eso.c revision 1.68 1 /* $NetBSD: eso.c,v 1.68 2018/12/09 11:14:02 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software developed for The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. The name of the author may not be used to endorse or promote products
45 * derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
50 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
51 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
52 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
54 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
55 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 */
59
60 /*
61 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.68 2018/12/09 11:14:02 jdolecek Exp $");
66
67 #include "mpu.h"
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/kmem.h>
73 #include <sys/device.h>
74 #include <sys/queue.h>
75 #include <sys/proc.h>
76
77 #include <dev/pci/pcidevs.h>
78 #include <dev/pci/pcivar.h>
79
80 #include <sys/audioio.h>
81 #include <dev/audio_if.h>
82
83 #include <dev/mulaw.h>
84 #include <dev/auconv.h>
85
86 #include <dev/ic/mpuvar.h>
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/esoreg.h>
89 #include <dev/pci/esovar.h>
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93
94 /*
95 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
96 * XXX engine by allocating through the ISA DMA tag.
97 */
98 #if defined(amd64) || defined(i386)
99 #include <dev/isa/isavar.h>
100 #endif
101
102 #if defined(AUDIO_DEBUG) || defined(DEBUG)
103 #define DPRINTF(x) printf x
104 #else
105 #define DPRINTF(x)
106 #endif
107
108 struct eso_dma {
109 bus_dma_tag_t ed_dmat;
110 bus_dmamap_t ed_map;
111 void * ed_kva;
112 bus_dma_segment_t ed_segs[1];
113 int ed_nsegs;
114 size_t ed_size;
115 SLIST_ENTRY(eso_dma) ed_slist;
116 };
117
118 #define KVADDR(dma) ((void *)(dma)->ed_kva)
119 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
120
121 /* Autoconfiguration interface */
122 static int eso_match(device_t, cfdata_t, void *);
123 static void eso_attach(device_t, device_t, void *);
124 static void eso_defer(device_t);
125 static int eso_print(void *, const char *);
126
127 CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
128 eso_match, eso_attach, NULL, NULL);
129
130 /* PCI interface */
131 static int eso_intr(void *);
132
133 /* MI audio layer interface */
134 static int eso_query_encoding(void *, struct audio_encoding *);
135 static int eso_set_params(void *, int, int, audio_params_t *,
136 audio_params_t *, stream_filter_list_t *,
137 stream_filter_list_t *);
138 static int eso_round_blocksize(void *, int, int, const audio_params_t *);
139 static int eso_halt_output(void *);
140 static int eso_halt_input(void *);
141 static int eso_getdev(void *, struct audio_device *);
142 static int eso_set_port(void *, mixer_ctrl_t *);
143 static int eso_get_port(void *, mixer_ctrl_t *);
144 static int eso_query_devinfo(void *, mixer_devinfo_t *);
145 static void * eso_allocm(void *, int, size_t);
146 static void eso_freem(void *, void *, size_t);
147 static size_t eso_round_buffersize(void *, int, size_t);
148 static paddr_t eso_mappage(void *, void *, off_t, int);
149 static int eso_get_props(void *);
150 static int eso_trigger_output(void *, void *, void *, int,
151 void (*)(void *), void *, const audio_params_t *);
152 static int eso_trigger_input(void *, void *, void *, int,
153 void (*)(void *), void *, const audio_params_t *);
154 static void eso_get_locks(void *, kmutex_t **, kmutex_t **);
155
156 static const struct audio_hw_if eso_hw_if = {
157 NULL, /* open */
158 NULL, /* close */
159 NULL, /* drain */
160 eso_query_encoding,
161 eso_set_params,
162 eso_round_blocksize,
163 NULL, /* commit_settings */
164 NULL, /* init_output */
165 NULL, /* init_input */
166 NULL, /* start_output */
167 NULL, /* start_input */
168 eso_halt_output,
169 eso_halt_input,
170 NULL, /* speaker_ctl */
171 eso_getdev,
172 NULL, /* setfd */
173 eso_set_port,
174 eso_get_port,
175 eso_query_devinfo,
176 eso_allocm,
177 eso_freem,
178 eso_round_buffersize,
179 eso_mappage,
180 eso_get_props,
181 eso_trigger_output,
182 eso_trigger_input,
183 NULL, /* dev_ioctl */
184 eso_get_locks,
185 };
186
187 static const char * const eso_rev2model[] = {
188 "ES1938",
189 "ES1946",
190 "ES1946 Revision E"
191 };
192
193 #define ESO_NFORMATS 8
194 static const struct audio_format eso_formats[ESO_NFORMATS] = {
195 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
196 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
197 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
198 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
199 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
200 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
201 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
202 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
203 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
204 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
205 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
206 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
207 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
208 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
209 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
210 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
211 };
212
213
214 /*
215 * Utility routines
216 */
217 /* Register access etc. */
218 static uint8_t eso_read_ctlreg(struct eso_softc *, uint8_t);
219 static uint8_t eso_read_mixreg(struct eso_softc *, uint8_t);
220 static uint8_t eso_read_rdr(struct eso_softc *);
221 static void eso_reload_master_vol(struct eso_softc *);
222 static int eso_reset(struct eso_softc *);
223 static void eso_set_gain(struct eso_softc *, unsigned int);
224 static int eso_set_recsrc(struct eso_softc *, unsigned int);
225 static int eso_set_monooutsrc(struct eso_softc *, unsigned int);
226 static int eso_set_monoinbypass(struct eso_softc *, unsigned int);
227 static int eso_set_preamp(struct eso_softc *, unsigned int);
228 static void eso_write_cmd(struct eso_softc *, uint8_t);
229 static void eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
230 static void eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
231 /* DMA memory allocation */
232 static int eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
233 int, struct eso_dma *);
234 static void eso_freemem(struct eso_dma *);
235 static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *);
236
237
238 static int
239 eso_match(device_t parent, cfdata_t match, void *aux)
240 {
241 struct pci_attach_args *pa;
242
243 pa = aux;
244 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
245 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
246 return 1;
247
248 return 0;
249 }
250
251 static void
252 eso_attach(device_t parent, device_t self, void *aux)
253 {
254 struct eso_softc *sc;
255 struct pci_attach_args *pa;
256 struct audio_attach_args aa;
257 pci_intr_handle_t ih;
258 bus_addr_t vcbase;
259 const char *intrstring;
260 int idx, error;
261 uint8_t a2mode, mvctl;
262 char intrbuf[PCI_INTRSTR_LEN];
263
264 sc = device_private(self);
265 sc->sc_dev = self;
266 pa = aux;
267 aprint_naive(": Audio controller\n");
268
269 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
270 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
271
272 sc->sc_revision = PCI_REVISION(pa->pa_class);
273 aprint_normal(": ESS Solo-1 PCI AudioDrive ");
274 if (sc->sc_revision <
275 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
276 aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
277 else
278 aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
279
280 /* Map I/O registers. */
281 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
282 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
283 aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
284 return;
285 }
286 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
287 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
288 aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
289 return;
290 }
291 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
292 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
293 aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
294 /* Don't bail out yet: we can map it later, see below. */
295 vcbase = 0;
296 sc->sc_vcsize = 0x10; /* From the data sheet. */
297 }
298 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
299 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
300 aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
301 return;
302 }
303 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
304 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
305 aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
306 return;
307 }
308
309 sc->sc_dmat = pa->pa_dmat;
310 SLIST_INIT(&sc->sc_dmas);
311 sc->sc_dmac_configured = 0;
312
313 /* Enable bus mastering. */
314 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
315 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
316 PCI_COMMAND_MASTER_ENABLE);
317
318 /* Reset the device; bail out upon failure. */
319 mutex_spin_enter(&sc->sc_intr_lock);
320 error = eso_reset(sc);
321 mutex_spin_exit(&sc->sc_intr_lock);
322 if (error != 0) {
323 aprint_error_dev(sc->sc_dev, "can't reset\n");
324 return;
325 }
326
327 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
328 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
329 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
330 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
331
332 /* Enable the relevant (DMA) interrupts. */
333 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
334 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
335 ESO_IO_IRQCTL_MPUIRQ);
336
337 mutex_spin_enter(&sc->sc_intr_lock);
338
339 /* Set up A1's sample rate generator for new-style parameters. */
340 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
341 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
342 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
343
344 /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
345 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
346 mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
347 mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
348 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
349
350 /* Set mixer regs to something reasonable, needs work. */
351 sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
352 eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
353 eso_set_monoinbypass(sc, 0);
354 eso_set_preamp(sc, 1);
355 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
356 int v;
357
358 switch (idx) {
359 case ESO_MIC_PLAY_VOL:
360 case ESO_LINE_PLAY_VOL:
361 case ESO_CD_PLAY_VOL:
362 case ESO_MONO_PLAY_VOL:
363 case ESO_AUXB_PLAY_VOL:
364 case ESO_DAC_REC_VOL:
365 case ESO_LINE_REC_VOL:
366 case ESO_SYNTH_REC_VOL:
367 case ESO_CD_REC_VOL:
368 case ESO_MONO_REC_VOL:
369 case ESO_AUXB_REC_VOL:
370 case ESO_SPATIALIZER:
371 v = 0;
372 break;
373 case ESO_MASTER_VOL:
374 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
375 break;
376 default:
377 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
378 break;
379 }
380 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
381 eso_set_gain(sc, idx);
382 }
383
384 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
385
386 mutex_spin_exit(&sc->sc_intr_lock);
387
388 /* Map and establish the interrupt. */
389 if (pci_intr_map(pa, &ih)) {
390 aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
391 return;
392 }
393
394 intrstring = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf));
395 sc->sc_ih = pci_intr_establish_xname(pa->pa_pc, ih, IPL_AUDIO,
396 eso_intr, sc, device_xname(self));
397 if (sc->sc_ih == NULL) {
398 aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
399 if (intrstring != NULL)
400 aprint_error(" at %s", intrstring);
401 aprint_error("\n");
402 mutex_destroy(&sc->sc_lock);
403 mutex_destroy(&sc->sc_intr_lock);
404 return;
405 }
406 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstring);
407
408 cv_init(&sc->sc_pcv, "esoho");
409 cv_init(&sc->sc_rcv, "esohi");
410
411 /*
412 * Set up the DDMA Control register; a suitable I/O region has been
413 * supposedly mapped in the VC base address register.
