Home | History | Annotate | Line # | Download | only in pci
eso.c revision 1.69
      1 /*	$NetBSD: eso.c,v 1.69 2019/03/16 12:09:58 isaki Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software developed for The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. The name of the author may not be used to endorse or promote products
     45  *    derived from this software without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     48  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     49  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     50  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     51  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     52  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     53  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     54  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     55  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  */
     59 
     60 /*
     61  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.69 2019/03/16 12:09:58 isaki Exp $");
     66 
     67 #include "mpu.h"
     68 
     69 #include <sys/param.h>
     70 #include <sys/systm.h>
     71 #include <sys/kernel.h>
     72 #include <sys/kmem.h>
     73 #include <sys/device.h>
     74 #include <sys/queue.h>
     75 #include <sys/proc.h>
     76 
     77 #include <dev/pci/pcidevs.h>
     78 #include <dev/pci/pcivar.h>
     79 
     80 #include <sys/audioio.h>
     81 #include <dev/audio_if.h>
     82 
     83 #include <dev/mulaw.h>
     84 #include <dev/auconv.h>
     85 
     86 #include <dev/ic/mpuvar.h>
     87 #include <dev/ic/i8237reg.h>
     88 #include <dev/pci/esoreg.h>
     89 #include <dev/pci/esovar.h>
     90 
     91 #include <sys/bus.h>
     92 #include <sys/intr.h>
     93 
     94 /*
     95  * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
     96  * XXX engine by allocating through the ISA DMA tag.
     97  */
     98 #if defined(amd64) || defined(i386)
     99 #include <dev/isa/isavar.h>
    100 #endif
    101 
    102 #if defined(AUDIO_DEBUG) || defined(DEBUG)
    103 #define DPRINTF(x) printf x
    104 #else
    105 #define DPRINTF(x)
    106 #endif
    107 
    108 struct eso_dma {
    109 	bus_dma_tag_t		ed_dmat;
    110 	bus_dmamap_t		ed_map;
    111 	void *			ed_kva;
    112 	bus_dma_segment_t	ed_segs[1];
    113 	int			ed_nsegs;
    114 	size_t			ed_size;
    115 	SLIST_ENTRY(eso_dma)	ed_slist;
    116 };
    117 
    118 #define KVADDR(dma)	((void *)(dma)->ed_kva)
    119 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
    120 
    121 /* Autoconfiguration interface */
    122 static int eso_match(device_t, cfdata_t, void *);
    123 static void eso_attach(device_t, device_t, void *);
    124 static void eso_defer(device_t);
    125 static int eso_print(void *, const char *);
    126 
    127 CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
    128     eso_match, eso_attach, NULL, NULL);
    129 
    130 /* PCI interface */
    131 static int eso_intr(void *);
    132 
    133 /* MI audio layer interface */
    134 static int	eso_query_encoding(void *, struct audio_encoding *);
    135 static int	eso_set_params(void *, int, int, audio_params_t *,
    136 		    audio_params_t *, stream_filter_list_t *,
    137 		    stream_filter_list_t *);
    138 static int	eso_round_blocksize(void *, int, int, const audio_params_t *);
    139 static int	eso_halt_output(void *);
    140 static int	eso_halt_input(void *);
    141 static int	eso_getdev(void *, struct audio_device *);
    142 static int	eso_set_port(void *, mixer_ctrl_t *);
    143 static int	eso_get_port(void *, mixer_ctrl_t *);
    144 static int	eso_query_devinfo(void *, mixer_devinfo_t *);
    145 static void *	eso_allocm(void *, int, size_t);
    146 static void	eso_freem(void *, void *, size_t);
    147 static size_t	eso_round_buffersize(void *, int, size_t);
    148 static paddr_t	eso_mappage(void *, void *, off_t, int);
    149 static int	eso_get_props(void *);
    150 static int	eso_trigger_output(void *, void *, void *, int,
    151 		    void (*)(void *), void *, const audio_params_t *);
    152 static int	eso_trigger_input(void *, void *, void *, int,
    153 		    void (*)(void *), void *, const audio_params_t *);
    154 static void	eso_get_locks(void *, kmutex_t **, kmutex_t **);
    155 
    156 static const struct audio_hw_if eso_hw_if = {
    157 	.query_encoding		= eso_query_encoding,
    158 	.set_params		= eso_set_params,
    159 	.round_blocksize	= eso_round_blocksize,
    160 	.halt_output		= eso_halt_output,
    161 	.halt_input		= eso_halt_input,
    162 	.getdev			= eso_getdev,
    163 	.set_port		= eso_set_port,
    164 	.get_port		= eso_get_port,
    165 	.query_devinfo		= eso_query_devinfo,
    166 	.allocm			= eso_allocm,
    167 	.freem			= eso_freem,
    168 	.round_buffersize	= eso_round_buffersize,
    169 	.mappage		= eso_mappage,
    170 	.get_props		= eso_get_props,
    171 	.trigger_output		= eso_trigger_output,
    172 	.trigger_input		= eso_trigger_input,
    173 	.get_locks		= eso_get_locks,
    174 };
    175 
    176 static const char * const eso_rev2model[] = {
    177 	"ES1938",
    178 	"ES1946",
    179 	"ES1946 Revision E"
    180 };
    181 
    182 #define ESO_NFORMATS	8
    183 static const struct audio_format eso_formats[ESO_NFORMATS] = {
    184 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    185 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
    186 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    187 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
    188 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
    189 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
    190 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
    191 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
    192 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
    193 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
    194 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
    195 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}},
    196 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    197 	 2, AUFMT_STEREO, 0, {ESO_MINRATE, ESO_MAXRATE}},
    198 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    199 	 1, AUFMT_MONAURAL, 0, {ESO_MINRATE, ESO_MAXRATE}}
    200 };
    201 
    202 
    203 /*
    204  * Utility routines
    205  */
    206 /* Register access etc. */
    207 static uint8_t	eso_read_ctlreg(struct eso_softc *, uint8_t);
    208 static uint8_t	eso_read_mixreg(struct eso_softc *, uint8_t);
    209 static uint8_t	eso_read_rdr(struct eso_softc *);
    210 static void	eso_reload_master_vol(struct eso_softc *);
    211 static int	eso_reset(struct eso_softc *);
    212 static void	eso_set_gain(struct eso_softc *, unsigned int);
    213 static int	eso_set_recsrc(struct eso_softc *, unsigned int);
    214 static int	eso_set_monooutsrc(struct eso_softc *, unsigned int);
    215 static int	eso_set_monoinbypass(struct eso_softc *, unsigned int);
    216 static int	eso_set_preamp(struct eso_softc *, unsigned int);
    217 static void	eso_write_cmd(struct eso_softc *, uint8_t);
    218 static void	eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
    219 static void	eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
    220 /* DMA memory allocation */
    221 static int	eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
    222 		    int, struct eso_dma *);
    223 static void	eso_freemem(struct eso_dma *);
    224 static struct eso_dma *	eso_kva2dma(const struct eso_softc *, const void *);
    225 
    226 
    227 static int
    228 eso_match(device_t parent, cfdata_t match, void *aux)
    229 {
    230 	struct pci_attach_args *pa;
    231 
    232 	pa = aux;
    233 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
    234 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
    235 		return 1;
    236 
    237 	return 0;
    238 }
    239 
    240 static void
    241 eso_attach(device_t parent, device_t self, void *aux)
    242 {
    243 	struct eso_softc *sc;
    244 	struct pci_attach_args *pa;
    245 	struct audio_attach_args aa;
    246 	pci_intr_handle_t ih;
    247 	bus_addr_t vcbase;
    248 	const char *intrstring;
    249 	int idx, error;
    250 	uint8_t a2mode, mvctl;
    251 	char intrbuf[PCI_INTRSTR_LEN];
    252 
    253 	sc = device_private(self);
    254 	sc->sc_dev = self;
    255 	pa = aux;
    256 	aprint_naive(": Audio controller\n");
    257 
    258 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
    259 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
    260 
    261 	sc->sc_revision = PCI_REVISION(pa->pa_class);
    262 	aprint_normal(": ESS Solo-1 PCI AudioDrive ");
    263 	if (sc->sc_revision <
    264 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
    265 		aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
    266 	else
    267 		aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
    268 
    269 	/* Map I/O registers. */
    270 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
    271 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    272 		aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
    273 		return;
    274 	}
    275 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
    276 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
    277 		aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
    278 		return;
    279 	}
    280 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
    281 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
    282 		aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
    283 		/* Don't bail out yet: we can map it later, see below. */
    284 		vcbase = 0;
    285 		sc->sc_vcsize = 0x10; /* From the data sheet. */
    286 	}
    287 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
    288 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
    289 		aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
    290 		return;
    291 	}
    292 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
    293 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
    294 		aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
    295 		return;
    296 	}
    297 
    298 	sc->sc_dmat = pa->pa_dmat;
    299 	SLIST_INIT(&sc->sc_dmas);
    300 	sc->sc_dmac_configured = 0;
    301 
    302 	/* Enable bus mastering. */
    303 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    304 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    305 	    PCI_COMMAND_MASTER_ENABLE);
    306 
    307 	/* Reset the device; bail out upon failure. */
    308 	mutex_spin_enter(&sc->sc_intr_lock);
    309 	error = eso_reset(sc);
    310 	mutex_spin_exit(&sc->sc_intr_lock);
    311 	if (error != 0) {
    312 		aprint_error_dev(sc->sc_dev, "can't reset\n");
    313 		return;
    314 	}
    315 
    316 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
    317 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
