Home | History | Annotate | Line # | Download | only in pci
eso.c revision 1.72
      1 /*	$NetBSD: eso.c,v 1.72 2019/10/28 18:38:43 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software developed for The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. The name of the author may not be used to endorse or promote products
     45  *    derived from this software without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     48  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     49  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     50  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     51  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     52  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     53  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     54  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     55  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  */
     59 
     60 /*
     61  * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.72 2019/10/28 18:38:43 joerg Exp $");
     66 
     67 #include "mpu.h"
     68 
     69 #include <sys/param.h>
     70 #include <sys/systm.h>
     71 #include <sys/kernel.h>
     72 #include <sys/kmem.h>
     73 #include <sys/device.h>
     74 #include <sys/queue.h>
     75 #include <sys/proc.h>
     76 
     77 #include <dev/pci/pcidevs.h>
     78 #include <dev/pci/pcivar.h>
     79 
     80 #include <sys/audioio.h>
     81 #include <dev/audio/audio_if.h>
     82 
     83 #include <dev/ic/mpuvar.h>
     84 #include <dev/ic/i8237reg.h>
     85 #include <dev/pci/esoreg.h>
     86 #include <dev/pci/esovar.h>
     87 
     88 #include <sys/bus.h>
     89 #include <sys/intr.h>
     90 
     91 /*
     92  * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
     93  * XXX engine by allocating through the ISA DMA tag.
     94  */
     95 #if defined(amd64) || defined(i386)
     96 #include <dev/isa/isavar.h>
     97 #endif
     98 
     99 #if defined(AUDIO_DEBUG) || defined(DEBUG)
    100 #define DPRINTF(x) printf x
    101 #else
    102 #define DPRINTF(x)
    103 #endif
    104 
    105 struct eso_dma {
    106 	bus_dma_tag_t		ed_dmat;
    107 	bus_dmamap_t		ed_map;
    108 	void *			ed_kva;
    109 	bus_dma_segment_t	ed_segs[1];
    110 	int			ed_nsegs;
    111 	size_t			ed_size;
    112 	SLIST_ENTRY(eso_dma)	ed_slist;
    113 };
    114 
    115 #define KVADDR(dma)	((void *)(dma)->ed_kva)
    116 #define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
    117 
    118 /* Autoconfiguration interface */
    119 static int eso_match(device_t, cfdata_t, void *);
    120 static void eso_attach(device_t, device_t, void *);
    121 static void eso_defer(device_t);
    122 static int eso_print(void *, const char *);
    123 
    124 CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
    125     eso_match, eso_attach, NULL, NULL);
    126 
    127 /* PCI interface */
    128 static int eso_intr(void *);
    129 
    130 /* MI audio layer interface */
    131 static int	eso_query_format(void *, audio_format_query_t *);
    132 static int	eso_set_format(void *, int,
    133 		    const audio_params_t *, const audio_params_t *,
    134 		    audio_filter_reg_t *, audio_filter_reg_t *);
    135 static int	eso_round_blocksize(void *, int, int, const audio_params_t *);
    136 static int	eso_halt_output(void *);
    137 static int	eso_halt_input(void *);
    138 static int	eso_getdev(void *, struct audio_device *);
    139 static int	eso_set_port(void *, mixer_ctrl_t *);
    140 static int	eso_get_port(void *, mixer_ctrl_t *);
    141 static int	eso_query_devinfo(void *, mixer_devinfo_t *);
    142 static void *	eso_allocm(void *, int, size_t);
    143 static void	eso_freem(void *, void *, size_t);
    144 static size_t	eso_round_buffersize(void *, int, size_t);
    145 static int	eso_get_props(void *);
    146 static int	eso_trigger_output(void *, void *, void *, int,
    147 		    void (*)(void *), void *, const audio_params_t *);
    148 static int	eso_trigger_input(void *, void *, void *, int,
    149 		    void (*)(void *), void *, const audio_params_t *);
    150 static void	eso_get_locks(void *, kmutex_t **, kmutex_t **);
    151 
    152 static const struct audio_hw_if eso_hw_if = {
    153 	.query_format		= eso_query_format,
    154 	.set_format		= eso_set_format,
    155 	.round_blocksize	= eso_round_blocksize,
    156 	.halt_output		= eso_halt_output,
    157 	.halt_input		= eso_halt_input,
    158 	.getdev			= eso_getdev,
    159 	.set_port		= eso_set_port,
    160 	.get_port		= eso_get_port,
    161 	.query_devinfo		= eso_query_devinfo,
    162 	.allocm			= eso_allocm,
    163 	.freem			= eso_freem,
    164 	.round_buffersize	= eso_round_buffersize,
    165 	.get_props		= eso_get_props,
    166 	.trigger_output		= eso_trigger_output,
    167 	.trigger_input		= eso_trigger_input,
    168 	.get_locks		= eso_get_locks,
    169 };
    170 
    171 static const char * const eso_rev2model[] = {
    172 	"ES1938",
    173 	"ES1946",
    174 	"ES1946 Revision E"
    175 };
    176 
    177 /*
    178  * XXX The HW actually supports more frequencies but I select a few
    179  * typical frequencies which does not include rounding error.
    180  */
    181 static const struct audio_format eso_formats[] = {
    182 	{
    183 		.mode		= AUMODE_PLAY | AUMODE_RECORD,
    184 		.encoding	= AUDIO_ENCODING_SLINEAR_LE,
    185 		.validbits	= 16,
    186 		.precision	= 16,
    187 		.channels	= 2,
    188 		.channel_mask	= AUFMT_STEREO,
    189 		.frequency_type	= 4,
    190 		.frequency	= { 8000, 22050, 44100, 48000 },
    191 	},
    192 };
    193 #define ESO_NFORMATS	__arraycount(eso_formats)
    194 
    195 
    196 /*
    197  * Utility routines
    198  */
    199 /* Register access etc. */
    200 static uint8_t	eso_read_ctlreg(struct eso_softc *, uint8_t);
    201 static uint8_t	eso_read_mixreg(struct eso_softc *, uint8_t);
    202 static uint8_t	eso_read_rdr(struct eso_softc *);
    203 static void	eso_reload_master_vol(struct eso_softc *);
    204 static int	eso_reset(struct eso_softc *);
    205 static void	eso_set_gain(struct eso_softc *, unsigned int);
    206 static int	eso_set_recsrc(struct eso_softc *, unsigned int);
    207 static int	eso_set_monooutsrc(struct eso_softc *, unsigned int);
    208 static int	eso_set_monoinbypass(struct eso_softc *, unsigned int);
    209 static int	eso_set_preamp(struct eso_softc *, unsigned int);
    210 static void	eso_write_cmd(struct eso_softc *, uint8_t);
    211 static void	eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
    212 static void	eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
    213 /* DMA memory allocation */
    214 static int	eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
    215 		    int, struct eso_dma *);
    216 static void	eso_freemem(struct eso_dma *);
    217 static struct eso_dma *	eso_kva2dma(const struct eso_softc *, const void *);
    218 
    219 
    220 static int
    221 eso_match(device_t parent, cfdata_t match, void *aux)
    222 {
    223 	struct pci_attach_args *pa;
    224 
    225 	pa = aux;
    226 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
    227 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
    228 		return 1;
    229 
    230 	return 0;
    231 }
    232 
    233 static void
    234 eso_attach(device_t parent, device_t self, void *aux)
    235 {
    236 	struct eso_softc *sc;
    237 	struct pci_attach_args *pa;
    238 	struct audio_attach_args aa;
    239 	pci_intr_handle_t ih;
    240 	bus_addr_t vcbase;
    241 	const char *intrstring;
    242 	int idx, error;
    243 	uint8_t a2mode, mvctl;
    244 	char intrbuf[PCI_INTRSTR_LEN];
    245 
    246 	sc = device_private(self);
    247 	sc->sc_dev = self;
    248 	pa = aux;
    249 	aprint_naive(": Audio controller\n");
    250 
    251 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
    252 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
    253 
    254 	sc->sc_revision = PCI_REVISION(pa->pa_class);
    255 	aprint_normal(": ESS Solo-1 PCI AudioDrive ");
    256 	if (sc->sc_revision <
    257 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
    258 		aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
