eso.c revision 1.9 1 /* $NetBSD: eso.c,v 1.9 1999/10/10 18:52:03 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1999 Klaus J. Klein
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
33 */
34
35 #include "mpu.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/device.h>
42 #include <sys/proc.h>
43
44 #include <dev/pci/pcidevs.h>
45 #include <dev/pci/pcivar.h>
46
47 #include <sys/audioio.h>
48 #include <dev/audio_if.h>
49 #include <dev/midi_if.h>
50
51 #include <dev/mulaw.h>
52 #include <dev/auconv.h>
53
54 #include <dev/ic/mpuvar.h>
55 #include <dev/ic/i8237reg.h>
56 #include <dev/pci/esoreg.h>
57 #include <dev/pci/esovar.h>
58
59 #include <machine/bus.h>
60 #include <machine/intr.h>
61
62 #if BYTE_ORDER == BIG_ENDIAN
63 #include <machine/bswap.h>
64 #define htopci(x) bswap32(x)
65 #define pcitoh(x) bswap32(x)
66 #else
67 #define htopci(x) (x)
68 #define pcitoh(x) (x)
69 #endif
70
71
72 #if defined(AUDIO_DEBUG) || defined(DEBUG)
73 #define DPRINTF(x) printf x
74 #else
75 #define DPRINTF(x)
76 #endif
77
78 struct eso_dma {
79 bus_dma_tag_t ed_dmat;
80 bus_dmamap_t ed_map;
81 caddr_t ed_addr;
82 bus_dma_segment_t ed_segs[1];
83 int ed_nsegs;
84 size_t ed_size;
85 struct eso_dma * ed_next;
86 };
87
88 #define KVADDR(dma) ((void *)(dma)->ed_addr)
89 #define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
90
91 /* Autoconfiguration interface */
92 static int eso_match __P((struct device *, struct cfdata *, void *));
93 static void eso_attach __P((struct device *, struct device *, void *));
94 static void eso_defer __P((struct device *));
95
96 struct cfattach eso_ca = {
97 sizeof (struct eso_softc), eso_match, eso_attach
98 };
99
100 /* PCI interface */
101 static int eso_intr __P((void *));
102
103 /* MI audio layer interface */
104 static int eso_open __P((void *, int));
105 static void eso_close __P((void *));
106 static int eso_query_encoding __P((void *, struct audio_encoding *));
107 static int eso_set_params __P((void *, int, int, struct audio_params *,
108 struct audio_params *));
109 static int eso_round_blocksize __P((void *, int));
110 static int eso_halt_output __P((void *));
111 static int eso_halt_input __P((void *));
112 static int eso_getdev __P((void *, struct audio_device *));
113 static int eso_set_port __P((void *, mixer_ctrl_t *));
114 static int eso_get_port __P((void *, mixer_ctrl_t *));
115 static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
116 static void * eso_allocm __P((void *, int, size_t, int, int));
117 static void eso_freem __P((void *, void *, int));
118 static size_t eso_round_buffersize __P((void *, int, size_t));
119 static int eso_mappage __P((void *, void *, int, int));
120 static int eso_get_props __P((void *));
121 static int eso_trigger_output __P((void *, void *, void *, int,
122 void (*)(void *), void *, struct audio_params *));
123 static int eso_trigger_input __P((void *, void *, void *, int,
124 void (*)(void *), void *, struct audio_params *));
125
126 static struct audio_hw_if eso_hw_if = {
127 eso_open,
128 eso_close,
129 NULL, /* drain */
130 eso_query_encoding,
131 eso_set_params,
132 eso_round_blocksize,
133 NULL, /* commit_settings */
134 NULL, /* init_output */
135 NULL, /* init_input */
136 NULL, /* start_output */
137 NULL, /* start_input */
138 eso_halt_output,
139 eso_halt_input,
140 NULL, /* speaker_ctl */
141 eso_getdev,
142 NULL, /* setfd */
143 eso_set_port,
144 eso_get_port,
145 eso_query_devinfo,
146 eso_allocm,
147 eso_freem,
148 eso_round_buffersize,
149 eso_mappage,
150 eso_get_props,
151 eso_trigger_output,
152 eso_trigger_input
153 };
154
155 static const char * const eso_rev2model[] = {
156 "ES1938",
157 "ES1946"
158 };
159
160
161 /*
162 * Utility routines
163 */
164 /* Register access etc. */
165 static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
166 static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
167 static uint8_t eso_read_rdr __P((struct eso_softc *));
168 static int eso_reset __P((struct eso_softc *));
169 static void eso_set_gain __P((struct eso_softc *, unsigned int));
170 static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
171 static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
172 static void eso_write_cmd __P((struct eso_softc *, uint8_t));
173 static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
174 static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
175 /* DMA memory allocation */
176 static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
177 int, struct eso_dma *));
178 static void eso_freemem __P((struct eso_dma *));
179
180
181 static int
182 eso_match(parent, match, aux)
183 struct device *parent;
184 struct cfdata *match;
185 void *aux;