    318 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
    319 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
    320 
    321 	/* Enable the relevant (DMA) interrupts. */
    322 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
    323 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
    324 	    ESO_IO_IRQCTL_MPUIRQ);
    325 
    326 	mutex_spin_enter(&sc->sc_intr_lock);
    327 
    328 	/* Set up A1's sample rate generator for new-style parameters. */
    329 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
    330 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
    331 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
    332 
    333 	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
    334 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
    335 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
    336 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
    337 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
    338 
    339 	/* Set mixer regs to something reasonable, needs work. */
    340 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
    341 	eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
    342 	eso_set_monoinbypass(sc, 0);
    343 	eso_set_preamp(sc, 1);
    344 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
    345 		int v;
    346 
    347 		switch (idx) {
    348 		case ESO_MIC_PLAY_VOL:
    349 		case ESO_LINE_PLAY_VOL:
    350 		case ESO_CD_PLAY_VOL:
    351 		case ESO_MONO_PLAY_VOL:
    352 		case ESO_AUXB_PLAY_VOL:
    353 		case ESO_DAC_REC_VOL:
    354 		case ESO_LINE_REC_VOL:
    355 		case ESO_SYNTH_REC_VOL:
    356 		case ESO_CD_REC_VOL:
    357 		case ESO_MONO_REC_VOL:
    358 		case ESO_AUXB_REC_VOL:
    359 		case ESO_SPATIALIZER:
    360 			v = 0;
    361 			break;
    362 		case ESO_MASTER_VOL:
    363 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
    364 			break;
    365 		default:
    366 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
    367 			break;
    368 		}
    369 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
    370 		eso_set_gain(sc, idx);
    371 	}
    372 
    373 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
    374 
    375 	mutex_spin_exit(&sc->sc_intr_lock);
    376 
    377 	/* Map and establish the interrupt. */
    378 	if (pci_intr_map(pa, &ih)) {
    379 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
    380 		return;
    381 	}
    382 
    383 	intrstring = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf));
    384 	sc->sc_ih  = pci_intr_establish_xname(pa->pa_pc, ih, IPL_AUDIO,
    385 	    eso_intr, sc, device_xname(self));
    386 	if (sc->sc_ih == NULL) {
    387 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
    388 		if (intrstring != NULL)
    389 			aprint_error(" at %s", intrstring);
    390 		aprint_error("\n");
    391 		mutex_destroy(&sc->sc_lock);
    392 		mutex_destroy(&sc->sc_intr_lock);
    393 		return;
    394 	}
    395 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstring);
    396 
    397 	cv_init(&sc->sc_pcv, "esoho");
    398 	cv_init(&sc->sc_rcv, "esohi");
    399 
    400 	/*
    401 	 * Set up the DDMA Control register; a suitable I/O region has been
    402 	 * supposedly mapped in the VC base address register.
    403 	 *
    404 	 * The Solo-1 has an ... interesting silicon bug that causes it to
    405 	 * not respond to I/O space accesses to the Audio 1 DMA controller
    406 	 * if the latter's mapping base address is aligned on a 1K boundary.
    407 	 * As a consequence, it is quite possible for the mapping provided
    408 	 * in the VC BAR to be useless.  To work around this, we defer this
    409 	 * part until all autoconfiguration on our parent bus is completed
    410 	 * and then try to map it ourselves in fulfillment of the constraint.
    411 	 *
    412 	 * According to the register map we may write to the low 16 bits
    413 	 * only, but experimenting has shown we're safe.
    414 	 * -kjk
    415 	 */
    416 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
    417 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
    418 		    vcbase | ESO_PCI_DDMAC_DE);
    419 		sc->sc_dmac_configured = 1;
    420 
    421 		aprint_normal_dev(sc->sc_dev,
    422 		    "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
    423 		    (unsigned long)vcbase);
    424 	} else {
    425 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
    426 		    device_xname(sc->sc_dev), (unsigned long)vcbase));
    427 		sc->sc_pa = *pa;
    428 		config_defer(self, eso_defer);
    429 	}
    430 
    431 	audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);
    432 
    433 	aa.type = AUDIODEV_TYPE_OPL;
    434 	aa.hwif = NULL;
    435 	aa.hdl = NULL;
    436 	(void)config_found(sc->sc_dev, &aa, audioprint);
    437 
    438 	aa.type = AUDIODEV_TYPE_MPU;
    439 	aa.hwif = NULL;
    440 	aa.hdl = NULL;
    441 	sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
    442 	if (sc->sc_mpudev != NULL) {
    443 		/* Unmask the MPU irq. */
    444 		mutex_spin_enter(&sc->sc_intr_lock);
    445 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
    446 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
    447 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
    448 		mutex_spin_exit(&sc->sc_intr_lock);
    449 	}
    450 
    451 	aa.type = AUDIODEV_TYPE_AUX;
    452 	aa.hwif = NULL;
    453 	aa.hdl = NULL;
    454 	(void)config_found(sc->sc_dev, &aa, eso_print);
    455 }
    456 
    457 static void
    458 eso_defer(device_t self)
    459 {
    460 	struct eso_softc *sc;
    461 	struct pci_attach_args *pa;
    462 	bus_addr_t addr, start;
    463 
    464 	sc = device_private(self);
    465 	pa = &sc->sc_pa;
    466 	aprint_normal_dev(sc->sc_dev, "");
    467 
    468 	/*
    469 	 * This is outright ugly, but since we must not make assumptions
    470 	 * on the underlying allocator's behaviour it's the most straight-
    471 	 * forward way to implement it.  Note that we skip over the first
    472 	 * 1K region, which is typically occupied by an attached ISA bus.
    473 	 */
    474 	mutex_enter(&sc->sc_lock);
    475 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
    476 		if (bus_space_alloc(sc->sc_iot,
    477 		    start + sc->sc_vcsize, start + 0x0400 - 1,
    478 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
    479 		    &sc->sc_dmac_ioh) != 0)
    480 			continue;
    481 
    482 		mutex_spin_enter(&sc->sc_intr_lock);
    483 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
    484 		    addr | ESO_PCI_DDMAC_DE);
    485 		mutex_spin_exit(&sc->sc_intr_lock);
    486 		sc->sc_dmac_iot = sc->sc_iot;
    487 		sc->sc_dmac_configured = 1;
    488 		aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
    489 		    (unsigned long)addr);
    490 
    491 		mutex_exit(&sc->sc_lock);
    492 		return;
    493 	}
    494 	mutex_exit(&sc->sc_lock);
    495 
    496 	aprint_error("can't map Audio 1 DMA into I/O space\n");
    497 }
    498 
    499 /* ARGSUSED */
    500 static int
    501 eso_print(void *aux, const char *pnp)
    502 {
    503 
    504 	/* Only joys can attach via this; easy. */
    505 	if (pnp)
    506 		aprint_normal("joy at %s:", pnp);
    507 
    508 	return UNCONF;
    509 }
    510 
    511 static void
    512 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
    513 {
    514 	int i;
    515 
    516 	/* Poll for busy indicator to become clear. */
    517 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
    518 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
    519 		    & ESO_SB_RSR_BUSY) == 0) {
    520 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    521 			    ESO_SB_WDR, cmd);
    522 			return;
    523 		} else {
    524 			delay(10);
    525 		}
    526 	}
    527 
    528 	printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
    529 	return;
    530 }
    531 
    532 /* Write to a controller register */
    533 static void
    534 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
    535 {
    536 
    537 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
    538 
    539 	eso_write_cmd(sc, reg);
    540 	eso_write_cmd(sc, val);
    541 }
    542 
    543 /* Read out the Read Data Register */
    544 static uint8_t
    545 eso_read_rdr(struct eso_softc *sc)
    546 {
    547 	int i;
    548 
    549 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
    550 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    551 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
    552 			return (bus_space_read_1(sc->sc_sb_iot,
    553 			    sc->sc_sb_ioh, ESO_SB_RDR));
    554 		} else {
    555 			delay(10);
    556 		}
    557 	}
    558 
    559 	printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
    560 	return (-1);
    561 }
    562 
    563 static uint8_t
    564 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
    565 {
    566 
    567 	eso_write_cmd(sc, ESO_CMD_RCR);
    568 	eso_write_cmd(sc, reg);
    569 	return eso_read_rdr(sc);
    570 }
    571 
    572 static void
    573 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
    574 {
    575 
    576 	KASSERT(mutex_owned(&sc->sc_intr_lock));
    577 
    578 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
    579 
    580 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
    581 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
    582 }
    583 
    584 static uint8_t
    585 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
    586 {
    587 	uint8_t val;
    588 
    589 	KASSERT(mutex_owned(&sc->sc_intr_lock));
    590 
    591 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
    592 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
    593 
    594 	return val;
    595 }
    596 
    597 static int
    598 eso_intr(void *hdl)
    599 {
    600 	struct eso_softc *sc = hdl;
    601 #if NMPU > 0
    602 	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
    603 #endif
    604 	uint8_t irqctl;
    605 
    606 	mutex_spin_enter(&sc->sc_intr_lock);
    607 
    608 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
    609 
    610 	/* If it wasn't ours, that's all she wrote. */
    611 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
    612 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
    613 		mutex_spin_exit(&sc->sc_intr_lock);
    614 		return 0;
    615 	}
    616 
    617 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
    618 		/* Clear interrupt. */
    619 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    620 		    ESO_SB_RBSR);
    621 
    622 		if (sc->sc_rintr)
    623 			sc->sc_rintr(sc->sc_rarg);
    624 		else
    625 			cv_broadcast(&sc->sc_rcv);
    626 	}
    627 
    628 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
    629 		/*
    630 		 * Clear the A2 IRQ latch: the cached value reflects the
    631 		 * current DAC settings with the IRQ latch bit not set.