    259 	else
    260 		aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
    261 
    262 	/* Map I/O registers. */
    263 	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
    264 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    265 		aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
    266 		return;
    267 	}
    268 	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
    269 	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
    270 		aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
    271 		return;
    272 	}
    273 	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
    274 	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
    275 		aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
    276 		/* Don't bail out yet: we can map it later, see below. */
    277 		vcbase = 0;
    278 		sc->sc_vcsize = 0x10; /* From the data sheet. */
    279 	}
    280 	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
    281 	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
    282 		aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
    283 		return;
    284 	}
    285 	if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
    286 	    &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
    287 		aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
    288 		return;
    289 	}
    290 
    291 	sc->sc_dmat = pa->pa_dmat;
    292 	SLIST_INIT(&sc->sc_dmas);
    293 	sc->sc_dmac_configured = 0;
    294 
    295 	/* Enable bus mastering. */
    296 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    297 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    298 	    PCI_COMMAND_MASTER_ENABLE);
    299 
    300 	/* Reset the device; bail out upon failure. */
    301 	mutex_spin_enter(&sc->sc_intr_lock);
    302 	error = eso_reset(sc);
    303 	mutex_spin_exit(&sc->sc_intr_lock);
    304 	if (error != 0) {
    305 		aprint_error_dev(sc->sc_dev, "can't reset\n");
    306 		return;
    307 	}
    308 
    309 	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
    310 	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
    311 	    pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
    312 	    ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
    313 
    314 	/* Enable the relevant (DMA) interrupts. */
    315 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
    316 	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
    317 	    ESO_IO_IRQCTL_MPUIRQ);
    318 
    319 	mutex_spin_enter(&sc->sc_intr_lock);
    320 
    321 	/* Set up A1's sample rate generator for new-style parameters. */
    322 	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
    323 	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
    324 	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
    325 
    326 	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
    327 	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
    328 	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
    329 	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
    330 	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
    331 
    332 	/* Set mixer regs to something reasonable, needs work. */
    333 	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
    334 	eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
    335 	eso_set_monoinbypass(sc, 0);
    336 	eso_set_preamp(sc, 1);
    337 	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
    338 		int v;
    339 
    340 		switch (idx) {
    341 		case ESO_MIC_PLAY_VOL:
    342 		case ESO_LINE_PLAY_VOL:
    343 		case ESO_CD_PLAY_VOL:
    344 		case ESO_MONO_PLAY_VOL:
    345 		case ESO_AUXB_PLAY_VOL:
    346 		case ESO_DAC_REC_VOL:
    347 		case ESO_LINE_REC_VOL:
    348 		case ESO_SYNTH_REC_VOL:
    349 		case ESO_CD_REC_VOL:
    350 		case ESO_MONO_REC_VOL:
    351 		case ESO_AUXB_REC_VOL:
    352 		case ESO_SPATIALIZER:
    353 			v = 0;
    354 			break;
    355 		case ESO_MASTER_VOL:
    356 			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
    357 			break;
    358 		default:
    359 			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
    360 			break;
    361 		}
    362 		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
    363 		eso_set_gain(sc, idx);
    364 	}
    365 
    366 	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
    367 
    368 	mutex_spin_exit(&sc->sc_intr_lock);
    369 
    370 	/* Map and establish the interrupt. */
    371 	if (pci_intr_map(pa, &ih)) {
    372 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
    373 		return;
    374 	}
    375 
    376 	intrstring = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf));
    377 	sc->sc_ih  = pci_intr_establish_xname(pa->pa_pc, ih, IPL_AUDIO,
    378 	    eso_intr, sc, device_xname(self));
    379 	if (sc->sc_ih == NULL) {
    380 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
    381 		if (intrstring != NULL)
    382 			aprint_error(" at %s", intrstring);
    383 		aprint_error("\n");
    384 		mutex_destroy(&sc->sc_lock);
    385 		mutex_destroy(&sc->sc_intr_lock);
    386 		return;
    387 	}
    388 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstring);
    389 
    390 	cv_init(&sc->sc_pcv, "esoho");
    391 	cv_init(&sc->sc_rcv, "esohi");
    392 
    393 	/*
    394 	 * Set up the DDMA Control register; a suitable I/O region has been
    395 	 * supposedly mapped in the VC base address register.
    396 	 *
    397 	 * The Solo-1 has an ... interesting silicon bug that causes it to
    398 	 * not respond to I/O space accesses to the Audio 1 DMA controller
    399 	 * if the latter's mapping base address is aligned on a 1K boundary.
    400 	 * As a consequence, it is quite possible for the mapping provided
    401 	 * in the VC BAR to be useless.  To work around this, we defer this
    402 	 * part until all autoconfiguration on our parent bus is completed
    403 	 * and then try to map it ourselves in fulfillment of the constraint.
    404 	 *
    405 	 * According to the register map we may write to the low 16 bits
    406 	 * only, but experimenting has shown we're safe.
    407 	 * -kjk
    408 	 */
    409 	if (ESO_VALID_DDMAC_BASE(vcbase)) {
    410 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
    411 		    vcbase | ESO_PCI_DDMAC_DE);
    412 		sc->sc_dmac_configured = 1;
    413 
    414 		aprint_normal_dev(sc->sc_dev,
    415 		    "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
    416 		    (unsigned long)vcbase);
    417 	} else {
    418 		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
    419 		    device_xname(sc->sc_dev), (unsigned long)vcbase));
    420 		sc->sc_pa = *pa;
    421 		config_defer(self, eso_defer);
    422 	}
    423 
    424 	audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);
    425 
    426 	aa.type = AUDIODEV_TYPE_OPL;
    427 	aa.hwif = NULL;
    428 	aa.hdl = NULL;
    429 	(void)config_found(sc->sc_dev, &aa, audioprint);
    430 
    431 	aa.type = AUDIODEV_TYPE_MPU;
    432 	aa.hwif = NULL;
    433 	aa.hdl = NULL;
    434 	sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint);
    435 	if (sc->sc_mpudev != NULL) {
    436 		/* Unmask the MPU irq. */
    437 		mutex_spin_enter(&sc->sc_intr_lock);
    438 		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
    439 		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
    440 		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
    441 		mutex_spin_exit(&sc->sc_intr_lock);
    442 	}
    443 
    444 	aa.type = AUDIODEV_TYPE_AUX;
    445 	aa.hwif = NULL;
    446 	aa.hdl = NULL;
    447 	(void)config_found(sc->sc_dev, &aa, eso_print);
    448 }
    449 
    450 static void
    451 eso_defer(device_t self)
    452 {
    453 	struct eso_softc *sc;
    454 	struct pci_attach_args *pa;
    455 	bus_addr_t addr, start;
    456 
    457 	sc = device_private(self);
    458 	pa = &sc->sc_pa;
    459 	aprint_normal_dev(sc->sc_dev, "");
    460 
    461 	/*
    462 	 * This is outright ugly, but since we must not make assumptions
    463 	 * on the underlying allocator's behaviour it's the most straight-
    464 	 * forward way to implement it.  Note that we skip over the first
    465 	 * 1K region, which is typically occupied by an attached ISA bus.
