dev(&sc->sc_dev, "can't map Game I/O space\n");
307 return;
308 }
309
310 sc->sc_dmat = pa->pa_dmat;
311 SLIST_INIT(&sc->sc_dmas);
312 sc->sc_dmac_configured = 0;
313
314 /* Enable bus mastering. */
315 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
316 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
317 PCI_COMMAND_MASTER_ENABLE);
318
319 /* Reset the device; bail out upon failure. */
320 mutex_spin_enter(&sc->sc_intr_lock);
321 error = eso_reset(sc);
322 mutex_spin_exit(&sc->sc_intr_lock);
323 if (error != 0) {
324 aprint_error_dev(&sc->sc_dev, "can't reset\n");
325 return;
326 }
327
328 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
329 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
330 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
331 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
332
333 /* Enable the relevant (DMA) interrupts. */
334 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
335 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
336 ESO_IO_IRQCTL_MPUIRQ);
337
338 mutex_spin_enter(&sc->sc_intr_lock);
339
340 /* Set up A1's sample rate generator for new-style parameters. */
341 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
342 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
343 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
344
345 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
346 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
347 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
348 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
349 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
350
351 /* Set mixer regs to something reasonable, needs work. */
352 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
353 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
354 eso_set_monoinbypass(sc, 0);
355 eso_set_preamp(sc, 1);
356 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
357 int v;
358
359 switch (idx) {
360 case ESO_MIC_PLAY_VOL:
361 case ESO_LINE_PLAY_VOL:
362 case ESO_CD_PLAY_VOL:
363 case ESO_MONO_PLAY_VOL:
364 case ESO_AUXB_PLAY_VOL:
365 case ESO_DAC_REC_VOL:
366 case ESO_LINE_REC_VOL:
367 case ESO_SYNTH_REC_VOL:
368 case ESO_CD_REC_VOL:
369 case ESO_MONO_REC_VOL:
370 case ESO_AUXB_REC_VOL:
371 case ESO_SPATIALIZER:
372 v = 0;
373 break;
374 case ESO_MASTER_VOL:
375 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
376 break;
377 default:
378 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
379 break;
380 }
381 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
382 eso_set_gain(sc, idx);
383 }
384
385 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
386
387 mutex_spin_exit(&sc->sc_intr_lock);
388
389 /* Map and establish the interrupt. */
390 if (pci_intr_map(pa, &ih)) {
391 aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
392 return;
393 }
394
395 intrstring = pci_intr_string(pa->pa_pc, ih);
396 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
397 if (sc->sc_ih == NULL) {
398 aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
399 if (intrstring != NULL)
400 aprint_error(" at %s", intrstring);
401 aprint_error("\n");
402 mutex_destroy(&sc->sc_lock);
403 mutex_destroy(&sc->sc_intr_lock);
404 return;
405 }
406 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n",
407 intrstring);
408
409 cv_init(&sc->sc_pcv, "esoho");
410 cv_init(&sc->sc_rcv, "esohi");
411
412 /*
413 * Set up the DDMA Control register; a suitable I/O region has been
414 * supposedly mapped in the VC base address register.
415 *
416 * The Solo-1 has an ... interesting silicon bug that causes it to
417 * not respond to I/O space accesses to the Audio 1 DMA controller
418 * if the latter's mapping base address is aligned on a 1K boundary.
419 * As a consequence, it is quite possible for the mapping provided
420 * in the VC BAR to be useless. To work around this, we defer this
421 * part until all autoconfiguration on our parent bus is completed
422 * and then try to map it ourselves in fulfillment of the constraint.
423 *
424 * According to the register map we may write to the low 16 bits
425 * only, but experimenting has shown we're safe.
426 * -kjk
427 */
428 if (ESO_VALID_DDMAC_BASE(vcbase)) {
429 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
430 vcbase | ESO_PCI_DDMAC_DE);
431 sc->sc_dmac_configured = 1;
432
433 aprint_normal_dev(&sc->sc_dev,
434 "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
435 (unsigned long)vcbase);
436 } else {
437 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
438 device_xname(&sc->sc_dev), (unsigned long)vcbase));
439 sc->sc_pa = *pa;
440 config_defer(self, eso_defer);
441 }
442
443 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
444
445 aa.type = AUDIODEV_TYPE_OPL;
446 aa.hwif = NULL;
447 aa.hdl = NULL;
448 (void)config_found(&sc->sc_dev, &aa, audioprint);
449
450 aa.type = AUDIODEV_TYPE_MPU;
451 aa.hwif = NULL;
452 aa.hdl = NULL;
453 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
454 if (sc->sc_mpudev != NULL) {
455 /* Unmask the MPU irq. */
456 mutex_spin_enter(&sc->sc_intr_lock);
457 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
458 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
459 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
460 mutex_spin_exit(&sc->sc_intr_lock);
461 }
462
463 aa.type = AUDIODEV_TYPE_AUX;
464 aa.hwif = NULL;
465 aa.hdl = NULL;
466 (void)config_found(&sc->sc_dev, &aa, eso_print);
467 }
468
469 static void
470 eso_defer(device_t self)
471 {
472 struct eso_softc *sc;
473 struct pci_attach_args *pa;
474 bus_addr_t addr, start;
475
476 sc = device_private(self);
477 pa = &sc->sc_pa;
478 aprint_normal_dev(&sc->sc_dev, "");
479
480 /*
481 * This is outright ugly, but since we must not make assumptions
482 * on the underlying allocator's behaviour it's the most straight-
483 * forward way to implement it. Note that we skip over the first
484 * 1K region, which is typically occupied by an attached ISA bus.