186 {
187 struct pci_attach_args *pa = aux;
188
189 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
190 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
191 return (1);
192
193 return (0);
194 }
195
196 static void
197 eso_attach(parent, self, aux)
198 struct device *parent, *self;
199 void *aux;
200 {
201 struct eso_softc *sc = (struct eso_softc *)self;
202 struct pci_attach_args *pa = aux;
203 struct audio_attach_args aa;
204 pci_intr_handle_t ih;
205 bus_addr_t vcbase;
206 const char *intrstring;
207 int idx;
208 uint8_t a2mode, mvctl;
209
210 sc->sc_revision = PCI_REVISION(pa->pa_class);
211
212 printf(": ESS Solo-1 PCI AudioDrive ");
213 if (sc->sc_revision <
214 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
215 printf("%s\n", eso_rev2model[sc->sc_revision]);
216 else
217 printf("(unknown rev. 0x%02x)\n", sc->sc_revision);
218
219 /* Map I/O registers. */
220 if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
221 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
222 printf("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
223 return;
224 }
225 if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
226 &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
227 printf("%s: can't map SB I/O space\n", sc->sc_dev.dv_xname);
228 return;
229 }
230 if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
231 &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
232 printf("%s: can't map VC I/O space\n", sc->sc_dev.dv_xname);
233 /* Don't bail out yet: we can map it later, see below. */
234 vcbase = 0;
235 sc->sc_vcsize = 0x10; /* From the data sheet. */
236 }
237 if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
238 &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
239 printf("%s: can't map MPU I/O space\n", sc->sc_dev.dv_xname);
240 return;
241 }
242 if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
243 &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
244 printf("%s: can't map Game I/O space\n", sc->sc_dev.dv_xname);
245 return;
246 }
247
248 sc->sc_dmat = pa->pa_dmat;
249 sc->sc_dmas = NULL;
250 sc->sc_dmac_configured = 0;
251
252 /* Enable bus mastering. */
253 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
254 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
255 PCI_COMMAND_MASTER_ENABLE);
256
257 /* Reset the device; bail out upon failure. */
258 if (eso_reset(sc) != 0) {
259 printf("%s: can't reset\n", sc->sc_dev.dv_xname);
260 return;
261 }
262
263 /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
264 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
265 pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
266 ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
267
268 /* Enable the relevant (DMA) interrupts. */
269 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
270 ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_MPUIRQ);
271
272 /* Set up A1's sample rate generator for new-style parameters. */
273 a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
274 a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
275 eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
276
277 /* Set mixer regs to something reasonable, needs work. */
278 for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
279 int v;
280
281 switch (idx) {
282 case ESO_MIC_PLAY_VOL:
283 case ESO_LINE_PLAY_VOL:
284 case ESO_CD_PLAY_VOL:
285 case ESO_MONO_PLAY_VOL:
286 case ESO_AUXB_PLAY_VOL:
287 case ESO_DAC_REC_VOL:
288 case ESO_LINE_REC_VOL:
289 case ESO_SYNTH_REC_VOL:
290 case ESO_CD_REC_VOL:
291 case ESO_MONO_REC_VOL:
292 case ESO_AUXB_REC_VOL:
293 case ESO_SPATIALIZER:
294 v = 0;
295 break;
296 case ESO_MASTER_VOL:
297 v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
298 break;
299 default:
300 v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
301 break;
302 }
303 sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
304 eso_set_gain(sc, idx);
305 }
306 eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
307
308 /* Map and establish the interrupt. */
309 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
310 pa->pa_intrline, &ih)) {
311 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
312 return;
313 }
314 intrstring = pci_intr_string(pa->pa_pc, ih);
315 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
316 if (sc->sc_ih == NULL) {
317 printf("%s: couldn't establish interrupt",
318 sc->sc_dev.dv_xname);
319 if (intrstring != NULL)
320 printf(" at %s", intrstring);
321 printf("\n");
322 return;
323 }
324 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstring);
325
326 /*
327 * Set up the DDMA Control register; a suitable I/O region has been
328 * supposedly mapped in the VC base address register.