    466 	 */
    467 	mutex_enter(&sc->sc_lock);
    468 	for (start = 0x0400; start < 0xffff; start += 0x0400) {
    469 		if (bus_space_alloc(sc->sc_iot,
    470 		    start + sc->sc_vcsize, start + 0x0400 - 1,
    471 		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
    472 		    &sc->sc_dmac_ioh) != 0)
    473 			continue;
    474 
    475 		mutex_spin_enter(&sc->sc_intr_lock);
    476 		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
    477 		    addr | ESO_PCI_DDMAC_DE);
    478 		mutex_spin_exit(&sc->sc_intr_lock);
    479 		sc->sc_dmac_iot = sc->sc_iot;
    480 		sc->sc_dmac_configured = 1;
    481 		aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
    482 		    (unsigned long)addr);
    483 
    484 		mutex_exit(&sc->sc_lock);
    485 		return;
    486 	}
    487 	mutex_exit(&sc->sc_lock);
    488 
    489 	aprint_error("can't map Audio 1 DMA into I/O space\n");
    490 }
    491 
    492 /* ARGSUSED */
    493 static int
    494 eso_print(void *aux, const char *pnp)
    495 {
    496 
    497 	/* Only joys can attach via this; easy. */
    498 	if (pnp)
    499 		aprint_normal("joy at %s:", pnp);
    500 
    501 	return UNCONF;
    502 }
    503 
    504 static void
    505 eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
    506 {
    507 	int i;
    508 
    509 	/* Poll for busy indicator to become clear. */
    510 	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
    511 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
    512 		    & ESO_SB_RSR_BUSY) == 0) {
    513 			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    514 			    ESO_SB_WDR, cmd);
    515 			return;
    516 		} else {
    517 			delay(10);
    518 		}
    519 	}
    520 
    521 	printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
    522 	return;
    523 }
    524 
    525 /* Write to a controller register */
    526 static void
    527 eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
    528 {
    529 
    530 	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
    531 
    532 	eso_write_cmd(sc, reg);
    533 	eso_write_cmd(sc, val);
    534 }
    535 
    536 /* Read out the Read Data Register */
    537 static uint8_t
    538 eso_read_rdr(struct eso_softc *sc)
    539 {
    540 	int i;
    541 
    542 	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
    543 		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    544 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
    545 			return (bus_space_read_1(sc->sc_sb_iot,
    546 			    sc->sc_sb_ioh, ESO_SB_RDR));
    547 		} else {
    548 			delay(10);
    549 		}
    550 	}
    551 
    552 	printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
    553 	return (-1);
    554 }
    555 
    556 static uint8_t
    557 eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
    558 {
    559 
    560 	eso_write_cmd(sc, ESO_CMD_RCR);
    561 	eso_write_cmd(sc, reg);
    562 	return eso_read_rdr(sc);
    563 }
    564 
    565 static void
    566 eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
    567 {
    568 
    569 	KASSERT(mutex_owned(&sc->sc_intr_lock));
    570 
    571 	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
    572 
    573 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
    574 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
    575 }
    576 
    577 static uint8_t
    578 eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
    579 {
    580 	uint8_t val;
    581 
    582 	KASSERT(mutex_owned(&sc->sc_intr_lock));
    583 
    584 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
    585 	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
    586 
    587 	return val;
    588 }
    589 
    590 static int
    591 eso_intr(void *hdl)
    592 {
    593 	struct eso_softc *sc = hdl;
    594 #if NMPU > 0
    595 	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
    596 #endif
    597 	uint8_t irqctl;
    598 
    599 	mutex_spin_enter(&sc->sc_intr_lock);
    600 
    601 	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
    602 
    603 	/* If it wasn't ours, that's all she wrote. */
    604 	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
    605 	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
    606 		mutex_spin_exit(&sc->sc_intr_lock);
    607 		return 0;
    608 	}
    609 
    610 	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
    611 		/* Clear interrupt. */
    612 		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    613 		    ESO_SB_RBSR);
    614 
    615 		if (sc->sc_rintr)
    616 			sc->sc_rintr(sc->sc_rarg);
    617 		else
    618 			cv_broadcast(&sc->sc_rcv);
    619 	}
    620 
    621 	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
    622 		/*
    623 		 * Clear the A2 IRQ latch: the cached value reflects the
    624 		 * current DAC settings with the IRQ latch bit not set.
    625 		 */
    626 		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
    627 
    628 		if (sc->sc_pintr)
    629 			sc->sc_pintr(sc->sc_parg);
    630 		else
    631 			cv_broadcast(&sc->sc_pcv);
    632 	}
    633 
    634 	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
    635 		/* Clear interrupt. */
    636 		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
    637 
    638 		/*
    639 		 * Raise a flag to cause a lazy update of the in-softc gain
    640 		 * values the next time the software mixer is read to keep
    641 		 * interrupt service cost low.  ~0 cannot occur otherwise
    642 		 * as the master volume has a precision of 6 bits only.
    643 		 */
    644 		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
    645 	}
    646 
    647 #if NMPU > 0
    648 	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
    649 		mpu_intr(sc_mpu);
    650 #endif
    651 
    652 	mutex_spin_exit(&sc->sc_intr_lock);
    653 	return 1;
    654 }
    655 
    656 /* Perform a software reset, including DMA FIFOs. */
    657 static int
    658 eso_reset(struct eso_softc *sc)
    659 {
    660 	int i;
    661 
    662 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
    663 	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
    664 	/* `Delay' suggested in the data sheet. */
    665 	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
    666 	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
    667 
    668 	/* Wait for reset to take effect. */
    669 	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
    670 		/* Poll for data to become available. */
    671 		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    672 		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
    673 		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
    674 			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
    675 
    676 			/* Activate Solo-1 extension commands. */
    677 			eso_write_cmd(sc, ESO_CMD_EXTENB);
    678 			/* Reset mixer registers. */
    679 			eso_write_mixreg(sc, ESO_MIXREG_RESET,
    680 			    ESO_MIXREG_RESET_RESET);
    681 
    682 			return 0;
    683 		} else {
    684 			delay(1000);
    685 		}
    686 	}
    687 
    688 	printf("%s: reset timeout\n", device_xname(sc->sc_dev));
    689 	return -1;
    690 }
    691 
    692 static int
    693 eso_query_format(void *hdl, audio_format_query_t *afp)
    694 {
    695 
    696 	return audio_query_format(eso_formats, ESO_NFORMATS, afp);
    697 }
    698 
    699 static int
    700 eso_set_format(void *hdl, int setmode,
    701     const audio_params_t *play, const audio_params_t *rec,
    702     audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
    703 {
    704 	struct eso_softc *sc;
    705 	const struct audio_params *p;
    706 	int mode;
    707 	unsigned int srg, fltdiv;
    708 
    709 	sc = hdl;
    710 	for (mode = AUMODE_RECORD; mode != -1;
    711 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    712 		if ((setmode & mode) == 0)
    713 			continue;
    714 
    715 		p = (mode == AUMODE_PLAY) ? play : rec;
    716 
    717 		/* We use a few fixed rate which doesn't have rounding error. */
    718 		switch (p->sample_rate) {
    719 		case  8000:
    720 		case 48000:
    721 			srg = (128 - ESO_CLK1 / p->sample_rate);
    722 			srg |= ESO_CLK1_SELECT;
    723 			break;
    724 		case 22050:
    725 		case 44100:
    726 			srg = (128 - ESO_CLK0 / p->sample_rate);
    727 			break;
    728 		default:
    729 			/* NOTREACHED */
    730 			return EINVAL;
    731 		}
    732 		/* Roll-off frequency of 87%, as in the ES1888 driver. */
    733 		fltdiv = 256 - 200279L / p->sample_rate;
    734 
    735 		mutex_spin_enter(&sc->sc_intr_lock);
    736 		if (mode == AUMODE_RECORD) {
    737 			/* Audio 1 */
    738 			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
    739 			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
    740 			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
    741 		} else {
    742 			/* Audio 2 */
    743 			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
    744 			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
    745 			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
    746 		}
    747 		mutex_spin_exit(&sc->sc_intr_lock);
    748 	}
    749 
    750 	return 0;
    751 }
    752 
    753 static int
    754 eso_round_blocksize(void *hdl, int blk, int mode,
    755     const audio_params_t *param)
    756 {
    757 
    758 	return blk & -32;	/* keep good alignment; at least 16 req'd */
    759 }
    760 
    761 static int
    762 eso_halt_output(void *hdl)
    763 {
    764 	struct eso_softc *sc;
    765 	int error;
    766 
    767 	sc = hdl;
    768 	DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));
    769 
    770 	/*
    771 	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
    772 	 * stop.  The interrupt callback pointer is cleared at this
    773 	 * point so that an outstanding FIFO interrupt for the remaining data
    774 	 * will be acknowledged without further processing.
    775 	 *
    776 	 * This does not immediately `abort' an operation in progress (c.f.
    777 	 * audio(9)) but is the method to leave the FIFO behind in a clean
    778 	 * state with the least hair.  (Besides, that item needs to be
    779 	 * rephrased for trigger_*()-based DMA environments.)
    780 	 */
    781 	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
    782 	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
    783 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
    784 	    ESO_IO_A2DMAM_DMAENB);
    785 
    786 	sc->sc_pintr = NULL;
    787 	error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);
    788 
    789 	/* Shut down DMA completely. */
    790 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
    791 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
    792 
    793 	return error == EWOULDBLOCK ? 0 : error;
    794 }
    795 
    796 static int
    797 eso_halt_input(void *hdl)
    798 {
    799 	struct eso_softc *sc;
    800 	int error;
    801 
    802 	sc = hdl;
    803 	DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));
    804 
    805 	/* Just like eso_halt_output(), but for Audio 1. */
    806 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
    807 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
    808 	    ESO_CTLREG_A1C2_DMAENB);
    809 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
    810 	    DMA37MD_WRITE | DMA37MD_DEMAND);
    811 
    812 	sc->sc_rintr = NULL;
    813 	error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);
    814 
    815 	/* Shut down DMA completely. */
    816 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
    817 	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
    818 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
    819 	    ESO_DMAC_MASK_MASK);
    820 
    821 	return error == EWOULDBLOCK ? 0 : error;
    822 }
    823 
    824 static int
    825 eso_getdev(void *hdl, struct audio_device *retp)
    826 {
    827 	struct eso_softc *sc;
    828 
    829 	sc = hdl;
    830 	strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
    831 	snprintf(retp->version, sizeof (retp->version), "0x%02x",
    832 	    sc->sc_revision);
    833 	if (sc->sc_revision <
    834 	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
    835 		strncpy(retp->config, eso_rev2model[sc->sc_revision],
    836 		    sizeof (retp->config));
    837 	else
    838 		strncpy(retp->config, "unknown", sizeof (retp->config));
    839 
    840 	return 0;
    841 }
    842 
    843 static int
    844 eso_set_port(void *hdl, mixer_ctrl_t *cp)
    845 {
    846 	struct eso_softc *sc;
    847 	unsigned int lgain, rgain;
    848 	uint8_t tmp;
    849 	int error;
    850 
    851 	sc = hdl;
    852 	error = 0;
    853 
    854 	mutex_spin_enter(&sc->sc_intr_lock);
    855 
    856 	switch (cp->dev) {
    857 	case ESO_DAC_PLAY_VOL:
    858 	case ESO_MIC_PLAY_VOL:
    859 	case ESO_LINE_PLAY_VOL:
    860 	case ESO_SYNTH_PLAY_VOL:
    861 	case ESO_CD_PLAY_VOL:
    862 	case ESO_AUXB_PLAY_VOL:
    863 	case ESO_RECORD_VOL:
    864 	case ESO_DAC_REC_VOL:
    865 	case ESO_MIC_REC_VOL:
    866 	case ESO_LINE_REC_VOL:
    867 	case ESO_SYNTH_REC_VOL:
    868 	case ESO_CD_REC_VOL:
    869 	case ESO_AUXB_REC_VOL:
    870 		if (cp->type != AUDIO_MIXER_VALUE) {
    871 			error = EINVAL;
    872 			break;
    873 		}
    874 
    875 		/*
    876 		 * Stereo-capable mixer ports: if we get a single-channel
    877 		 * gain value passed in, then we duplicate it to both left
    878 		 * and right channels.