    632 		 */
    633 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
    634 
    635 		if (sc->sc_pintr)
    636 			sc->sc_pintr(sc->sc_parg);
    637 		else
    638 			cv_broadcast(&sc->sc_pcv);
    639 	}
    640 
    641 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
    642 		/* Clear interrupt. */
    643 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
    644 
    645 		/*
    646 		 * Raise a flag to cause a lazy update of the in-softc gain
    647 		 * values the next time the software mixer is read to keep
    648 		 * interrupt service cost low.  ~0 cannot occur otherwise
    649 		 * as the master volume has a precision of 6 bits only.
    650 		 */
    651 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
    652 	}
    653 
    654 #if NMPU > 0
    655 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
    656 		mpu_intr(sc_mpu);
    657 #endif
    658 
    659 	mutex_spin_exit(&sc->sc_intr_lock);
    660 	return 1;
    661 }
    662 
    663 /* Perform a software reset, including DMA FIFOs. */
    664 static int
    665 eso_reset(struct eso_softc *sc)
    666 {
    667 	int i;
    668 
    669 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
    670 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
    671 	/* `Delay' suggested in the data sheet. */
    672 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
    673 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
    674 
    675 	/* Wait for reset to take effect. */
    676 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
    677 		/* Poll for data to become available. */
    678 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    679 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
    680 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    681 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
    682 
    683 			/* Activate Solo-1 extension commands. */
    684 			eso_write_cmd(sc, ESO_CMD_EXTENB);
    685 			/* Reset mixer registers. */
    686 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
    687 			    ESO_MIXREG_RESET_RESET);
    688 
    689 			return 0;
    690 		} else {
    691 			delay(1000);
    692 		}
    693 	}
    694 
    695 	printf("%s: reset timeout\n", device_xname(sc->sc_dev));
    696 	return -1;
    697 }
    698 
    699 static int
    700 eso_query_encoding(void *hdl, struct audio_encoding *fp)
    701 {
    702 
    703 	switch (fp->index) {
    704 	case 0:
    705 		strcpy(fp->name, AudioEulinear);
    706 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    707 		fp->precision = 8;
    708 		fp->flags = 0;
    709 		break;
    710 	case 1:
    711 		strcpy(fp->name, AudioEmulaw);
    712 		fp->encoding = AUDIO_ENCODING_ULAW;
    713 		fp->precision = 8;
    714 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    715 		break;
    716 	case 2:
    717 		strcpy(fp->name, AudioEalaw);
    718 		fp->encoding = AUDIO_ENCODING_ALAW;
    719 		fp->precision = 8;
    720 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    721 		break;
    722 	case 3:
    723 		strcpy(fp->name, AudioEslinear);
    724 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    725 		fp->precision = 8;
    726 		fp->flags = 0;
    727 		break;
    728 	case 4:
    729 		strcpy(fp->name, AudioEslinear_le);
    730 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    731 		fp->precision = 16;
    732 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    733 		break;
    734 	case 5:
    735 		strcpy(fp->name, AudioEulinear_le);
    736 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    737 		fp->precision = 16;
    738 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    739 		break;
    740 	case 6:
    741 		strcpy(fp->name, AudioEslinear_be);
    742 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    743 		fp->precision = 16;
    744 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    745 		break;
    746 	case 7:
    747 		strcpy(fp->name, AudioEulinear_be);
    748 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    749 		fp->precision = 16;
    750 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    751 		break;
    752 	default:
    753 		return EINVAL;
    754 	}
    755 
    756 	return 0;
    757 }
    758 
    759 static int
    760 eso_set_params(void *hdl, int setmode, int usemode,
    761     audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil,
    762     stream_filter_list_t *rfil)
    763 {
    764 	struct eso_softc *sc;
    765 	struct audio_params *p;
    766 	stream_filter_list_t *fil;
    767 	int mode, r[2], rd[2], ar[2], clk;
    768 	unsigned int srg, fltdiv;
    769 	int i;
    770 
    771 	sc = hdl;
    772 	for (mode = AUMODE_RECORD; mode != -1;
    773 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    774 		if ((setmode & mode) == 0)
    775 			continue;
    776 
    777 		p = (mode == AUMODE_PLAY) ? play : rec;
    778 
    779 		if (p->sample_rate < ESO_MINRATE ||
    780 		    p->sample_rate > ESO_MAXRATE ||
    781 		    (p->precision != 8 && p->precision != 16) ||
    782 		    (p->channels != 1 && p->channels != 2))
    783 			return EINVAL;
    784 
    785 		/*
    786 		 * We'll compute both possible sample rate dividers and pick
    787 		 * the one with the least error.
    788 		 */
    789 #define ABS(x) ((x) < 0 ? -(x) : (x))
    790 		r[0] = ESO_CLK0 /
    791 		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
    792 		r[1] = ESO_CLK1 /
    793 		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
    794 
    795 		ar[0] = p->sample_rate - r[0];
    796 		ar[1] = p->sample_rate - r[1];
    797 		clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
    798 		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
    799 
    800 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
    801 		fltdiv = 256 - 200279L / r[clk];
    802 
    803 		/* Update to reflect the possibly inexact rate. */
    804 		p->sample_rate = r[clk];
    805 
    806 		fil = (mode == AUMODE_PLAY) ? pfil : rfil;
    807 		i = auconv_set_converter(eso_formats, ESO_NFORMATS,
    808 					 mode, p, FALSE, fil);
    809 		if (i < 0)
    810 			return EINVAL;
    811 
    812 		mutex_spin_enter(&sc->sc_intr_lock);
    813 		if (mode == AUMODE_RECORD) {
    814 			/* Audio 1 */
    815 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
    816 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
    817 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
    818 		} else {
    819 			/* Audio 2 */
    820 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
    821 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
    822 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
    823 		}
    824 		mutex_spin_exit(&sc->sc_intr_lock);
    825 #undef ABS
    826 
    827 	}
    828 
    829 	return 0;
    830 }
    831 
    832 static int
    833 eso_round_blocksize(void *hdl, int blk, int mode,
    834     const audio_params_t *param)
    835 {
    836 
    837 	return blk & -32;	/* keep good alignment; at least 16 req'd */
    838 }
    839 
    840 static int
    841 eso_halt_output(void *hdl)
    842 {
    843 	struct eso_softc *sc;
    844 	int error;
    845 
    846 	sc = hdl;
    847 	DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));
    848 
    849 	/*
    850 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
    851 	 * stop.  The interrupt callback pointer is cleared at this
    852 	 * point so that an outstanding FIFO interrupt for the remaining data
    853 	 * will be acknowledged without further processing.
    854 	 *
    855 	 * This does not immediately `abort' an operation in progress (c.f.
    856 	 * audio(9)) but is the method to leave the FIFO behind in a clean
    857 	 * state with the least hair.  (Besides, that item needs to be
    858 	 * rephrased for trigger_*()-based DMA environments.)