414 *
415 * The Solo-1 has an ... interesting silicon bug that causes it to
416 * not respond to I/O space accesses to the Audio 1 DMA controller
417 * if the latter's mapping base address is aligned on a 1K boundary.
418 * As a consequence, it is quite possible for the mapping provided
419 * in the VC BAR to be useless. To work around this, we defer this
420 * part until all autoconfiguration on our parent bus is completed
421 * and then try to map it ourselves in fulfillment of the constraint.
422 *
423 * According to the register map we may write to the low 16 bits
424 * only, but experimenting has shown we're safe.
425 * -kjk
426 */
427 if (ESO_VALID_DDMAC_BASE(vcbase)) {
428 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
429 vcbase | ESO_PCI_DDMAC_DE);
430 sc->sc_dmac_configured = 1;
431
432 aprint_normal_dev(sc->sc_dev,
433 "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
434 (unsigned long)vcbase);
435 } else {
436 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
437 device_xname(sc->sc_dev), (unsigned long)vcbase));
438 sc->sc_pa = *pa;
439 config_defer(self, eso_defer);
440 }
441
442 audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);
443
444 aa.type = AUDIODEV_TYPE_OPL;
445 aa.hwif = NULL;
446 aa.hdl = NULL;
447 (void)config_found(sc->sc_dev, &aa, audioprint);
448
449 aa.type = AUDIODEV_TYPE_MPU;
450 aa.hwif = NULL;
451 aa.hdl = NULL;
452 sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
453 if (sc->sc_mpudev != NULL) {
454 /* Unmask the MPU irq. */
455 mutex_spin_enter(&sc->sc_intr_lock);
456 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
457 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
458 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
459 mutex_spin_exit(&sc->sc_intr_lock);
460 }
461
462 aa.type = AUDIODEV_TYPE_AUX;
463 aa.hwif = NULL;
464 aa.hdl = NULL;
465 (void)config_found(sc->sc_dev, &aa, eso_print);
466 }
467
468 static void
469 eso_defer(device_t self)
470 {
471 struct eso_softc *sc;
472 struct pci_attach_args *pa;
473 bus_addr_t addr, start;
474
475 sc = device_private(self);
476 pa = &sc->sc_pa;
477 aprint_normal_dev(sc->sc_dev, "");
478
479 /*
480 * This is outright ugly, but since we must not make assumptions
481 * on the underlying allocator's behaviour it's the most straight-
482 * forward way to implement it. Note that we skip over the first
483 * 1K region, which is typically occupied by an attached ISA bus.
484 */
485 mutex_enter(&sc->sc_lock);
486 for (start = 0x0400; start < 0xffff; start += 0x0400) {
487 if (bus_space_alloc(sc->sc_iot,
488 start + sc->sc_vcsize, start + 0x0400 - 1,
489 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
490 &sc->sc_dmac_ioh) != 0)
491 continue;
492
493 mutex_spin_enter(&sc->sc_intr_lock);
494 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
495 addr | ESO_PCI_DDMAC_DE);
496 mutex_spin_exit(&sc->sc_intr_lock);
497 sc->sc_dmac_iot = sc->sc_iot;
498 sc->sc_dmac_configured = 1;
499 aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
500 (unsigned long)addr);
501
502 mutex_exit(&sc->sc_lock);
503 return;
504 }
505 mutex_exit(&sc->sc_lock);
506
507 aprint_error("can't map Audio 1 DMA into I/O space\n");
508 }
509
510 /* ARGSUSED */
511 static int
512 eso_print(void *aux, const char *pnp)
513 {
514
515 /* Only joys can attach via this; easy. */
516 if (pnp)
517 aprint_normal("joy at %s:", pnp);
518
519 return UNCONF;
520 }
521
522 static void
523 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
524 {
525 int i;
526
527 /* Poll for busy indicator to become clear. */
528 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
529 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
530 & ESO_SB_RSR_BUSY) == 0) {
531 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
532 ESO_SB_WDR, cmd);
533 return;
534 } else {
535 delay(10);
536 }
537 }
538
539 printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
540 return;
541 }
542
543 /* Write to a controller register */
544 static void
545 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
546 {
547
548 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
549
550 eso_write_cmd(sc, reg);
551 eso_write_cmd(sc, val);
552 }
553
554 /* Read out the Read Data Register */
555 static uint8_t
556 eso_read_rdr(struct eso_softc *sc)
557 {
558 int i;
559
560 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
561 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
562 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
563 return (bus_space_read_1(sc->sc_sb_iot,
564 sc->sc_sb_ioh, ESO_SB_RDR));
565 } else {
566 delay(10);
567 }
568 }
569
570 printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
571 return (-1);
572 }
573
574 static uint8_t
575 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
576 {
577
578 eso_write_cmd(sc, ESO_CMD_RCR);
579 eso_write_cmd(sc, reg);
580 return eso_read_rdr(sc);
581 }
582
583 static void
584 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
585 {
586
587 KASSERT(mutex_owned(&sc->sc_intr_lock));
588
589 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
590
591 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
592 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
593 }
594
595 static uint8_t
596 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
597 {
598 uint8_t val;
599
600 KASSERT(mutex_owned(&sc->sc_intr_lock));
601
602 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
603 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
604
605 return val;
606 }
607
608 static int
609 eso_intr(void *hdl)
610 {
611 struct eso_softc *sc = hdl;
612 #if NMPU > 0
613 struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
614 #endif
615 uint8_t irqctl;
616
617 mutex_spin_enter(&sc->sc_intr_lock);
618
619 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
620
621 /* If it wasn't ours, that's all she wrote. */
622 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
623 ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
624 mutex_spin_exit(&sc->sc_intr_lock);
625 return 0;
626 }
627
628 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
629 /* Clear interrupt. */
630 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
631 ESO_SB_RBSR);
632
633 if (sc->sc_rintr)
634 sc->sc_rintr(sc->sc_rarg);
635 else
636 cv_broadcast(&sc->sc_rcv);
637 }
638
639 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
640 /*
641 * Clear the A2 IRQ latch: the cached value reflects the
642 * current DAC settings with the IRQ latch bit not set.