329 *
330 * The Solo-1 has an ... interesting silicon bug that causes it to
331 * not respond to I/O space accesses to the Audio 1 DMA controller
332 * if the latter's mapping base address is aligned on a 1K boundary.
333 * As a consequence, it is quite possible for the mapping provided
334 * in the VC BAR to be useless. To work around this, we defer this
335 * part until all autoconfiguration on our parent bus is completed
336 * and then try to map it ourselves in fulfillment of the constraint.
337 *
338 * According to the register map we may write to the low 16 bits
339 * only, but experimenting has shown we're safe.
340 * -kjk
341 */
342 if (ESO_VALID_DDMAC_BASE(vcbase)) {
343 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
344 vcbase | ESO_PCI_DDMAC_DE);
345 sc->sc_dmac_configured = 1;
346
347 printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
348 sc->sc_dev.dv_xname, (unsigned long)vcbase);
349 } else {
350 DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
351 sc->sc_dev.dv_xname, (unsigned long)vcbase));
352 sc->sc_pa = *pa;
353 config_defer(self, eso_defer);
354 }
355
356 audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
357
358 aa.type = AUDIODEV_TYPE_OPL;
359 aa.hwif = NULL;
360 aa.hdl = NULL;
361 (void)config_found(&sc->sc_dev, &aa, audioprint);
362
363 aa.type = AUDIODEV_TYPE_MPU;
364 aa.hwif = NULL;
365 aa.hdl = NULL;
366 sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
367 if (sc->sc_mpudev != NULL) {
368 /* Unmask the MPU irq. */
369 mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
370 mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
371 eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
372 }
373 }
374
375 static void
376 eso_defer(self)
377 struct device *self;
378 {
379 struct eso_softc *sc = (struct eso_softc *)self;
380 struct pci_attach_args *pa = &sc->sc_pa;
381 bus_addr_t addr, start;
382
383 printf("%s: ", sc->sc_dev.dv_xname);
384
385 /*
386 * This is outright ugly, but since we must not make assumptions
387 * on the underlying allocator's behaviour it's the most straight-
388 * forward way to implement it. Note that we skip over the first
389 * 1K region, which is typically occupied by an attached ISA bus.
