eso.c revision 1.62 1 /* $NetBSD: eso.c,v 1.62 2012/10/27 17:18:31 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. The name of the author may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
50 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
51 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
52 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
54 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
55 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 */
59
60 /*
61 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.62 2012/10/27 17:18:31 chs Exp $");
66
67 #include "mpu.h"
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/device.h>
74 #include <sys/queue.h>
75 #include <sys/proc.h>
76
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/pcivar.h>
79
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82
83 #include <dev/mulaw.h>
84 #include <dev/auconv.h>
85
86 #include <dev/ic/mpuvar.h>
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/esoreg.h>
89 #include <dev/pci/esovar.h>
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93
94 /*
95 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
96 * XXX engine by allocating through the ISA DMA tag.
97 */
98 #if defined(amd64) || defined(i386)
99 #include "isa.h"
100 #if NISA > 0
101 #include <dev/isa/isavar.h>
102 #endif
103 #endif
104
105 #if defined(AUDIO_DEBUG) || defined(DEBUG)
106 #define DPRINTF(x) printf x
107 #else
108 #define DPRINTF(x)
109 #endif
110
111 struct eso_dma {
112 bus_dma_tag_t ed_dmat;
113 bus_dmamap_t ed_map;
114 void * ed_kva;
115 bus_dma_segment_t ed_segs[1];
116 int ed_nsegs;
117 size_t ed_size;
118 SLIST_ENTRY(eso_dma) ed_slist;
119 };
120
121 #define KVADDR(dma) ((void *)(dma)->ed_kva)
122 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
123
124 /* Autoconfiguration interface */
125 static int eso_match(device_t, cfdata_t, void *);
126 static void eso_attach(device_t, device_t, void *);
127 static void eso_defer(device_t);
128 static int eso_print(void *, const char *);
129
130 CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
131 eso_match, eso_attach, NULL, NULL);
132
133 /* PCI interface */
134 static int eso_intr(void *);
135
136 /* MI audio layer interface */
137 static int eso_query_encoding(void *, struct audio_encoding *);
138 static int eso_set_params(void *, int, int, audio_params_t *,
139 audio_params_t *, stream_filter_list_t *,
140 stream_filter_list_t *);
141 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
142 static int eso_halt_output(void *);
143 static int eso_halt_input(void *);
144 static int eso_getdev(void *, struct audio_device *);
145 static int eso_set_port(void *, mixer_ctrl_t *);
146 static int eso_get_port(void *, mixer_ctrl_t *);
147 static int eso_query_devinfo(void *, mixer_devinfo_t *);
148 static void * eso_allocm(void *, int, size_t);
149 static void eso_freem(void *, void *, size_t);
150 static size_t eso_round_buffersize(void *, int, size_t);
151 static paddr_t eso_mappage(void *, void *, off_t, int);
152 static int eso_get_props(void *);
153 static int eso_trigger_output(void *, void *, void *, int,
154 void (*)(void *), void *, const audio_params_t *);
155 static int eso_trigger_input(void *, void *, void *, int,
156 void (*)(void *), void *, const audio_params_t *);
157 static void eso_get_locks(void *, kmutex_t **, kmutex_t **);
158
159 static const struct audio_hw_if eso_hw_if = {
160 NULL, /* open */
161 NULL, /* close */
162 NULL, /* drain */
163 eso_query_encoding,
164 eso_set_params,
165 eso_round_blocksize,
166 NULL, /* commit_settings */
167 NULL, /* init_output */
168 NULL, /* init_input */
169 NULL, /* start_output */
170 NULL, /* start_input */
171 eso_halt_output,
172 eso_halt_input,
173 NULL, /* speaker_ctl */
174 eso_getdev,
175 NULL, /* setfd */
176 eso_set_port,
177 eso_get_port,
178 eso_query_devinfo,
179 eso_allocm,
180 eso_freem,
181 eso_round_buffersize,
182 eso_mappage,
183 eso_get_props,
184 eso_trigger_output,
185 eso_trigger_input,
186 NULL, /* dev_ioctl */
187 eso_get_locks,
188 };
189
190 static const char * const eso_rev2model[] = {
191 "ES1938",
192 "ES1946",
193 "ES1946 Revision E"
194 };
195
196 #define ESO_NFORMATS 8
197 static const struct audio_format eso_formats[ESO_NFORMATS] = {
198 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
199 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
200 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
201 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
202 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
203 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
204 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
205 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
206 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
207 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
208 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
209 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
210 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
211 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
212 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
213 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
214 };
215
216
217 /*
218 * Utility routines
219 */
220 /* Register access etc. */
221 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
222 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
223 static uint8_t eso_read_rdr(struct eso_softc *);
224 static void eso_reload_master_vol(struct eso_softc *);
225 static int eso_reset(struct eso_softc *);
226 static void eso_set_gain(struct eso_softc *, unsigned int);
227 static int eso_set_recsrc(struct eso_softc *, unsigned int);
228 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
229 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
230 static int eso_set_preamp(struct eso_softc *, unsigned int);
231 static void eso_write_cmd(struct eso_softc *, uint8_t);
232 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
233 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
234 /* DMA memory allocation */
235 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
236 int, struct eso_dma *);
237 static void eso_freemem(struct eso_dma *);
238 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *);
239
240
241 static int
242 eso_match(device_t parent, cfdata_t match, void *aux)
243 {
244 struct pci_attach_args *pa;
245
246 pa = aux;
247 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
248 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
249 return 1;
250
251 return 0;
252 }
253
254 static void
255 eso_attach(device_t parent, device_t self, void *aux)
256 {
257 struct eso_softc *sc;
258 struct pci_attach_args *pa;
259 struct audio_attach_args aa;
260 pci_intr_handle_t ih;
261 bus_addr_t vcbase;
262 const char *intrstring;
263 int idx, error;
264 uint8_t a2mode, mvctl;
265
266 sc = device_private(self);
267 sc->sc_dev = self;
268 pa = aux;
269 aprint_naive(": Audio controller\n");
270
271 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
272 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
273
274 sc->sc_revision = PCI_REVISION(pa->pa_class);
275 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
276 if (sc->sc_revision <
277 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
278 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
279 else
280 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
281
282 /* Map I/O registers. */
283 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
284 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
285 aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
286 return;
287 }
288 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
289 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
290 aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
291 return;
292 }
293 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
294 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
295 aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
296 /* Don't bail out yet: we can map it later, see below. */
297 vcbase = 0;
298 sc->sc_vcsize = 0x10; /* From the data sheet. */
299 }
300 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
301 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
302 aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
303 return;
304 }
305 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
306 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
307 aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
308 return;
309 }
310
311 sc->sc_dmat = pa->pa_dmat;
312 SLIST_INIT(&sc->sc_dmas);
313 sc->sc_dmac_configured = 0;
314
315 /* Enable bus mastering. */
316 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
317 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
318 PCI_COMMAND_MASTER_ENABLE);
319
320 /* Reset the device; bail out upon failure. */
321 mutex_spin_enter(&sc->sc_intr_lock);
322 error = eso_reset(sc);
323 mutex_spin_exit(&sc->sc_intr_lock);
324 if (error != 0) {
325 aprint_error_dev(sc->sc_dev, "can't reset\n");
326 return;
327 }
328
329 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
330 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
331 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
332 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
333
334 /* Enable the relevant (DMA) interrupts. */
335 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
336 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
337 ESO_IO_IRQCTL_MPUIRQ);
338
339 mutex_spin_enter(&sc->sc_intr_lock);
340
341 /* Set up A1's sample rate generator for new-style parameters. */
342 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
343 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
344 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
345
346 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
347 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
348 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
349 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
350 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
351
352 /* Set mixer regs to something reasonable, needs work. */
353 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
354 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
355 eso_set_monoinbypass(sc, 0);
356 eso_set_preamp(sc, 1);
357 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
358 int v;
359
360 switch (idx) {
361 case ESO_MIC_PLAY_VOL:
362 case ESO_LINE_PLAY_VOL:
363 case ESO_CD_PLAY_VOL:
364 case ESO_MONO_PLAY_VOL:
365 case ESO_AUXB_PLAY_VOL:
366 case ESO_DAC_REC_VOL:
367 case ESO_LINE_REC_VOL:
368 case ESO_SYNTH_REC_VOL:
369 case ESO_CD_REC_VOL:
370 case ESO_MONO_REC_VOL:
371 case ESO_AUXB_REC_VOL:
372 case ESO_SPATIALIZER:
373 v = 0;
374 break;
375 case ESO_MASTER_VOL:
376 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
377 break;
378 default:
379 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
380 break;
381 }
382 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
383 eso_set_gain(sc, idx);
384 }
385
386 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
387
388 mutex_spin_exit(&sc->sc_intr_lock);
389
390 /* Map and establish the interrupt. */
391 if (pci_intr_map(pa, &ih)) {
392 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
393 return;
394 }
395
396 intrstring = pci_intr_string(pa->pa_pc, ih);
397 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
398 if (sc->sc_ih == NULL) {
399 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
400 if (intrstring != NULL)
401 aprint_error(" at %s", intrstring);
402 aprint_error("\n");
403 mutex_destroy(&sc->sc_lock);
404 mutex_destroy(&sc->sc_intr_lock);
405 return;
406 }
407 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n",
408 intrstring);
409
410 cv_init(&sc->sc_pcv, "esoho");
411 cv_init(&sc->sc_rcv, "esohi");
412
413 /*
414 * Set up the DDMA Control register; a suitable I/O region has been
415 * supposedly mapped in the VC base address register.