    879 		 */
    880 		switch (cp->un.value.num_channels) {
    881 		case 1:
    882 			lgain = rgain = ESO_GAIN_TO_4BIT(
    883 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    884 			break;
    885 		case 2:
    886 			lgain = ESO_GAIN_TO_4BIT(
    887 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
    888 			rgain = ESO_GAIN_TO_4BIT(
    889 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
    890 			break;
    891 		default:
    892 			error = EINVAL;
    893 			break;
    894 		}
    895 
    896 		if (!error) {
    897 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
    898 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
    899 			eso_set_gain(sc, cp->dev);
    900 		}
    901 		break;
    902 
    903 	case ESO_MASTER_VOL:
    904 		if (cp->type != AUDIO_MIXER_VALUE) {
    905 			error = EINVAL;
    906 			break;
    907 		}
    908 
    909 		/* Like above, but a precision of 6 bits. */
    910 		switch (cp->un.value.num_channels) {
    911 		case 1:
    912 			lgain = rgain = ESO_GAIN_TO_6BIT(
    913 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    914 			break;
    915 		case 2:
    916 			lgain = ESO_GAIN_TO_6BIT(
    917 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
    918 			rgain = ESO_GAIN_TO_6BIT(
    919 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
    920 			break;
    921 		default:
    922 			error = EINVAL;
    923 			break;
    924 		}
    925 
    926 		if (!error) {
    927 			sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
    928 			sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
    929 			eso_set_gain(sc, cp->dev);
    930 		}
    931 		break;
    932 
    933 	case ESO_SPATIALIZER:
    934 		if (cp->type != AUDIO_MIXER_VALUE ||
    935 		    cp->un.value.num_channels != 1) {
    936 			error = EINVAL;
    937 			break;
    938 		}
    939 
    940 		sc->sc_gain[cp->dev][ESO_LEFT] =
    941 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
    942 		    ESO_GAIN_TO_6BIT(
    943 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    944 		eso_set_gain(sc, cp->dev);
    945 		break;
    946 
    947 	case ESO_MONO_PLAY_VOL:
    948 	case ESO_MONO_REC_VOL:
    949 		if (cp->type != AUDIO_MIXER_VALUE ||
    950 		    cp->un.value.num_channels != 1) {
    951 			error = EINVAL;
    952 			break;
    953 		}
    954 
    955 		sc->sc_gain[cp->dev][ESO_LEFT] =
    956 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
    957 		    ESO_GAIN_TO_4BIT(
    958 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    959 		eso_set_gain(sc, cp->dev);
    960 		break;
    961 
    962 	case ESO_PCSPEAKER_VOL:
    963 		if (cp->type != AUDIO_MIXER_VALUE ||
    964 		    cp->un.value.num_channels != 1) {
    965 			error = EINVAL;
    966 			break;
    967 		}
    968 
    969 		sc->sc_gain[cp->dev][ESO_LEFT] =
    970 		    sc->sc_gain[cp->dev][ESO_RIGHT] =
    971 		    ESO_GAIN_TO_3BIT(
    972 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
    973 		eso_set_gain(sc, cp->dev);
    974 		break;
    975 
    976 	case ESO_SPATIALIZER_ENABLE:
    977 		if (cp->type != AUDIO_MIXER_ENUM) {
    978 			error = EINVAL;
    979 			break;
    980 		}
    981 
    982 		sc->sc_spatializer = (cp->un.ord != 0);
    983 
    984 		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
    985 		if (sc->sc_spatializer)
    986 			tmp |= ESO_MIXREG_SPAT_ENB;
    987 		else
    988 			tmp &= ~ESO_MIXREG_SPAT_ENB;
    989 		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
    990 		    tmp | ESO_MIXREG_SPAT_RSTREL);
    991 		break;
    992 
    993 	case ESO_MASTER_MUTE:
    994 		if (cp->type != AUDIO_MIXER_ENUM) {
    995 			error = EINVAL;
    996 			break;
    997 		}
    998 
    999 		sc->sc_mvmute = (cp->un.ord != 0);
   1000 
   1001 		if (sc->sc_mvmute) {
   1002 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   1003 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
   1004 			    ESO_MIXREG_LMVM_MUTE);
   1005 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   1006 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
   1007 			    ESO_MIXREG_RMVM_MUTE);
   1008 		} else {
   1009 			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   1010 			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
   1011 			    ~ESO_MIXREG_LMVM_MUTE);
   1012 			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   1013 			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
   1014 			    ~ESO_MIXREG_RMVM_MUTE);
   1015 		}
   1016 		break;
   1017 
   1018 	case ESO_MONOOUT_SOURCE:
   1019 		if (cp->type != AUDIO_MIXER_ENUM) {
   1020 			error = EINVAL;
   1021 			break;
   1022 		}
   1023 
   1024 		error = eso_set_monooutsrc(sc, cp->un.ord);
   1025 		break;
   1026 
   1027 	case ESO_MONOIN_BYPASS:
   1028 		if (cp->type != AUDIO_MIXER_ENUM) {
   1029 			error = EINVAL;
   1030 			break;
   1031 		}
   1032 
   1033 		error = (eso_set_monoinbypass(sc, cp->un.ord));
   1034 		break;
   1035 
   1036 	case ESO_RECORD_MONITOR:
   1037 		if (cp->type != AUDIO_MIXER_ENUM) {
   1038 			error = EINVAL;
   1039 			break;
   1040 		}
   1041 
   1042 		sc->sc_recmon = (cp->un.ord != 0);
   1043 
   1044 		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
   1045 		if (sc->sc_recmon)
   1046 			tmp |= ESO_CTLREG_ACTL_RECMON;
   1047 		else
   1048 			tmp &= ~ESO_CTLREG_ACTL_RECMON;
   1049 		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
   1050 		break;
   1051 
   1052 	case ESO_RECORD_SOURCE:
   1053 		if (cp->type != AUDIO_MIXER_ENUM) {
   1054 			error = EINVAL;
   1055 			break;
   1056 		}
   1057 
   1058 		error = eso_set_recsrc(sc, cp->un.ord);
   1059 		break;
   1060 
   1061 	case ESO_MIC_PREAMP:
   1062 		if (cp->type != AUDIO_MIXER_ENUM) {
   1063 			error = EINVAL;
   1064 			break;
   1065 		}
   1066 
   1067 		error = eso_set_preamp(sc, cp->un.ord);
   1068 		break;
   1069 
   1070 	default:
   1071 		error = EINVAL;
   1072 		break;
   1073 	}
   1074 
   1075 	mutex_spin_exit(&sc->sc_intr_lock);
   1076 	return error;
   1077 }
   1078 
   1079 static int
   1080 eso_get_port(void *hdl, mixer_ctrl_t *cp)
   1081 {
   1082 	struct eso_softc *sc;
   1083 
   1084 	sc = hdl;
   1085 
   1086 	mutex_spin_enter(&sc->sc_intr_lock);
   1087 
   1088 	switch (cp->dev) {
   1089 	case ESO_MASTER_VOL:
   1090 		/* Reload from mixer after hardware volume control use. */
   1091 		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
   1092 			eso_reload_master_vol(sc);
   1093 		/* FALLTHROUGH */
   1094 	case ESO_DAC_PLAY_VOL:
   1095 	case ESO_MIC_PLAY_VOL:
   1096 	case ESO_LINE_PLAY_VOL:
   1097 	case ESO_SYNTH_PLAY_VOL:
   1098 	case ESO_CD_PLAY_VOL:
   1099 	case ESO_AUXB_PLAY_VOL:
   1100 	case ESO_RECORD_VOL:
   1101 	case ESO_DAC_REC_VOL:
   1102 	case ESO_MIC_REC_VOL:
   1103 	case ESO_LINE_REC_VOL:
   1104 	case ESO_SYNTH_REC_VOL:
   1105 	case ESO_CD_REC_VOL:
   1106 	case ESO_AUXB_REC_VOL:
   1107 		/*
   1108 		 * Stereo-capable ports: if a single-channel query is made,
   1109 		 * just return the left channel's value (since single-channel
   1110 		 * settings themselves are applied to both channels).