390 */
391 for (start = 0x0400; start < 0xffff; start += 0x0400) {
392 if (bus_space_alloc(sc->sc_iot,
393 start + sc->sc_vcsize, start + 0x0400 - 1,
394 sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
395 &sc->sc_dmac_ioh) != 0)
396 continue;
397
398 pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
399 addr | ESO_PCI_DDMAC_DE);
400 sc->sc_dmac_iot = sc->sc_iot;
401 sc->sc_dmac_configured = 1;
402 printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
403 (unsigned long)addr);
404
405 return;
406 }
407
408 printf("can't map Audio 1 DMA into I/O space\n");
409 }
410
411 static void
412 eso_write_cmd(sc, cmd)
413 struct eso_softc *sc;
414 uint8_t cmd;
415 {
416 int i;
417
418 /* Poll for busy indicator to become clear. */
419 for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
420 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
421 & ESO_SB_RSR_BUSY) == 0) {
422 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
423 ESO_SB_WDR, cmd);
424 return;
425 } else {
426 delay(10);
427 }
428 }
429
430 printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
431 return;
432 }
433
434 /* Write to a controller register */
435 static void
436 eso_write_ctlreg(sc, reg, val)
437 struct eso_softc *sc;
438 uint8_t reg, val;
439 {
440
441 /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
442
443 eso_write_cmd(sc, reg);
444 eso_write_cmd(sc, val);
445 }
446
447 /* Read out the Read Data Register */
448 static uint8_t
449 eso_read_rdr(sc)
450 struct eso_softc *sc;
451 {
452 int i;
453
454 for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
455 if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
456 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
457 return (bus_space_read_1(sc->sc_sb_iot,
458 sc->sc_sb_ioh, ESO_SB_RDR));
459 } else {
460 delay(10);
461 }
462 }
463
464 printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
465 return (-1);
466 }
467
468
469 static uint8_t
470 eso_read_ctlreg(sc, reg)
471 struct eso_softc *sc;
472 uint8_t reg;
473 {
474
475 eso_write_cmd(sc, ESO_CMD_RCR);
476 eso_write_cmd(sc, reg);
477 return (eso_read_rdr(sc));
478 }
479
480 static void
481 eso_write_mixreg(sc, reg, val)
482 struct eso_softc *sc;
483 uint8_t reg, val;
484 {
485 int s;
486
487 /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
488
489 s = splaudio();
490 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
491 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
492 splx(s);
493 }
494
495 static uint8_t
496 eso_read_mixreg(sc, reg)
497 struct eso_softc *sc;
498 uint8_t reg;
499 {
500 int s;
501 uint8_t val;
502
503 s = splaudio();
504 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
505 val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
506 splx(s);
507
508 return (val);
509 }
510
511 static int
512 eso_intr(hdl)
513 void *hdl;
514 {
515 struct eso_softc *sc = hdl;
516 uint8_t irqctl;
517
518 irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
519
520 /* If it wasn't ours, that's all she wrote. */
521 if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
522 ESO_IO_IRQCTL_MPUIRQ)) == 0)
523 return (0);
524
525 if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
526 /* Clear interrupt. */
527 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
528 ESO_SB_RBSR);
529
530 if (sc->sc_rintr)
531 sc->sc_rintr(sc->sc_rarg);
532 else
533 wakeup(&sc->sc_rintr);
534 }
535
536 if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
537 /*
538 * Clear the A2 IRQ latch: the cached value reflects the
539 * current DAC settings with the IRQ latch bit not set.
540 */
541 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
542
543 if (sc->sc_pintr)
544 sc->sc_pintr(sc->sc_parg);
545 else
546 wakeup(&sc->sc_pintr);
547 }
548
549 #if NMPU > 0
550 if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
551 mpu_intr(sc->sc_mpudev);
552 #endif
553
554 return (1);
555 }
556
557 /* Perform a software reset, including DMA FIFOs. */
558 static int
559 eso_reset(sc)
560 struct eso_softc *sc;
561 {
562 int i;
563
564 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
565 ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
566 /* `Delay' suggested in the data sheet. */
567 (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
568 bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
569
570 /* Wait for reset to take effect. */