416 *
417 * The Solo-1 has an ... interesting silicon bug that causes it to
418 * not respond to I/O space accesses to the Audio 1 DMA controller
419 * if the latter's mapping base address is aligned on a 1K boundary.
420 * As a consequence, it is quite possible for the mapping provided
421 * in the VC BAR to be useless. To work around this, we defer this
422 * part until all autoconfiguration on our parent bus is completed
423 * and then try to map it ourselves in fulfillment of the constraint.
424 *
425 * According to the register map we may write to the low 16 bits
426 * only, but experimenting has shown we're safe.
427 * -kjk
428 */
429 if (ESO_VALID_DDMAC_BASE(vcbase)) {
430 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
431 vcbase | ESO_PCI_DDMAC_DE);
432 sc->sc_dmac_configured = 1;
433
434 aprint_normal_dev(sc->sc_dev,
435 "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
436 (unsigned long)vcbase);
437 } else {
438 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
439 device_xname(sc->sc_dev), (unsigned long)vcbase));
440 sc->sc_pa = *pa;
441 config_defer(self, eso_defer);
442 }
443
444 audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);
445
446 aa.type = AUDIODEV_TYPE_OPL;
447 aa.hwif = NULL;
448 aa.hdl = NULL;
449 (void)config_found(sc->sc_dev, &aa, audioprint);
450
451 aa.type = AUDIODEV_TYPE_MPU;
452 aa.hwif = NULL;
453 aa.hdl = NULL;
454 sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
455 if (sc->sc_mpudev != NULL) {
456 /* Unmask the MPU irq. */
457 mutex_spin_enter(&sc->sc_intr_lock);
458 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
459 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
460 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
461 mutex_spin_exit(&sc->sc_intr_lock);
462 }
463
464 aa.type = AUDIODEV_TYPE_AUX;
465 aa.hwif = NULL;
466 aa.hdl = NULL;
467 (void)config_found(sc->sc_dev, &aa, eso_print);
468 }
469
470 static void
471 eso_defer(device_t self)
472 {
473 struct eso_softc *sc;
474 struct pci_attach_args *pa;
475 bus_addr_t addr, start;
476
477 sc = device_private(self);
478 pa = &sc->sc_pa;
479 aprint_normal_dev(sc->sc_dev, "");
480
481 /*
482 * This is outright ugly, but since we must not make assumptions
483 * on the underlying allocator's behaviour it's the most straight-
484 * forward way to implement it. Note that we skip over the first
485 * 1K region, which is typically occupied by an attached ISA bus.
486 */
487 mutex_enter(&sc->sc_lock);
488 for (start = 0x0400; start < 0xffff; start += 0x0400) {
489 if (bus_space_alloc(sc->sc_iot,
490 start + sc->sc_vcsize, start + 0x0400 - 1,
491 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
492 &sc->sc_dmac_ioh) != 0)
493 continue;
494
495 mutex_spin_enter(&sc->sc_intr_lock);
496 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
497 addr | ESO_PCI_DDMAC_DE);
498 mutex_spin_exit(&sc->sc_intr_lock);
499 sc->sc_dmac_iot = sc->sc_iot;
500 sc->sc_dmac_configured = 1;
501 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
502 (unsigned long)addr);
503
504 mutex_exit(&sc->sc_lock);
505 return;
506 }
507 mutex_exit(&sc->sc_lock);
508
509 aprint_error("can't map Audio 1 DMA into I/O space\n");
510 }
511
512 /* ARGSUSED */
513 static int
514 eso_print(void *aux, const char *pnp)
515 {
516
517 /* Only joys can attach via this; easy. */
518 if (pnp)
519 aprint_normal("joy at %s:", pnp);
520
521 return UNCONF;
522 }
523
524 static void
525 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
526 {
527 int i;
528
529 /* Poll for busy indicator to become clear. */
530 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
531 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
532 & ESO_SB_RSR_BUSY) == 0) {
533 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
534 ESO_SB_WDR, cmd);
535 return;
536 } else {
537 delay(10);
538 }
539 }
540
541 printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
542 return;
543 }
544
545 /* Write to a controller register */
546 static void
547 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
548 {
549
550 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
551
552 eso_write_cmd(sc, reg);
553 eso_write_cmd(sc, val);
554 }
555
556 /* Read out the Read Data Register */
557 static uint8_t
558 eso_read_rdr(struct eso_softc *sc)
559 {
560 int i;
561
562 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
563 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
564 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
565 return (bus_space_read_1(sc->sc_sb_iot,
566 sc->sc_sb_ioh, ESO_SB_RDR));
567 } else {
568 delay(10);
569 }
570 }
571
572 printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
573 return (-1);
574 }
575
576 static uint8_t
577 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
578 {
579
580 eso_write_cmd(sc, ESO_CMD_RCR);
581 eso_write_cmd(sc, reg);
582 return eso_read_rdr(sc);
583 }
584
585 static void
586 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
587 {
588
589 KASSERT(mutex_owned(&sc->sc_intr_lock));
590
591 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
592
593 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
594 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
595 }
596
597 static uint8_t
598 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
599 {
600 uint8_t val;
601
602 KASSERT(mutex_owned(&sc->sc_intr_lock));
603
604 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
605 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
606
607 return val;
608 }
609
610 static int
611 eso_intr(void *hdl)
612 {
613 struct eso_softc *sc = hdl;
614 #if NMPU > 0
615 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
616 #endif
617 uint8_t irqctl;
618
619 mutex_spin_enter(&sc->sc_intr_lock);
620
621 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
622
623 /* If it wasn't ours, that's all she wrote. */
624 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
625 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
626 mutex_spin_exit(&sc->sc_intr_lock);
627 return 0;
628 }
629
630 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
631 /* Clear interrupt. */
632 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
633 ESO_SB_RBSR);
634
635 if (sc->sc_rintr)
636 sc->sc_rintr(sc->sc_rarg);
637 else
638 cv_broadcast(&sc->sc_rcv);
639 }
640
641 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
642 /*
643 * Clear the A2 IRQ latch: the cached value reflects the
644 * current DAC settings with the IRQ latch bit not set.
645 */
646 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
647
648 if (sc->sc_pintr)
649 sc->sc_pintr(sc->sc_parg);
650 else
651 cv_broadcast(&sc->sc_pcv);
652 }
653
654 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
655 /* Clear interrupt. */
656 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
657
658 /*
659 * Raise a flag to cause a lazy update of the in-softc gain
660 * values the next time the software mixer is read to keep
661 * interrupt service cost low. ~0 cannot occur otherwise
662 * as the master volume has a precision of 6 bits only.