485 */
486 mutex_enter(&sc->sc_lock);
487 for (start = 0x0400; start < 0xffff; start += 0x0400) {
488 if (bus_space_alloc(sc->sc_iot,
489 start + sc->sc_vcsize, start + 0x0400 - 1,
490 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
491 &sc->sc_dmac_ioh) != 0)
492 continue;
493
494 mutex_spin_enter(&sc->sc_intr_lock);
495 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
496 addr | ESO_PCI_DDMAC_DE);
497 mutex_spin_exit(&sc->sc_intr_lock);
498 sc->sc_dmac_iot = sc->sc_iot;
499 sc->sc_dmac_configured = 1;
500 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
501 (unsigned long)addr);
502
503 mutex_exit(&sc->sc_lock);
504 return;
505 }
506 mutex_exit(&sc->sc_lock);
507
508 aprint_error("can't map Audio 1 DMA into I/O space\n");
509 }
510
511 /* ARGSUSED */
512 static int
513 eso_print(void *aux, const char *pnp)
514 {
515
516 /* Only joys can attach via this; easy. */
517 if (pnp)
518 aprint_normal("joy at %s:", pnp);
519
520 return UNCONF;
521 }
522
523 static void
524 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
525 {
526 int i;
527
528 /* Poll for busy indicator to become clear. */
529 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
530 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
531 & ESO_SB_RSR_BUSY) == 0) {
532 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
533 ESO_SB_WDR, cmd);
534 return;
535 } else {
536 delay(10);
537 }
538 }
539
540 printf("%s: WDR timeout\n", device_xname(&sc->sc_dev));
541 return;
542 }
543
544 /* Write to a controller register */
545 static void
546 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
547 {
548
549 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
550
551 eso_write_cmd(sc, reg);
552 eso_write_cmd(sc, val);
553 }
554
555 /* Read out the Read Data Register */
556 static uint8_t
557 eso_read_rdr(struct eso_softc *sc)
558 {
559 int i;
560
561 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
562 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
563 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
564 return (bus_space_read_1(sc->sc_sb_iot,
565 sc->sc_sb_ioh, ESO_SB_RDR));
566 } else {
567 delay(10);
568 }
569 }
570
571 printf("%s: RDR timeout\n", device_xname(&sc->sc_dev));
572 return (-1);
573 }
574
575 static uint8_t
576 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
577 {
578
579 eso_write_cmd(sc, ESO_CMD_RCR);
580 eso_write_cmd(sc, reg);
581 return eso_read_rdr(sc);
582 }
583
584 static void
585 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
586 {
587
588 KASSERT(mutex_owned(&sc->sc_intr_lock));
589
590 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
591
592 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
593 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
594 }
595
596 static uint8_t
597 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
598 {
599 uint8_t val;
600
601 KASSERT(mutex_owned(&sc->sc_intr_lock));
602
603 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
604 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
605
606 return val;
607 }
608
609 static int
610 eso_intr(void *hdl)
611 {
612 struct eso_softc *sc = hdl;
613 #if NMPU > 0
614 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
615 #endif
616 uint8_t irqctl;
617
618 mutex_spin_enter(&sc->sc_intr_lock);
619
620 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
621
622 /* If it wasn't ours, that's all she wrote. */
623 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
624 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
625 mutex_spin_exit(&sc->sc_intr_lock);
626 return 0;
627 }
628
629 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
630 /* Clear interrupt. */
631 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
632 ESO_SB_RBSR);
633
634 if (sc->sc_rintr)
635 sc->sc_rintr(sc->sc_rarg);
636 else
637 cv_broadcast(&sc->sc_rcv);
638 }
639
640 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
641 /*
642 * Clear the A2 IRQ latch: the cached value reflects the
643 * current DAC settings with the IRQ latch bit not set.
644 */
645 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
646
647 if (sc->sc_pintr)
648 sc->sc_pintr(sc->sc_parg);
649 else
650 cv_broadcast(&sc->sc_pcv);
651 }
652
653 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
654 /* Clear interrupt. */
655 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
656
657 /*
658 * Raise a flag to cause a lazy update of the in-softc gain
659 * values the next time the software mixer is read to keep
660 * interrupt service cost low. ~0 cannot occur otherwise
661 * as the master volume has a precision of 6 bits only.
662 */
663 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
664 }
665
666 #if NMPU > 0
667 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
668 mpu_intr(sc_mpu);
669 #endif
670
671 mutex_spin_exit(&sc->sc_intr_lock);
672 return 1;
673 }
674
675 /* Perform a software reset, including DMA FIFOs. */
676 static int
677 eso_reset(struct eso_softc *sc)
678 {
679 int i;
680
681 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
682 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
683 /* `Delay' suggested in the data sheet. */
684 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
685 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
686
687 /* Wait for reset to take effect. */
688 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
689 /* Poll for data to become available. */
690 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
691 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
692 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
693 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
694
695 /* Activate Solo-1 extension commands. */
696 eso_write_cmd(sc, ESO_CMD_EXTENB);
697 /* Reset mixer registers. */
698 eso_write_mixreg(sc, ESO_MIXREG_RESET,
699 ESO_MIXREG_RESET_RESET);
700
701 return 0;
702 } else {
703 delay(1000);
704 }
705 }
706
707 printf("%s: reset timeout\n", device_xname(&sc->sc_dev));
708 return -1;
709 }
710
711 static int
712 eso_query_encoding(void *hdl, struct audio_encoding *fp)
713 {
714
715 switch (fp->index) {
716 case 0:
717 strcpy(fp->name, AudioEulinear);
718 fp->encoding = AUDIO_ENCODING_ULINEAR;
719 fp->precision = 8;
720 fp->flags = 0;
721 break;
722 case 1:
723 strcpy(fp->name, AudioEmulaw);
724 fp->encoding = AUDIO_ENCODING_ULAW;
725 fp->precision = 8;
726 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
727 break;
728 case 2:
729 strcpy(fp->name, AudioEalaw);
730 fp->encoding = AUDIO_ENCODING_ALAW;
731 fp->precision = 8;
732 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
733 break;
734 case 3:
735 strcpy(fp->name, AudioEslinear);
736 fp->encoding = AUDIO_ENCODING_SLINEAR;
737 fp->precision = 8;
738 fp->flags = 0;
739 break;
740 case 4:
741 strcpy(fp->name, AudioEslinear_le);
742 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
743 fp->precision = 16;
744 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
745 break;
746 case 5:
747 strcpy(fp->name, AudioEulinear_le);
748 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
749 fp->precision = 16;
750 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
751 break;
752 case 6:
753 strcpy(fp->name, AudioEslinear_be);
754 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
755 fp->precision = 16;
756 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
757 break;
758 case 7:
759 strcpy(fp->name, AudioEulinear_be);
760 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
761 fp->precision = 16;
762 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
763 break;
764 default:
765 return EINVAL;
766 }
767
768 return 0;
769 }
770
771 static int
772 eso_set_params(void *hdl, int setmode, int usemode,
773 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
774 stream_filter_list_t *rfil)
775 {
776 struct eso_softc *sc;
777 struct audio_params *p;
778 stream_filter_list_t *fil;
779 int mode, r[2], rd[2], ar[2], clk;
780 unsigned int srg, fltdiv;
781 int i;
782
783 sc = hdl;
784 for (mode = AUMODE_RECORD; mode != -1;
785 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
786 if ((setmode & mode) == 0)
787 continue;
788
789 p = (mode == AUMODE_PLAY) ? play : rec;
790
791 if (p->sample_rate < ESO_MINRATE ||
792 p->sample_rate > ESO_MAXRATE ||
793 (p->precision != 8 && p->precision != 16) ||
794 (p->channels != 1 && p->channels != 2))
795 return EINVAL;
796
797 /*
798 * We'll compute both possible sample rate dividers and pick
799 * the one with the least error.
800 */
801 #define ABS(x) ((x) < 0 ? -(x) : (x))
802 r[0] = ESO_CLK0 /
803 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
804 r[1] = ESO_CLK1 /
805 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
806
807 ar[0] = p->sample_rate - r[0];
808 ar[1] = p->sample_rate - r[1];
809 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
810 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
811
812 /* Roll-off frequency of 87%, as in the ES1888 driver. */
813 fltdiv = 256 - 200279L / r[clk];
814
815 /* Update to reflect the possibly inexact rate. */
816 p->sample_rate = r[clk];
817
818 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
819 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
820 mode, p, FALSE, fil);
821 if (i < 0)
822 return EINVAL;
823
824 mutex_spin_enter(&sc->sc_intr_lock);
825 if (mode == AUMODE_RECORD) {
826 /* Audio 1 */
827 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
828 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
829 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
830 } else {
831 /* Audio 2 */
832 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
833 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
834 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
835 }
836 mutex_spin_exit(&sc->sc_intr_lock);
837 #undef ABS
838
839 }
840
841 return 0;
842 }
843
844 static int
845 eso_round_blocksize(void *hdl, int blk, int mode,
846 const audio_params_t *param)
847 {
848
849 return blk & -32; /* keep good alignment; at least 16 req'd */
850 }
851
852 static int
853 eso_halt_output(void *hdl)
854 {
855 struct eso_softc *sc;
856 int error;
857
858 sc = hdl;
859 DPRINTF(("%s: halt_output\n", device_xname(&sc->sc_dev)));
860
861 /*
862 * Disable auto-initialize DMA, allowing the FIFO to drain and then
863 * stop. The interrupt callback pointer is cleared at this
864 * point so that an outstanding FIFO interrupt for the remaining data
865 * will be acknowledged without further processing.