571 for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
572 /* Poll for data to become available. */
573 if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
574 ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
575 bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
576 ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
577
578 /* Activate Solo-1 extension commands. */
579 eso_write_cmd(sc, ESO_CMD_EXTENB);
580 /* Reset mixer registers. */
581 eso_write_mixreg(sc, ESO_MIXREG_RESET,
582 ESO_MIXREG_RESET_RESET);
583
584 return (0);
585 } else {
586 delay(1000);
587 }
588 }
589
590 printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
591 return (-1);
592 }
593
594
595 /* ARGSUSED */
596 static int
597 eso_open(hdl, flags)
598 void *hdl;
599 int flags;
600 {
601 struct eso_softc *sc = hdl;
602
603 DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
604
605 sc->sc_pintr = NULL;
606 sc->sc_rintr = NULL;
607
608 return (0);
609 }
610
611 static void
612 eso_close(hdl)
613 void *hdl;
614 {
615
616 DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
617 }
618
619 static int
620 eso_query_encoding(hdl, fp)
621 void *hdl;
622 struct audio_encoding *fp;
623 {
624
625 switch (fp->index) {
626 case 0:
627 strcpy(fp->name, AudioEulinear);
628 fp->encoding = AUDIO_ENCODING_ULINEAR;
629 fp->precision = 8;
630 fp->flags = 0;
631 break;
632 case 1:
633 strcpy(fp->name, AudioEmulaw);
634 fp->encoding = AUDIO_ENCODING_ULAW;
635 fp->precision = 8;
636 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
637 break;
638 case 2:
639 strcpy(fp->name, AudioEalaw);
640 fp->encoding = AUDIO_ENCODING_ALAW;
641 fp->precision = 8;
642 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
643 break;
644 case 3:
645 strcpy(fp->name, AudioEslinear);
646 fp->encoding = AUDIO_ENCODING_SLINEAR;
647 fp->precision = 8;
648 fp->flags = 0;
649 break;
650 case 4:
651 strcpy(fp->name, AudioEslinear_le);
652 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
653 fp->precision = 16;
654 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
655 break;
656 case 5:
657 strcpy(fp->name, AudioEulinear_le);
658 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
659 fp->precision = 16;
660 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
661 break;
662 case 6:
663 strcpy(fp->name, AudioEslinear_be);
664 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
665 fp->precision = 16;
666 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
667 break;
668 case 7:
669 strcpy(fp->name, AudioEulinear_be);
670 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
671 fp->precision = 16;
672 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
673 break;
674 default:
675 return (EINVAL);
676 }
677
678 return (0);
679 }
680
681 static int
682 eso_set_params(hdl, setmode, usemode, play, rec)
683 void *hdl;
684 int setmode, usemode;
685 struct audio_params *play, *rec;
686 {
687 struct eso_softc *sc = hdl;
688 struct audio_params *p;
689 int mode, r[2], rd[2], clk;
690 unsigned int srg, fltdiv;
691
692 for (mode = AUMODE_RECORD; mode != -1;
693 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
694 if ((setmode & mode) == 0)
695 continue;
696
697 p = (mode == AUMODE_PLAY) ? play : rec;
698
699 if (p->sample_rate < ESO_MINRATE ||
700 p->sample_rate > ESO_MAXRATE ||
701 (p->precision != 8 && p->precision != 16) ||
702 (p->channels != 1 && p->channels != 2))
703 return (EINVAL);
704
705 p->factor = 1;
706 p->sw_code = NULL;
707 switch (p->encoding) {
708 case AUDIO_ENCODING_SLINEAR_BE:
709 case AUDIO_ENCODING_ULINEAR_BE:
710 if (mode == AUMODE_PLAY && p->precision == 16)
711 p->sw_code = swap_bytes;
712 break;
713 case AUDIO_ENCODING_SLINEAR_LE:
714 case AUDIO_ENCODING_ULINEAR_LE:
715 if (mode == AUMODE_RECORD && p->precision == 16)
716 p->sw_code = swap_bytes;
717 break;
718 case AUDIO_ENCODING_ULAW:
719 if (mode == AUMODE_PLAY) {
720 p->factor = 2;
721 p->sw_code = mulaw_to_ulinear16;
722 } else {
723 p->sw_code = ulinear8_to_mulaw;
724 }
725 break;
726 case AUDIO_ENCODING_ALAW:
727 if (mode == AUMODE_PLAY) {
728 p->factor = 2;
729 p->sw_code = alaw_to_ulinear16;
730 } else {
731 p->sw_code = ulinear8_to_alaw;
732 }
733 break;
734 default:
735 return (EINVAL);
736 }
737
738 /*
739 * We'll compute both possible sample rate dividers and pick
740 * the one with the least error.