663 */
664 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
665 }
666
667 #if NMPU > 0
668 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
669 mpu_intr(sc_mpu);
670 #endif
671
672 mutex_spin_exit(&sc->sc_intr_lock);
673 return 1;
674 }
675
676 /* Perform a software reset, including DMA FIFOs. */
677 static int
678 eso_reset(struct eso_softc *sc)
679 {
680 int i;
681
682 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
683 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
684 /* `Delay' suggested in the data sheet. */
685 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
686 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
687
688 /* Wait for reset to take effect. */
689 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
690 /* Poll for data to become available. */
691 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
692 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
693 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
694 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
695
696 /* Activate Solo-1 extension commands. */
697 eso_write_cmd(sc, ESO_CMD_EXTENB);
698 /* Reset mixer registers. */
699 eso_write_mixreg(sc, ESO_MIXREG_RESET,
700 ESO_MIXREG_RESET_RESET);
701
702 return 0;
703 } else {
704 delay(1000);
705 }
706 }
707
708 printf("%s: reset timeout\n", device_xname(sc->sc_dev));
709 return -1;
710 }
711
712 static int
713 eso_query_encoding(void *hdl, struct audio_encoding *fp)
714 {
715
716 switch (fp->index) {
717 case 0:
718 strcpy(fp->name, AudioEulinear);
719 fp->encoding = AUDIO_ENCODING_ULINEAR;
720 fp->precision = 8;
721 fp->flags = 0;
722 break;
723 case 1:
724 strcpy(fp->name, AudioEmulaw);
725 fp->encoding = AUDIO_ENCODING_ULAW;
726 fp->precision = 8;
727 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
728 break;
729 case 2:
730 strcpy(fp->name, AudioEalaw);
731 fp->encoding = AUDIO_ENCODING_ALAW;
732 fp->precision = 8;
733 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
734 break;
735 case 3:
736 strcpy(fp->name, AudioEslinear);
737 fp->encoding = AUDIO_ENCODING_SLINEAR;
738 fp->precision = 8;
739 fp->flags = 0;
740 break;
741 case 4:
742 strcpy(fp->name, AudioEslinear_le);
743 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
744 fp->precision = 16;
745 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
746 break;
747 case 5:
748 strcpy(fp->name, AudioEulinear_le);
749 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
750 fp->precision = 16;
751 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
752 break;
753 case 6:
754 strcpy(fp->name, AudioEslinear_be);
755 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
756 fp->precision = 16;
757 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
758 break;
759 case 7:
760 strcpy(fp->name, AudioEulinear_be);
761 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
762 fp->precision = 16;
763 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
764 break;
765 default:
766 return EINVAL;
767 }
768
769 return 0;
770 }
771
772 static int
773 eso_set_params(void *hdl, int setmode, int usemode,
774 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
775 stream_filter_list_t *rfil)
776 {
777 struct eso_softc *sc;
778 struct audio_params *p;
779 stream_filter_list_t *fil;
780 int mode, r[2], rd[2], ar[2], clk;
781 unsigned int srg, fltdiv;
782 int i;
783
784 sc = hdl;
785 for (mode = AUMODE_RECORD; mode != -1;
786 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
787 if ((setmode & mode) == 0)
788 continue;
789
790 p = (mode == AUMODE_PLAY) ? play : rec;
791
792 if (p->sample_rate < ESO_MINRATE ||
793 p->sample_rate > ESO_MAXRATE ||
794 (p->precision != 8 && p->precision != 16) ||
795 (p->channels != 1 && p->channels != 2))
796 return EINVAL;
797
798 /*
799 * We'll compute both possible sample rate dividers and pick
800 * the one with the least error.
801 */
802 #define ABS(x) ((x) < 0 ? -(x) : (x))
803 r[0] = ESO_CLK0 /
804 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
805 r[1] = ESO_CLK1 /
806 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
807
808 ar[0] = p->sample_rate - r[0];
809 ar[1] = p->sample_rate - r[1];
810 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
811 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
812
813 /* Roll-off frequency of 87%, as in the ES1888 driver. */
814 fltdiv = 256 - 200279L / r[clk];
815
816 /* Update to reflect the possibly inexact rate. */
817 p->sample_rate = r[clk];
818
819 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
820 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
821 mode, p, FALSE, fil);
822 if (i < 0)
823 return EINVAL;
824
825 mutex_spin_enter(&sc->sc_intr_lock);
826 if (mode == AUMODE_RECORD) {
827 /* Audio 1 */
828 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
829 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
830 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
831 } else {
832 /* Audio 2 */
833 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
834 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
835 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
836 }
837 mutex_spin_exit(&sc->sc_intr_lock);
838 #undef ABS
839
840 }
841
842 return 0;
843 }
844
845 static int
846 eso_round_blocksize(void *hdl, int blk, int mode,
847 const audio_params_t *param)
848 {
849
850 return blk & -32; /* keep good alignment; at least 16 req'd */
851 }
852
853 static int
854 eso_halt_output(void *hdl)
855 {
856 struct eso_softc *sc;
857 int error;
858
859 sc = hdl;
860 DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));
861
862 /*
863 * Disable auto-initialize DMA, allowing the FIFO to drain and then
864 * stop. The interrupt callback pointer is cleared at this
865 * point so that an outstanding FIFO interrupt for the remaining data
866 * will be acknowledged without further processing.
867 *
868 * This does not immediately `abort' an operation in progress (c.f.
869 * audio(9)) but is the method to leave the FIFO behind in a clean
870 * state with the least hair. (Besides, that item needs to be
871 * rephrased for trigger_*()-based DMA environments.)
872 */
873 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
874 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
875 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
876 ESO_IO_A2DMAM_DMAENB);
877
878 sc->sc_pintr = NULL;
879 mutex_exit(&sc->sc_lock);
880 error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
881 if (!mutex_tryenter(&sc->sc_lock)) {
882 mutex_spin_exit(&sc->sc_intr_lock);
883 mutex_enter(&sc->sc_lock);
884 mutex_spin_enter(&sc->sc_intr_lock);
885 }
886
887 /* Shut down DMA completely. */
888 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
889 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
890
891 return error == EWOULDBLOCK ? 0 : error;
892 }
893
894 static int
895 eso_halt_input(void *hdl)
896 {
897 struct eso_softc *sc;
898 int error;
899
900 sc = hdl;
901 DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));
902
903 /* Just like eso_halt_output(), but for Audio 1. */
904 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
905 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
906 ESO_CTLREG_A1C2_DMAENB);
907 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
908 DMA37MD_WRITE | DMA37MD_DEMAND);
909
910 sc->sc_rintr = NULL;
911 mutex_exit(&sc->sc_lock);
912 error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
913 if (!mutex_tryenter(&sc->sc_lock)) {
914 mutex_spin_exit(&sc->sc_intr_lock);
915 mutex_enter(&sc->sc_lock);
916 mutex_spin_enter(&sc->sc_intr_lock);
917 }
918
919 /* Shut down DMA completely. */
920 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
921 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
922 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
923 ESO_DMAC_MASK_MASK);
924
925 return error == EWOULDBLOCK ? 0 : error;
926 }
927
928 static int
929 eso_getdev(void *hdl, struct audio_device *retp)
930 {
931 struct eso_softc *sc;
932
933 sc = hdl;
934 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
935 snprintf(retp->version, sizeof (retp->version), "0x%02x",
936 sc->sc_revision);
937 if (sc->sc_revision <
938 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
939 strncpy(retp->config, eso_rev2model[sc->sc_revision],
940 sizeof (retp->config));
941 else
942 strncpy(retp->config, "unknown", sizeof (retp->config));
943
944 return 0;
945 }
946
947 static int
948 eso_set_port(void *hdl, mixer_ctrl_t *cp)
949 {
950 struct eso_softc *sc;
951 unsigned int lgain, rgain;
952 uint8_t tmp;
953 int error;
954
955 sc = hdl;
956 error = 0;
957
958 mutex_spin_enter(&sc->sc_intr_lock);
959
960 switch (cp->dev) {
961 case ESO_DAC_PLAY_VOL:
962 case ESO_MIC_PLAY_VOL:
963 case ESO_LINE_PLAY_VOL:
964 case ESO_SYNTH_PLAY_VOL:
965 case ESO_CD_PLAY_VOL:
966 case ESO_AUXB_PLAY_VOL:
967 case ESO_RECORD_VOL:
968 case ESO_DAC_REC_VOL:
969 case ESO_MIC_REC_VOL:
970 case ESO_LINE_REC_VOL:
971 case ESO_SYNTH_REC_VOL:
972 case ESO_CD_REC_VOL:
973 case ESO_AUXB_REC_VOL:
974 if (cp->type != AUDIO_MIXER_VALUE) {
975 error = EINVAL;
976 break;
977 }
978
979 /*
980 * Stereo-capable mixer ports: if we get a single-channel
981 * gain value passed in, then we duplicate it to both left
982 * and right channels.