866 *
867 * This does not immediately `abort' an operation in progress (c.f.
868 * audio(9)) but is the method to leave the FIFO behind in a clean
869 * state with the least hair. (Besides, that item needs to be
870 * rephrased for trigger_*()-based DMA environments.)
871 */
872 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
873 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
874 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
875 ESO_IO_A2DMAM_DMAENB);
876
877 sc->sc_pintr = NULL;
878 mutex_exit(&sc->sc_lock);
879 error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
880 if (!mutex_tryenter(&sc->sc_lock)) {
881 mutex_spin_exit(&sc->sc_intr_lock);
882 mutex_enter(&sc->sc_lock);
883 mutex_spin_enter(&sc->sc_intr_lock);
884 }
885
886 /* Shut down DMA completely. */
887 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
888 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
889
890 return error == EWOULDBLOCK ? 0 : error;
891 }
892
893 static int
894 eso_halt_input(void *hdl)
895 {
896 struct eso_softc *sc;
897 int error;
898
899 sc = hdl;
900 DPRINTF(("%s: halt_input\n", device_xname(&sc->sc_dev)));
901
902 /* Just like eso_halt_output(), but for Audio 1. */
903 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
904 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
905 ESO_CTLREG_A1C2_DMAENB);
906 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
907 DMA37MD_WRITE | DMA37MD_DEMAND);
908
909 sc->sc_rintr = NULL;
910 mutex_exit(&sc->sc_lock);
911 error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
912 if (!mutex_tryenter(&sc->sc_lock)) {
913 mutex_spin_exit(&sc->sc_intr_lock);
914 mutex_enter(&sc->sc_lock);
915 mutex_spin_enter(&sc->sc_intr_lock);
916 }
917
918 /* Shut down DMA completely. */
919 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
920 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
921 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
922 ESO_DMAC_MASK_MASK);
923
924 return error == EWOULDBLOCK ? 0 : error;
925 }
926
927 static int
928 eso_getdev(void *hdl, struct audio_device *retp)
929 {
930 struct eso_softc *sc;
931
932 sc = hdl;
933 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
934 snprintf(retp->version, sizeof (retp->version), "0x%02x",
935 sc->sc_revision);
936 if (sc->sc_revision <
937 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
938 strncpy(retp->config, eso_rev2model[sc->sc_revision],
939 sizeof (retp->config));
940 else
941 strncpy(retp->config, "unknown", sizeof (retp->config));
942
943 return 0;
944 }
945
946 static int
947 eso_set_port(void *hdl, mixer_ctrl_t *cp)
948 {
949 struct eso_softc *sc;
950 unsigned int lgain, rgain;
951 uint8_t tmp;
952 int error;
953
954 sc = hdl;
955 error = 0;
956
957 mutex_spin_enter(&sc->sc_intr_lock);
958
959 switch (cp->dev) {
960 case ESO_DAC_PLAY_VOL:
961 case ESO_MIC_PLAY_VOL:
962 case ESO_LINE_PLAY_VOL:
963 case ESO_SYNTH_PLAY_VOL:
964 case ESO_CD_PLAY_VOL:
965 case ESO_AUXB_PLAY_VOL:
966 case ESO_RECORD_VOL:
967 case ESO_DAC_REC_VOL:
968 case ESO_MIC_REC_VOL:
969 case ESO_LINE_REC_VOL:
970 case ESO_SYNTH_REC_VOL:
971 case ESO_CD_REC_VOL:
972 case ESO_AUXB_REC_VOL:
973 if (cp->type != AUDIO_MIXER_VALUE) {
974 error = EINVAL;
975 break;
976 }
977
978 /*
979 * Stereo-capable mixer ports: if we get a single-channel
980 * gain value passed in, then we duplicate it to both left
981 * and right channels.
982 */
983 switch (cp->un.value.num_channels) {
984 case 1:
985 lgain = rgain = ESO_GAIN_TO_4BIT(
986 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
987 break;
988 case 2:
989 lgain = ESO_GAIN_TO_4BIT(
990 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
991 rgain = ESO_GAIN_TO_4BIT(
992 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
993 break;
994 default:
995 error = EINVAL;
996 break;
997 }
998
999 if (!error) {
1000 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1001 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1002 eso_set_gain(sc, cp->dev);
1003 }
1004 break;
1005
1006 case ESO_MASTER_VOL:
1007 if (cp->type != AUDIO_MIXER_VALUE) {
1008 error = EINVAL;
1009 break;
1010 }
1011
1012 /* Like above, but a precision of 6 bits. */
1013 switch (cp->un.value.num_channels) {
1014 case 1:
1015 lgain = rgain = ESO_GAIN_TO_6BIT(
1016 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1017 break;
1018 case 2:
1019 lgain = ESO_GAIN_TO_6BIT(
1020 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1021 rgain = ESO_GAIN_TO_6BIT(
1022 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1023 break;
1024 default:
1025 error = EINVAL;
1026 break;
1027 }
1028
1029 if (!error) {
1030 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1031 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1032 eso_set_gain(sc, cp->dev);
1033 }
1034 break;
1035
1036 case ESO_SPATIALIZER:
1037 if (cp->type != AUDIO_MIXER_VALUE ||
1038 cp->un.value.num_channels != 1) {
1039 error = EINVAL;
1040 break;
1041 }
1042
1043 sc->sc_gain[cp->dev][ESO_LEFT] =
1044 sc->sc_gain[cp->dev][ESO_RIGHT] =
1045 ESO_GAIN_TO_6BIT(
1046 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1047 eso_set_gain(sc, cp->dev);
1048 break;
1049
1050 case ESO_MONO_PLAY_VOL:
1051 case ESO_MONO_REC_VOL:
1052 if (cp->type != AUDIO_MIXER_VALUE ||
1053 cp->un.value.num_channels != 1) {
1054 error = EINVAL;
1055 break;
1056 }
1057
1058 sc->sc_gain[cp->dev][ESO_LEFT] =
1059 sc->sc_gain[cp->dev][ESO_RIGHT] =
1060 ESO_GAIN_TO_4BIT(
1061 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1062 eso_set_gain(sc, cp->dev);
1063 break;
1064
1065 case ESO_PCSPEAKER_VOL:
1066 if (cp->type != AUDIO_MIXER_VALUE ||
1067 cp->un.value.num_channels != 1) {
1068 error = EINVAL;
1069 break;
1070 }
1071
1072 sc->sc_gain[cp->dev][ESO_LEFT] =
1073 sc->sc_gain[cp->dev][ESO_RIGHT] =
1074 ESO_GAIN_TO_3BIT(
1075 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1076 eso_set_gain(sc, cp->dev);