741 */
742 #define ABS(x) ((x) < 0 ? -(x) : (x))
743 r[0] = ESO_CLK0 /
744 (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
745 r[1] = ESO_CLK1 /
746 (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
747
748 clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
749 srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
750
751 /* Roll-off frequency of 87%, as in the ES1888 driver. */
752 fltdiv = 256 - 200279L / r[clk];
753
754 /* Update to reflect the possibly inexact rate. */
755 p->sample_rate = r[clk];
756
757 if (mode == AUMODE_RECORD) {
758 /* Audio 1 */
759 DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
760 eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
761 eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
762 } else {
763 /* Audio 2 */
764 DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
765 eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
766 eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
767 }
768 #undef ABS
769
770 }
771
772 return (0);
773 }
774
775 static int
776 eso_round_blocksize(hdl, blk)
777 void *hdl;
778 int blk;
779 {
780
781 return (blk & -32); /* keep good alignment; at least 16 req'd */
782 }
783
784 static int
785 eso_halt_output(hdl)
786 void *hdl;
787 {
788 struct eso_softc *sc = hdl;
789 int error, s;
790
791 DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
792
793 /*
794 * Disable auto-initialize DMA, allowing the FIFO to drain and then
795 * stop. The interrupt callback pointer is cleared at this
796 * point so that an outstanding FIFO interrupt for the remaining data
797 * will be acknowledged without further processing.
798 *
799 * This does not immediately `abort' an operation in progress (c.f.
800 * audio(9)) but is the method to leave the FIFO behind in a clean
801 * state with the least hair. (Besides, that item needs to be
802 * rephrased for trigger_*()-based DMA environments.)
803 */
804 s = splaudio();
805 eso_write_mixreg(sc, ESO_MIXREG_A2C1,
806 ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
807 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
808 ESO_IO_A2DMAM_DMAENB);
809
810 sc->sc_pintr = NULL;
811 error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", hz);
812 splx(s);
813
814 /* Shut down DMA completely. */
815 eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
816 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
817
818 return (error == EWOULDBLOCK ? 0 : error);
819 }
820
821 static int
822 eso_halt_input(hdl)
823 void *hdl;
824 {
825 struct eso_softc *sc = hdl;
826 int error, s;
827
828 DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
829
830 /* Just like eso_halt_output(), but for Audio 1. */
831 s = splaudio();
832 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
833 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
834 ESO_CTLREG_A1C2_DMAENB);
835 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
836 DMA37MD_WRITE | DMA37MD_DEMAND);
837
838 sc->sc_rintr = NULL;
839 error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", hz);
840 splx(s);
841
842 /* Shut down DMA completely. */
843 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
844 ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
845 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
846 ESO_DMAC_MASK_MASK);
847
848 return (error == EWOULDBLOCK ? 0 : error);
849 }
850
851 static int
852 eso_getdev(hdl, retp)
853 void *hdl;
854 struct audio_device *retp;
855 {
856 struct eso_softc *sc = hdl;
857
858 strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
859 snprintf(retp->version, sizeof (retp->version), "0x%02x",
860 sc->sc_revision);
861 if (sc->sc_revision <
862 sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
863 strncpy(retp->config, eso_rev2model[sc->sc_revision],
864 sizeof (retp->config));
865 else
866 strncpy(retp->config, "unknown", sizeof (retp->config));
867
868 return (0);
869 }
870
871 static int
872 eso_set_port(hdl, cp)
873 void *hdl;
874 mixer_ctrl_t *cp;
875 {
876 struct eso_softc *sc = hdl;
877 unsigned int lgain, rgain;
878 uint8_t tmp;
879
880 switch (cp->dev) {
881 case ESO_DAC_PLAY_VOL:
882 case ESO_MIC_PLAY_VOL:
883 case ESO_LINE_PLAY_VOL:
884 case ESO_SYNTH_PLAY_VOL:
885 case ESO_CD_PLAY_VOL:
886 case ESO_AUXB_PLAY_VOL:
887 case ESO_RECORD_VOL:
888 case ESO_DAC_REC_VOL:
889 case ESO_MIC_REC_VOL:
890 case ESO_LINE_REC_VOL:
891 case ESO_SYNTH_REC_VOL:
892 case ESO_CD_REC_VOL:
893 case ESO_AUXB_REC_VOL:
894 if (cp->type != AUDIO_MIXER_VALUE)
895 return (EINVAL);
896
897 /*
898 * Stereo-capable mixer ports: if we get a single-channel
899 * gain value passed in, then we duplicate it to both left
900 * and right channels.