983 */
984 switch (cp->un.value.num_channels) {
985 case 1:
986 lgain = rgain = ESO_GAIN_TO_4BIT(
987 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
988 break;
989 case 2:
990 lgain = ESO_GAIN_TO_4BIT(
991 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
992 rgain = ESO_GAIN_TO_4BIT(
993 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
994 break;
995 default:
996 error = EINVAL;
997 break;
998 }
999
1000 if (!error) {
1001 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1002 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1003 eso_set_gain(sc, cp->dev);
1004 }
1005 break;
1006
1007 case ESO_MASTER_VOL:
1008 if (cp->type != AUDIO_MIXER_VALUE) {
1009 error = EINVAL;
1010 break;
1011 }
1012
1013 /* Like above, but a precision of 6 bits. */
1014 switch (cp->un.value.num_channels) {
1015 case 1:
1016 lgain = rgain = ESO_GAIN_TO_6BIT(
1017 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1018 break;
1019 case 2:
1020 lgain = ESO_GAIN_TO_6BIT(
1021 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1022 rgain = ESO_GAIN_TO_6BIT(
1023 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1024 break;
1025 default:
1026 error = EINVAL;
1027 break;
1028 }
1029
1030 if (!error) {
1031 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1032 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1033 eso_set_gain(sc, cp->dev);
1034 }
1035 break;
1036
1037 case ESO_SPATIALIZER:
1038 if (cp->type != AUDIO_MIXER_VALUE ||
1039 cp->un.value.num_channels != 1) {
1040 error = EINVAL;
1041 break;
1042 }
1043
1044 sc->sc_gain[cp->dev][ESO_LEFT] =
1045 sc->sc_gain[cp->dev][ESO_RIGHT] =
1046 ESO_GAIN_TO_6BIT(
1047 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1048 eso_set_gain(sc, cp->dev);
1049 break;
1050
1051 case ESO_MONO_PLAY_VOL:
1052 case ESO_MONO_REC_VOL:
1053 if (cp->type != AUDIO_MIXER_VALUE ||
1054 cp->un.value.num_channels != 1) {
1055 error = EINVAL;
1056 break;
1057 }
1058
1059 sc->sc_gain[cp->dev][ESO_LEFT] =
1060 sc->sc_gain[cp->dev][ESO_RIGHT] =
1061 ESO_GAIN_TO_4BIT(
1062 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1063 eso_set_gain(sc, cp->dev);
1064 break;
1065
1066 case ESO_PCSPEAKER_VOL:
1067 if (cp->type != AUDIO_MIXER_VALUE ||
1068 cp->un.value.num_channels != 1) {
1069 error = EINVAL;
1070 break;
1071 }
1072
1073 sc->sc_gain[cp->dev][ESO_LEFT] =
1074 sc->sc_gain[cp->dev][ESO_RIGHT] =
1075 ESO_GAIN_TO_3BIT(
1076 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1077 eso_set_gain(sc, cp->dev);
1078 break;
1079
1080 case ESO_SPATIALIZER_ENABLE:
1081 if (cp->type != AUDIO_MIXER_ENUM) {
1082 error = EINVAL;
1083 break;
1084 }
1085
1086 sc->sc_spatializer = (cp->un.ord != 0);
1087
1088 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1089 if (sc->sc_spatializer)
1090 tmp |= ESO_MIXREG_SPAT_ENB;
1091 else
1092 tmp &= ~ESO_MIXREG_SPAT_ENB;
1093 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1094 tmp | ESO_MIXREG_SPAT_RSTREL);
1095 break;
1096
1097 case ESO_MASTER_MUTE:
1098 if (cp->type != AUDIO_MIXER_ENUM) {
1099 error = EINVAL;
1100 break;
1101 }
1102
1103 sc->sc_mvmute = (cp->un.ord != 0);
1104
1105 if (sc->sc_mvmute) {
1106 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1107 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1108 ESO_MIXREG_LMVM_MUTE);
1109 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1110 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1111 ESO_MIXREG_RMVM_MUTE);
1112 } else {
1113 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1114 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1115 ~ESO_MIXREG_LMVM_MUTE);
1116 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1117 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1118 ~ESO_MIXREG_RMVM_MUTE);
1119 }
1120 break;
1121
1122 case ESO_MONOOUT_SOURCE:
1123 if (cp->type != AUDIO_MIXER_ENUM) {
1124 error = EINVAL;
1125 break;
1126 }
1127
1128 error = eso_set_monooutsrc(sc, cp->un.ord);
1129 break;
1130
1131 case ESO_MONOIN_BYPASS:
1132 if (cp->type != AUDIO_MIXER_ENUM) {
1133 error = EINVAL;
1134 break;
1135 }
1136
1137 error = (eso_set_monoinbypass(sc, cp->un.ord));
1138 break;
1139
1140 case ESO_RECORD_MONITOR:
1141 if (cp->type != AUDIO_MIXER_ENUM) {
1142 error = EINVAL;
1143 break;
1144 }
1145
1146 sc->sc_recmon = (cp->un.ord != 0);
1147
1148 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1149 if (sc->sc_recmon)
1150 tmp |= ESO_CTLREG_ACTL_RECMON;
1151 else
1152 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1153 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1154 break;
1155
1156 case ESO_RECORD_SOURCE:
1157 if (cp->type != AUDIO_MIXER_ENUM) {
1158 error = EINVAL;
1159 break;
1160 }
1161
1162 error = eso_set_recsrc(sc, cp->un.ord);
1163 break;
1164
1165 case ESO_MIC_PREAMP:
1166 if (cp->type != AUDIO_MIXER_ENUM) {
1167 error = EINVAL;
1168 break;
1169 }
1170
1171 error = eso_set_preamp(sc, cp->un.ord);
1172 break;
1173
1174 default:
1175 error = EINVAL;
1176 break;
1177 }
1178
1179 mutex_spin_exit(&sc->sc_intr_lock);
1180 return error;
1181 }
1182
1183 static int
1184 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1185 {
1186 struct eso_softc *sc;
1187 int error;
1188
1189 sc = hdl;
1190 error = 0;
1191
1192 mutex_spin_enter(&sc->sc_intr_lock);
1193
1194 switch (cp->dev) {
1195 case ESO_MASTER_VOL:
1196 /* Reload from mixer after hardware volume control use. */
1197 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1198 eso_reload_master_vol(sc);
1199 /* FALLTHROUGH */
1200 case ESO_DAC_PLAY_VOL:
1201 case ESO_MIC_PLAY_VOL:
1202 case ESO_LINE_PLAY_VOL:
1203 case ESO_SYNTH_PLAY_VOL:
1204 case ESO_CD_PLAY_VOL:
1205 case ESO_AUXB_PLAY_VOL:
1206 case ESO_RECORD_VOL:
1207 case ESO_DAC_REC_VOL:
1208 case ESO_MIC_REC_VOL:
1209 case ESO_LINE_REC_VOL:
1210 case ESO_SYNTH_REC_VOL:
1211 case ESO_CD_REC_VOL:
1212 case ESO_AUXB_REC_VOL:
1213 /*
1214 * Stereo-capable ports: if a single-channel query is made,
1215 * just return the left channel's value (since single-channel
1216 * settings themselves are applied to both channels).