1077 break;
1078
1079 case ESO_SPATIALIZER_ENABLE:
1080 if (cp->type != AUDIO_MIXER_ENUM) {
1081 error = EINVAL;
1082 break;
1083 }
1084
1085 sc->sc_spatializer = (cp->un.ord != 0);
1086
1087 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1088 if (sc->sc_spatializer)
1089 tmp |= ESO_MIXREG_SPAT_ENB;
1090 else
1091 tmp &= ~ESO_MIXREG_SPAT_ENB;
1092 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1093 tmp | ESO_MIXREG_SPAT_RSTREL);
1094 break;
1095
1096 case ESO_MASTER_MUTE:
1097 if (cp->type != AUDIO_MIXER_ENUM) {
1098 error = EINVAL;
1099 break;
1100 }
1101
1102 sc->sc_mvmute = (cp->un.ord != 0);
1103
1104 if (sc->sc_mvmute) {
1105 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1106 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1107 ESO_MIXREG_LMVM_MUTE);
1108 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1109 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1110 ESO_MIXREG_RMVM_MUTE);
1111 } else {
1112 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1113 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1114 ~ESO_MIXREG_LMVM_MUTE);
1115 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1116 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1117 ~ESO_MIXREG_RMVM_MUTE);
1118 }
1119 break;
1120
1121 case ESO_MONOOUT_SOURCE:
1122 if (cp->type != AUDIO_MIXER_ENUM) {
1123 error = EINVAL;
1124 break;
1125 }
1126
1127 error = eso_set_monooutsrc(sc, cp->un.ord);
1128 break;
1129
1130 case ESO_MONOIN_BYPASS:
1131 if (cp->type != AUDIO_MIXER_ENUM) {
1132 error = EINVAL;
1133 break;
1134 }
1135
1136 error = (eso_set_monoinbypass(sc, cp->un.ord));
1137 break;
1138
1139 case ESO_RECORD_MONITOR:
1140 if (cp->type != AUDIO_MIXER_ENUM) {
1141 error = EINVAL;
1142 break;
1143 }
1144
1145 sc->sc_recmon = (cp->un.ord != 0);
1146
1147 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1148 if (sc->sc_recmon)
1149 tmp |= ESO_CTLREG_ACTL_RECMON;
1150 else
1151 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1152 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1153 break;
1154
1155 case ESO_RECORD_SOURCE:
1156 if (cp->type != AUDIO_MIXER_ENUM) {
1157 error = EINVAL;
1158 break;
1159 }
1160
1161 error = eso_set_recsrc(sc, cp->un.ord);
1162 break;
1163
1164 case ESO_MIC_PREAMP:
1165 if (cp->type != AUDIO_MIXER_ENUM) {
1166 error = EINVAL;
1167 break;
1168 }
1169
1170 error = eso_set_preamp(sc, cp->un.ord);
1171 break;
1172
1173 default:
1174 error = EINVAL;
1175 break;
1176 }
1177
1178 mutex_spin_exit(&sc->sc_intr_lock);
1179 return error;
1180 }
1181
1182 static int
1183 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1184 {
1185 struct eso_softc *sc;
1186 int error;
1187
1188 sc = hdl;
1189 error = 0;
1190
1191 mutex_spin_enter(&sc->sc_intr_lock);
1192
1193 switch (cp->dev) {
1194 case ESO_MASTER_VOL:
1195 /* Reload from mixer after hardware volume control use. */
1196 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1197 eso_reload_master_vol(sc);
1198 /* FALLTHROUGH */
1199 case ESO_DAC_PLAY_VOL:
1200 case ESO_MIC_PLAY_VOL:
1201 case ESO_LINE_PLAY_VOL:
1202 case ESO_SYNTH_PLAY_VOL:
1203 case ESO_CD_PLAY_VOL:
1204 case ESO_AUXB_PLAY_VOL:
1205 case ESO_RECORD_VOL:
1206 case ESO_DAC_REC_VOL:
1207 case ESO_MIC_REC_VOL:
1208 case ESO_LINE_REC_VOL:
1209 case ESO_SYNTH_REC_VOL:
1210 case ESO_CD_REC_VOL:
1211 case ESO_AUXB_REC_VOL:
1212 /*
1213 * Stereo-capable ports: if a single-channel query is made,
1214 * just return the left channel's value (since single-channel
1215 * settings themselves are applied to both channels).
1216 */
1217 switch (cp->un.value.num_channels) {
1218 case 1:
1219 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1220 sc->sc_gain[cp->dev][ESO_LEFT];
1221 break;
1222 case 2:
1223 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1224 sc->sc_gain[cp->dev][ESO_LEFT];
1225 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1226 sc->sc_gain[cp->dev][ESO_RIGHT];
1227 break;
1228 default:
1229 error = EINVAL;
1230 break;
1231 }
1232 break;
1233
1234 case ESO_MONO_PLAY_VOL:
1235 case ESO_PCSPEAKER_VOL:
1236 case ESO_MONO_REC_VOL:
1237 case ESO_SPATIALIZER:
1238 if (cp->un.value.num_channels != 1) {
1239 error = EINVAL;
1240 break;
1241 }
1242 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1243 sc->sc_gain[cp->dev][ESO_LEFT];
1244 break;
1245
1246 case ESO_RECORD_MONITOR:
1247 cp->un.ord = sc->sc_recmon;
1248 break;
1249
1250 case ESO_RECORD_SOURCE:
1251 cp->un.ord = sc->sc_recsrc;
1252 break;
1253
1254 case ESO_MONOOUT_SOURCE:
1255 cp->un.ord = sc->sc_monooutsrc;
1256 break;
1257
1258 case ESO_MONOIN_BYPASS:
1259 cp->un.ord = sc->sc_monoinbypass;
1260 break;
1261
1262 case ESO_SPATIALIZER_ENABLE:
1263 cp->un.ord = sc->sc_spatializer;
1264 break;
1265
1266 case ESO_MIC_PREAMP:
1267 cp->un.ord = sc->sc_preamp;
1268 break;
1269
1270 case ESO_MASTER_MUTE:
1271 /* Reload from mixer after hardware volume control use. */
1272 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1273 eso_reload_master_vol(sc);
1274 cp->un.ord = sc->sc_mvmute;
1275 break;
1276
1277 default:
1278 error = EINVAL;
1279 break;
1280 }
1281
1282 mutex_spin_exit(&sc->sc_intr_lock);
1283 return 0;
1284 }
1285
1286 static int
1287 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1288 {
1289
1290 switch (dip->index) {
1291 case ESO_DAC_PLAY_VOL:
1292 dip->mixer_class = ESO_INPUT_CLASS;
1293 dip->next = dip->prev = AUDIO_MIXER_LAST;
1294 strcpy(dip->label.name, AudioNdac);
1295 dip->type = AUDIO_MIXER_VALUE;
1296 dip->un.v.num_channels = 2;
1297 strcpy(dip->un.v.units.name, AudioNvolume);
1298 break;
1299 case ESO_MIC_PLAY_VOL:
1300 dip->mixer_class = ESO_INPUT_CLASS;
1301 dip->next = dip->prev = AUDIO_MIXER_LAST;
1302 strcpy(dip->label.name, AudioNmicrophone);
1303 dip->type = AUDIO_MIXER_VALUE;
1304 dip->un.v.num_channels = 2;
1305 strcpy(dip->un.v.units.name, AudioNvolume);
1306 break;