643 */
644 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
645
646 if (sc->sc_pintr)
647 sc->sc_pintr(sc->sc_parg);
648 else
649 cv_broadcast(&sc->sc_pcv);
650 }
651
652 if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
653 /* Clear interrupt. */
654 eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
655
656 /*
657 * Raise a flag to cause a lazy update of the in-softc gain
658 * values the next time the software mixer is read to keep
659 * interrupt service cost low. ~0 cannot occur otherwise
660 * as the master volume has a precision of 6 bits only.
661 */
662 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
663 }
664
665 #if NMPU > 0
666 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
667 mpu_intr(sc_mpu);
668 #endif
669
670 mutex_spin_exit(&sc->sc_intr_lock);
671 return 1;
672 }
673
674 /* Perform a software reset, including DMA FIFOs. */
675 static int
676 eso_reset(struct eso_softc *sc)
677 {
678 int i;
679
680 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
681 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
682 /* `Delay' suggested in the data sheet. */
683 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
684 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
685
686 /* Wait for reset to take effect. */
687 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
688 /* Poll for data to become available. */
689 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
690 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
691 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
692 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
693
694 /* Activate Solo-1 extension commands. */
695 eso_write_cmd(sc, ESO_CMD_EXTENB);
696 /* Reset mixer registers. */
697 eso_write_mixreg(sc, ESO_MIXREG_RESET,
698 ESO_MIXREG_RESET_RESET);
699
700 return 0;
701 } else {
702 delay(1000);
703 }
704 }
705
706 printf("%s: reset timeout\n", device_xname(sc->sc_dev));
707 return -1;
708 }
709
710 static int
711 eso_query_encoding(void *hdl, struct audio_encoding *fp)
712 {
713
714 switch (fp->index) {
715 case 0:
716 strcpy(fp->name, AudioEulinear);
717 fp->encoding = AUDIO_ENCODING_ULINEAR;
718 fp->precision = 8;
719 fp->flags = 0;
720 break;
721 case 1:
722 strcpy(fp->name, AudioEmulaw);
723 fp->encoding = AUDIO_ENCODING_ULAW;
724 fp->precision = 8;
725 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
726 break;
727 case 2:
728 strcpy(fp->name, AudioEalaw);
729 fp->encoding = AUDIO_ENCODING_ALAW;
730 fp->precision = 8;
731 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
732 break;
733 case 3:
734 strcpy(fp->name, AudioEslinear);
735 fp->encoding = AUDIO_ENCODING_SLINEAR;
736 fp->precision = 8;
737 fp->flags = 0;
738 break;
739 case 4:
740 strcpy(fp->name, AudioEslinear_le);
741 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
742 fp->precision = 16;
743 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
744 break;
745 case 5:
746 strcpy(fp->name, AudioEulinear_le);
747 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
748 fp->precision = 16;
749 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
750 break;
751 case 6:
752 strcpy(fp->name, AudioEslinear_be);
753 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
754 fp->precision = 16;
755 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
756 break;
757 case 7:
758 strcpy(fp->name, AudioEulinear_be);
759 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
760 fp->precision = 16;
761 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
762 break;
763 default:
764 return EINVAL;
765 }
766
767 return 0;
768 }
769
770 static int
771 eso_set_params(void *hdl, int setmode, int usemode,
772 audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
773 stream_filter_list_t *rfil)
774 {
775 struct eso_softc *sc;
776 struct audio_params *p;
777 stream_filter_list_t *fil;
778 int mode, r[2], rd[2], ar[2], clk;
779 unsigned int srg, fltdiv;
780 int i;
781
782 sc = hdl;
783 for (mode = AUMODE_RECORD; mode != -1;
784 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
785 if ((setmode & mode) == 0)
786 continue;
787
788 p = (mode == AUMODE_PLAY) ? play : rec;
789
790 if (p->sample_rate < ESO_MINRATE ||
791 p->sample_rate > ESO_MAXRATE ||
792 (p->precision != 8 && p->precision != 16) ||
793 (p->channels != 1 && p->channels != 2))
794 return EINVAL;
795
796 /*
797 * We'll compute both possible sample rate dividers and pick
798 * the one with the least error.
799 */
800 #define ABS(x) ((x) < 0 ? -(x) : (x))
801 r[0] = ESO_CLK0 /
802 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
803 r[1] = ESO_CLK1 /
804 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
805
806 ar[0] = p->sample_rate - r[0];
807 ar[1] = p->sample_rate - r[1];
808 clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
809 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
810
811 /* Roll-off frequency of 87%, as in the ES1888 driver. */
812 fltdiv = 256 - 200279L / r[clk];
813
814 /* Update to reflect the possibly inexact rate. */
815 p->sample_rate = r[clk];
816
817 fil = (mode == AUMODE_PLAY) ? pfil : rfil;
818 i = auconv_set_converter(eso_formats, ESO_NFORMATS,
819 mode, p, FALSE, fil);
820 if (i < 0)
821 return EINVAL;
822
823 mutex_spin_enter(&sc->sc_intr_lock);
824 if (mode == AUMODE_RECORD) {
825 /* Audio 1 */
826 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
827 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
828 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
829 } else {
830 /* Audio 2 */
831 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
832 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
833 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
834 }
835 mutex_spin_exit(&sc->sc_intr_lock);
836 #undef ABS
837
838 }
839
840 return 0;
841 }
842
843 static int
844 eso_round_blocksize(void *hdl, int blk, int mode,
845 const audio_params_t *param)
846 {
847
848 return blk & -32; /* keep good alignment; at least 16 req'd */
849 }
850
851 static int
852 eso_halt_output(void *hdl)
853 {
854 struct eso_softc *sc;
855 int error;
856
857 sc = hdl;
858 DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));
859
860 /*
861 * Disable auto-initialize DMA, allowing the FIFO to drain and then
862 * stop. The interrupt callback pointer is cleared at this
863 * point so that an outstanding FIFO interrupt for the remaining data
864 * will be acknowledged without further processing.
865 *
866 * This does not immediately `abort' an operation in progress (c.f.
867 * audio(9)) but is the method to leave the FIFO behind in a clean
868 * state with the least hair. (Besides, that item needs to be
869 * rephrased for trigger_*()-based DMA environments.)
870 */
871 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
872 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
873 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
874 ESO_IO_A2DMAM_DMAENB);
875
876 sc->sc_pintr = NULL;
877 mutex_exit(&sc->sc_lock);
878 error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
879 if (!mutex_tryenter(&sc->sc_lock)) {
880 mutex_spin_exit(&sc->sc_intr_lock);
881 mutex_enter(&sc->sc_lock);
882 mutex_spin_enter(&sc->sc_intr_lock);
883 }
884
885 /* Shut down DMA completely. */
886 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
887 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
888
889 return error == EWOULDBLOCK ? 0 : error;
890 }
891
892 static int
893 eso_halt_input(void *hdl)
894 {
895 struct eso_softc *sc;
896 int error;
897
898 sc = hdl;
899 DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));
900
901 /* Just like eso_halt_output(), but for Audio 1. */
902 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
903 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
904 ESO_CTLREG_A1C2_DMAENB);
905 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
906 DMA37MD_WRITE | DMA37MD_DEMAND);
907
908 sc->sc_rintr = NULL;
909 mutex_exit(&sc->sc_lock);
910 error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
911 if (!mutex_tryenter(&sc->sc_lock)) {
912 mutex_spin_exit(&sc->sc_intr_lock);
913 mutex_enter(&sc->sc_lock);
914 mutex_spin_enter(&sc->sc_intr_lock);
915 }
916
917 /* Shut down DMA completely. */
918 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
919 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
920 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
921 ESO_DMAC_MASK_MASK);
922
923 return error == EWOULDBLOCK ? 0 : error;
924 }
925
926 static int
927 eso_getdev(void *hdl, struct audio_device *retp)
928 {
929 struct eso_softc *sc;
930
931 sc = hdl;
932 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
933 snprintf(retp->version, sizeof (retp->version), "0x%02x",
934 sc->sc_revision);
935 if (sc->sc_revision <
936 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
937 strncpy(retp->config, eso_rev2model[sc->sc_revision],
938 sizeof (retp->config));
939 else
940 strncpy(retp->config, "unknown", sizeof (retp->config));
941
942 return 0;
943 }
944
945 static int
946 eso_set_port(void *hdl, mixer_ctrl_t *cp)
947 {
948 struct eso_softc *sc;
949 unsigned int lgain, rgain;
950 uint8_t tmp;
951 int error;
952
953 sc = hdl;
954 error = 0;
955
956 mutex_spin_enter(&sc->sc_intr_lock);
957
958 switch (cp->dev) {
959 case ESO_DAC_PLAY_VOL:
960 case ESO_MIC_PLAY_VOL:
961 case ESO_LINE_PLAY_VOL:
962 case ESO_SYNTH_PLAY_VOL:
963 case ESO_CD_PLAY_VOL:
964 case ESO_AUXB_PLAY_VOL:
965 case ESO_RECORD_VOL:
966 case ESO_DAC_REC_VOL:
967 case ESO_MIC_REC_VOL:
968 case ESO_LINE_REC_VOL:
969 case ESO_SYNTH_REC_VOL:
970 case ESO_CD_REC_VOL:
971 case ESO_AUXB_REC_VOL:
972 if (cp->type != AUDIO_MIXER_VALUE) {
973 error = EINVAL;
974 break;
975 }
976
977 /*
978 * Stereo-capable mixer ports: if we get a single-channel
979 * gain value passed in, then we duplicate it to both left
980 * and right channels.