1217 */
1218 switch (cp->un.value.num_channels) {
1219 case 1:
1220 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1221 sc->sc_gain[cp->dev][ESO_LEFT];
1222 break;
1223 case 2:
1224 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1225 sc->sc_gain[cp->dev][ESO_LEFT];
1226 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1227 sc->sc_gain[cp->dev][ESO_RIGHT];
1228 break;
1229 default:
1230 error = EINVAL;
1231 break;
1232 }
1233 break;
1234
1235 case ESO_MONO_PLAY_VOL:
1236 case ESO_PCSPEAKER_VOL:
1237 case ESO_MONO_REC_VOL:
1238 case ESO_SPATIALIZER:
1239 if (cp->un.value.num_channels != 1) {
1240 error = EINVAL;
1241 break;
1242 }
1243 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1244 sc->sc_gain[cp->dev][ESO_LEFT];
1245 break;
1246
1247 case ESO_RECORD_MONITOR:
1248 cp->un.ord = sc->sc_recmon;
1249 break;
1250
1251 case ESO_RECORD_SOURCE:
1252 cp->un.ord = sc->sc_recsrc;
1253 break;
1254
1255 case ESO_MONOOUT_SOURCE:
1256 cp->un.ord = sc->sc_monooutsrc;
1257 break;
1258
1259 case ESO_MONOIN_BYPASS:
1260 cp->un.ord = sc->sc_monoinbypass;
1261 break;
1262
1263 case ESO_SPATIALIZER_ENABLE:
1264 cp->un.ord = sc->sc_spatializer;
1265 break;
1266
1267 case ESO_MIC_PREAMP:
1268 cp->un.ord = sc->sc_preamp;
1269 break;
1270
1271 case ESO_MASTER_MUTE:
1272 /* Reload from mixer after hardware volume control use. */
1273 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1274 eso_reload_master_vol(sc);
1275 cp->un.ord = sc->sc_mvmute;
1276 break;
1277
1278 default:
1279 error = EINVAL;
1280 break;
1281 }
1282
1283 mutex_spin_exit(&sc->sc_intr_lock);
1284 return 0;
1285 }
1286
1287 static int
1288 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1289 {
1290
1291 switch (dip->index) {
1292 case ESO_DAC_PLAY_VOL:
1293 dip->mixer_class = ESO_INPUT_CLASS;
1294 dip->next = dip->prev = AUDIO_MIXER_LAST;
1295 strcpy(dip->label.name, AudioNdac);
1296 dip->type = AUDIO_MIXER_VALUE;
1297 dip->un.v.num_channels = 2;
1298 strcpy(dip->un.v.units.name, AudioNvolume);
1299 break;
1300 case ESO_MIC_PLAY_VOL:
1301 dip->mixer_class = ESO_INPUT_CLASS;
1302 dip->next = dip->prev = AUDIO_MIXER_LAST;
1303 strcpy(dip->label.name, AudioNmicrophone);
1304 dip->type = AUDIO_MIXER_VALUE;
1305 dip->un.v.num_channels = 2;
1306 strcpy(dip->un.v.units.name, AudioNvolume);
1307 break;
1308 case ESO_LINE_PLAY_VOL:
1309 dip->mixer_class = ESO_INPUT_CLASS;
1310 dip->next = dip->prev = AUDIO_MIXER_LAST;
1311 strcpy(dip->label.name, AudioNline);
1312 dip->type = AUDIO_MIXER_VALUE;
1313 dip->un.v.num_channels = 2;
1314 strcpy(dip->un.v.units.name, AudioNvolume);
1315 break;
1316 case ESO_SYNTH_PLAY_VOL:
1317 dip->mixer_class = ESO_INPUT_CLASS;
1318 dip->next = dip->prev = AUDIO_MIXER_LAST;
1319 strcpy(dip->label.name, AudioNfmsynth);
1320 dip->type = AUDIO_MIXER_VALUE;
1321 dip->un.v.num_channels = 2;
1322 strcpy(dip->un.v.units.name, AudioNvolume);
1323 break;
1324 case ESO_MONO_PLAY_VOL:
1325 dip->mixer_class = ESO_INPUT_CLASS;
1326 dip->next = dip->prev = AUDIO_MIXER_LAST;
1327 strcpy(dip->label.name, "mono_in");
1328 dip->type = AUDIO_MIXER_VALUE;
1329 dip->un.v.num_channels = 1;
1330 strcpy(dip->un.v.units.name, AudioNvolume);
1331 break;
1332 case ESO_CD_PLAY_VOL:
1333 dip->mixer_class = ESO_INPUT_CLASS;
1334 dip->next = dip->prev = AUDIO_MIXER_LAST;
1335 strcpy(dip->label.name, AudioNcd);
1336 dip->type = AUDIO_MIXER_VALUE;
1337 dip->un.v.num_channels = 2;
1338 strcpy(dip->un.v.units.name, AudioNvolume);
1339 break;
1340 case ESO_AUXB_PLAY_VOL:
1341 dip->mixer_class = ESO_INPUT_CLASS;
1342 dip->next = dip->prev = AUDIO_MIXER_LAST;
1343 strcpy(dip->label.name, "auxb");
1344 dip->type = AUDIO_MIXER_VALUE;
1345 dip->un.v.num_channels = 2;
1346 strcpy(dip->un.v.units.name, AudioNvolume);
1347 break;
1348
1349 case ESO_MIC_PREAMP:
1350 dip->mixer_class = ESO_MICROPHONE_CLASS;
1351 dip->next = dip->prev = AUDIO_MIXER_LAST;
1352 strcpy(dip->label.name, AudioNpreamp);
1353 dip->type = AUDIO_MIXER_ENUM;
1354 dip->un.e.num_mem = 2;
1355 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1356 dip->un.e.member[0].ord = 0;
1357 strcpy(dip->un.e.member[1].label.name, AudioNon);
1358 dip->un.e.member[1].ord = 1;
1359 break;
1360 case ESO_MICROPHONE_CLASS:
1361 dip->mixer_class = ESO_MICROPHONE_CLASS;
1362 dip->next = dip->prev = AUDIO_MIXER_LAST;
1363 strcpy(dip->label.name, AudioNmicrophone);
1364 dip->type = AUDIO_MIXER_CLASS;
1365 break;
1366
1367 case ESO_INPUT_CLASS:
1368 dip->mixer_class = ESO_INPUT_CLASS;
1369 dip->next = dip->prev = AUDIO_MIXER_LAST;
1370 strcpy(dip->label.name, AudioCinputs);
1371 dip->type = AUDIO_MIXER_CLASS;
1372 break;
1373
1374 case ESO_MASTER_VOL:
1375 dip->mixer_class = ESO_OUTPUT_CLASS;
1376 dip->prev = AUDIO_MIXER_LAST;
1377 dip->next = ESO_MASTER_MUTE;
1378 strcpy(dip->label.name, AudioNmaster);
1379 dip->type = AUDIO_MIXER_VALUE;
1380 dip->un.v.num_channels = 2;
1381 strcpy(dip->un.v.units.name, AudioNvolume);
1382 break;
1383 case ESO_MASTER_MUTE:
1384 dip->mixer_class = ESO_OUTPUT_CLASS;
1385 dip->prev = ESO_MASTER_VOL;
1386 dip->next = AUDIO_MIXER_LAST;
1387 strcpy(dip->label.name, AudioNmute);
1388 dip->type = AUDIO_MIXER_ENUM;
1389 dip->un.e.num_mem = 2;
1390 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1391 dip->un.e.member[0].ord = 0;
1392 strcpy(dip->un.e.member[1].label.name, AudioNon);
1393 dip->un.e.member[1].ord = 1;
1394 break;
1395
1396 case ESO_PCSPEAKER_VOL:
1397 dip->mixer_class = ESO_OUTPUT_CLASS;
1398 dip->next = dip->prev = AUDIO_MIXER_LAST;
1399 strcpy(dip->label.name, "pc_speaker");
1400 dip->type = AUDIO_MIXER_VALUE;
1401 dip->un.v.num_channels = 1;
1402 strcpy(dip->un.v.units.name, AudioNvolume);
1403 break;
1404 case ESO_MONOOUT_SOURCE:
1405 dip->mixer_class = ESO_OUTPUT_CLASS;
1406 dip->next = dip->prev = AUDIO_MIXER_LAST;
1407 strcpy(dip->label.name, "mono_out");
1408 dip->type = AUDIO_MIXER_ENUM;
1409 dip->un.e.num_mem = 3;
1410 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1411 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1412 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1413 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1414 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1415 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1416 break;
1417
1418 case ESO_MONOIN_BYPASS:
1419 dip->mixer_class = ESO_MONOIN_CLASS;
1420 dip->next = dip->prev = AUDIO_MIXER_LAST;
1421 strcpy(dip->label.name, "bypass");
1422 dip->type = AUDIO_MIXER_ENUM;
1423 dip->un.e.num_mem = 2;
1424 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1425 dip->un.e.member[0].ord = 0;
1426 strcpy(dip->un.e.member[1].label.name, AudioNon);
1427 dip->un.e.member[1].ord = 1;
1428 break;
1429 case ESO_MONOIN_CLASS:
1430 dip->mixer_class = ESO_MONOIN_CLASS;
1431 dip->next = dip->prev = AUDIO_MIXER_LAST;
1432 strcpy(dip->label.name, "mono_in");
1433 dip->type = AUDIO_MIXER_CLASS;
1434 break;
1435
1436 case ESO_SPATIALIZER:
1437 dip->mixer_class = ESO_OUTPUT_CLASS;
1438 dip->prev = AUDIO_MIXER_LAST;
1439 dip->next = ESO_SPATIALIZER_ENABLE;