901 */
902 switch (cp->un.value.num_channels) {
903 case 1:
904 lgain = rgain = ESO_GAIN_TO_4BIT(
905 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
906 break;
907 case 2:
908 lgain = ESO_GAIN_TO_4BIT(
909 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
910 rgain = ESO_GAIN_TO_4BIT(
911 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
912 break;
913 default:
914 return (EINVAL);
915 }
916
917 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
918 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
919 eso_set_gain(sc, cp->dev);
920 break;
921
922 case ESO_MASTER_VOL:
923 if (cp->type != AUDIO_MIXER_VALUE)
924 return (EINVAL);
925
926 /* Like above, but a precision of 6 bits. */
927 switch (cp->un.value.num_channels) {
928 case 1:
929 lgain = rgain = ESO_GAIN_TO_6BIT(
930 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
931 break;
932 case 2:
933 lgain = ESO_GAIN_TO_6BIT(
934 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
935 rgain = ESO_GAIN_TO_6BIT(
936 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
937 break;
938 default:
939 return (EINVAL);
940 }
941
942 sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
943 sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
944 eso_set_gain(sc, cp->dev);
945 break;
946
947 case ESO_SPATIALIZER:
948 if (cp->type != AUDIO_MIXER_VALUE ||
949 cp->un.value.num_channels != 1)
950 return (EINVAL);
951
952 sc->sc_gain[cp->dev][ESO_LEFT] =
953 sc->sc_gain[cp->dev][ESO_RIGHT] =
954 ESO_GAIN_TO_6BIT(
955 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
956 eso_set_gain(sc, cp->dev);
957 break;
958
959 case ESO_MONO_PLAY_VOL:
960 case ESO_MONO_REC_VOL:
961 if (cp->type != AUDIO_MIXER_VALUE ||
962 cp->un.value.num_channels != 1)
963 return (EINVAL);
964
965 sc->sc_gain[cp->dev][ESO_LEFT] =
966 sc->sc_gain[cp->dev][ESO_RIGHT] =
967 ESO_GAIN_TO_4BIT(
968 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
969 eso_set_gain(sc, cp->dev);
970 break;
971
972 case ESO_PCSPEAKER_VOL:
973 if (cp->type != AUDIO_MIXER_VALUE ||
974 cp->un.value.num_channels != 1)
975 return (EINVAL);
976
977 sc->sc_gain[cp->dev][ESO_LEFT] =
978 sc->sc_gain[cp->dev][ESO_RIGHT] =
979 ESO_GAIN_TO_3BIT(
980 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
981 eso_set_gain(sc, cp->dev);
982 break;
983
984 case ESO_SPATIALIZER_ENABLE:
985 if (cp->type != AUDIO_MIXER_ENUM)
986 return (EINVAL);
987
988 sc->sc_spatializer = (cp->un.ord != 0);
989
990 tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
991 if (sc->sc_spatializer)
992 tmp |= ESO_MIXREG_SPAT_ENB;
993 else
994 tmp &= ~ESO_MIXREG_SPAT_ENB;
995 eso_write_mixreg(sc, ESO_MIXREG_SPAT,
996 tmp | ESO_MIXREG_SPAT_RSTREL);
997 break;
998
999 case ESO_MONOOUT_SOURCE:
1000 if (cp->type != AUDIO_MIXER_ENUM)
1001 return (EINVAL);
1002
1003 return (eso_set_monooutsrc(sc, cp->un.ord));