   1111 		 */
   1112 		switch (cp->un.value.num_channels) {
   1113 		case 1:
   1114 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1115 			    sc->sc_gain[cp->dev][ESO_LEFT];
   1116 			break;
   1117 		case 2:
   1118 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1119 			    sc->sc_gain[cp->dev][ESO_LEFT];
   1120 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1121 			    sc->sc_gain[cp->dev][ESO_RIGHT];
   1122 			break;
   1123 		default:
   1124 			break;
   1125 		}
   1126 		break;
   1127 
   1128 	case ESO_MONO_PLAY_VOL:
   1129 	case ESO_PCSPEAKER_VOL:
   1130 	case ESO_MONO_REC_VOL:
   1131 	case ESO_SPATIALIZER:
   1132 		if (cp->un.value.num_channels != 1) {
   1133 			break;
   1134 		}
   1135 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1136 		    sc->sc_gain[cp->dev][ESO_LEFT];
   1137 		break;
   1138 
   1139 	case ESO_RECORD_MONITOR:
   1140 		cp->un.ord = sc->sc_recmon;
   1141 		break;
   1142 
   1143 	case ESO_RECORD_SOURCE:
   1144 		cp->un.ord = sc->sc_recsrc;
   1145 		break;
   1146 
   1147 	case ESO_MONOOUT_SOURCE:
   1148 		cp->un.ord = sc->sc_monooutsrc;
   1149 		break;
   1150 
   1151 	case ESO_MONOIN_BYPASS:
   1152 		cp->un.ord = sc->sc_monoinbypass;
   1153 		break;
   1154 
   1155 	case ESO_SPATIALIZER_ENABLE:
   1156 		cp->un.ord = sc->sc_spatializer;
   1157 		break;
   1158 
   1159 	case ESO_MIC_PREAMP:
   1160 		cp->un.ord = sc->sc_preamp;
   1161 		break;
   1162 
   1163 	case ESO_MASTER_MUTE:
   1164 		/* Reload from mixer after hardware volume control use. */
   1165 		if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
   1166 			eso_reload_master_vol(sc);
   1167 		cp->un.ord = sc->sc_mvmute;
   1168 		break;
   1169 
   1170 	default:
   1171 		break;
   1172 	}
   1173 
   1174 	mutex_spin_exit(&sc->sc_intr_lock);
   1175 	return 0;
   1176 }
   1177 
   1178 static int
   1179 eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
   1180 {
   1181 
   1182 	switch (dip->index) {
   1183 	case ESO_DAC_PLAY_VOL:
   1184 		dip->mixer_class = ESO_INPUT_CLASS;
   1185 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1186 		strcpy(dip->label.name, AudioNdac);
   1187 		dip->type = AUDIO_MIXER_VALUE;
   1188 		dip->un.v.num_channels = 2;
   1189 		strcpy(dip->un.v.units.name, AudioNvolume);
   1190 		break;
   1191 	case ESO_MIC_PLAY_VOL:
   1192 		dip->mixer_class = ESO_INPUT_CLASS;
   1193 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1194 		strcpy(dip->label.name, AudioNmicrophone);
   1195 		dip->type = AUDIO_MIXER_VALUE;
   1196 		dip->un.v.num_channels = 2;
   1197 		strcpy(dip->un.v.units.name, AudioNvolume);
   1198 		break;
   1199 	case ESO_LINE_PLAY_VOL:
   1200 		dip->mixer_class = ESO_INPUT_CLASS;
   1201 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1202 		strcpy(dip->label.name, AudioNline);
   1203 		dip->type = AUDIO_MIXER_VALUE;
   1204 		dip->un.v.num_channels = 2;
   1205 		strcpy(dip->un.v.units.name, AudioNvolume);
   1206 		break;
   1207 	case ESO_SYNTH_PLAY_VOL:
   1208 		dip->mixer_class = ESO_INPUT_CLASS;
   1209 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1210 		strcpy(dip->label.name, AudioNfmsynth);
   1211 		dip->type = AUDIO_MIXER_VALUE;
   1212 		dip->un.v.num_channels = 2;
   1213 		strcpy(dip->un.v.units.name, AudioNvolume);
   1214 		break;
   1215 	case ESO_MONO_PLAY_VOL:
   1216 		dip->mixer_class = ESO_INPUT_CLASS;
   1217 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1218 		strcpy(dip->label.name, "mono_in");
   1219 		dip->type = AUDIO_MIXER_VALUE;
   1220 		dip->un.v.num_channels = 1;
   1221 		strcpy(dip->un.v.units.name, AudioNvolume);
   1222 		break;
   1223 	case ESO_CD_PLAY_VOL:
   1224 		dip->mixer_class = ESO_INPUT_CLASS;
   1225 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1226 		strcpy(dip->label.name, AudioNcd);
   1227 		dip->type = AUDIO_MIXER_VALUE;
   1228 		dip->un.v.num_channels = 2;
   1229 		strcpy(dip->un.v.units.name, AudioNvolume);
   1230 		break;
   1231 	case ESO_AUXB_PLAY_VOL:
   1232 		dip->mixer_class = ESO_INPUT_CLASS;
   1233 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1234 		strcpy(dip->label.name, "auxb");
   1235 		dip->type = AUDIO_MIXER_VALUE;
   1236 		dip->un.v.num_channels = 2;
   1237 		strcpy(dip->un.v.units.name, AudioNvolume);
   1238 		break;
   1239 
   1240 	case ESO_MIC_PREAMP:
   1241 		dip->mixer_class = ESO_MICROPHONE_CLASS;
   1242 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1243 		strcpy(dip->label.name, AudioNpreamp);
   1244 		dip->type = AUDIO_MIXER_ENUM;
   1245 		dip->un.e.num_mem = 2;
   1246 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1247 		dip->un.e.member[0].ord = 0;
   1248 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1249 		dip->un.e.member[1].ord = 1;
   1250 		break;
   1251 	case ESO_MICROPHONE_CLASS:
   1252 		dip->mixer_class = ESO_MICROPHONE_CLASS;
   1253 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1254 		strcpy(dip->label.name, AudioNmicrophone);
   1255 		dip->type = AUDIO_MIXER_CLASS;
   1256 		break;
   1257 
   1258 	case ESO_INPUT_CLASS:
   1259 		dip->mixer_class = ESO_INPUT_CLASS;
   1260 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1261 		strcpy(dip->label.name, AudioCinputs);
   1262 		dip->type = AUDIO_MIXER_CLASS;
   1263 		break;
   1264 
   1265 	case ESO_MASTER_VOL:
   1266 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1267 		dip->prev = AUDIO_MIXER_LAST;
   1268 		dip->next = ESO_MASTER_MUTE;
   1269 		strcpy(dip->label.name, AudioNmaster);
   1270 		dip->type = AUDIO_MIXER_VALUE;
   1271 		dip->un.v.num_channels = 2;
   1272 		strcpy(dip->un.v.units.name, AudioNvolume);
   1273 		break;
   1274 	case ESO_MASTER_MUTE:
   1275 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1276 		dip->prev = ESO_MASTER_VOL;
   1277 		dip->next = AUDIO_MIXER_LAST;
   1278 		strcpy(dip->label.name, AudioNmute);
   1279 		dip->type = AUDIO_MIXER_ENUM;
   1280 		dip->un.e.num_mem = 2;
   1281 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1282 		dip->un.e.member[0].ord = 0;
   1283 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1284 		dip->un.e.member[1].ord = 1;
   1285 		break;
   1286 
   1287 	case ESO_PCSPEAKER_VOL:
   1288 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1289 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1290 		strcpy(dip->label.name, "pc_speaker");
   1291 		dip->type = AUDIO_MIXER_VALUE;
   1292 		dip->un.v.num_channels = 1;
   1293 		strcpy(dip->un.v.units.name, AudioNvolume);
   1294 		break;
   1295 	case ESO_MONOOUT_SOURCE:
   1296 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1297 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1298 		strcpy(dip->label.name, "mono_out");
   1299 		dip->type = AUDIO_MIXER_ENUM;
   1300 		dip->un.e.num_mem = 3;
   1301 		strcpy(dip->un.e.member[0].label.name, AudioNmute);
   1302 		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
   1303 		strcpy(dip->un.e.member[1].label.name, AudioNdac);
   1304 		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
   1305 		strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
   1306 		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
   1307 		break;
   1308 
   1309 	case ESO_MONOIN_BYPASS:
   1310 		dip->mixer_class = ESO_MONOIN_CLASS;
   1311 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1312 		strcpy(dip->label.name, "bypass");
   1313 		dip->type = AUDIO_MIXER_ENUM;
   1314 		dip->un.e.num_mem = 2;
   1315 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1316 		dip->un.e.member[0].ord = 0;
   1317 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1318 		dip->un.e.member[1].ord = 1;
   1319 		break;
   1320 	case ESO_MONOIN_CLASS:
   1321 		dip->mixer_class = ESO_MONOIN_CLASS;
   1322 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1323 		strcpy(dip->label.name, "mono_in");
   1324 		dip->type = AUDIO_MIXER_CLASS;
   1325 		break;
   1326 
   1327 	case ESO_SPATIALIZER:
   1328 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1329 		dip->prev = AUDIO_MIXER_LAST;
   1330 		dip->next = ESO_SPATIALIZER_ENABLE;