    859 	 */
    860 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
    861 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
    862 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
    863 	    ESO_IO_A2DMAM_DMAENB);
    864 
    865 	sc->sc_pintr = NULL;
    866 	mutex_exit(&sc->sc_lock);
    867 	error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
    868 	if (!mutex_tryenter(&sc->sc_lock)) {
    869 		mutex_spin_exit(&sc->sc_intr_lock);
    870 		mutex_enter(&sc->sc_lock);
    871 		mutex_spin_enter(&sc->sc_intr_lock);
    872 	}
    873 
    874 	/* Shut down DMA completely. */
    875 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
    876 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
    877 
    878 	return error == EWOULDBLOCK ? 0 : error;
    879 }
    880 
    881 static int
    882 eso_halt_input(void *hdl)
    883 {
    884 	struct eso_softc *sc;
    885 	int error;
    886 
    887 	sc = hdl;
    888 	DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));
    889 
    890 	/* Just like eso_halt_output(), but for Audio 1. */
    891 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
    892 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
    893 	    ESO_CTLREG_A1C2_DMAENB);
    894 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
    895 	    DMA37MD_WRITE | DMA37MD_DEMAND);
    896 
    897 	sc->sc_rintr = NULL;
    898 	mutex_exit(&sc->sc_lock);
    899 	error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
    900 	if (!mutex_tryenter(&sc->sc_lock)) {
    901 		mutex_spin_exit(&sc->sc_intr_lock);
    902 		mutex_enter(&sc->sc_lock);
    903 		mutex_spin_enter(&sc->sc_intr_lock);
    904 	}
    905 
    906 	/* Shut down DMA completely. */
    907 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
    908 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
    909 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
    910 	    ESO_DMAC_MASK_MASK);
    911 
    912 	return error == EWOULDBLOCK ? 0 : error;
    913 }
    914 
    915 static int
    916 eso_getdev(void *hdl, struct audio_device *retp)
    917 {
    918 	struct eso_softc *sc;
    919 
    920 	sc = hdl;
    921 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
    922 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
    923 	    sc->sc_revision);
    924 	if (sc->sc_revision <
    925 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
    926 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
    927 		    sizeof (retp->config));
    928 	else
    929 		strncpy(retp->config, "unknown", sizeof (retp->config));
    930 
    931 	return 0;
    932 }
    933 
    934 static int
    935 eso_set_port(void *hdl, mixer_ctrl_t *cp)
    936 {
    937 	struct eso_softc *sc;
    938 	unsigned int lgain, rgain;
    939 	uint8_t tmp;
    940 	int error;
    941 
    942 	sc = hdl;
    943 	error = 0;
    944 
    945 	mutex_spin_enter(&sc->sc_intr_lock);
    946 
    947 	switch (cp->dev) {
    948 	case ESO_DAC_PLAY_VOL:
    949 	case ESO_MIC_PLAY_VOL:
    950 	case ESO_LINE_PLAY_VOL:
    951 	case ESO_SYNTH_PLAY_VOL:
    952 	case ESO_CD_PLAY_VOL:
    953 	case ESO_AUXB_PLAY_VOL:
    954 	case ESO_RECORD_VOL:
    955 	case ESO_DAC_REC_VOL:
    956 	case ESO_MIC_REC_VOL:
    957 	case ESO_LINE_REC_VOL:
    958 	case ESO_SYNTH_REC_VOL:
    959 	case ESO_CD_REC_VOL:
    960 	case ESO_AUXB_REC_VOL:
    961 		if (cp->type != AUDIO_MIXER_VALUE) {
    962 			error = EINVAL;
    963 			break;
    964 		}
    965 
    966 		/*
    967 		 * Stereo-capable mixer ports: if we get a single-channel
    968 		 * gain value passed in, then we duplicate it to both left
    969 		 * and right channels.
    970 		 */
    971 		switch (cp->un.value.num_channels) {
    972 		case 1:
    973 			lgain = rgain = ESO_GAIN_TO_4BIT(
    974 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    975 			break;
    976 		case 2:
    977 			lgain = ESO_GAIN_TO_4BIT(
    978 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
    979 			rgain = ESO_GAIN_TO_4BIT(
    980 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
    981 			break;
    982 		default:
    983 			error = EINVAL;
    984 			break;
    985 		}
    986 
    987 		if (!error) {
    988 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
    989 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
    990 			eso_set_gain(sc, cp->dev);
    991 		}
    992 		break;
    993 
    994 	case ESO_MASTER_VOL:
    995 		if (cp->type != AUDIO_MIXER_VALUE) {
    996 			error = EINVAL;
    997 			break;
    998 		}
    999 
   1000 		/* Like above, but a precision of 6 bits. */
   1001 		switch (cp->un.value.num_channels) {
   1002 		case 1:
   1003 			lgain = rgain = ESO_GAIN_TO_6BIT(
   1004 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1005 			break;
   1006 		case 2:
   1007 			lgain = ESO_GAIN_TO_6BIT(
   1008 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1009 			rgain = ESO_GAIN_TO_6BIT(
   1010 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1011 			break;
   1012 		default:
   1013 			error = EINVAL;
   1014 			break;
   1015 		}
   1016 
   1017 		if (!error) {
   1018 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
   1019 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
   1020 			eso_set_gain(sc, cp->dev);
   1021 		}
   1022 		break;
   1023 
   1024 	case ESO_SPATIALIZER:
   1025 		if (cp->type != AUDIO_MIXER_VALUE ||
   1026 		    cp->un.value.num_channels != 1) {
   1027 			error = EINVAL;
   1028 			break;
   1029 		}
   1030 
   1031 		sc->sc_gain[cp->dev][ESO_LEFT] =
   1032 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
   1033 		    ESO_GAIN_TO_6BIT(
   1034 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1035 		eso_set_gain(sc, cp->dev);
   1036 		break;
   1037 
   1038 	case ESO_MONO_PLAY_VOL:
   1039 	case ESO_MONO_REC_VOL:
   1040 		if (cp->type != AUDIO_MIXER_VALUE ||
   1041 		    cp->un.value.num_channels != 1) {
   1042 			error = EINVAL;
   1043 			break;
   1044 		}
   1045 
   1046 		sc->sc_gain[cp->dev][ESO_LEFT] =
   1047 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
   1048 		    ESO_GAIN_TO_4BIT(
   1049 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1050 		eso_set_gain(sc, cp->dev);
   1051 		break;
   1052 
   1053 	case ESO_PCSPEAKER_VOL:
   1054 		if (cp->type != AUDIO_MIXER_VALUE ||
   1055 		    cp->un.value.num_channels != 1) {
   1056 			error = EINVAL;
   1057 			break;
   1058 		}
   1059 
   1060 		sc->sc_gain[cp->dev][ESO_LEFT] =
   1061 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
   1062 		    ESO_GAIN_TO_3BIT(
   1063 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1064 		eso_set_gain(sc, cp->dev);
   1065 		break;
   1066 
   1067 	case ESO_SPATIALIZER_ENABLE:
   1068 		if (cp->type != AUDIO_MIXER_ENUM) {
   1069 			error = EINVAL;
   1070 			break;
   1071 		}
   1072 
   1073 		sc->sc_spatializer = (cp->un.ord != 0);
   1074 
   1075 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
   1076 		if (sc->sc_spatializer)
   1077 			tmp |= ESO_MIXREG_SPAT_ENB;
   1078 		else
   1079 			tmp &= ~ESO_MIXREG_SPAT_ENB;
   1080 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
   1081 		    tmp | ESO_MIXREG_SPAT_RSTREL);
   1082 		break;
   1083 
   1084 	case ESO_MASTER_MUTE:
   1085 		if (cp->type != AUDIO_MIXER_ENUM) {
   1086 			error = EINVAL;
   1087 			break;
   1088 		}
   1089 
   1090 		sc->sc_mvmute = (cp->un.ord != 0);
   1091 
   1092 		if (sc->sc_mvmute) {
   1093 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   1094 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
   1095 			    ESO_MIXREG_LMVM_MUTE);
   1096 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   1097 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
   1098 			    ESO_MIXREG_RMVM_MUTE);
   1099 		} else {
   1100 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   1101 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
   1102 			    ~ESO_MIXREG_LMVM_MUTE);
   1103 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   1104 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
   1105 			    ~ESO_MIXREG_RMVM_MUTE);
   1106 		}
   1107 		break;
   1108 
   1109 	case ESO_MONOOUT_SOURCE:
   1110 		if (cp->type != AUDIO_MIXER_ENUM) {
   1111 			error = EINVAL;
   1112 			break;
   1113 		}
   1114 
   1115 		error = eso_set_monooutsrc(sc, cp->un.ord);
   1116 		break;
   1117 
   1118 	case ESO_MONOIN_BYPASS:
   1119 		if (cp->type != AUDIO_MIXER_ENUM) {
   1120 			error = EINVAL;
   1121 			break;
   1122 		}
   1123 
   1124 		error = (eso_set_monoinbypass(sc, cp->un.ord));
   1125 		break;
   1126 
   1127 	case ESO_RECORD_MONITOR:
   1128 		if (cp->type != AUDIO_MIXER_ENUM) {
   1129 			error = EINVAL;
   1130 			break;
   1131 		}
   1132 
   1133 		sc->sc_recmon = (cp->un.ord != 0);
   1134 
   1135 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
   1136 		if (sc->sc_recmon)
   1137 			tmp |= ESO_CTLREG_ACTL_RECMON;
   1138 		else
   1139 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
   1140 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
   1141 		break;
   1142 
   1143 	case ESO_RECORD_SOURCE:
   1144 		if (cp->type != AUDIO_MIXER_ENUM) {
   1145 			error = EINVAL;
   1146 			break;
   1147 		}
   1148 
   1149 		error = eso_set_recsrc(sc, cp->un.ord);
   1150 		break;
   1151 
   1152 	case ESO_MIC_PREAMP:
   1153 		if (cp->type != AUDIO_MIXER_ENUM) {
   1154 			error = EINVAL;
   1155 			break;
   1156 		}
   1157 
   1158 		error = eso_set_preamp(sc, cp->un.ord);
   1159 		break;
   1160 
   1161 	default:
   1162 		error = EINVAL;
   1163 		break;
   1164 	}
   1165 
   1166 	mutex_spin_exit(&sc->sc_intr_lock);
   1167 	return error;
   1168 }
   1169 
   1170 static int
   1171 eso_get_port(void *hdl, mixer_ctrl_t *cp)
   1172 {
   1173 	struct eso_softc *sc;
   1174 
   1175 	sc = hdl;
   1176 
   1177 	mutex_spin_enter(&sc->sc_intr_lock);
   1178 
   1179 	switch (cp->dev) {
   1180 	case ESO_MASTER_VOL:
   1181 		/* Reload from mixer after hardware volume control use. */
   1182 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
   1183 			eso_reload_master_vol(sc);
   1184 		/* FALLTHROUGH */
   1185 	case ESO_DAC_PLAY_VOL:
   1186 	case ESO_MIC_PLAY_VOL:
   1187 	case ESO_LINE_PLAY_VOL:
   1188 	case ESO_SYNTH_PLAY_VOL:
   1189 	case ESO_CD_PLAY_VOL:
   1190 	case ESO_AUXB_PLAY_VOL:
   1191 	case ESO_RECORD_VOL:
   1192 	case ESO_DAC_REC_VOL:
   1193 	case ESO_MIC_REC_VOL:
   1194 	case ESO_LINE_REC_VOL:
   1195 	case ESO_SYNTH_REC_VOL:
   1196 	case ESO_CD_REC_VOL:
   1197 	case ESO_AUXB_REC_VOL:
   1198 		/*
   1199 		 * Stereo-capable ports: if a single-channel query is made,
   1200 		 * just return the left channel's value (since single-channel
   1201 		 * settings themselves are applied to both channels).