1440 strcpy(dip->label.name, AudioNspatial);
1441 dip->type = AUDIO_MIXER_VALUE;
1442 dip->un.v.num_channels = 1;
1443 strcpy(dip->un.v.units.name, "level");
1444 break;
1445 case ESO_SPATIALIZER_ENABLE:
1446 dip->mixer_class = ESO_OUTPUT_CLASS;
1447 dip->prev = ESO_SPATIALIZER;
1448 dip->next = AUDIO_MIXER_LAST;
1449 strcpy(dip->label.name, "enable");
1450 dip->type = AUDIO_MIXER_ENUM;
1451 dip->un.e.num_mem = 2;
1452 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1453 dip->un.e.member[0].ord = 0;
1454 strcpy(dip->un.e.member[1].label.name, AudioNon);
1455 dip->un.e.member[1].ord = 1;
1456 break;
1457
1458 case ESO_OUTPUT_CLASS:
1459 dip->mixer_class = ESO_OUTPUT_CLASS;
1460 dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 strcpy(dip->label.name, AudioCoutputs);
1462 dip->type = AUDIO_MIXER_CLASS;
1463 break;
1464
1465 case ESO_RECORD_MONITOR:
1466 dip->mixer_class = ESO_MONITOR_CLASS;
1467 dip->next = dip->prev = AUDIO_MIXER_LAST;
1468 strcpy(dip->label.name, AudioNmute);
1469 dip->type = AUDIO_MIXER_ENUM;
1470 dip->un.e.num_mem = 2;
1471 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1472 dip->un.e.member[0].ord = 0;
1473 strcpy(dip->un.e.member[1].label.name, AudioNon);
1474 dip->un.e.member[1].ord = 1;
1475 break;
1476 case ESO_MONITOR_CLASS:
1477 dip->mixer_class = ESO_MONITOR_CLASS;
1478 dip->next = dip->prev = AUDIO_MIXER_LAST;
1479 strcpy(dip->label.name, AudioCmonitor);
1480 dip->type = AUDIO_MIXER_CLASS;
1481 break;
1482
1483 case ESO_RECORD_VOL:
1484 dip->mixer_class = ESO_RECORD_CLASS;
1485 dip->next = dip->prev = AUDIO_MIXER_LAST;
1486 strcpy(dip->label.name, AudioNrecord);
1487 dip->type = AUDIO_MIXER_VALUE;
1488 strcpy(dip->un.v.units.name, AudioNvolume);
1489 break;
1490 case ESO_RECORD_SOURCE:
1491 dip->mixer_class = ESO_RECORD_CLASS;
1492 dip->next = dip->prev = AUDIO_MIXER_LAST;
1493 strcpy(dip->label.name, AudioNsource);
1494 dip->type = AUDIO_MIXER_ENUM;
1495 dip->un.e.num_mem = 4;
1496 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1497 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1498 strcpy(dip->un.e.member[1].label.name, AudioNline);
1499 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1500 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1501 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1502 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1503 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1504 break;
1505 case ESO_DAC_REC_VOL:
1506 dip->mixer_class = ESO_RECORD_CLASS;
1507 dip->next = dip->prev = AUDIO_MIXER_LAST;
1508 strcpy(dip->label.name, AudioNdac);
1509 dip->type = AUDIO_MIXER_VALUE;
1510 dip->un.v.num_channels = 2;
1511 strcpy(dip->un.v.units.name, AudioNvolume);
1512 break;
1513 case ESO_MIC_REC_VOL:
1514 dip->mixer_class = ESO_RECORD_CLASS;
1515 dip->next = dip->prev = AUDIO_MIXER_LAST;
1516 strcpy(dip->label.name, AudioNmicrophone);
1517 dip->type = AUDIO_MIXER_VALUE;
1518 dip->un.v.num_channels = 2;
1519 strcpy(dip->un.v.units.name, AudioNvolume);
1520 break;
1521 case ESO_LINE_REC_VOL:
1522 dip->mixer_class = ESO_RECORD_CLASS;
1523 dip->next = dip->prev = AUDIO_MIXER_LAST;
1524 strcpy(dip->label.name, AudioNline);
1525 dip->type = AUDIO_MIXER_VALUE;
1526 dip->un.v.num_channels = 2;
1527 strcpy(dip->un.v.units.name, AudioNvolume);
1528 break;
1529 case ESO_SYNTH_REC_VOL:
1530 dip->mixer_class = ESO_RECORD_CLASS;
1531 dip->next = dip->prev = AUDIO_MIXER_LAST;
1532 strcpy(dip->label.name, AudioNfmsynth);
1533 dip->type = AUDIO_MIXER_VALUE;
1534 dip->un.v.num_channels = 2;
1535 strcpy(dip->un.v.units.name, AudioNvolume);
1536 break;
1537 case ESO_MONO_REC_VOL:
1538 dip->mixer_class = ESO_RECORD_CLASS;
1539 dip->next = dip->prev = AUDIO_MIXER_LAST;
1540 strcpy(dip->label.name, "mono_in");
1541 dip->type = AUDIO_MIXER_VALUE;
1542 dip->un.v.num_channels = 1; /* No lies */
1543 strcpy(dip->un.v.units.name, AudioNvolume);
1544 break;
1545 case ESO_CD_REC_VOL:
1546 dip->mixer_class = ESO_RECORD_CLASS;
1547 dip->next = dip->prev = AUDIO_MIXER_LAST;
1548 strcpy(dip->label.name, AudioNcd);
1549 dip->type = AUDIO_MIXER_VALUE;
1550 dip->un.v.num_channels = 2;
1551 strcpy(dip->un.v.units.name, AudioNvolume);
1552 break;
1553 case ESO_AUXB_REC_VOL:
1554 dip->mixer_class = ESO_RECORD_CLASS;
1555 dip->next = dip->prev = AUDIO_MIXER_LAST;
1556 strcpy(dip->label.name, "auxb");
1557 dip->type = AUDIO_MIXER_VALUE;
1558 dip->un.v.num_channels = 2;
1559 strcpy(dip->un.v.units.name, AudioNvolume);
1560 break;
1561 case ESO_RECORD_CLASS:
1562 dip->mixer_class = ESO_RECORD_CLASS;
1563 dip->next = dip->prev = AUDIO_MIXER_LAST;
1564 strcpy(dip->label.name, AudioCrecord);
1565 dip->type = AUDIO_MIXER_CLASS;
1566 break;
1567
1568 default:
1569 return ENXIO;
1570 }
1571
1572 return 0;
1573 }
1574
1575 static int
1576 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1577 size_t boundary, int direction, struct eso_dma *ed)
1578 {
1579 int error;
1580
1581 ed->ed_size = size;
1582
1583 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1584 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1585 &ed->ed_nsegs, BUS_DMA_WAITOK);
1586 if (error)
1587 goto out;
1588
1589 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1590 ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
1591 if (error)
1592 goto free;
1593
1594 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1595 BUS_DMA_WAITOK, &ed->ed_map);
1596 if (error)
1597 goto unmap;
1598
1599 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1600 ed->ed_size, NULL, BUS_DMA_WAITOK |
1601 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1602 if (error)
1603 goto destroy;
1604
1605 return 0;
1606
1607 destroy:
1608 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1609 unmap:
1610 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1611 free:
1612 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1613 out:
1614 return error;
1615 }
1616
1617 static void
1618 eso_freemem(struct eso_dma *ed)
1619 {
1620
1621 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1622 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1623 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1624 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1625 }
1626
1627 static struct eso_dma *
1628 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1629 {
1630 struct eso_dma *p;
1631
1632 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1633 if (KVADDR(p) == kva)
1634 return p;
1635 }
1636
1637 panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
1638 /* NOTREACHED */
1639 }
1640
1641 static void *
1642 eso_allocm(void *hdl, int direction, size_t size)
1643 {
1644 struct eso_softc *sc;
1645 struct eso_dma *ed;
1646 size_t boundary;
1647 int error;
1648
1649 sc = hdl;
1650 if ((ed = kmem_alloc(sizeof (*ed), KM_SLEEP)) == NULL)
1651 return NULL;
1652
1653 /*
1654 * Apparently the Audio 1 DMA controller's current address
1655 * register can't roll over a 64K address boundary, so we have to
1656 * take care of that ourselves. Similarly, the Audio 2 DMA
1657 * controller needs a 1M address boundary.