981 */
982 switch (cp->un.value.num_channels) {
983 case 1:
984 lgain = rgain = ESO_GAIN_TO_4BIT(
985 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
986 break;
987 case 2:
988 lgain = ESO_GAIN_TO_4BIT(
989 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
990 rgain = ESO_GAIN_TO_4BIT(
991 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
992 break;
993 default:
994 error = EINVAL;
995 break;
996 }
997
998 if (!error) {
999 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1000 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1001 eso_set_gain(sc, cp->dev);
1002 }
1003 break;
1004
1005 case ESO_MASTER_VOL:
1006 if (cp->type != AUDIO_MIXER_VALUE) {
1007 error = EINVAL;
1008 break;
1009 }
1010
1011 /* Like above, but a precision of 6 bits. */
1012 switch (cp->un.value.num_channels) {
1013 case 1:
1014 lgain = rgain = ESO_GAIN_TO_6BIT(
1015 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1016 break;
1017 case 2:
1018 lgain = ESO_GAIN_TO_6BIT(
1019 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1020 rgain = ESO_GAIN_TO_6BIT(
1021 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1022 break;
1023 default:
1024 error = EINVAL;
1025 break;
1026 }
1027
1028 if (!error) {
1029 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
1030 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
1031 eso_set_gain(sc, cp->dev);
1032 }
1033 break;
1034
1035 case ESO_SPATIALIZER:
1036 if (cp->type != AUDIO_MIXER_VALUE ||
1037 cp->un.value.num_channels != 1) {
1038 error = EINVAL;
1039 break;
1040 }
1041
1042 sc->sc_gain[cp->dev][ESO_LEFT] =
1043 sc->sc_gain[cp->dev][ESO_RIGHT] =
1044 ESO_GAIN_TO_6BIT(
1045 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1046 eso_set_gain(sc, cp->dev);
1047 break;
1048
1049 case ESO_MONO_PLAY_VOL:
1050 case ESO_MONO_REC_VOL:
1051 if (cp->type != AUDIO_MIXER_VALUE ||
1052 cp->un.value.num_channels != 1) {
1053 error = EINVAL;
1054 break;
1055 }
1056
1057 sc->sc_gain[cp->dev][ESO_LEFT] =
1058 sc->sc_gain[cp->dev][ESO_RIGHT] =
1059 ESO_GAIN_TO_4BIT(
1060 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1061 eso_set_gain(sc, cp->dev);
1062 break;
1063
1064 case ESO_PCSPEAKER_VOL:
1065 if (cp->type != AUDIO_MIXER_VALUE ||
1066 cp->un.value.num_channels != 1) {
1067 error = EINVAL;
1068 break;
1069 }
1070
1071 sc->sc_gain[cp->dev][ESO_LEFT] =
1072 sc->sc_gain[cp->dev][ESO_RIGHT] =
1073 ESO_GAIN_TO_3BIT(
1074 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1075 eso_set_gain(sc, cp->dev);
1076 break;
1077
1078 case ESO_SPATIALIZER_ENABLE:
1079 if (cp->type != AUDIO_MIXER_ENUM) {
1080 error = EINVAL;
1081 break;
1082 }
1083
1084 sc->sc_spatializer = (cp->un.ord != 0);
1085
1086 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
1087 if (sc->sc_spatializer)
1088 tmp |= ESO_MIXREG_SPAT_ENB;
1089 else
1090 tmp &= ~ESO_MIXREG_SPAT_ENB;
1091 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1092 tmp | ESO_MIXREG_SPAT_RSTREL);
1093 break;
1094
1095 case ESO_MASTER_MUTE:
1096 if (cp->type != AUDIO_MIXER_ENUM) {
1097 error = EINVAL;
1098 break;
1099 }
1100
1101 sc->sc_mvmute = (cp->un.ord != 0);
1102
1103 if (sc->sc_mvmute) {
1104 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1105 eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1106 ESO_MIXREG_LMVM_MUTE);
1107 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1108 eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1109 ESO_MIXREG_RMVM_MUTE);
1110 } else {
1111 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1112 eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1113 ~ESO_MIXREG_LMVM_MUTE);
1114 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1115 eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1116 ~ESO_MIXREG_RMVM_MUTE);
1117 }
1118 break;
1119
1120 case ESO_MONOOUT_SOURCE:
1121 if (cp->type != AUDIO_MIXER_ENUM) {
1122 error = EINVAL;
1123 break;
1124 }
1125
1126 error = eso_set_monooutsrc(sc, cp->un.ord);
1127 break;
1128
1129 case ESO_MONOIN_BYPASS:
1130 if (cp->type != AUDIO_MIXER_ENUM) {
1131 error = EINVAL;
1132 break;
1133 }
1134
1135 error = (eso_set_monoinbypass(sc, cp->un.ord));
1136 break;
1137
1138 case ESO_RECORD_MONITOR:
1139 if (cp->type != AUDIO_MIXER_ENUM) {
1140 error = EINVAL;
1141 break;
1142 }
1143
1144 sc->sc_recmon = (cp->un.ord != 0);
1145
1146 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1147 if (sc->sc_recmon)
1148 tmp |= ESO_CTLREG_ACTL_RECMON;
1149 else
1150 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1151 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1152 break;
1153
1154 case ESO_RECORD_SOURCE:
1155 if (cp->type != AUDIO_MIXER_ENUM) {
1156 error = EINVAL;
1157 break;
1158 }
1159
1160 error = eso_set_recsrc(sc, cp->un.ord);
1161 break;
1162
1163 case ESO_MIC_PREAMP:
1164 if (cp->type != AUDIO_MIXER_ENUM) {
1165 error = EINVAL;
1166 break;
1167 }
1168
1169 error = eso_set_preamp(sc, cp->un.ord);
1170 break;
1171
1172 default:
1173 error = EINVAL;
1174 break;
1175 }
1176
1177 mutex_spin_exit(&sc->sc_intr_lock);
1178 return error;
1179 }
1180
1181 static int
1182 eso_get_port(void *hdl, mixer_ctrl_t *cp)
1183 {
1184 struct eso_softc *sc;
1185
1186 sc = hdl;
1187
1188 mutex_spin_enter(&sc->sc_intr_lock);
1189
1190 switch (cp->dev) {
1191 case ESO_MASTER_VOL:
1192 /* Reload from mixer after hardware volume control use. */
1193 if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1194 eso_reload_master_vol(sc);
1195 /* FALLTHROUGH */
1196 case ESO_DAC_PLAY_VOL:
1197 case ESO_MIC_PLAY_VOL:
1198 case ESO_LINE_PLAY_VOL:
1199 case ESO_SYNTH_PLAY_VOL:
1200 case ESO_CD_PLAY_VOL:
1201 case ESO_AUXB_PLAY_VOL:
1202 case ESO_RECORD_VOL:
1203 case ESO_DAC_REC_VOL:
1204 case ESO_MIC_REC_VOL:
1205 case ESO_LINE_REC_VOL:
1206 case ESO_SYNTH_REC_VOL:
1207 case ESO_CD_REC_VOL:
1208 case ESO_AUXB_REC_VOL:
1209 /*
1210 * Stereo-capable ports: if a single-channel query is made,
1211 * just return the left channel's value (since single-channel
1212 * settings themselves are applied to both channels).