   1331 		strcpy(dip->label.name, AudioNspatial);
   1332 		dip->type = AUDIO_MIXER_VALUE;
   1333 		dip->un.v.num_channels = 1;
   1334 		strcpy(dip->un.v.units.name, "level");
   1335 		break;
   1336 	case ESO_SPATIALIZER_ENABLE:
   1337 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1338 		dip->prev = ESO_SPATIALIZER;
   1339 		dip->next = AUDIO_MIXER_LAST;
   1340 		strcpy(dip->label.name, "enable");
   1341 		dip->type = AUDIO_MIXER_ENUM;
   1342 		dip->un.e.num_mem = 2;
   1343 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1344 		dip->un.e.member[0].ord = 0;
   1345 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1346 		dip->un.e.member[1].ord = 1;
   1347 		break;
   1348 
   1349 	case ESO_OUTPUT_CLASS:
   1350 		dip->mixer_class = ESO_OUTPUT_CLASS;
   1351 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1352 		strcpy(dip->label.name, AudioCoutputs);
   1353 		dip->type = AUDIO_MIXER_CLASS;
   1354 		break;
   1355 
   1356 	case ESO_RECORD_MONITOR:
   1357 		dip->mixer_class = ESO_MONITOR_CLASS;
   1358 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1359 		strcpy(dip->label.name, AudioNmute);
   1360 		dip->type = AUDIO_MIXER_ENUM;
   1361 		dip->un.e.num_mem = 2;
   1362 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1363 		dip->un.e.member[0].ord = 0;
   1364 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1365 		dip->un.e.member[1].ord = 1;
   1366 		break;
   1367 	case ESO_MONITOR_CLASS:
   1368 		dip->mixer_class = ESO_MONITOR_CLASS;
   1369 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1370 		strcpy(dip->label.name, AudioCmonitor);
   1371 		dip->type = AUDIO_MIXER_CLASS;
   1372 		break;
   1373 
   1374 	case ESO_RECORD_VOL:
   1375 		dip->mixer_class = ESO_RECORD_CLASS;
   1376 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1377 		strcpy(dip->label.name, AudioNrecord);
   1378 		dip->type = AUDIO_MIXER_VALUE;
   1379 		strcpy(dip->un.v.units.name, AudioNvolume);
   1380 		break;
   1381 	case ESO_RECORD_SOURCE:
   1382 		dip->mixer_class = ESO_RECORD_CLASS;
   1383 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1384 		strcpy(dip->label.name, AudioNsource);
   1385 		dip->type = AUDIO_MIXER_ENUM;
   1386 		dip->un.e.num_mem = 4;
   1387 		strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   1388 		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
   1389 		strcpy(dip->un.e.member[1].label.name, AudioNline);
   1390 		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
   1391 		strcpy(dip->un.e.member[2].label.name, AudioNcd);
   1392 		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
   1393 		strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
   1394 		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
   1395 		break;
   1396 	case ESO_DAC_REC_VOL:
   1397 		dip->mixer_class = ESO_RECORD_CLASS;
   1398 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1399 		strcpy(dip->label.name, AudioNdac);
   1400 		dip->type = AUDIO_MIXER_VALUE;
   1401 		dip->un.v.num_channels = 2;
   1402 		strcpy(dip->un.v.units.name, AudioNvolume);
   1403 		break;
   1404 	case ESO_MIC_REC_VOL:
   1405 		dip->mixer_class = ESO_RECORD_CLASS;
   1406 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1407 		strcpy(dip->label.name, AudioNmicrophone);
   1408 		dip->type = AUDIO_MIXER_VALUE;
   1409 		dip->un.v.num_channels = 2;
   1410 		strcpy(dip->un.v.units.name, AudioNvolume);
   1411 		break;
   1412 	case ESO_LINE_REC_VOL:
   1413 		dip->mixer_class = ESO_RECORD_CLASS;
   1414 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1415 		strcpy(dip->label.name, AudioNline);
   1416 		dip->type = AUDIO_MIXER_VALUE;
   1417 		dip->un.v.num_channels = 2;
   1418 		strcpy(dip->un.v.units.name, AudioNvolume);
   1419 		break;
   1420 	case ESO_SYNTH_REC_VOL:
   1421 		dip->mixer_class = ESO_RECORD_CLASS;
   1422 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1423 		strcpy(dip->label.name, AudioNfmsynth);
   1424 		dip->type = AUDIO_MIXER_VALUE;
   1425 		dip->un.v.num_channels = 2;
   1426 		strcpy(dip->un.v.units.name, AudioNvolume);
   1427 		break;
   1428 	case ESO_MONO_REC_VOL:
   1429 		dip->mixer_class = ESO_RECORD_CLASS;
   1430 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1431 		strcpy(dip->label.name, "mono_in");
   1432 		dip->type = AUDIO_MIXER_VALUE;
   1433 		dip->un.v.num_channels = 1; /* No lies */
   1434 		strcpy(dip->un.v.units.name, AudioNvolume);
   1435 		break;
   1436 	case ESO_CD_REC_VOL:
   1437 		dip->mixer_class = ESO_RECORD_CLASS;
   1438 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1439 		strcpy(dip->label.name, AudioNcd);
   1440 		dip->type = AUDIO_MIXER_VALUE;
   1441 		dip->un.v.num_channels = 2;
   1442 		strcpy(dip->un.v.units.name, AudioNvolume);
   1443 		break;
   1444 	case ESO_AUXB_REC_VOL:
   1445 		dip->mixer_class = ESO_RECORD_CLASS;
   1446 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1447 		strcpy(dip->label.name, "auxb");
   1448 		dip->type = AUDIO_MIXER_VALUE;
   1449 		dip->un.v.num_channels = 2;
   1450 		strcpy(dip->un.v.units.name, AudioNvolume);
   1451 		break;
   1452 	case ESO_RECORD_CLASS:
   1453 		dip->mixer_class = ESO_RECORD_CLASS;
   1454 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1455 		strcpy(dip->label.name, AudioCrecord);
   1456 		dip->type = AUDIO_MIXER_CLASS;
   1457 		break;
   1458 
   1459 	default:
   1460 		return ENXIO;
   1461 	}
   1462 
   1463 	return 0;
   1464 }
   1465 
   1466 static int
   1467 eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
   1468     size_t boundary, int direction, struct eso_dma *ed)
   1469 {
   1470 	int error;
   1471 
   1472 	ed->ed_size = size;
   1473 
   1474 	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
   1475 	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
   1476 	    &ed->ed_nsegs, BUS_DMA_WAITOK);
   1477 	if (error)
   1478 		goto out;
   1479 
   1480 	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
   1481 	    ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
   1482 	if (error)
   1483 		goto free;
   1484 
   1485 	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
   1486 	    BUS_DMA_WAITOK, &ed->ed_map);
   1487 	if (error)
   1488 		goto unmap;
   1489 
   1490 	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
   1491 	    ed->ed_size, NULL, BUS_DMA_WAITOK |
   1492 	    ((direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE));
   1493 	if (error)
   1494 		goto destroy;
   1495 
   1496 	return 0;
   1497 
   1498  destroy:
   1499 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
   1500  unmap:
   1501 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
   1502  free:
   1503 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
   1504  out:
   1505 	return error;
   1506 }
   1507 
   1508 static void
   1509 eso_freemem(struct eso_dma *ed)
   1510 {
   1511 
   1512 	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
   1513 	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
   1514 	bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
   1515 	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
   1516 }
   1517 
   1518 static struct eso_dma *
   1519 eso_kva2dma(const struct eso_softc *sc, const void *kva)
   1520 {
   1521 	struct eso_dma *p;
   1522 
   1523 	SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
   1524 		if (KVADDR(p) == kva)
   1525 			return p;
   1526 	}
   1527 
   1528 	panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
   1529 	/* NOTREACHED */
   1530 }
   1531 
   1532 static void *
   1533 eso_allocm(void *hdl, int direction, size_t size)
   1534 {
   1535 	struct eso_softc *sc;
   1536 	struct eso_dma *ed;
   1537 	size_t boundary;
   1538 	int error;
   1539 
   1540 	sc = hdl;
   1541 	ed = kmem_alloc(sizeof (*ed), KM_SLEEP);
   1542 
   1543 	/*
   1544 	 * Apparently the Audio 1 DMA controller's current address
   1545 	 * register can't roll over a 64K address boundary, so we have to
   1546 	 * take care of that ourselves.  Similarly, the Audio 2 DMA
   1547 	 * controller needs a 1M address boundary.