1658 */
1659 if (direction == AUMODE_RECORD)
1660 boundary = 0x10000;
1661 else
1662 boundary = 0x100000;
1663
1664 /*
1665 * XXX Work around allocation problems for Audio 1, which
1666 * XXX implements the 24 low address bits only, with
1667 * XXX machine-specific DMA tag use.
1668 */
1669 #ifdef alpha
1670 /*
1671 * XXX Force allocation through the (ISA) SGMAP.
1672 */
1673 if (direction == AUMODE_RECORD)
1674 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1675 else
1676 #elif defined(amd64) || defined(i386)
1677 /*
1678 * XXX Force allocation through the ISA DMA tag.
1679 */
1680 if (direction == AUMODE_RECORD)
1681 ed->ed_dmat = &isa_bus_dma_tag;
1682 else
1683 #endif
1684 ed->ed_dmat = sc->sc_dmat;
1685
1686 error = eso_allocmem(sc, size, 32, boundary, direction, ed);
1687 if (error) {
1688 kmem_free(ed, sizeof(*ed));
1689 return NULL;
1690 }
1691 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1692
1693 return KVADDR(ed);
1694 }
1695
1696 static void
1697 eso_freem(void *hdl, void *addr, size_t size)
1698 {
1699 struct eso_softc *sc;
1700 struct eso_dma *p;
1701
1702 sc = hdl;
1703 p = eso_kva2dma(sc, addr);
1704
1705 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1706 eso_freemem(p);
1707 kmem_free(p, sizeof(*p));
1708 }
1709
1710 static size_t
1711 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1712 {
1713 size_t maxsize;
1714
1715 /*
1716 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1717 * bytes. This is because IO_A2DMAC is a two byte value
1718 * indicating the literal byte count, and the 4 least significant
1719 * bits are read-only. Zero is not used as a special case for
1720 * 0x10000.
1721 *
1722 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1723 * be represented.
1724 */
1725 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1726
1727 if (bufsize > maxsize)
1728 bufsize = maxsize;
1729
1730 return bufsize;
1731 }
1732
1733 static paddr_t
1734 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1735 {
1736 struct eso_softc *sc;
1737 struct eso_dma *ed;
1738
1739 sc = hdl;
1740 if (offs < 0)
1741 return -1;
1742 ed = eso_kva2dma(sc, addr);
1743
1744 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1745 offs, prot, BUS_DMA_WAITOK);
1746 }
1747
1748 /* ARGSUSED */
1749 static int
1750 eso_get_props(void *hdl)
1751 {
1752
1753 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1754 AUDIO_PROP_FULLDUPLEX;
1755 }
1756
1757 static int
1758 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1759 void (*intr)(void *), void *arg, const audio_params_t *param)
1760 {
1761 struct eso_softc *sc;
1762 struct eso_dma *ed;
1763 uint8_t a2c1;
1764
1765 sc = hdl;
1766 DPRINTF((
1767 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1768 device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1769 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1770 device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1771 param->precision, param->channels));
1772
1773 /* Find DMA buffer. */
1774 ed = eso_kva2dma(sc, start);
1775 DPRINTF(("%s: dmaaddr %lx\n",
1776 device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1777
1778 sc->sc_pintr = intr;
1779 sc->sc_parg = arg;
1780
1781 /* Compute drain timeout. */
1782 sc->sc_pdrain = (blksize * NBBY * hz) /
1783 (param->sample_rate * param->channels *
1784 param->precision) + 2; /* slop */
1785
1786 /* DMA transfer count (in `words'!) reload using 2's complement. */
1787 blksize = -(blksize >> 1);
1788 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1789 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1790
1791 /* Update DAC to reflect DMA count and audio parameters. */
1792 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1793 if (param->precision == 16)
1794 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1795 else
1796 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1797 if (param->channels == 2)
1798 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1799 else
1800 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1801 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1802 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1803 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1804 else
1805 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1806 /* Unmask IRQ. */
1807 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1808 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1809
1810 /* Set up DMA controller. */
1811 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1812 DMAADDR(ed));
1813 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1814 (uint8_t *)end - (uint8_t *)start);
1815 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1816 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1817
1818 /* Start DMA. */
1819 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1820 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1821 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1822 ESO_MIXREG_A2C1_AUTO;
1823 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1824
1825 return 0;
1826 }
1827
1828 static int
1829 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1830 void (*intr)(void *), void *arg, const audio_params_t *param)
1831 {
1832 struct eso_softc *sc;
1833 struct eso_dma *ed;
1834 uint8_t actl, a1c1;
1835
1836 sc = hdl;
1837 DPRINTF((
1838 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1839 device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1840 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1841 device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1842 param->precision, param->channels));
1843
1844 /*
1845 * If we failed to configure the Audio 1 DMA controller, bail here
1846 * while retaining availability of the DAC direction (in Audio 2).