1213 */
1214 switch (cp->un.value.num_channels) {
1215 case 1:
1216 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1217 sc->sc_gain[cp->dev][ESO_LEFT];
1218 break;
1219 case 2:
1220 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1221 sc->sc_gain[cp->dev][ESO_LEFT];
1222 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1223 sc->sc_gain[cp->dev][ESO_RIGHT];
1224 break;
1225 default:
1226 break;
1227 }
1228 break;
1229
1230 case ESO_MONO_PLAY_VOL:
1231 case ESO_PCSPEAKER_VOL:
1232 case ESO_MONO_REC_VOL:
1233 case ESO_SPATIALIZER:
1234 if (cp->un.value.num_channels != 1) {
1235 break;
1236 }
1237 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1238 sc->sc_gain[cp->dev][ESO_LEFT];
1239 break;
1240
1241 case ESO_RECORD_MONITOR:
1242 cp->un.ord = sc->sc_recmon;
1243 break;
1244
1245 case ESO_RECORD_SOURCE:
1246 cp->un.ord = sc->sc_recsrc;
1247 break;
1248
1249 case ESO_MONOOUT_SOURCE:
1250 cp->un.ord = sc->sc_monooutsrc;
1251 break;
1252
1253 case ESO_MONOIN_BYPASS:
1254 cp->un.ord = sc->sc_monoinbypass;
1255 break;
1256
1257 case ESO_SPATIALIZER_ENABLE:
1258 cp->un.ord = sc->sc_spatializer;
1259 break;
1260
1261 case ESO_MIC_PREAMP:
1262 cp->un.ord = sc->sc_preamp;
1263 break;
1264
1265 case ESO_MASTER_MUTE:
1266 /* Reload from mixer after hardware volume control use. */
1267 if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1268 eso_reload_master_vol(sc);
1269 cp->un.ord = sc->sc_mvmute;
1270 break;
1271
1272 default:
1273 break;
1274 }
1275
1276 mutex_spin_exit(&sc->sc_intr_lock);
1277 return 0;
1278 }
1279
1280 static int
1281 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1282 {
1283
1284 switch (dip->index) {
1285 case ESO_DAC_PLAY_VOL:
1286 dip->mixer_class = ESO_INPUT_CLASS;
1287 dip->next = dip->prev = AUDIO_MIXER_LAST;
1288 strcpy(dip->label.name, AudioNdac);
1289 dip->type = AUDIO_MIXER_VALUE;
1290 dip->un.v.num_channels = 2;
1291 strcpy(dip->un.v.units.name, AudioNvolume);
1292 break;
1293 case ESO_MIC_PLAY_VOL:
1294 dip->mixer_class = ESO_INPUT_CLASS;
1295 dip->next = dip->prev = AUDIO_MIXER_LAST;
1296 strcpy(dip->label.name, AudioNmicrophone);
1297 dip->type = AUDIO_MIXER_VALUE;
1298 dip->un.v.num_channels = 2;
1299 strcpy(dip->un.v.units.name, AudioNvolume);
1300 break;
1301 case ESO_LINE_PLAY_VOL:
1302 dip->mixer_class = ESO_INPUT_CLASS;
1303 dip->next = dip->prev = AUDIO_MIXER_LAST;
1304 strcpy(dip->label.name, AudioNline);
1305 dip->type = AUDIO_MIXER_VALUE;
1306 dip->un.v.num_channels = 2;
1307 strcpy(dip->un.v.units.name, AudioNvolume);
1308 break;
1309 case ESO_SYNTH_PLAY_VOL:
1310 dip->mixer_class = ESO_INPUT_CLASS;
1311 dip->next = dip->prev = AUDIO_MIXER_LAST;
1312 strcpy(dip->label.name, AudioNfmsynth);
1313 dip->type = AUDIO_MIXER_VALUE;
1314 dip->un.v.num_channels = 2;
1315 strcpy(dip->un.v.units.name, AudioNvolume);
1316 break;
1317 case ESO_MONO_PLAY_VOL:
1318 dip->mixer_class = ESO_INPUT_CLASS;
1319 dip->next = dip->prev = AUDIO_MIXER_LAST;
1320 strcpy(dip->label.name, "mono_in");
1321 dip->type = AUDIO_MIXER_VALUE;
1322 dip->un.v.num_channels = 1;
1323 strcpy(dip->un.v.units.name, AudioNvolume);
1324 break;
1325 case ESO_CD_PLAY_VOL:
1326 dip->mixer_class = ESO_INPUT_CLASS;
1327 dip->next = dip->prev = AUDIO_MIXER_LAST;
1328 strcpy(dip->label.name, AudioNcd);
1329 dip->type = AUDIO_MIXER_VALUE;
1330 dip->un.v.num_channels = 2;
1331 strcpy(dip->un.v.units.name, AudioNvolume);
1332 break;
1333 case ESO_AUXB_PLAY_VOL:
1334 dip->mixer_class = ESO_INPUT_CLASS;
1335 dip->next = dip->prev = AUDIO_MIXER_LAST;
1336 strcpy(dip->label.name, "auxb");
1337 dip->type = AUDIO_MIXER_VALUE;
1338 dip->un.v.num_channels = 2;
1339 strcpy(dip->un.v.units.name, AudioNvolume);
1340 break;
1341
1342 case ESO_MIC_PREAMP:
1343 dip->mixer_class = ESO_MICROPHONE_CLASS;
1344 dip->next = dip->prev = AUDIO_MIXER_LAST;
1345 strcpy(dip->label.name, AudioNpreamp);
1346 dip->type = AUDIO_MIXER_ENUM;
1347 dip->un.e.num_mem = 2;
1348 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1349 dip->un.e.member[0].ord = 0;
1350 strcpy(dip->un.e.member[1].label.name, AudioNon);
1351 dip->un.e.member[1].ord = 1;
1352 break;
1353 case ESO_MICROPHONE_CLASS:
1354 dip->mixer_class = ESO_MICROPHONE_CLASS;
1355 dip->next = dip->prev = AUDIO_MIXER_LAST;
1356 strcpy(dip->label.name, AudioNmicrophone);
1357 dip->type = AUDIO_MIXER_CLASS;
1358 break;
1359
1360 case ESO_INPUT_CLASS:
1361 dip->mixer_class = ESO_INPUT_CLASS;
1362 dip->next = dip->prev = AUDIO_MIXER_LAST;
1363 strcpy(dip->label.name, AudioCinputs);
1364 dip->type = AUDIO_MIXER_CLASS;
1365 break;
1366
1367 case ESO_MASTER_VOL:
1368 dip->mixer_class = ESO_OUTPUT_CLASS;
1369 dip->prev = AUDIO_MIXER_LAST;
1370 dip->next = ESO_MASTER_MUTE;
1371 strcpy(dip->label.name, AudioNmaster);
1372 dip->type = AUDIO_MIXER_VALUE;
1373 dip->un.v.num_channels = 2;
1374 strcpy(dip->un.v.units.name, AudioNvolume);
1375 break;
1376 case ESO_MASTER_MUTE:
1377 dip->mixer_class = ESO_OUTPUT_CLASS;
1378 dip->prev = ESO_MASTER_VOL;
1379 dip->next = AUDIO_MIXER_LAST;
1380 strcpy(dip->label.name, AudioNmute);
1381 dip->type = AUDIO_MIXER_ENUM;
1382 dip->un.e.num_mem = 2;
1383 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1384 dip->un.e.member[0].ord = 0;
1385 strcpy(dip->un.e.member[1].label.name, AudioNon);
1386 dip->un.e.member[1].ord = 1;
1387 break;
1388
1389 case ESO_PCSPEAKER_VOL:
1390 dip->mixer_class = ESO_OUTPUT_CLASS;
1391 dip->next = dip->prev = AUDIO_MIXER_LAST;
1392 strcpy(dip->label.name, "pc_speaker");
1393 dip->type = AUDIO_MIXER_VALUE;
1394 dip->un.v.num_channels = 1;
1395 strcpy(dip->un.v.units.name, AudioNvolume);
1396 break;
1397 case ESO_MONOOUT_SOURCE:
1398 dip->mixer_class = ESO_OUTPUT_CLASS;
1399 dip->next = dip->prev = AUDIO_MIXER_LAST;
1400 strcpy(dip->label.name, "mono_out");
1401 dip->type = AUDIO_MIXER_ENUM;
1402 dip->un.e.num_mem = 3;
1403 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1404 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1405 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1406 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1407 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1408 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1409 break;
1410
1411 case ESO_MONOIN_BYPASS:
1412 dip->mixer_class = ESO_MONOIN_CLASS;
1413 dip->next = dip->prev = AUDIO_MIXER_LAST;
1414 strcpy(dip->label.name, "bypass");
1415 dip->type = AUDIO_MIXER_ENUM;
1416 dip->un.e.num_mem = 2;
1417 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1418 dip->un.e.member[0].ord = 0;
1419 strcpy(dip->un.e.member[1].label.name, AudioNon);
1420 dip->un.e.member[1].ord = 1;
1421 break;
1422 case ESO_MONOIN_CLASS:
1423 dip->mixer_class = ESO_MONOIN_CLASS;
1424 dip->next = dip->prev = AUDIO_MIXER_LAST;
1425 strcpy(dip->label.name, "mono_in");
1426 dip->type = AUDIO_MIXER_CLASS;
1427 break;
1428
1429 case ESO_SPATIALIZER:
1430 dip->mixer_class = ESO_OUTPUT_CLASS;
1431 dip->prev = AUDIO_MIXER_LAST;
1432 dip->next = ESO_SPATIALIZER_ENABLE;
1433 strcpy(dip->label.name, AudioNspatial);