1307 case ESO_LINE_PLAY_VOL:
1308 dip->mixer_class = ESO_INPUT_CLASS;
1309 dip->next = dip->prev = AUDIO_MIXER_LAST;
1310 strcpy(dip->label.name, AudioNline);
1311 dip->type = AUDIO_MIXER_VALUE;
1312 dip->un.v.num_channels = 2;
1313 strcpy(dip->un.v.units.name, AudioNvolume);
1314 break;
1315 case ESO_SYNTH_PLAY_VOL:
1316 dip->mixer_class = ESO_INPUT_CLASS;
1317 dip->next = dip->prev = AUDIO_MIXER_LAST;
1318 strcpy(dip->label.name, AudioNfmsynth);
1319 dip->type = AUDIO_MIXER_VALUE;
1320 dip->un.v.num_channels = 2;
1321 strcpy(dip->un.v.units.name, AudioNvolume);
1322 break;
1323 case ESO_MONO_PLAY_VOL:
1324 dip->mixer_class = ESO_INPUT_CLASS;
1325 dip->next = dip->prev = AUDIO_MIXER_LAST;
1326 strcpy(dip->label.name, "mono_in");
1327 dip->type = AUDIO_MIXER_VALUE;
1328 dip->un.v.num_channels = 1;
1329 strcpy(dip->un.v.units.name, AudioNvolume);
1330 break;
1331 case ESO_CD_PLAY_VOL:
1332 dip->mixer_class = ESO_INPUT_CLASS;
1333 dip->next = dip->prev = AUDIO_MIXER_LAST;
1334 strcpy(dip->label.name, AudioNcd);
1335 dip->type = AUDIO_MIXER_VALUE;
1336 dip->un.v.num_channels = 2;
1337 strcpy(dip->un.v.units.name, AudioNvolume);
1338 break;
1339 case ESO_AUXB_PLAY_VOL:
1340 dip->mixer_class = ESO_INPUT_CLASS;
1341 dip->next = dip->prev = AUDIO_MIXER_LAST;
1342 strcpy(dip->label.name, "auxb");
1343 dip->type = AUDIO_MIXER_VALUE;
1344 dip->un.v.num_channels = 2;
1345 strcpy(dip->un.v.units.name, AudioNvolume);
1346 break;
1347
1348 case ESO_MIC_PREAMP:
1349 dip->mixer_class = ESO_MICROPHONE_CLASS;
1350 dip->next = dip->prev = AUDIO_MIXER_LAST;
1351 strcpy(dip->label.name, AudioNpreamp);
1352 dip->type = AUDIO_MIXER_ENUM;
1353 dip->un.e.num_mem = 2;
1354 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1355 dip->un.e.member[0].ord = 0;
1356 strcpy(dip->un.e.member[1].label.name, AudioNon);
1357 dip->un.e.member[1].ord = 1;
1358 break;
1359 case ESO_MICROPHONE_CLASS:
1360 dip->mixer_class = ESO_MICROPHONE_CLASS;
1361 dip->next = dip->prev = AUDIO_MIXER_LAST;
1362 strcpy(dip->label.name, AudioNmicrophone);
1363 dip->type = AUDIO_MIXER_CLASS;
1364 break;
1365
1366 case ESO_INPUT_CLASS:
1367 dip->mixer_class = ESO_INPUT_CLASS;
1368 dip->next = dip->prev = AUDIO_MIXER_LAST;
1369 strcpy(dip->label.name, AudioCinputs);
1370 dip->type = AUDIO_MIXER_CLASS;
1371 break;
1372
1373 case ESO_MASTER_VOL:
1374 dip->mixer_class = ESO_OUTPUT_CLASS;
1375 dip->prev = AUDIO_MIXER_LAST;
1376 dip->next = ESO_MASTER_MUTE;
1377 strcpy(dip->label.name, AudioNmaster);
1378 dip->type = AUDIO_MIXER_VALUE;
1379 dip->un.v.num_channels = 2;
1380 strcpy(dip->un.v.units.name, AudioNvolume);
1381 break;
1382 case ESO_MASTER_MUTE:
1383 dip->mixer_class = ESO_OUTPUT_CLASS;
1384 dip->prev = ESO_MASTER_VOL;
1385 dip->next = AUDIO_MIXER_LAST;
1386 strcpy(dip->label.name, AudioNmute);
1387 dip->type = AUDIO_MIXER_ENUM;
1388 dip->un.e.num_mem = 2;
1389 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1390 dip->un.e.member[0].ord = 0;
1391 strcpy(dip->un.e.member[1].label.name, AudioNon);
1392 dip->un.e.member[1].ord = 1;
1393 break;
1394
1395 case ESO_PCSPEAKER_VOL:
1396 dip->mixer_class = ESO_OUTPUT_CLASS;
1397 dip->next = dip->prev = AUDIO_MIXER_LAST;
1398 strcpy(dip->label.name, "pc_speaker");
1399 dip->type = AUDIO_MIXER_VALUE;
1400 dip->un.v.num_channels = 1;
1401 strcpy(dip->un.v.units.name, AudioNvolume);
1402 break;
1403 case ESO_MONOOUT_SOURCE:
1404 dip->mixer_class = ESO_OUTPUT_CLASS;
1405 dip->next = dip->prev = AUDIO_MIXER_LAST;
1406 strcpy(dip->label.name, "mono_out");
1407 dip->type = AUDIO_MIXER_ENUM;
1408 dip->un.e.num_mem = 3;
1409 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1410 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1411 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1412 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1413 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1414 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1415 break;
1416
1417 case ESO_MONOIN_BYPASS:
1418 dip->mixer_class = ESO_MONOIN_CLASS;
1419 dip->next = dip->prev = AUDIO_MIXER_LAST;
1420 strcpy(dip->label.name, "bypass");
1421 dip->type = AUDIO_MIXER_ENUM;
1422 dip->un.e.num_mem = 2;
1423 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1424 dip->un.e.member[0].ord = 0;
1425 strcpy(dip->un.e.member[1].label.name, AudioNon);
1426 dip->un.e.member[1].ord = 1;
1427 break;
1428 case ESO_MONOIN_CLASS:
1429 dip->mixer_class = ESO_MONOIN_CLASS;
1430 dip->next = dip->prev = AUDIO_MIXER_LAST;
1431 strcpy(dip->label.name, "mono_in");
1432 dip->type = AUDIO_MIXER_CLASS;
1433 break;
1434
1435 case ESO_SPATIALIZER:
1436 dip->mixer_class = ESO_OUTPUT_CLASS;
1437 dip->prev = AUDIO_MIXER_LAST;
1438 dip->next = ESO_SPATIALIZER_ENABLE;
1439 strcpy(dip->label.name, AudioNspatial);
1440 dip->type = AUDIO_MIXER_VALUE;
1441 dip->un.v.num_channels = 1;
1442 strcpy(dip->un.v.units.name, "level");
1443 break;
1444 case ESO_SPATIALIZER_ENABLE:
1445 dip->mixer_class = ESO_OUTPUT_CLASS;
1446 dip->prev = ESO_SPATIALIZER;
1447 dip->next = AUDIO_MIXER_LAST;
1448 strcpy(dip->label.name, "enable");
1449 dip->type = AUDIO_MIXER_ENUM;
1450 dip->un.e.num_mem = 2;
1451 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1452 dip->un.e.member[0].ord = 0;
1453 strcpy(dip->un.e.member[1].label.name, AudioNon);
1454 dip->un.e.member[1].ord = 1;
1455 break;
1456
1457 case ESO_OUTPUT_CLASS:
1458 dip->mixer_class = ESO_OUTPUT_CLASS;
1459 dip->next = dip->prev = AUDIO_MIXER_LAST;
1460 strcpy(dip->label.name, AudioCoutputs);
1461 dip->type = AUDIO_MIXER_CLASS;
1462 break;
1463
1464 case ESO_RECORD_MONITOR:
1465 dip->mixer_class = ESO_MONITOR_CLASS;
1466 dip->next = dip->prev = AUDIO_MIXER_LAST;
1467 strcpy(dip->label.name, AudioNmute);
1468 dip->type = AUDIO_MIXER_ENUM;
1469 dip->un.e.num_mem = 2;
1470 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1471 dip->un.e.member[0].ord = 0;
1472 strcpy(dip->un.e.member[1].label.name, AudioNon);