   1548 	 */
   1549 	if (direction == AUMODE_RECORD)
   1550 		boundary = 0x10000;
   1551 	else
   1552 		boundary = 0x100000;
   1553 
   1554 	/*
   1555 	 * XXX Work around allocation problems for Audio 1, which
   1556 	 * XXX implements the 24 low address bits only, with
   1557 	 * XXX machine-specific DMA tag use.
   1558 	 */
   1559 #ifdef alpha
   1560 	/*
   1561 	 * XXX Force allocation through the (ISA) SGMAP.
   1562 	 */
   1563 	if (direction == AUMODE_RECORD)
   1564 		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
   1565 	else
   1566 #elif defined(amd64) || defined(i386)
   1567 	/*
   1568 	 * XXX Force allocation through the ISA DMA tag.
   1569 	 */
   1570 	if (direction == AUMODE_RECORD)
   1571 		ed->ed_dmat = &isa_bus_dma_tag;
   1572 	else
   1573 #endif
   1574 		ed->ed_dmat = sc->sc_dmat;
   1575 
   1576 	error = eso_allocmem(sc, size, 32, boundary, direction, ed);
   1577 	if (error) {
   1578 		kmem_free(ed, sizeof(*ed));
   1579 		return NULL;
   1580 	}
   1581 	SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);
   1582 
   1583 	return KVADDR(ed);
   1584 }
   1585 
   1586 static void
   1587 eso_freem(void *hdl, void *addr, size_t size)
   1588 {
   1589 	struct eso_softc *sc;
   1590 	struct eso_dma *p;
   1591 
   1592 	sc = hdl;
   1593 	p = eso_kva2dma(sc, addr);
   1594 
   1595 	SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
   1596 	eso_freemem(p);
   1597 	kmem_free(p, sizeof(*p));
   1598 }
   1599 
   1600 static size_t
   1601 eso_round_buffersize(void *hdl, int direction, size_t bufsize)
   1602 {
   1603 	size_t maxsize;
   1604 
   1605 	/*
   1606 	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
   1607 	 * bytes.  This is because IO_A2DMAC is a two byte value
   1608 	 * indicating the literal byte count, and the 4 least significant
   1609 	 * bits are read-only.  Zero is not used as a special case for
   1610 	 * 0x10000.
   1611 	 *
   1612 	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
   1613 	 * be represented.
   1614 	 */
   1615 	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
   1616 
   1617 	if (bufsize > maxsize)
   1618 		bufsize = maxsize;
   1619 
   1620 	return bufsize;
   1621 }
   1622 
   1623 /* ARGSUSED */
   1624 static int
   1625 eso_get_props(void *hdl)
   1626 {
   1627 
   1628 	return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
   1629 	    AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
   1630 }
   1631 
   1632 static int
   1633 eso_trigger_output(void *hdl, void *start, void *end, int blksize,
   1634     void (*intr)(void *), void *arg, const audio_params_t *param)
   1635 {
   1636 	struct eso_softc *sc;
   1637 	struct eso_dma *ed;
   1638 	uint8_t a2c1;
   1639 
   1640 	sc = hdl;
   1641 	DPRINTF((
   1642 	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
   1643 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
   1644 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
   1645 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
   1646 	    param->precision, param->channels));
   1647 
   1648 	/* Find DMA buffer. */
   1649 	ed = eso_kva2dma(sc, start);
   1650 	DPRINTF(("%s: dmaaddr %lx\n",
   1651 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
   1652 
   1653 	sc->sc_pintr = intr;
   1654 	sc->sc_parg = arg;
   1655 
   1656 	/* Compute drain timeout. */
   1657 	sc->sc_pdrain = (blksize * NBBY * hz) /
   1658 	    (param->sample_rate * param->channels *
   1659 	     param->precision) + 2;	/* slop */
   1660 
   1661 	/* DMA transfer count (in `words'!) reload using 2's complement. */
   1662 	blksize = -(blksize >> 1);
   1663 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
   1664 	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
   1665 
   1666 	/* Update DAC to reflect DMA count and audio parameters. */
   1667 	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
   1668 	if (param->precision == 16)
   1669 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
   1670 	else
   1671 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
   1672 	if (param->channels == 2)
   1673 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
   1674 	else
   1675 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
   1676 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1677 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1678 		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
   1679 	else
   1680 		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
   1681 	/* Unmask IRQ. */
   1682 	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
   1683 	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
   1684 
   1685 	/* Set up DMA controller. */
   1686 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
   1687 	    DMAADDR(ed));
   1688 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
   1689 	    (uint8_t *)end - (uint8_t *)start);
   1690 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
   1691 	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
   1692 
   1693 	/* Start DMA. */
   1694 	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
   1695 	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
   1696 	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
   1697 	    ESO_MIXREG_A2C1_AUTO;
   1698 	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
   1699 
   1700 	return 0;
   1701 }
   1702 
   1703 static int
   1704 eso_trigger_input(void *hdl, void *start, void *end, int blksize,
   1705     void (*intr)(void *), void *arg, const audio_params_t *param)
   1706 {
   1707 	struct eso_softc *sc;
   1708 	struct eso_dma *ed;
   1709 	uint8_t actl, a1c1;
   1710 
   1711 	sc = hdl;
   1712 	DPRINTF((
   1713 	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
   1714 	    device_xname(sc->sc_dev), start, end, blksize, intr, arg));
   1715 	DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
   1716 	    device_xname(sc->sc_dev), param->sample_rate, param->encoding,
   1717 	    param->precision, param->channels));
   1718 
   1719 	/*
   1720 	 * If we failed to configure the Audio 1 DMA controller, bail here
   1721 	 * while retaining availability of the DAC direction (in Audio 2).
   1722 	 */
   1723 	if (!sc->sc_dmac_configured)
   1724 		return EIO;
   1725 
   1726 	/* Find DMA buffer. */
   1727 	ed = eso_kva2dma(sc, start);
   1728 	DPRINTF(("%s: dmaaddr %lx\n",
   1729 	    device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));
   1730 
   1731 	sc->sc_rintr = intr;
   1732 	sc->sc_rarg = arg;
   1733 
   1734 	/* Compute drain timeout. */
   1735 	sc->sc_rdrain = (blksize * NBBY * hz) /
   1736 	    (param->sample_rate * param->channels *
   1737 	     param->precision) + 2;	/* slop */
   1738 
   1739 	/* Set up ADC DMA converter parameters. */
   1740 	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
   1741 	if (param->channels == 2) {
   1742 		actl &= ~ESO_CTLREG_ACTL_MONO;
   1743 		actl |= ESO_CTLREG_ACTL_STEREO;
   1744 	} else {
   1745 		actl &= ~ESO_CTLREG_ACTL_STEREO;
   1746 		actl |= ESO_CTLREG_ACTL_MONO;
   1747 	}
   1748 	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
   1749 
   1750 	/* Set up Transfer Type: maybe move to attach time? */
   1751 	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
   1752 
   1753 	/* DMA transfer count reload using 2's complement. */
   1754 	blksize = -blksize;
   1755 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
   1756 	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
   1757 
   1758 	/* Set up and enable Audio 1 DMA FIFO. */
   1759 	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
   1760 	if (param->precision == 16)
   1761 		a1c1 |= ESO_CTLREG_A1C1_16BIT;
   1762 	if (param->channels == 2)
   1763 		a1c1 |= ESO_CTLREG_A1C1_STEREO;
   1764 	else
   1765 		a1c1 |= ESO_CTLREG_A1C1_MONO;
   1766 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
   1767 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
   1768 		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
   1769 	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
   1770 
   1771 	/* Set up ADC IRQ/DRQ parameters. */
   1772 	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
   1773 	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
   1774 	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
   1775 	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
   1776 
   1777 	/* Set up and enable DMA controller. */
   1778 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
   1779 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
   1780 	    ESO_DMAC_MASK_MASK);
   1781 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
   1782 	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
   1783 	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
   1784 	    DMAADDR(ed));
   1785 	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
   1786 	    (uint8_t *)end - (uint8_t *)start - 1);
   1787 	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
   1788 
   1789 	/* Start DMA. */
   1790 	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
   1791 	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
   1792 	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
   1793 
   1794 	return 0;
   1795 }
   1796 
   1797 
   1798 static void
   1799 eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
   1800 {
   1801 	struct eso_softc *sc;
   1802 
   1803 	sc = addr;
   1804 	*intr = &sc->sc_intr_lock;
   1805 	*thread = &sc->sc_lock;
   1806 }
   1807 
   1808 /*
   1809  * Mixer utility functions.