1434 dip->type = AUDIO_MIXER_VALUE;
1435 dip->un.v.num_channels = 1;
1436 strcpy(dip->un.v.units.name, "level");
1437 break;
1438 case ESO_SPATIALIZER_ENABLE:
1439 dip->mixer_class = ESO_OUTPUT_CLASS;
1440 dip->prev = ESO_SPATIALIZER;
1441 dip->next = AUDIO_MIXER_LAST;
1442 strcpy(dip->label.name, "enable");
1443 dip->type = AUDIO_MIXER_ENUM;
1444 dip->un.e.num_mem = 2;
1445 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1446 dip->un.e.member[0].ord = 0;
1447 strcpy(dip->un.e.member[1].label.name, AudioNon);
1448 dip->un.e.member[1].ord = 1;
1449 break;
1450
1451 case ESO_OUTPUT_CLASS:
1452 dip->mixer_class = ESO_OUTPUT_CLASS;
1453 dip->next = dip->prev = AUDIO_MIXER_LAST;
1454 strcpy(dip->label.name, AudioCoutputs);
1455 dip->type = AUDIO_MIXER_CLASS;
1456 break;
1457
1458 case ESO_RECORD_MONITOR:
1459 dip->mixer_class = ESO_MONITOR_CLASS;
1460 dip->next = dip->prev = AUDIO_MIXER_LAST;
1461 strcpy(dip->label.name, AudioNmute);
1462 dip->type = AUDIO_MIXER_ENUM;
1463 dip->un.e.num_mem = 2;
1464 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1465 dip->un.e.member[0].ord = 0;
1466 strcpy(dip->un.e.member[1].label.name, AudioNon);
1467 dip->un.e.member[1].ord = 1;
1468 break;
1469 case ESO_MONITOR_CLASS:
1470 dip->mixer_class = ESO_MONITOR_CLASS;
1471 dip->next = dip->prev = AUDIO_MIXER_LAST;
1472 strcpy(dip->label.name, AudioCmonitor);
1473 dip->type = AUDIO_MIXER_CLASS;
1474 break;
1475
1476 case ESO_RECORD_VOL:
1477 dip->mixer_class = ESO_RECORD_CLASS;
1478 dip->next = dip->prev = AUDIO_MIXER_LAST;
1479 strcpy(dip->label.name, AudioNrecord);
1480 dip->type = AUDIO_MIXER_VALUE;
1481 strcpy(dip->un.v.units.name, AudioNvolume);
1482 break;
1483 case ESO_RECORD_SOURCE:
1484 dip->mixer_class = ESO_RECORD_CLASS;
1485 dip->next = dip->prev = AUDIO_MIXER_LAST;
1486 strcpy(dip->label.name, AudioNsource);
1487 dip->type = AUDIO_MIXER_ENUM;
1488 dip->un.e.num_mem = 4;
1489 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1490 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1491 strcpy(dip->un.e.member[1].label.name, AudioNline);
1492 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1493 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1494 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1495 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1496 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1497 break;
1498 case ESO_DAC_REC_VOL:
1499 dip->mixer_class = ESO_RECORD_CLASS;
1500 dip->next = dip->prev = AUDIO_MIXER_LAST;
1501 strcpy(dip->label.name, AudioNdac);
1502 dip->type = AUDIO_MIXER_VALUE;
1503 dip->un.v.num_channels = 2;
1504 strcpy(dip->un.v.units.name, AudioNvolume);
1505 break;
1506 case ESO_MIC_REC_VOL:
1507 dip->mixer_class = ESO_RECORD_CLASS;
1508 dip->next = dip->prev = AUDIO_MIXER_LAST;
1509 strcpy(dip->label.name, AudioNmicrophone);
1510 dip->type = AUDIO_MIXER_VALUE;
1511 dip->un.v.num_channels = 2;
1512 strcpy(dip->un.v.units.name, AudioNvolume);
1513 break;
1514 case ESO_LINE_REC_VOL:
1515 dip->mixer_class = ESO_RECORD_CLASS;
1516 dip->next = dip->prev = AUDIO_MIXER_LAST;
1517 strcpy(dip->label.name, AudioNline);
1518 dip->type = AUDIO_MIXER_VALUE;
1519 dip->un.v.num_channels = 2;
1520 strcpy(dip->un.v.units.name, AudioNvolume);
1521 break;
1522 case ESO_SYNTH_REC_VOL:
1523 dip->mixer_class = ESO_RECORD_CLASS;
1524 dip->next = dip->prev = AUDIO_MIXER_LAST;
1525 strcpy(dip->label.name, AudioNfmsynth);
1526 dip->type = AUDIO_MIXER_VALUE;
1527 dip->un.v.num_channels = 2;
1528 strcpy(dip->un.v.units.name, AudioNvolume);
1529 break;
1530 case ESO_MONO_REC_VOL:
1531 dip->mixer_class = ESO_RECORD_CLASS;
1532 dip->next = dip->prev = AUDIO_MIXER_LAST;
1533 strcpy(dip->label.name, "mono_in");
1534 dip->type = AUDIO_MIXER_VALUE;
1535 dip->un.v.num_channels = 1; /* No lies */
1536 strcpy(dip->un.v.units.name, AudioNvolume);
1537 break;
1538 case ESO_CD_REC_VOL:
1539 dip->mixer_class = ESO_RECORD_CLASS;
1540 dip->next = dip->prev = AUDIO_MIXER_LAST;
1541 strcpy(dip->label.name, AudioNcd);
1542 dip->type = AUDIO_MIXER_VALUE;
1543 dip->un.v.num_channels = 2;
1544 strcpy(dip->un.v.units.name, AudioNvolume);
1545 break;
1546 case ESO_AUXB_REC_VOL:
1547 dip->mixer_class = ESO_RECORD_CLASS;
1548 dip->next = dip->prev = AUDIO_MIXER_LAST;
1549 strcpy(dip->label.name, "auxb");
1550 dip->type = AUDIO_MIXER_VALUE;
1551 dip->un.v.num_channels = 2;
1552 strcpy(dip->un.v.units.name, AudioNvolume);
1553 break;
1554 case ESO_RECORD_CLASS:
1555 dip->mixer_class = ESO_RECORD_CLASS;
1556 dip->next = dip->prev = AUDIO_MIXER_LAST;
1557 strcpy(dip->label.name, AudioCrecord);
1558 dip->type = AUDIO_MIXER_CLASS;
1559 break;
1560
1561 default:
1562 return ENXIO;
1563 }
1564
1565 return 0;
1566 }
1567
1568 static int
1569 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1570 size_t boundary, int direction, struct eso_dma *ed)
1571 {
1572 int error;
1573
1574 ed->ed_size = size;
1575
1576 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1577 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1578 &ed->ed_nsegs, BUS_DMA_WAITOK);
1579 if (error)
1580 goto out;
1581
1582 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1583 ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
1584 if (error)
1585 goto free;
1586
1587 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1588 BUS_DMA_WAITOK, &ed->ed_map);
1589 if (error)
1590 goto unmap;
1591
1592 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
1593 ed->ed_size, NULL, BUS_DMA_WAITOK |
1594 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1595 if (error)
1596 goto destroy;
1597
1598 return 0;
1599
1600 destroy:
1601 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1602 unmap:
1603 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1604 free:
1605 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1606 out:
1607 return error;
1608 }
1609
1610 static void
1611 eso_freemem(struct eso_dma *ed)
1612 {
1613
1614 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1615 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1616 bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
1617 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1618 }
1619
1620 static struct eso_dma *
1621 eso_kva2dma(const struct eso_softc *sc, const void *kva)
1622 {
1623 struct eso_dma *p;
1624
1625 SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
1626 if (KVADDR(p) == kva)
1627 return p;
1628 }
1629
1630 panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
1631 /* NOTREACHED */
1632 }
1633
1634 static void *
1635 eso_allocm(void *hdl, int direction, size_t size)
1636 {
1637 struct eso_softc *sc;
1638 struct eso_dma *ed;
1639 size_t boundary;
1640 int error;
1641
1642 sc = hdl;
1643 ed = kmem_alloc(sizeof (*ed), KM_SLEEP);
1644
1645 /*
1646 * Apparently the Audio 1 DMA controller's current address
1647 * register can't roll over a 64K address boundary, so we have to
1648 * take care of that ourselves. Similarly, the Audio 2 DMA
1649 * controller needs a 1M address boundary.