1473 dip->un.e.member[1].ord = 1;
1474 break;
1475 case ESO_MONITOR_CLASS:
1476 dip->mixer_class = ESO_MONITOR_CLASS;
1477 dip->next = dip->prev = AUDIO_MIXER_LAST;
1478 strcpy(dip->label.name, AudioCmonitor);
1479 dip->type = AUDIO_MIXER_CLASS;
1480 break;
1481
1482 case ESO_RECORD_VOL:
1483 dip->mixer_class = ESO_RECORD_CLASS;
1484 dip->next = dip->prev = AUDIO_MIXER_LAST;
1485 strcpy(dip->label.name, AudioNrecord);
1486 dip->type = AUDIO_MIXER_VALUE;
1487 strcpy(dip->un.v.units.name, AudioNvolume);
1488 break;
1489 case ESO_RECORD_SOURCE:
1490 dip->mixer_class = ESO_RECORD_CLASS;
1491 dip->next = dip->prev = AUDIO_MIXER_LAST;
1492 strcpy(dip->label.name, AudioNsource);
1493 dip->type = AUDIO_MIXER_ENUM;
1494 dip->un.e.num_mem = 4;
1495 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1496 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1497 strcpy(dip->un.e.member[1].label.name, AudioNline);
1498 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1499 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1500 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1501 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1502 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1503 break;
1504 case ESO_DAC_REC_VOL:
1505 dip->mixer_class = ESO_RECORD_CLASS;
1506 dip->next = dip->prev = AUDIO_MIXER_LAST;
1507 strcpy(dip->label.name, AudioNdac);
1508 dip->type = AUDIO_MIXER_VALUE;
1509 dip->un.v.num_channels = 2;
1510 strcpy(dip->un.v.units.name, AudioNvolume);
1511 break;
1512 case ESO_MIC_REC_VOL:
1513 dip->mixer_class = ESO_RECORD_CLASS;
1514 dip->next = dip->prev = AUDIO_MIXER_LAST;
1515 strcpy(dip->label.name, AudioNmicrophone);
1516 dip->type = AUDIO_MIXER_VALUE;
1517 dip->un.v.num_channels = 2;
1518 strcpy(dip->un.v.units.name, AudioNvolume);
1519 break;
1520 case ESO_LINE_REC_VOL:
1521 dip->mixer_class = ESO_RECORD_CLASS;
1522 dip->next = dip->prev = AUDIO_MIXER_LAST;
1523 strcpy(dip->label.name, AudioNline);
1524 dip->type = AUDIO_MIXER_VALUE;
1525 dip->un.v.num_channels = 2;
1526 strcpy(dip->un.v.units.name, AudioNvolume);
1527 break;
1528 case ESO_SYNTH_REC_VOL:
1529 dip->mixer_class = ESO_RECORD_CLASS;
1530 dip->next = dip->prev = AUDIO_MIXER_LAST;
1531 strcpy(dip->label.name, AudioNfmsynth);
1532 dip->type = AUDIO_MIXER_VALUE;
1533 dip->un.v.num_channels = 2;
1534 strcpy(dip->un.v.units.name, AudioNvolume);
1535 break;
1536 case ESO_MONO_REC_VOL:
1537 dip->mixer_class = ESO_RECORD_CLASS;
1538 dip->next = dip->prev = AUDIO_MIXER_LAST;
1539 strcpy(dip->label.name, "mono_in");
1540 dip->type = AUDIO_MIXER_VALUE;
1541 dip->un.v.num_channels = 1; /* No lies */
1542 strcpy(dip->un.v.units.name, AudioNvolume);
1543 break;
1544 case ESO_CD_REC_VOL:
1545 dip->mixer_class = ESO_RECORD_CLASS;
1546 dip->next = dip->prev = AUDIO_MIXER_LAST;
1547 strcpy(dip->label.name, AudioNcd);
1548 dip->type = AUDIO_MIXER_VALUE;
1549 dip->un.v.num_channels = 2;
1550 strcpy(dip->un.v.units.name, AudioNvolume);
1551 break;
1552 case ESO_AUXB_REC_VOL:
1553 dip->mixer_class = ESO_RECORD_CLASS;
1554 dip->next = dip->prev = AUDIO_MIXER_LAST;
1555 strcpy(dip->label.name, "auxb");
1556 dip->type = AUDIO_MIXER_VALUE;
1557 dip->un.v.num_channels = 2;
1558 strcpy(dip->un.v.units.name, AudioNvolume);
1559 break;
1560 case ESO_RECORD_CLASS:
1561 dip->mixer_class = ESO_RECORD_CLASS;
1562 dip->next = dip->prev = AUDIO_MIXER_LAST;
1563 strcpy(dip->label.name, AudioCrecord);
1564 dip->type = AUDIO_MIXER_CLASS;
1565 break;
1566
1567 default:
1568 return ENXIO;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int
1575 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1576 size_t boundary, int direction, struct eso_dma *ed)
1577 {
1578 int error;
1579
1580 ed->ed_size = size;
1581
1582 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1583 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1584 &ed->ed_nsegs, BUS_DMA_WAITOK);
1585 if (error)
1586 goto out;
1587
1588 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1589 ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
1590 if (error)
1591 goto free;
1592
1593 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1594 BUS_DMA_WAITOK, &ed->ed_map);
1595 if (error)
1596 goto unmap;
1597
1598 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1599 ed->ed_size, NULL, BUS_DMA_WAITOK |
1600 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1601 if (error)
1602 goto destroy;
1603
1604 return 0;
1605
1606 destroy:
1607 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1608 unmap:
1609 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1610 free:
1611 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1612 out:
1613 return error;
1614 }
1615
1616 static void
1617 eso_freemem(struct eso_dma *ed)
1618 {
1619
1620 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1621 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1622 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1623 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1624 }
1625
1626 static struct eso_dma *
1627 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1628 {
1629 struct eso_dma *p;
1630
1631 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1632 if (KVADDR(p) == kva)
1633 return p;
1634 }
1635
1636 panic("%s: kva2dma: bad kva: %p", sc->sc_dev.dv_xname, kva);
1637 /* NOTREACHED */
1638 }
1639
1640 static void *
1641 eso_allocm(void *hdl, int direction, size_t size)
1642 {
1643 struct eso_softc *sc;
1644 struct eso_dma *ed;
1645 size_t boundary;
1646 int error;
1647
1648 sc = hdl;
1649 if ((ed = kmem_alloc(sizeof (*ed), KM_SLEEP)) == NULL)
1650 return NULL;
1651
1652 /*
1653 * Apparently the Audio 1 DMA controller's current address
1654 * register can't roll over a 64K address boundary, so we have to
1655 * take care of that ourselves. Similarly, the Audio 2 DMA
1656 * controller needs a 1M address boundary.