   1202 		 */
   1203 		switch (cp->un.value.num_channels) {
   1204 		case 1:
   1205 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1206 			    sc->sc_gain[cp->dev][ESO_LEFT];
   1207 			break;
   1208 		case 2:
   1209 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1210 			    sc->sc_gain[cp->dev][ESO_LEFT];
   1211 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1212 			    sc->sc_gain[cp->dev][ESO_RIGHT];
   1213 			break;
   1214 		default:
   1215 			break;
   1216 		}
   1217 		break;
   1218 
   1219 	case ESO_MONO_PLAY_VOL:
   1220 	case ESO_PCSPEAKER_VOL:
   1221 	case ESO_MONO_REC_VOL:
   1222 	case ESO_SPATIALIZER:
   1223 		if (cp->un.value.num_channels != 1) {
   1224 			break;
   1225 		}
   1226 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1227 		    sc->sc_gain[cp->dev][ESO_LEFT];
   1228 		break;
   1229 
   1230 	case ESO_RECORD_MONITOR:
   1231 		cp->un.ord = sc->sc_recmon;
   1232 		break;
   1233 
   1234 	case ESO_RECORD_SOURCE:
   1235 		cp->un.ord = sc->sc_recsrc;
   1236 		break;
   1237 
   1238 	case ESO_MONOOUT_SOURCE:
   1239 		cp->un.ord = sc->sc_monooutsrc;
   1240 		break;
   1241 
   1242 	case ESO_MONOIN_BYPASS:
   1243 		cp->un.ord = sc->sc_monoinbypass;
   1244 		break;
   1245 
   1246 	case ESO_SPATIALIZER_ENABLE:
   1247 		cp->un.ord = sc->sc_spatializer;
   1248 		break;
   1249 
   1250 	case ESO_MIC_PREAMP:
   1251 		cp->un.ord = sc->sc_preamp;
   1252 		break;
   1253 
   1254 	case ESO_MASTER_MUTE:
   1255 		/* Reload from mixer after hardware volume control use. */
   1256 		if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
   1257 			eso_reload_master_vol(sc);
   1258 		cp->un.ord = sc->sc_mvmute;
   1259 		break;
   1260 
   1261 	default:
   1262 		break;
   1263 	}
   1264 
   1265 	mutex_spin_exit(&sc->sc_intr_lock);
   1266 	return 0;
   1267 }
   1268 
   1269 static int
   1270 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
   1271 {
   1272 
   1273 	switch (dip->index) {
   1274 	case ESO_DAC_PLAY_VOL:
   1275 		dip->mixer_class = ESO_INPUT_CLASS;
   1276 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1277 		strcpy(dip->label.name, AudioNdac);
   1278 		dip->type = AUDIO_MIXER_VALUE;
   1279 		dip->un.v.num_channels = 2;
   1280 		strcpy(dip->un.v.units.name, AudioNvolume);
   1281 		break;
   1282 	case ESO_MIC_PLAY_VOL:
   1283 		dip->mixer_class = ESO_INPUT_CLASS;
   1284 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1285 		strcpy(dip->label.name, AudioNmicrophone);
   1286 		dip->type = AUDIO_MIXER_VALUE;
   1287 		dip->un.v.num_channels = 2;
   1288 		strcpy(dip->un.v.units.name, AudioNvolume);
   1289 		break;
   1290 	case ESO_LINE_PLAY_VOL:
   1291 		dip->mixer_class = ESO_INPUT_CLASS;
   1292 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1293 		strcpy(dip->label.name, AudioNline);
   1294 		dip->type = AUDIO_MIXER_VALUE;
   1295 		dip->un.v.num_channels = 2;
   1296 		strcpy(dip->un.v.units.name, AudioNvolume);
   1297 		break;
   1298 	case ESO_SYNTH_PLAY_VOL:
   1299 		dip->mixer_class = ESO_INPUT_CLASS;
   1300 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1301 		strcpy(dip->label.name, AudioNfmsynth);
   1302 		dip->type = AUDIO_MIXER_VALUE;
   1303 		dip->un.v.num_channels = 2;
   1304 		strcpy(dip->un.v.units.name, AudioNvolume);
   1305 		break;
   1306 	case ESO_MONO_PLAY_VOL:
   1307 		dip->mixer_class = ESO_INPUT_CLASS;
   1308 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1309 		strcpy(dip->label.name, "mono_in");
   1310 		dip->type = AUDIO_MIXER_VALUE;
   1311 		dip->un.v.num_channels = 1;
   1312 		strcpy(dip->un.v.units.name, AudioNvolume);
   1313 		break;
   1314 	case ESO_CD_PLAY_VOL:
   1315 		dip->mixer_class = ESO_INPUT_CLASS;
   1316 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1317 		strcpy(dip->label.name, AudioNcd);
   1318 		dip->type = AUDIO_MIXER_VALUE;
   1319 		dip->un.v.num_channels = 2;
   1320 		strcpy(dip->un.v.units.name, AudioNvolume);
   1321 		break;
   1322 	case ESO_AUXB_PLAY_VOL:
   1323 		dip->mixer_class = ESO_INPUT_CLASS;
   1324 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1325 		strcpy(dip->label.name, "auxb");
   1326 		dip->type = AUDIO_MIXER_VALUE;
   1327 		dip->un.v.num_channels = 2;
   1328 		strcpy(dip->un.v.units.name, AudioNvolume);
   1329 		break;
   1330 
   1331 	case ESO_MIC_PREAMP:
   1332 		dip->mixer_class = ESO_MICROPHONE_CLASS;
   1333 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1334 		strcpy(dip->label.name, AudioNpreamp);
   1335 		dip->type = AUDIO_MIXER_ENUM;
   1336 		dip->un.e.num_mem = 2;
   1337 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1338 		dip->un.e.member[0].ord = 0;
   1339 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1340 		dip->un.e.member[1].ord = 1;
   1341 		break;
   1342 	case ESO_MICROPHONE_CLASS:
   1343 		dip->mixer_class = ESO_MICROPHONE_CLASS;
   1344 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1345 		strcpy(dip->label.name, AudioNmicrophone);
   1346 		dip->type = AUDIO_MIXER_CLASS;
   1347 		break;
   1348 
   1349 	case ESO_INPUT_CLASS:
   1350 		dip->mixer_class = ESO_INPUT_CLASS;
   1351 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1352 		strcpy(dip->label.name, AudioCinputs);
   1353 		dip->type = AUDIO_MIXER_CLASS;
   1354 		break;
   1355 
   1356 	case ESO_MASTER_VOL:
   1357 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1358 		dip->prev = AUDIO_MIXER_LAST;
   1359 		dip->next = ESO_MASTER_MUTE;
   1360 		strcpy(dip->label.name, AudioNmaster);
   1361 		dip->type = AUDIO_MIXER_VALUE;
   1362 		dip->un.v.num_channels = 2;
   1363 		strcpy(dip->un.v.units.name, AudioNvolume);
   1364 		break;
   1365 	case ESO_MASTER_MUTE:
   1366 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1367 		dip->prev = ESO_MASTER_VOL;
   1368 		dip->next = AUDIO_MIXER_LAST;
   1369 		strcpy(dip->label.name, AudioNmute);
   1370 		dip->type = AUDIO_MIXER_ENUM;
   1371 		dip->un.e.num_mem = 2;
   1372 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1373 		dip->un.e.member[0].ord = 0;
   1374 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1375 		dip->un.e.member[1].ord = 1;
   1376 		break;
   1377 
   1378 	case ESO_PCSPEAKER_VOL:
   1379 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1380 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1381 		strcpy(dip->label.name, "pc_speaker");
   1382 		dip->type = AUDIO_MIXER_VALUE;
   1383 		dip->un.v.num_channels = 1;
   1384 		strcpy(dip->un.v.units.name, AudioNvolume);
   1385 		break;
   1386 	case ESO_MONOOUT_SOURCE:
   1387 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1388 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1389 		strcpy(dip->label.name, "mono_out");
   1390 		dip->type = AUDIO_MIXER_ENUM;
   1391 		dip->un.e.num_mem = 3;
   1392 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
   1393 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
   1394 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
   1395 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
   1396 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
   1397 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
   1398 		break;
   1399 
   1400 	case ESO_MONOIN_BYPASS:
   1401 		dip->mixer_class = ESO_MONOIN_CLASS;
   1402 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1403 		strcpy(dip->label.name, "bypass");
   1404 		dip->type = AUDIO_MIXER_ENUM;
   1405 		dip->un.e.num_mem = 2;
   1406 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1407 		dip->un.e.member[0].ord = 0;
   1408 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1409 		dip->un.e.member[1].ord = 1;
   1410 		break;
   1411 	case ESO_MONOIN_CLASS:
   1412 		dip->mixer_class = ESO_MONOIN_CLASS;
   1413 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1414 		strcpy(dip->label.name, "mono_in");
   1415 		dip->type = AUDIO_MIXER_CLASS;
   1416 		break;
   1417 
   1418 	case ESO_SPATIALIZER:
   1419 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1420 		dip->prev = AUDIO_MIXER_LAST;
   1421 		dip->next = ESO_SPATIALIZER_ENABLE;