1650 */
1651 if (direction == AUMODE_RECORD)
1652 boundary = 0x10000;
1653 else
1654 boundary = 0x100000;
1655
1656 /*
1657 * XXX Work around allocation problems for Audio 1, which
1658 * XXX implements the 24 low address bits only, with
1659 * XXX machine-specific DMA tag use.
1660 */
1661 #ifdef alpha
1662 /*
1663 * XXX Force allocation through the (ISA) SGMAP.
1664 */
1665 if (direction == AUMODE_RECORD)
1666 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1667 else
1668 #elif defined(amd64) || defined(i386)
1669 /*
1670 * XXX Force allocation through the ISA DMA tag.
1671 */
1672 if (direction == AUMODE_RECORD)
1673 ed->ed_dmat = &isa_bus_dma_tag;
1674 else
1675 #endif
1676 ed->ed_dmat = sc->sc_dmat;
1677
1678 error = eso_allocmem(sc, size, 32, boundary, direction, ed);
1679 if (error) {
1680 kmem_free(ed, sizeof(*ed));
1681 return NULL;
1682 }
1683 SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
1684
1685 return KVADDR(ed);
1686 }
1687
1688 static void
1689 eso_freem(void *hdl, void *addr, size_t size)
1690 {
1691 struct eso_softc *sc;
1692 struct eso_dma *p;
1693
1694 sc = hdl;
1695 p = eso_kva2dma(sc, addr);
1696
1697 SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
1698 eso_freemem(p);
1699 kmem_free(p, sizeof(*p));
1700 }
1701
1702 static size_t
1703 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1704 {
1705 size_t maxsize;
1706
1707 /*
1708 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1709 * bytes. This is because IO_A2DMAC is a two byte value
1710 * indicating the literal byte count, and the 4 least significant
1711 * bits are read-only. Zero is not used as a special case for
1712 * 0x10000.
1713 *
1714 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1715 * be represented.
1716 */
1717 maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1718
1719 if (bufsize > maxsize)
1720 bufsize = maxsize;
1721
1722 return bufsize;
1723 }
1724
1725 static paddr_t
1726 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1727 {
1728 struct eso_softc *sc;
1729 struct eso_dma *ed;
1730
1731 sc = hdl;
1732 if (offs < 0)
1733 return -1;
1734 ed = eso_kva2dma(sc, addr);
1735
1736 return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1737 offs, prot, BUS_DMA_WAITOK);
1738 }
1739
1740 /* ARGSUSED */
1741 static int
1742 eso_get_props(void *hdl)
1743 {
1744
1745 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1746 AUDIO_PROP_FULLDUPLEX;
1747 }
1748
1749 static int
1750 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1751 void (*intr)(void *), void *arg, const audio_params_t *param)
1752 {
1753 struct eso_softc *sc;
1754 struct eso_dma *ed;
1755 uint8_t a2c1;
1756
1757 sc = hdl;
1758 DPRINTF((
1759 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1760 device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1761 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1762 device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1763 param->precision, param->channels));
1764
1765 /* Find DMA buffer. */
1766 ed = eso_kva2dma(sc, start);
1767 DPRINTF(("%s: dmaaddr %lx\n",
1768 device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1769
1770 sc->sc_pintr = intr;
1771 sc->sc_parg = arg;
1772
1773 /* Compute drain timeout. */
1774 sc->sc_pdrain = (blksize * NBBY * hz) /
1775 (param->sample_rate * param->channels *
1776 param->precision) + 2; /* slop */
1777
1778 /* DMA transfer count (in `words'!) reload using 2's complement. */
1779 blksize = -(blksize >> 1);
1780 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1781 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1782
1783 /* Update DAC to reflect DMA count and audio parameters. */
1784 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1785 if (param->precision == 16)
1786 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1787 else
1788 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1789 if (param->channels == 2)
1790 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1791 else
1792 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1793 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1794 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1795 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1796 else
1797 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1798 /* Unmask IRQ. */
1799 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1800 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1801
1802 /* Set up DMA controller. */
1803 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1804 DMAADDR(ed));
1805 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1806 (uint8_t *)end - (uint8_t *)start);
1807 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1808 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1809
1810 /* Start DMA. */
1811 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1812 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1813 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1814 ESO_MIXREG_A2C1_AUTO;
1815 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1816
1817 return 0;
1818 }
1819
1820 static int
1821 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1822 void (*intr)(void *), void *arg, const audio_params_t *param)
1823 {
1824 struct eso_softc *sc;
1825 struct eso_dma *ed;
1826 uint8_t actl, a1c1;
1827
1828 sc = hdl;
1829 DPRINTF((
1830 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1831 device_xname(sc->sc_dev), start, end, blksize, intr, arg));
1832 DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
1833 device_xname(sc->sc_dev), param->sample_rate, param->encoding,
1834 param->precision, param->channels));
1835
1836 /*
1837 * If we failed to configure the Audio 1 DMA controller, bail here
1838 * while retaining availability of the DAC direction (in Audio 2).