1847 */
1848 if (!sc->sc_dmac_configured)
1849 return EIO;
1850
1851 /* Find DMA buffer. */
1852 ed = eso_kva2dma(sc, start);
1853 DPRINTF(("%s: dmaaddr %lx\n",
1854 device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1855
1856 sc->sc_rintr = intr;
1857 sc->sc_rarg = arg;
1858
1859 /* Compute drain timeout. */
1860 sc->sc_rdrain = (blksize * NBBY * hz) /
1861 (param->sample_rate * param->channels *
1862 param->precision) + 2; /* slop */
1863
1864 /* Set up ADC DMA converter parameters. */
1865 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1866 if (param->channels == 2) {
1867 actl &= ~ESO_CTLREG_ACTL_MONO;
1868 actl |= ESO_CTLREG_ACTL_STEREO;
1869 } else {
1870 actl &= ~ESO_CTLREG_ACTL_STEREO;
1871 actl |= ESO_CTLREG_ACTL_MONO;
1872 }
1873 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1874
1875 /* Set up Transfer Type: maybe move to attach time? */
1876 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1877
1878 /* DMA transfer count reload using 2's complement. */
1879 blksize = -blksize;
1880 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1881 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1882
1883 /* Set up and enable Audio 1 DMA FIFO. */
1884 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1885 if (param->precision == 16)
1886 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1887 if (param->channels == 2)
1888 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1889 else
1890 a1c1 |= ESO_CTLREG_A1C1_MONO;
1891 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1892 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1893 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1894 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1895
1896 /* Set up ADC IRQ/DRQ parameters. */
1897 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1898 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1899 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1900 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1901
1902 /* Set up and enable DMA controller. */
1903 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1904 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1905 ESO_DMAC_MASK_MASK);
1906 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1907 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1908 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1909 DMAADDR(ed));
1910 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1911 (uint8_t *)end - (uint8_t *)start - 1);
1912 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1913
1914 /* Start DMA. */
1915 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1916 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1917 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1918
1919 return 0;
1920 }
1921
1922
1923 static void
1924 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1925 {
1926 struct eso_softc *sc;
1927
1928 sc = addr;
1929 *intr = &sc->sc_intr_lock;
1930 *thread = &sc->sc_lock;
1931 }
1932
1933 /*
1934 * Mixer utility functions.
1935 */
1936 static int
1937 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1938 {
1939 mixer_devinfo_t di;
1940 int i;
1941
1942 KASSERT(mutex_owned(&sc->sc_intr_lock));
1943
1944 di.index = ESO_RECORD_SOURCE;
1945 if (eso_query_devinfo(sc, &di) != 0)
1946 panic("eso_set_recsrc: eso_query_devinfo failed");
1947
1948 for (i = 0; i < di.un.e.num_mem; i++) {
1949 if (recsrc == di.un.e.member[i].ord) {
1950 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1951 sc->sc_recsrc = recsrc;
1952 return 0;
1953 }
1954 }
1955
1956 return EINVAL;
1957 }
1958
1959 static int
1960 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1961 {
1962 mixer_devinfo_t di;
1963 int i;
1964 uint8_t mpm;
1965
1966 KASSERT(mutex_owned(&sc->sc_intr_lock));
1967
1968 di.index = ESO_MONOOUT_SOURCE;
1969 if (eso_query_devinfo(sc, &di) != 0)
1970 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1971
1972 for (i = 0; i < di.un.e.num_mem; i++) {
1973 if (monooutsrc == di.un.e.member[i].ord) {
1974 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1975 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1976 mpm |= monooutsrc;
1977 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1978 sc->sc_monooutsrc = monooutsrc;
1979 return 0;
1980 }
1981 }
1982
1983 return EINVAL;
1984 }
1985
1986 static int
1987 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1988 {
1989 mixer_devinfo_t di;
1990 int i;
1991 uint8_t mpm;
1992
1993 KASSERT(mutex_owned(&sc->sc_intr_lock));
1994
1995 di.index = ESO_MONOIN_BYPASS;
1996 if (eso_query_devinfo(sc, &di) != 0)
1997 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1998
1999 for (i = 0; i < di.un.e.num_mem; i++) {
2000 if (monoinbypass == di.un.e.member[i].ord) {
2001 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2002 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
2003 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
2004 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2005 sc->sc_monoinbypass = monoinbypass;
2006 return 0;
2007 }
2008 }
2009
2010 return EINVAL;
2011 }
2012
2013 static int
2014 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
2015 {
2016 mixer_devinfo_t di;
2017 int i;
2018 uint8_t mpm;
2019
2020 KASSERT(mutex_owned(&sc->sc_intr_lock));
2021
2022 di.index = ESO_MIC_PREAMP;
2023 if (eso_query_devinfo(sc, &di) != 0)
2024 panic("eso_set_preamp: eso_query_devinfo failed");
2025
2026 for (i = 0; i < di.un.e.num_mem; i++) {
2027 if (preamp == di.un.e.member[i].ord) {
2028 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2029 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
2030 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
2031 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2032 sc->sc_preamp = preamp;
2033 return 0;
2034 }
2035 }
2036
2037 return EINVAL;
2038 }
2039
2040 /*
2041 * Reload Master Volume and Mute values in softc from mixer; used when
2042 * those have previously been invalidated by use of hardware volume controls.
2043 */
2044 static void
2045 eso_reload_master_vol(struct eso_softc *sc)
2046 {
2047 uint8_t mv;
2048
2049 KASSERT(mutex_owned(&sc->sc_intr_lock));
2050
2051 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2052 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
2053 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
2054 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2055 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
2056 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
2057 /* Currently both channels are muted simultaneously; either is OK. */
2058 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
2059 }
2060
2061 static void
2062 eso_set_gain(struct eso_softc *sc, unsigned int port)
2063 {
2064 uint8_t mixreg, tmp;
2065
2066 KASSERT(mutex_owned(&sc->sc_intr_lock));
2067
2068 switch (port) {
2069 case ESO_DAC_PLAY_VOL:
2070 mixreg = ESO_MIXREG_PVR_A2;
2071 break;
2072 case ESO_MIC_PLAY_VOL:
2073 mixreg = ESO_MIXREG_PVR_MIC;
2074 break;
2075 case ESO_LINE_PLAY_VOL:
2076 mixreg = ESO_MIXREG_PVR_LINE;
2077 break;
2078 case ESO_SYNTH_PLAY_VOL:
2079 mixreg = ESO_MIXREG_PVR_SYNTH;
2080 break;
2081 case ESO_CD_PLAY_VOL:
2082 mixreg = ESO_MIXREG_PVR_CD;
2083 break;
2084 case ESO_AUXB_PLAY_VOL:
2085 mixreg = ESO_MIXREG_PVR_AUXB;
2086 break;
2087
2088 case ESO_DAC_REC_VOL:
2089 mixreg = ESO_MIXREG_RVR_A2;
2090 break;
2091 case ESO_MIC_REC_VOL:
2092 mixreg = ESO_MIXREG_RVR_MIC;
2093 break;
2094 case ESO_LINE_REC_VOL:
2095 mixreg = ESO_MIXREG_RVR_LINE;
2096 break;
2097 case ESO_SYNTH_REC_VOL:
2098 mixreg = ESO_MIXREG_RVR_SYNTH;
2099 break;
2100 case ESO_CD_REC_VOL:
2101 mixreg = ESO_MIXREG_RVR_CD;
2102 break;
2103 case ESO_AUXB_REC_VOL:
2104 mixreg = ESO_MIXREG_RVR_AUXB;
2105 break;
2106 case ESO_MONO_PLAY_VOL:
2107 mixreg = ESO_MIXREG_PVR_MONO;
2108 break;
2109 case ESO_MONO_REC_VOL:
2110 mixreg = ESO_MIXREG_RVR_MONO;
2111 break;
2112
2113 case ESO_PCSPEAKER_VOL:
2114 /* Special case - only 3-bit, mono, and reserved bits. */
2115 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2116 tmp &= ESO_MIXREG_PCSVR_RESV;
2117 /* Map bits 7:5 -> 2:0. */
2118 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2119 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2120 return;
2121
2122 case ESO_MASTER_VOL:
2123 /* Special case - separate regs, and 6-bit precision. */
2124 /* Map bits 7:2 -> 5:0, reflect mute settings. */
2125 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2126 (sc->sc_gain[port][ESO_LEFT] >> 2) |
2127 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2128 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2129 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2130 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2131 return;
2132
2133 case ESO_SPATIALIZER:
2134 /* Special case - only `mono', and higher precision. */
2135 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2136 sc->sc_gain[port][ESO_LEFT]);
2137 return;
2138
2139 case ESO_RECORD_VOL:
2140 /* Very Special case, controller register. */
2141 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2142 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2143 return;
2144
2145 default:
2146 #ifdef DIAGNOSTIC
2147 panic("eso_set_gain: bad port %u", port);
2148 /* NOTREACHED */
2149 #else
2150 return;
2151 #endif
2152 }
2153
2154 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2155 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2156 }
2157