   1422 		strcpy(dip->label.name, AudioNspatial);
   1423 		dip->type = AUDIO_MIXER_VALUE;
   1424 		dip->un.v.num_channels = 1;
   1425 		strcpy(dip->un.v.units.name, "level");
   1426 		break;
   1427 	case ESO_SPATIALIZER_ENABLE:
   1428 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1429 		dip->prev = ESO_SPATIALIZER;
   1430 		dip->next = AUDIO_MIXER_LAST;
   1431 		strcpy(dip->label.name, "enable");
   1432 		dip->type = AUDIO_MIXER_ENUM;
   1433 		dip->un.e.num_mem = 2;
   1434 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1435 		dip->un.e.member[0].ord = 0;
   1436 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1437 		dip->un.e.member[1].ord = 1;
   1438 		break;
   1439 
   1440 	case ESO_OUTPUT_CLASS:
   1441 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1442 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1443 		strcpy(dip->label.name, AudioCoutputs);
   1444 		dip->type = AUDIO_MIXER_CLASS;
   1445 		break;
   1446 
   1447 	case ESO_RECORD_MONITOR:
   1448 		dip->mixer_class = ESO_MONITOR_CLASS;
   1449 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1450 		strcpy(dip->label.name, AudioNmute);
   1451 		dip->type = AUDIO_MIXER_ENUM;
   1452 		dip->un.e.num_mem = 2;
   1453 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1454 		dip->un.e.member[0].ord = 0;
   1455 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1456 		dip->un.e.member[1].ord = 1;
   1457 		break;
   1458 	case ESO_MONITOR_CLASS:
   1459 		dip->mixer_class = ESO_MONITOR_CLASS;
   1460 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1461 		strcpy(dip->label.name, AudioCmonitor);
   1462 		dip->type = AUDIO_MIXER_CLASS;
   1463 		break;
   1464 
   1465 	case ESO_RECORD_VOL:
   1466 		dip->mixer_class = ESO_RECORD_CLASS;
   1467 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1468 		strcpy(dip->label.name, AudioNrecord);
   1469 		dip->type = AUDIO_MIXER_VALUE;
   1470 		strcpy(dip->un.v.units.name, AudioNvolume);
   1471 		break;
   1472 	case ESO_RECORD_SOURCE:
   1473 		dip->mixer_class = ESO_RECORD_CLASS;
   1474 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1475 		strcpy(dip->label.name, AudioNsource);
   1476 		dip->type = AUDIO_MIXER_ENUM;
   1477 		dip->un.e.num_mem = 4;
   1478 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   1479 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
   1480 		strcpy(dip->un.e.member[1].label.name, AudioNline);
   1481 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
   1482 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
   1483 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
   1484 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
   1485 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
   1486 		break;
   1487 	case ESO_DAC_REC_VOL:
   1488 		dip->mixer_class = ESO_RECORD_CLASS;
   1489 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1490 		strcpy(dip->label.name, AudioNdac);
   1491 		dip->type = AUDIO_MIXER_VALUE;
   1492 		dip->un.v.num_channels = 2;
   1493 		strcpy(dip->un.v.units.name, AudioNvolume);
   1494 		break;
   1495 	case ESO_MIC_REC_VOL:
   1496 		dip->mixer_class = ESO_RECORD_CLASS;
   1497 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1498 		strcpy(dip->label.name, AudioNmicrophone);
   1499 		dip->type = AUDIO_MIXER_VALUE;
   1500 		dip->un.v.num_channels = 2;
   1501 		strcpy(dip->un.v.units.name, AudioNvolume);
   1502 		break;
   1503 	case ESO_LINE_REC_VOL:
   1504 		dip->mixer_class = ESO_RECORD_CLASS;
   1505 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1506 		strcpy(dip->label.name, AudioNline);
   1507 		dip->type = AUDIO_MIXER_VALUE;
   1508 		dip->un.v.num_channels = 2;
   1509 		strcpy(dip->un.v.units.name, AudioNvolume);
   1510 		break;
   1511 	case ESO_SYNTH_REC_VOL:
   1512 		dip->mixer_class = ESO_RECORD_CLASS;
   1513 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1514 		strcpy(dip->label.name, AudioNfmsynth);
   1515 		dip->type = AUDIO_MIXER_VALUE;
   1516 		dip->un.v.num_channels = 2;
   1517 		strcpy(dip->un.v.units.name, AudioNvolume);
   1518 		break;
   1519 	case ESO_MONO_REC_VOL:
   1520 		dip->mixer_class = ESO_RECORD_CLASS;
   1521 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1522 		strcpy(dip->label.name, "mono_in");
   1523 		dip->type = AUDIO_MIXER_VALUE;
   1524 		dip->un.v.num_channels = 1; /* No lies */
   1525 		strcpy(dip->un.v.units.name, AudioNvolume);
   1526 		break;
   1527 	case ESO_CD_REC_VOL:
   1528 		dip->mixer_class = ESO_RECORD_CLASS;
   1529 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1530 		strcpy(dip->label.name, AudioNcd);
   1531 		dip->type = AUDIO_MIXER_VALUE;
   1532 		dip->un.v.num_channels = 2;
   1533 		strcpy(dip->un.v.units.name, AudioNvolume);
   1534 		break;
   1535 	case ESO_AUXB_REC_VOL:
   1536 		dip->mixer_class = ESO_RECORD_CLASS;
   1537 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1538 		strcpy(dip->label.name, "auxb");
   1539 		dip->type = AUDIO_MIXER_VALUE;
   1540 		dip->un.v.num_channels = 2;
   1541 		strcpy(dip->un.v.units.name, AudioNvolume);
   1542 		break;
   1543 	case ESO_RECORD_CLASS:
   1544 		dip->mixer_class = ESO_RECORD_CLASS;
   1545 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1546 		strcpy(dip->label.name, AudioCrecord);
   1547 		dip->type = AUDIO_MIXER_CLASS;
   1548 		break;
   1549 
   1550 	default:
   1551 		return ENXIO;
   1552 	}
   1553 
   1554 	return 0;
   1555 }
   1556 
   1557 static int
   1558 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
   1559     size_t boundary, int direction, struct eso_dma *ed)
   1560 {
   1561 	int error;
   1562 
   1563 	ed->ed_size = size;
   1564 
   1565 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
   1566 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
   1567 	    &ed->ed_nsegs, BUS_DMA_WAITOK);
   1568 	if (error)
   1569 		goto out;
   1570 
   1571 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
   1572 	    ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
   1573 	if (error)
   1574 		goto free;
   1575 
   1576 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
   1577 	    BUS_DMA_WAITOK, &ed->ed_map);
   1578 	if (error)
   1579 		goto unmap;
   1580 
   1581 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
   1582 	    ed->ed_size, NULL, BUS_DMA_WAITOK |
   1583 	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
   1584 	if (error)
   1585 		goto destroy;
   1586 
   1587 	return 0;
   1588 
   1589  destroy:
   1590 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
   1591  unmap:
   1592 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
   1593  free:
   1594 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
   1595  out:
   1596 	return error;
   1597 }
   1598 
   1599 static void
   1600 eso_freemem(struct eso_dma *ed)
   1601 {
   1602 
   1603 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
   1604 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
   1605 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
   1606 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
   1607 }
   1608 
   1609 static struct eso_dma *
   1610 eso_kva2dma(const struct eso_softc *sc, const void *kva)
   1611 {
   1612 	struct eso_dma *p;
   1613 
   1614 	SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
   1615 		if (KVADDR(p) == kva)
   1616 			return p;
   1617 	}
   1618 
   1619 	panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
   1620 	/* NOTREACHED */
   1621 }
   1622 
   1623 static void *
   1624 eso_allocm(void *hdl, int direction, size_t size)
   1625 {
   1626 	struct eso_softc *sc;
   1627 	struct eso_dma *ed;
   1628 	size_t boundary;
   1629 	int error;
   1630 
   1631 	sc = hdl;
   1632 	ed = kmem_alloc(sizeof (*ed), KM_SLEEP);
   1633 
   1634 	/*
   1635 	 * Apparently the Audio 1 DMA controller's current address
   1636 	 * register can't roll over a 64K address boundary, so we have to
   1637 	 * take care of that ourselves.  Similarly, the Audio 2 DMA
   1638 	 * controller needs a 1M address boundary.