1657 */
1658 if (direction == AUMODE_RECORD)
1659 boundary = 0x10000;
1660 else
1661 boundary = 0x100000;
1662
1663 /*
1664 * XXX Work around allocation problems for Audio 1, which
1665 * XXX implements the 24 low address bits only, with
1666 * XXX machine-specific DMA tag use.
1667 */
1668 #ifdef alpha
1669 /*
1670 * XXX Force allocation through the (ISA) SGMAP.
1671 */
1672 if (direction == AUMODE_RECORD)
1673 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1674 else
1675 #elif defined(amd64) || defined(i386)
1676 /*
1677 * XXX Force allocation through the ISA DMA tag.
1678 */
1679 if (direction == AUMODE_RECORD)
1680 ed->ed_dmat = &isa_bus_dma_tag;
1681 else
1682 #endif
1683 ed->ed_dmat = sc->sc_dmat;
1684
1685 error = eso_allocmem(sc, size, 32, boundary, direction, ed);
1686 if (error) {
1687 kmem_free(ed, sizeof(*ed));
1688 return NULL;
1689 }
1690 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1691
1692 return KVADDR(ed);
1693 }
1694
1695 static void
1696 eso_freem(void *hdl, void *addr, size_t size)
1697 {
1698 struct eso_softc *sc;
1699 struct eso_dma *p;
1700
1701 sc = hdl;
1702 p = eso_kva2dma(sc, addr);
1703
1704 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1705 eso_freemem(p);
1706 kmem_free(p, sizeof(*p));
1707 }
1708
1709 static size_t
1710 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1711 {
1712 size_t maxsize;
1713
1714 /*
1715 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1716 * bytes. This is because IO_A2DMAC is a two byte value
1717 * indicating the literal byte count, and the 4 least significant
1718 * bits are read-only. Zero is not used as a special case for
1719 * 0x10000.
1720 *
1721 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1722 * be represented.
1723 */
1724 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1725
1726 if (bufsize > maxsize)
1727 bufsize = maxsize;
1728
1729 return bufsize;
1730 }
1731
1732 static paddr_t
1733 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1734 {
1735 struct eso_softc *sc;
1736 struct eso_dma *ed;
1737
1738 sc = hdl;
1739 if (offs < 0)
1740 return -1;
1741 ed = eso_kva2dma(sc, addr);
1742
1743 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1744 offs, prot, BUS_DMA_WAITOK);
1745 }
1746
1747 /* ARGSUSED */
1748 static int
1749 eso_get_props(void *hdl)
1750 {
1751
1752 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1753 AUDIO_PROP_FULLDUPLEX;
1754 }
1755
1756 static int
1757 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1758 void (*intr)(void *), void *arg, const audio_params_t *param)
1759 {
1760 struct eso_softc *sc;
1761 struct eso_dma *ed;
1762 uint8_t a2c1;
1763
1764 sc = hdl;
1765 DPRINTF((
1766 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1767 device_xname(&sc->sc_dev), start, end, blksize, intr, arg));
1768 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1769 device_xname(&sc->sc_dev), param->sample_rate, param->encoding,
1770 param->precision, param->channels));
1771
1772 /* Find DMA buffer. */
1773 ed = eso_kva2dma(sc, start);
1774 DPRINTF(("%s: dmaaddr %lx\n",
1775 device_xname(&sc->sc_dev), (unsigned long)DMAADDR(ed)));
1776
1777 sc->sc_pintr = intr;
1778 sc->sc_parg = arg;
1779
1780 /* Compute drain timeout. */
1781 sc->sc_pdrain = (blksize * NBBY * hz) /
1782 (param->sample_rate * param->channels *
1783 param->precision) + 2; /* slop */
1784
1785 /* DMA transfer count (in `words'!) reload using 2's complement. */
1786 blksize = -(blksize >> 1);
1787 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1788 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1789
1790 /* Update DAC to reflect DMA count and audio parameters. */
1791 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1792 if (param->precision == 16)
1793 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1794 else
1795 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1796 if (param->channels == 2)
1797 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1798 else
1799 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1800 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1801 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1802 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1803 else
1804 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1805 /* Unmask IRQ. */
1806 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1807 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1808
1809 /* Set up DMA controller. */
1810 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1811 DMAADDR(ed));
1812 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1813 (uint8_t *)end - (uint8_t *)start);
1814 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1815 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1816
1817 /* Start DMA. */
1818 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1819 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1820 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1821 ESO_MIXREG_A2C1_AUTO;
1822 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1823
1824 return 0;
1825 }
1826
1827 static int
1828 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1829 void (*intr)(void *), void *arg, const audio_params_t *param)
1830 {
1831 struct eso_softc *sc;
1832 struct eso_dma *ed;
1833 uint8_t actl, a1c1;
1834
1835 sc = hdl;
1836 DPRINTF((
1837 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1838 device_xname(&sc->sc_dev), start, end, blksize, intr, arg));
1839 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1840 device_xname(&sc->sc_dev), param->sample_rate, param->encoding,
1841 param->precision, param->channels));
1842
1843 /*
1844 * If we failed to configure the Audio 1 DMA controller, bail here
1845 * while retaining availability of the DAC direction (in Audio 2).
1846 */
1847 if (!sc->sc_dmac_configured)
1848 return EIO;
1849
1850 /* Find DMA buffer. */
1851 ed = eso_kva2dma(sc, start);
1852 DPRINTF(("%s: dmaaddr %lx\n",
1853 device_xname(&sc->sc_dev), (unsigned long)DMAADDR(ed)));
1854
1855 sc->sc_rintr = intr;
1856 sc->sc_rarg = arg;
1857
1858 /* Compute drain timeout. */
1859 sc->sc_rdrain = (blksize * NBBY * hz) /
1860 (param->sample_rate * param->channels *
1861 param->precision) + 2; /* slop */
1862
1863 /* Set up ADC DMA converter parameters. */
1864 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1865 if (param->channels == 2) {
1866 actl &= ~ESO_CTLREG_ACTL_MONO;
1867 actl |= ESO_CTLREG_ACTL_STEREO;
1868 } else {
1869 actl &= ~ESO_CTLREG_ACTL_STEREO;
1870 actl |= ESO_CTLREG_ACTL_MONO;
1871 }
1872 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1873
1874 /* Set up Transfer Type: maybe move to attach time? */
1875 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1876
1877 /* DMA transfer count reload using 2's complement. */
1878 blksize = -blksize;
1879 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1880 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1881
1882 /* Set up and enable Audio 1 DMA FIFO. */
1883 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1884 if (param->precision == 16)
1885 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1886 if (param->channels == 2)
1887 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1888 else
1889 a1c1 |= ESO_CTLREG_A1C1_MONO;
1890 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1891 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1892 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1893 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1894
1895 /* Set up ADC IRQ/DRQ parameters. */
1896 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1897 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1898 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1899 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1900
1901 /* Set up and enable DMA controller. */
1902 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1903 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1904 ESO_DMAC_MASK_MASK);
1905 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1906 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1907 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1908 DMAADDR(ed));
1909 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1910 (uint8_t *)end - (uint8_t *)start - 1);
1911 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1912
1913 /* Start DMA. */
1914 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1915 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1916 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1917
1918 return 0;
1919 }
1920
1921
1922 static void
1923 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1924 {
1925 struct eso_softc *sc;
1926
1927 sc = addr;
1928 *intr = &sc->sc_intr_lock;
1929 *thread = &sc->sc_lock;
1930 }
1931
1932 /*
1933 * Mixer utility functions.