   1810  */
   1811 static int
   1812 eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
   1813 {
   1814 	mixer_devinfo_t di;
   1815 	int i;
   1816 
   1817 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1818 
   1819 	di.index = ESO_RECORD_SOURCE;
   1820 	if (eso_query_devinfo(sc, &di) != 0)
   1821 		panic("eso_set_recsrc: eso_query_devinfo failed");
   1822 
   1823 	for (i = 0; i < di.un.e.num_mem; i++) {
   1824 		if (recsrc == di.un.e.member[i].ord) {
   1825 			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
   1826 			sc->sc_recsrc = recsrc;
   1827 			return 0;
   1828 		}
   1829 	}
   1830 
   1831 	return EINVAL;
   1832 }
   1833 
   1834 static int
   1835 eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
   1836 {
   1837 	mixer_devinfo_t di;
   1838 	int i;
   1839 	uint8_t mpm;
   1840 
   1841 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1842 
   1843 	di.index = ESO_MONOOUT_SOURCE;
   1844 	if (eso_query_devinfo(sc, &di) != 0)
   1845 		panic("eso_set_monooutsrc: eso_query_devinfo failed");
   1846 
   1847 	for (i = 0; i < di.un.e.num_mem; i++) {
   1848 		if (monooutsrc == di.un.e.member[i].ord) {
   1849 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1850 			mpm &= ~ESO_MIXREG_MPM_MOMASK;
   1851 			mpm |= monooutsrc;
   1852 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1853 			sc->sc_monooutsrc = monooutsrc;
   1854 			return 0;
   1855 		}
   1856 	}
   1857 
   1858 	return EINVAL;
   1859 }
   1860 
   1861 static int
   1862 eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
   1863 {
   1864 	mixer_devinfo_t di;
   1865 	int i;
   1866 	uint8_t mpm;
   1867 
   1868 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1869 
   1870 	di.index = ESO_MONOIN_BYPASS;
   1871 	if (eso_query_devinfo(sc, &di) != 0)
   1872 		panic("eso_set_monoinbypass: eso_query_devinfo failed");
   1873 
   1874 	for (i = 0; i < di.un.e.num_mem; i++) {
   1875 		if (monoinbypass == di.un.e.member[i].ord) {
   1876 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1877 			mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
   1878 			mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
   1879 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1880 			sc->sc_monoinbypass = monoinbypass;
   1881 			return 0;
   1882 		}
   1883 	}
   1884 
   1885 	return EINVAL;
   1886 }
   1887 
   1888 static int
   1889 eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
   1890 {
   1891 	mixer_devinfo_t di;
   1892 	int i;
   1893 	uint8_t mpm;
   1894 
   1895 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1896 
   1897 	di.index = ESO_MIC_PREAMP;
   1898 	if (eso_query_devinfo(sc, &di) != 0)
   1899 		panic("eso_set_preamp: eso_query_devinfo failed");
   1900 
   1901 	for (i = 0; i < di.un.e.num_mem; i++) {
   1902 		if (preamp == di.un.e.member[i].ord) {
   1903 			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
   1904 			mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
   1905 			mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
   1906 			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
   1907 			sc->sc_preamp = preamp;
   1908 			return 0;
   1909 		}
   1910 	}
   1911 
   1912 	return EINVAL;
   1913 }
   1914 
   1915 /*
   1916  * Reload Master Volume and Mute values in softc from mixer; used when
   1917  * those have previously been invalidated by use of hardware volume controls.
   1918  */
   1919 static void
   1920 eso_reload_master_vol(struct eso_softc *sc)
   1921 {
   1922 	uint8_t mv;
   1923 
   1924 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1925 
   1926 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
   1927 	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
   1928 	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
   1929 	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
   1930 	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
   1931 	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
   1932 	/* Currently both channels are muted simultaneously; either is OK. */
   1933 	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
   1934 }
   1935 
   1936 static void
   1937 eso_set_gain(struct eso_softc *sc, unsigned int port)
   1938 {
   1939 	uint8_t mixreg, tmp;
   1940 
   1941 	KASSERT(mutex_owned(&sc->sc_intr_lock));
   1942 
   1943 	switch (port) {
   1944 	case ESO_DAC_PLAY_VOL:
   1945 		mixreg = ESO_MIXREG_PVR_A2;
   1946 		break;
   1947 	case ESO_MIC_PLAY_VOL:
   1948 		mixreg = ESO_MIXREG_PVR_MIC;
   1949 		break;
   1950 	case ESO_LINE_PLAY_VOL:
   1951 		mixreg = ESO_MIXREG_PVR_LINE;
   1952 		break;
   1953 	case ESO_SYNTH_PLAY_VOL:
   1954 		mixreg = ESO_MIXREG_PVR_SYNTH;
   1955 		break;
   1956 	case ESO_CD_PLAY_VOL:
   1957 		mixreg = ESO_MIXREG_PVR_CD;
   1958 		break;
   1959 	case ESO_AUXB_PLAY_VOL:
   1960 		mixreg = ESO_MIXREG_PVR_AUXB;
   1961 		break;
   1962 
   1963 	case ESO_DAC_REC_VOL:
   1964 		mixreg = ESO_MIXREG_RVR_A2;
   1965 		break;
   1966 	case ESO_MIC_REC_VOL:
   1967 		mixreg = ESO_MIXREG_RVR_MIC;
   1968 		break;
   1969 	case ESO_LINE_REC_VOL:
   1970 		mixreg = ESO_MIXREG_RVR_LINE;
   1971 		break;
   1972 	case ESO_SYNTH_REC_VOL:
   1973 		mixreg = ESO_MIXREG_RVR_SYNTH;
   1974 		break;
   1975 	case ESO_CD_REC_VOL:
   1976 		mixreg = ESO_MIXREG_RVR_CD;
   1977 		break;
   1978 	case ESO_AUXB_REC_VOL:
   1979 		mixreg = ESO_MIXREG_RVR_AUXB;
   1980 		break;
   1981 	case ESO_MONO_PLAY_VOL:
   1982 		mixreg = ESO_MIXREG_PVR_MONO;
   1983 		break;
   1984 	case ESO_MONO_REC_VOL:
   1985 		mixreg = ESO_MIXREG_RVR_MONO;
   1986 		break;
   1987 
   1988 	case ESO_PCSPEAKER_VOL:
   1989 		/* Special case - only 3-bit, mono, and reserved bits. */
   1990 		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
   1991 		tmp &= ESO_MIXREG_PCSVR_RESV;
   1992 		/* Map bits 7:5 -> 2:0. */
   1993 		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
   1994 		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
   1995 		return;
   1996 
   1997 	case ESO_MASTER_VOL:
   1998 		/* Special case - separate regs, and 6-bit precision. */
   1999 		/* Map bits 7:2 -> 5:0, reflect mute settings. */
   2000 		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
   2001 		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
   2002 		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
   2003 		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
   2004 		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
   2005 		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
   2006 		return;
   2007 
   2008 	case ESO_SPATIALIZER:
   2009 		/* Special case - only `mono', and higher precision. */
   2010 		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
   2011 		    sc->sc_gain[port][ESO_LEFT]);
   2012 		return;
   2013 
   2014 	case ESO_RECORD_VOL:
   2015 		/* Very Special case, controller register. */
   2016 		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
   2017 		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
   2018 		return;
   2019 
   2020 	default:
   2021 #ifdef DIAGNOSTIC
   2022 		panic("eso_set_gain: bad port %u", port);
   2023 		/* NOTREACHED */
   2024 #else
   2025 		return;
   2026 #endif
   2027 	}
   2028 
   2029 	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
   2030 	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
   2031 }
   2032