   1639 	 */
   1640 	if (direction == AUMODE_RECORD)
   1641 		boundary = 0x10000;
   1642 	else
   1643 		boundary = 0x100000;
   1644 
   1645 	/*
   1646 	 * XXX Work around allocation problems for Audio 1, which
   1647 	 * XXX implements the 24 low address bits only, with
   1648 	 * XXX machine-specific DMA tag use.
   1649 	 */
   1650 #ifdef alpha
   1651 	/*
   1652 	 * XXX Force allocation through the (ISA) SGMAP.
   1653 	 */
   1654 	if (direction == AUMODE_RECORD)
   1655 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
   1656 	else
   1657 #elif defined(amd64) || defined(i386)
   1658 	/*
   1659 	 * XXX Force allocation through the ISA DMA tag.
   1660 	 */
   1661 	if (direction == AUMODE_RECORD)
   1662 		ed->ed_dmat = &isa_bus_dma_tag;
   1663 	else
   1664 #endif
   1665 		ed->ed_dmat = sc->sc_dmat;
   1666 
   1667 	error = eso_allocmem(sc, size, 32, boundary, direction, ed);
   1668 	if (error) {
   1669 		kmem_free(ed, sizeof(*ed));
   1670 		return NULL;
   1671 	}
   1672 	SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
   1673 
   1674 	return KVADDR(ed);
   1675 }
   1676 
   1677 static void
   1678 eso_freem(void *hdl, void *addr, size_t size)
   1679 {
   1680 	struct eso_softc *sc;
   1681 	struct eso_dma *p;
   1682 
   1683 	sc = hdl;
   1684 	p = eso_kva2dma(sc, addr);
   1685 
   1686 	SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
   1687 	eso_freemem(p);
   1688 	kmem_free(p, sizeof(*p));
   1689 }
   1690 
   1691 static size_t
   1692 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
   1693 {
   1694 	size_t maxsize;
   1695 
   1696 	/*
   1697 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
   1698 	 * bytes.  This is because IO_A2DMAC is a two byte value
   1699 	 * indicating the literal byte count, and the 4 least significant
   1700 	 * bits are read-only.  Zero is not used as a special case for
   1701 	 * 0x10000.
   1702 	 *
   1703 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
   1704 	 * be represented.
   1705 	 */
   1706 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
   1707 
   1708 	if (bufsize > maxsize)
   1709 		bufsize = maxsize;
   1710 
   1711 	return bufsize;
   1712 }
   1713 
   1714 static paddr_t
   1715 eso_mappage(void *hdl, void *addr, off_t offs, int prot)
   1716 {
   1717 	struct eso_softc *sc;
   1718 	struct eso_dma *ed;
   1719 
   1720 	sc = hdl;
   1721 	if (offs < 0)
   1722 		return -1;
   1723 	ed = eso_kva2dma(sc, addr);
   1724 
   1725 	return bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
   1726 	    offs, prot, BUS_DMA_WAITOK);
   1727 }
   1728 
   1729 /* ARGSUSED */
   1730 static int
   1731 eso_get_props(void *hdl)
   1732 {
   1733 
   1734 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   1735 	    AUDIO_PROP_FULLDUPLEX;
   1736 }
   1737 
   1738 static int
   1739 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
   1740     void (*intr)(void *), void *arg, const audio_params_t *param)
   1741 {
   1742 	struct eso_softc *sc;
   1743 	struct eso_dma *ed;
   1744 	uint8_t a2c1;
   1745 
   1746 	sc = hdl;
   1747 	DPRINTF((
   1748 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
   1749 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
   1750 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
   1751 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
   1752 	    param->precision, param->channels));
   1753 
   1754 	/* Find DMA buffer. */
   1755 	ed = eso_kva2dma(sc, start);
   1756 	DPRINTF(("%s: dmaaddr %lx\n",
   1757 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
   1758 
   1759 	sc->sc_pintr = intr;
   1760 	sc->sc_parg = arg;
   1761 
   1762 	/* Compute drain timeout. */
   1763 	sc->sc_pdrain = (blksize * NBBY * hz) /
   1764 	    (param->sample_rate * param->channels *
   1765 	     param->precision) + 2;	/* slop */
   1766 
   1767 	/* DMA transfer count (in `words'!) reload using 2's complement. */
   1768 	blksize = -(blksize >> 1);
   1769 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
   1770 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
   1771 
   1772 	/* Update DAC to reflect DMA count and audio parameters. */
   1773 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
   1774 	if (param->precision == 16)
   1775 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
   1776 	else
   1777 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
   1778 	if (param->channels == 2)
   1779 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
   1780 	else
   1781 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
   1782 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1783 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1784 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
   1785 	else
   1786 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
   1787 	/* Unmask IRQ. */
   1788 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
   1789 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
   1790 
   1791 	/* Set up DMA controller. */
   1792 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
   1793 	    DMAADDR(ed));
   1794 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
   1795 	    (uint8_t *)end - (uint8_t *)start);
   1796 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
   1797 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
   1798 
   1799 	/* Start DMA. */
   1800 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
   1801 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
   1802 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
   1803 	    ESO_MIXREG_A2C1_AUTO;
   1804 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
   1805 
   1806 	return 0;
   1807 }
   1808 
   1809 static int
   1810 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
   1811     void (*intr)(void *), void *arg, const audio_params_t *param)
   1812 {
   1813 	struct eso_softc *sc;
   1814 	struct eso_dma *ed;
   1815 	uint8_t actl, a1c1;
   1816 
   1817 	sc = hdl;
   1818 	DPRINTF((
   1819 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
   1820 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
   1821 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
   1822 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
   1823 	    param->precision, param->channels));
   1824 
   1825 	/*
   1826 	 * If we failed to configure the Audio 1 DMA controller, bail here
   1827 	 * while retaining availability of the DAC direction (in Audio 2).