1934 */
1935 static int
1936 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1937 {
1938 mixer_devinfo_t di;
1939 int i;
1940
1941 KASSERT(mutex_owned(&sc->sc_intr_lock));
1942
1943 di.index = ESO_RECORD_SOURCE;
1944 if (eso_query_devinfo(sc, &di) != 0)
1945 panic("eso_set_recsrc: eso_query_devinfo failed");
1946
1947 for (i = 0; i < di.un.e.num_mem; i++) {
1948 if (recsrc == di.un.e.member[i].ord) {
1949 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1950 sc->sc_recsrc = recsrc;
1951 return 0;
1952 }
1953 }
1954
1955 return EINVAL;
1956 }
1957
1958 static int
1959 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1960 {
1961 mixer_devinfo_t di;
1962 int i;
1963 uint8_t mpm;
1964
1965 KASSERT(mutex_owned(&sc->sc_intr_lock));
1966
1967 di.index = ESO_MONOOUT_SOURCE;
1968 if (eso_query_devinfo(sc, &di) != 0)
1969 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1970
1971 for (i = 0; i < di.un.e.num_mem; i++) {
1972 if (monooutsrc == di.un.e.member[i].ord) {
1973 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1974 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1975 mpm |= monooutsrc;
1976 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1977 sc->sc_monooutsrc = monooutsrc;
1978 return 0;
1979 }
1980 }
1981
1982 return EINVAL;
1983 }
1984
1985 static int
1986 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1987 {
1988 mixer_devinfo_t di;
1989 int i;
1990 uint8_t mpm;
1991
1992 KASSERT(mutex_owned(&sc->sc_intr_lock));
1993
1994 di.index = ESO_MONOIN_BYPASS;
1995 if (eso_query_devinfo(sc, &di) != 0)
1996 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1997
1998 for (i = 0; i < di.un.e.num_mem; i++) {
1999 if (monoinbypass == di.un.e.member[i].ord) {
2000 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2001 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
2002 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
2003 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2004 sc->sc_monoinbypass = monoinbypass;
2005 return 0;
2006 }
2007 }
2008
2009 return EINVAL;
2010 }
2011
2012 static int
2013 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
2014 {
2015 mixer_devinfo_t di;
2016 int i;
2017 uint8_t mpm;
2018
2019 KASSERT(mutex_owned(&sc->sc_intr_lock));
2020
2021 di.index = ESO_MIC_PREAMP;
2022 if (eso_query_devinfo(sc, &di) != 0)
2023 panic("eso_set_preamp: eso_query_devinfo failed");
2024
2025 for (i = 0; i < di.un.e.num_mem; i++) {
2026 if (preamp == di.un.e.member[i].ord) {
2027 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2028 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
2029 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
2030 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2031 sc->sc_preamp = preamp;
2032 return 0;
2033 }
2034 }
2035
2036 return EINVAL;
2037 }
2038
2039 /*
2040 * Reload Master Volume and Mute values in softc from mixer; used when
2041 * those have previously been invalidated by use of hardware volume controls.
2042 */
2043 static void
2044 eso_reload_master_vol(struct eso_softc *sc)
2045 {
2046 uint8_t mv;
2047
2048 KASSERT(mutex_owned(&sc->sc_intr_lock));
2049
2050 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2051 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
2052 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
2053 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2054 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
2055 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
2056 /* Currently both channels are muted simultaneously; either is OK. */
2057 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
2058 }
2059
2060 static void
2061 eso_set_gain(struct eso_softc *sc, unsigned int port)
2062 {
2063 uint8_t mixreg, tmp;
2064
2065 KASSERT(mutex_owned(&sc->sc_intr_lock));
2066
2067 switch (port) {
2068 case ESO_DAC_PLAY_VOL:
2069 mixreg = ESO_MIXREG_PVR_A2;
2070 break;
2071 case ESO_MIC_PLAY_VOL:
2072 mixreg = ESO_MIXREG_PVR_MIC;
2073 break;
2074 case ESO_LINE_PLAY_VOL:
2075 mixreg = ESO_MIXREG_PVR_LINE;
2076 break;
2077 case ESO_SYNTH_PLAY_VOL:
2078 mixreg = ESO_MIXREG_PVR_SYNTH;
2079 break;
2080 case ESO_CD_PLAY_VOL:
2081 mixreg = ESO_MIXREG_PVR_CD;
2082 break;
2083 case ESO_AUXB_PLAY_VOL:
2084 mixreg = ESO_MIXREG_PVR_AUXB;
2085 break;
2086
2087 case ESO_DAC_REC_VOL:
2088 mixreg = ESO_MIXREG_RVR_A2;
2089 break;
2090 case ESO_MIC_REC_VOL:
2091 mixreg = ESO_MIXREG_RVR_MIC;
2092 break;
2093 case ESO_LINE_REC_VOL:
2094 mixreg = ESO_MIXREG_RVR_LINE;
2095 break;
2096 case ESO_SYNTH_REC_VOL:
2097 mixreg = ESO_MIXREG_RVR_SYNTH;
2098 break;
2099 case ESO_CD_REC_VOL:
2100 mixreg = ESO_MIXREG_RVR_CD;
2101 break;
2102 case ESO_AUXB_REC_VOL:
2103 mixreg = ESO_MIXREG_RVR_AUXB;
2104 break;
2105 case ESO_MONO_PLAY_VOL:
2106 mixreg = ESO_MIXREG_PVR_MONO;
2107 break;
2108 case ESO_MONO_REC_VOL:
2109 mixreg = ESO_MIXREG_RVR_MONO;
2110 break;
2111
2112 case ESO_PCSPEAKER_VOL:
2113 /* Special case - only 3-bit, mono, and reserved bits. */
2114 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2115 tmp &= ESO_MIXREG_PCSVR_RESV;
2116 /* Map bits 7:5 -> 2:0. */
2117 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2118 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2119 return;
2120
2121 case ESO_MASTER_VOL:
2122 /* Special case - separate regs, and 6-bit precision. */
2123 /* Map bits 7:2 -> 5:0, reflect mute settings. */
2124 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2125 (sc->sc_gain[port][ESO_LEFT] >> 2) |
2126 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2127 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2128 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2129 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2130 return;
2131
2132 case ESO_SPATIALIZER:
2133 /* Special case - only `mono', and higher precision. */
2134 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2135 sc->sc_gain[port][ESO_LEFT]);
2136 return;
2137
2138 case ESO_RECORD_VOL:
2139 /* Very Special case, controller register. */
2140 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2141 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2142 return;
2143
2144 default:
2145 #ifdef DIAGNOSTIC
2146 panic("eso_set_gain: bad port %u", port);
2147 /* NOTREACHED */
2148 #else
2149 return;
2150 #endif
2151 }
2152
2153 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2154 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2155 }
2156