1839 */
1840 if (!sc->sc_dmac_configured)
1841 return EIO;
1842
1843 /* Find DMA buffer. */
1844 ed = eso_kva2dma(sc, start);
1845 DPRINTF(("%s: dmaaddr %lx\n",
1846 device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
1847
1848 sc->sc_rintr = intr;
1849 sc->sc_rarg = arg;
1850
1851 /* Compute drain timeout. */
1852 sc->sc_rdrain = (blksize * NBBY * hz) /
1853 (param->sample_rate * param->channels *
1854 param->precision) + 2; /* slop */
1855
1856 /* Set up ADC DMA converter parameters. */
1857 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1858 if (param->channels == 2) {
1859 actl &= ~ESO_CTLREG_ACTL_MONO;
1860 actl |= ESO_CTLREG_ACTL_STEREO;
1861 } else {
1862 actl &= ~ESO_CTLREG_ACTL_STEREO;
1863 actl |= ESO_CTLREG_ACTL_MONO;
1864 }
1865 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1866
1867 /* Set up Transfer Type: maybe move to attach time? */
1868 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1869
1870 /* DMA transfer count reload using 2's complement. */
1871 blksize = -blksize;
1872 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1873 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1874
1875 /* Set up and enable Audio 1 DMA FIFO. */
1876 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1877 if (param->precision == 16)
1878 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1879 if (param->channels == 2)
1880 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1881 else
1882 a1c1 |= ESO_CTLREG_A1C1_MONO;
1883 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1884 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1885 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1886 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1887
1888 /* Set up ADC IRQ/DRQ parameters. */
1889 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1890 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1891 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1892 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1893
1894 /* Set up and enable DMA controller. */
1895 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1896 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1897 ESO_DMAC_MASK_MASK);
1898 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1899 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1900 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1901 DMAADDR(ed));
1902 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1903 (uint8_t *)end - (uint8_t *)start - 1);
1904 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1905
1906 /* Start DMA. */
1907 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1908 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1909 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1910
1911 return 0;
1912 }
1913
1914
1915 static void
1916 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1917 {
1918 struct eso_softc *sc;
1919
1920 sc = addr;
1921 *intr = &sc->sc_intr_lock;
1922 *thread = &sc->sc_lock;
1923 }
1924
1925 /*
1926 * Mixer utility functions.
1927 */
1928 static int
1929 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
1930 {
1931 mixer_devinfo_t di;
1932 int i;
1933
1934 KASSERT(mutex_owned(&sc->sc_intr_lock));
1935
1936 di.index = ESO_RECORD_SOURCE;
1937 if (eso_query_devinfo(sc, &di) != 0)
1938 panic("eso_set_recsrc: eso_query_devinfo failed");
1939
1940 for (i = 0; i < di.un.e.num_mem; i++) {
1941 if (recsrc == di.un.e.member[i].ord) {
1942 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1943 sc->sc_recsrc = recsrc;
1944 return 0;
1945 }
1946 }
1947
1948 return EINVAL;
1949 }
1950
1951 static int
1952 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
1953 {
1954 mixer_devinfo_t di;
1955 int i;
1956 uint8_t mpm;
1957
1958 KASSERT(mutex_owned(&sc->sc_intr_lock));
1959
1960 di.index = ESO_MONOOUT_SOURCE;
1961 if (eso_query_devinfo(sc, &di) != 0)
1962 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1963
1964 for (i = 0; i < di.un.e.num_mem; i++) {
1965 if (monooutsrc == di.un.e.member[i].ord) {
1966 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1967 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1968 mpm |= monooutsrc;
1969 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1970 sc->sc_monooutsrc = monooutsrc;
1971 return 0;
1972 }
1973 }
1974
1975 return EINVAL;
1976 }
1977
1978 static int
1979 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
1980 {
1981 mixer_devinfo_t di;
1982 int i;
1983 uint8_t mpm;
1984
1985 KASSERT(mutex_owned(&sc->sc_intr_lock));
1986
1987 di.index = ESO_MONOIN_BYPASS;
1988 if (eso_query_devinfo(sc, &di) != 0)
1989 panic("eso_set_monoinbypass: eso_query_devinfo failed");
1990
1991 for (i = 0; i < di.un.e.num_mem; i++) {
1992 if (monoinbypass == di.un.e.member[i].ord) {
1993 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1994 mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1995 mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1996 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1997 sc->sc_monoinbypass = monoinbypass;
1998 return 0;
1999 }
2000 }
2001
2002 return EINVAL;
2003 }
2004
2005 static int
2006 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
2007 {
2008 mixer_devinfo_t di;
2009 int i;
2010 uint8_t mpm;
2011
2012 KASSERT(mutex_owned(&sc->sc_intr_lock));
2013
2014 di.index = ESO_MIC_PREAMP;
2015 if (eso_query_devinfo(sc, &di) != 0)
2016 panic("eso_set_preamp: eso_query_devinfo failed");
2017
2018 for (i = 0; i < di.un.e.num_mem; i++) {
2019 if (preamp == di.un.e.member[i].ord) {
2020 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
2021 mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
2022 mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
2023 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
2024 sc->sc_preamp = preamp;
2025 return 0;
2026 }
2027 }
2028
2029 return EINVAL;
2030 }
2031
2032 /*
2033 * Reload Master Volume and Mute values in softc from mixer; used when
2034 * those have previously been invalidated by use of hardware volume controls.
2035 */
2036 static void
2037 eso_reload_master_vol(struct eso_softc *sc)
2038 {
2039 uint8_t mv;
2040
2041 KASSERT(mutex_owned(&sc->sc_intr_lock));
2042
2043 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2044 sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
2045 (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
2046 mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
2047 sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
2048 (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
2049 /* Currently both channels are muted simultaneously; either is OK. */
2050 sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
2051 }
2052
2053 static void
2054 eso_set_gain(struct eso_softc *sc, unsigned int port)
2055 {
2056 uint8_t mixreg, tmp;
2057
2058 KASSERT(mutex_owned(&sc->sc_intr_lock));
2059
2060 switch (port) {
2061 case ESO_DAC_PLAY_VOL:
2062 mixreg = ESO_MIXREG_PVR_A2;
2063 break;
2064 case ESO_MIC_PLAY_VOL:
2065 mixreg = ESO_MIXREG_PVR_MIC;
2066 break;
2067 case ESO_LINE_PLAY_VOL:
2068 mixreg = ESO_MIXREG_PVR_LINE;
2069 break;
2070 case ESO_SYNTH_PLAY_VOL:
2071 mixreg = ESO_MIXREG_PVR_SYNTH;
2072 break;
2073 case ESO_CD_PLAY_VOL:
2074 mixreg = ESO_MIXREG_PVR_CD;
2075 break;
2076 case ESO_AUXB_PLAY_VOL:
2077 mixreg = ESO_MIXREG_PVR_AUXB;
2078 break;
2079
2080 case ESO_DAC_REC_VOL:
2081 mixreg = ESO_MIXREG_RVR_A2;
2082 break;
2083 case ESO_MIC_REC_VOL:
2084 mixreg = ESO_MIXREG_RVR_MIC;
2085 break;
2086 case ESO_LINE_REC_VOL:
2087 mixreg = ESO_MIXREG_RVR_LINE;
2088 break;
2089 case ESO_SYNTH_REC_VOL:
2090 mixreg = ESO_MIXREG_RVR_SYNTH;
2091 break;
2092 case ESO_CD_REC_VOL:
2093 mixreg = ESO_MIXREG_RVR_CD;
2094 break;
2095 case ESO_AUXB_REC_VOL:
2096 mixreg = ESO_MIXREG_RVR_AUXB;
2097 break;
2098 case ESO_MONO_PLAY_VOL:
2099 mixreg = ESO_MIXREG_PVR_MONO;
2100 break;
2101 case ESO_MONO_REC_VOL:
2102 mixreg = ESO_MIXREG_RVR_MONO;
2103 break;
2104
2105 case ESO_PCSPEAKER_VOL:
2106 /* Special case - only 3-bit, mono, and reserved bits. */
2107 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2108 tmp &= ESO_MIXREG_PCSVR_RESV;
2109 /* Map bits 7:5 -> 2:0. */
2110 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2111 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2112 return;
2113
2114 case ESO_MASTER_VOL:
2115 /* Special case - separate regs, and 6-bit precision. */
2116 /* Map bits 7:2 -> 5:0, reflect mute settings. */
2117 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2118 (sc->sc_gain[port][ESO_LEFT] >> 2) |
2119 (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2120 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2121 (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2122 (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2123 return;
2124
2125 case ESO_SPATIALIZER:
2126 /* Special case - only `mono', and higher precision. */
2127 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2128 sc->sc_gain[port][ESO_LEFT]);
2129 return;
2130
2131 case ESO_RECORD_VOL:
2132 /* Very Special case, controller register. */
2133 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2134 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2135 return;
2136
2137 default:
2138 #ifdef DIAGNOSTIC
2139 panic("eso_set_gain: bad port %u", port);
2140 /* NOTREACHED */
2141 #else
2142 return;
2143 #endif
2144 }
2145
2146 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2147 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2148 }
2149