   1828 	 */
   1829 	if (!sc->sc_dmac_configured)
   1830 		return EIO;
   1831 
   1832 	/* Find DMA buffer. */
   1833 	ed = eso_kva2dma(sc, start);
   1834 	DPRINTF(("%s: dmaaddr %lx\n",
   1835 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
   1836 
   1837 	sc->sc_rintr = intr;
   1838 	sc->sc_rarg = arg;
   1839 
   1840 	/* Compute drain timeout. */
   1841 	sc->sc_rdrain = (blksize * NBBY * hz) /
   1842 	    (param->sample_rate * param->channels *
   1843 	     param->precision) + 2;	/* slop */
   1844 
   1845 	/* Set up ADC DMA converter parameters. */
   1846 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
   1847 	if (param->channels == 2) {
   1848 		actl &= ~ESO_CTLREG_ACTL_MONO;
   1849 		actl |= ESO_CTLREG_ACTL_STEREO;
   1850 	} else {
   1851 		actl &= ~ESO_CTLREG_ACTL_STEREO;
   1852 		actl |= ESO_CTLREG_ACTL_MONO;
   1853 	}
   1854 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
   1855 
   1856 	/* Set up Transfer Type: maybe move to attach time? */
   1857 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
   1858 
   1859 	/* DMA transfer count reload using 2's complement. */
   1860 	blksize = -blksize;
   1861 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
   1862 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
   1863 
   1864 	/* Set up and enable Audio 1 DMA FIFO. */
   1865 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
   1866 	if (param->precision == 16)
   1867 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
   1868 	if (param->channels == 2)
   1869 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
   1870 	else
   1871 		a1c1 |= ESO_CTLREG_A1C1_MONO;
   1872 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1873 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1874 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
   1875 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
   1876 
   1877 	/* Set up ADC IRQ/DRQ parameters. */
   1878 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
   1879 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
   1880 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
   1881 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
   1882 
   1883 	/* Set up and enable DMA controller. */
   1884 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
   1885 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
   1886 	    ESO_DMAC_MASK_MASK);
   1887 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
   1888 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
   1889 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
   1890 	    DMAADDR(ed));
   1891 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
   1892 	    (uint8_t *)end - (uint8_t *)start - 1);
   1893 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
   1894 
   1895 	/* Start DMA. */
   1896 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
   1897 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
   1898 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
   1899 
   1900 	return 0;
   1901 }
   1902 
   1903 
   1904 static void
   1905 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
   1906 {
   1907 	struct eso_softc *sc;
   1908 
   1909 	sc = addr;
   1910 	*intr = &sc->sc_intr_lock;
   1911 	*thread = &sc->sc_lock;
   1912 }
   1913 
   1914 /*
   1915  * Mixer utility functions.
   1916  */
   1917 static int
   1918 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
   1919 {
   1920 	mixer_devinfo_t di;
   1921 	int i;
   1922 
   1923 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1924 
   1925 	di.index = ESO_RECORD_SOURCE;
   1926 	if (eso_query_devinfo(sc, &di) != 0)
   1927 		panic("eso_set_recsrc: eso_query_devinfo failed");
   1928 
   1929 	for (i = 0; i < di.un.e.num_mem; i++) {
   1930 		if (recsrc == di.un.e.member[i].ord) {
   1931 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
   1932 			sc->sc_recsrc = recsrc;
   1933 			return 0;
   1934 		}
   1935 	}
   1936 
   1937 	return EINVAL;
   1938 }
   1939 
   1940 static int
   1941 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
   1942 {
   1943 	mixer_devinfo_t di;
   1944 	int i;
   1945 	uint8_t mpm;
   1946 
   1947 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1948 
   1949 	di.index = ESO_MONOOUT_SOURCE;
   1950 	if (eso_query_devinfo(sc, &di) != 0)
   1951 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
   1952 
   1953 	for (i = 0; i < di.un.e.num_mem; i++) {
   1954 		if (monooutsrc == di.un.e.member[i].ord) {
   1955 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1956 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
   1957 			mpm |= monooutsrc;
   1958 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1959 			sc->sc_monooutsrc = monooutsrc;
   1960 			return 0;
   1961 		}
   1962 	}
   1963 
   1964 	return EINVAL;
   1965 }
   1966 
   1967 static int
   1968 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
   1969 {
   1970 	mixer_devinfo_t di;
   1971 	int i;
   1972 	uint8_t mpm;
   1973 
   1974 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1975 
   1976 	di.index = ESO_MONOIN_BYPASS;
   1977 	if (eso_query_devinfo(sc, &di) != 0)
   1978 		panic("eso_set_monoinbypass: eso_query_devinfo failed");
   1979 
   1980 	for (i = 0; i < di.un.e.num_mem; i++) {
   1981 		if (monoinbypass == di.un.e.member[i].ord) {
   1982 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1983 			mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
   1984 			mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
   1985 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1986 			sc->sc_monoinbypass = monoinbypass;
   1987 			return 0;
   1988 		}
   1989 	}
   1990 
   1991 	return EINVAL;
   1992 }
   1993 
   1994 static int
   1995 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
   1996 {
   1997 	mixer_devinfo_t di;
   1998 	int i;
   1999 	uint8_t mpm;
   2000 
   2001 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   2002 
   2003 	di.index = ESO_MIC_PREAMP;
   2004 	if (eso_query_devinfo(sc, &di) != 0)
   2005 		panic("eso_set_preamp: eso_query_devinfo failed");
   2006 
   2007 	for (i = 0; i < di.un.e.num_mem; i++) {
   2008 		if (preamp == di.un.e.member[i].ord) {
   2009 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   2010 			mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
   2011 			mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
   2012 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   2013 			sc->sc_preamp = preamp;
   2014 			return 0;
   2015 		}
   2016 	}
   2017 
   2018 	return EINVAL;
   2019 }
   2020 
   2021 /*
   2022  * Reload Master Volume and Mute values in softc from mixer; used when
   2023  * those have previously been invalidated by use of hardware volume controls.
   2024  */
   2025 static void
   2026 eso_reload_master_vol(struct eso_softc *sc)
   2027 {
   2028 	uint8_t mv;
   2029 
   2030 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   2031 
   2032 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
   2033 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
   2034 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
   2035 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
   2036 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
   2037 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
   2038 	/* Currently both channels are muted simultaneously; either is OK. */
   2039 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
   2040 }
   2041 
   2042 static void
   2043 eso_set_gain(struct eso_softc *sc, unsigned int port)
   2044 {
   2045 	uint8_t mixreg, tmp;
   2046 
   2047 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   2048 
   2049 	switch (port) {
   2050 	case ESO_DAC_PLAY_VOL:
   2051 		mixreg = ESO_MIXREG_PVR_A2;
   2052 		break;
   2053 	case ESO_MIC_PLAY_VOL:
   2054 		mixreg = ESO_MIXREG_PVR_MIC;
   2055 		break;
   2056 	case ESO_LINE_PLAY_VOL:
   2057 		mixreg = ESO_MIXREG_PVR_LINE;
   2058 		break;
   2059 	case ESO_SYNTH_PLAY_VOL:
   2060 		mixreg = ESO_MIXREG_PVR_SYNTH;
   2061 		break;
   2062 	case ESO_CD_PLAY_VOL:
   2063 		mixreg = ESO_MIXREG_PVR_CD;
   2064 		break;
   2065 	case ESO_AUXB_PLAY_VOL:
   2066 		mixreg = ESO_MIXREG_PVR_AUXB;
   2067 		break;
   2068 
   2069 	case ESO_DAC_REC_VOL:
   2070 		mixreg = ESO_MIXREG_RVR_A2;
   2071 		break;
   2072 	case ESO_MIC_REC_VOL:
   2073 		mixreg = ESO_MIXREG_RVR_MIC;
   2074 		break;
   2075 	case ESO_LINE_REC_VOL:
   2076 		mixreg = ESO_MIXREG_RVR_LINE;
   2077 		break;
   2078 	case ESO_SYNTH_REC_VOL:
   2079 		mixreg = ESO_MIXREG_RVR_SYNTH;
   2080 		break;
   2081 	case ESO_CD_REC_VOL:
   2082 		mixreg = ESO_MIXREG_RVR_CD;
   2083 		break;
   2084 	case ESO_AUXB_REC_VOL:
   2085 		mixreg = ESO_MIXREG_RVR_AUXB;
   2086 		break;
   2087 	case ESO_MONO_PLAY_VOL:
   2088 		mixreg = ESO_MIXREG_PVR_MONO;
   2089 		break;
   2090 	case ESO_MONO_REC_VOL:
   2091 		mixreg = ESO_MIXREG_RVR_MONO;
   2092 		break;
   2093 
   2094 	case ESO_PCSPEAKER_VOL:
   2095 		/* Special case - only 3-bit, mono, and reserved bits. */
   2096 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
   2097 		tmp &= ESO_MIXREG_PCSVR_RESV;
   2098 		/* Map bits 7:5 -> 2:0. */
   2099 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
   2100 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
   2101 		return;
   2102 
   2103 	case ESO_MASTER_VOL:
   2104 		/* Special case - separate regs, and 6-bit precision. */
   2105 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
   2106 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   2107 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
   2108 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
   2109 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   2110 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
   2111 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
   2112 		return;
   2113 
   2114 	case ESO_SPATIALIZER:
   2115 		/* Special case - only `mono', and higher precision. */
   2116 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
   2117 		    sc->sc_gain[port][ESO_LEFT]);
   2118 		return;
   2119 
   2120 	case ESO_RECORD_VOL:
   2121 		/* Very Special case, controller register. */
   2122 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
   2123 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
   2124 		return;
   2125 
   2126 	default:
   2127 #ifdef DIAGNOSTIC
   2128 		panic("eso_set_gain: bad port %u", port);
   2129 		/* NOTREACHED */
   2130 #else
   2131 		return;
   2132 #endif
   2133 	}
   2134 
   2135 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
   2136 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
   2137 }
   2138