1004
1005 case ESO_RECORD_MONITOR:
1006 if (cp->type != AUDIO_MIXER_ENUM)
1007 return (EINVAL);
1008
1009 sc->sc_recmon = (cp->un.ord != 0);
1010
1011 tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1012 if (sc->sc_recmon)
1013 tmp |= ESO_CTLREG_ACTL_RECMON;
1014 else
1015 tmp &= ~ESO_CTLREG_ACTL_RECMON;
1016 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1017 break;
1018
1019 case ESO_RECORD_SOURCE:
1020 if (cp->type != AUDIO_MIXER_ENUM)
1021 return (EINVAL);
1022
1023 return (eso_set_recsrc(sc, cp->un.ord));
1024
1025 case ESO_MIC_PREAMP:
1026 if (cp->type != AUDIO_MIXER_ENUM)
1027 return (EINVAL);
1028
1029 sc->sc_preamp = (cp->un.ord != 0);
1030
1031 tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1032 tmp &= ~ESO_MIXREG_MPM_RESV0;
1033 if (sc->sc_preamp)
1034 tmp |= ESO_MIXREG_MPM_PREAMP;
1035 else
1036 tmp &= ~ESO_MIXREG_MPM_PREAMP;
1037 eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
1038 break;
1039
1040 default:
1041 return (EINVAL);
1042 }
1043
1044 return (0);
1045 }
1046
1047 static int
1048 eso_get_port(hdl, cp)
1049 void *hdl;
1050 mixer_ctrl_t *cp;
1051 {
1052 struct eso_softc *sc = hdl;
1053
1054 switch (cp->dev) {
1055 case ESO_DAC_PLAY_VOL:
1056 case ESO_MIC_PLAY_VOL:
1057 case ESO_LINE_PLAY_VOL:
1058 case ESO_SYNTH_PLAY_VOL:
1059 case ESO_CD_PLAY_VOL:
1060 case ESO_AUXB_PLAY_VOL:
1061 case ESO_MASTER_VOL:
1062 case ESO_RECORD_VOL:
1063 case ESO_DAC_REC_VOL:
1064 case ESO_MIC_REC_VOL:
1065 case ESO_LINE_REC_VOL:
1066 case ESO_SYNTH_REC_VOL:
1067 case ESO_CD_REC_VOL:
1068 case ESO_AUXB_REC_VOL:
1069 /*
1070 * Stereo-capable ports: if a single-channel query is made,
1071 * just return the left channel's value (since single-channel
1072 * settings themselves are applied to both channels).
1073 */
1074 switch (cp->un.value.num_channels) {
1075 case 1:
1076 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1077 sc->sc_gain[cp->dev][ESO_LEFT];
1078 break;
1079 case 2:
1080 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1081 sc->sc_gain[cp->dev][ESO_LEFT];
1082 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1083 sc->sc_gain[cp->dev][ESO_RIGHT];
1084 break;
1085 default:
1086 return (EINVAL);
1087 }
1088 break;
1089
1090 case ESO_MONO_PLAY_VOL:
1091 case ESO_PCSPEAKER_VOL:
1092 case ESO_MONO_REC_VOL:
1093 case ESO_SPATIALIZER:
1094 if (cp->un.value.num_channels != 1)
1095 return (EINVAL);
1096 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1097 sc->sc_gain[cp->dev][ESO_LEFT];
1098 break;
1099
1100 case ESO_RECORD_MONITOR:
1101 cp->un.ord = sc->sc_recmon;
1102 break;
1103
1104 case ESO_RECORD_SOURCE:
1105 cp->un.ord = sc->sc_recsrc;
1106 break;
1107
1108 case ESO_MONOOUT_SOURCE:
1109 cp->un.ord = sc->sc_monooutsrc;
1110 break;
1111
1112 case ESO_SPATIALIZER_ENABLE:
1113 cp->un.ord = sc->sc_spatializer;
1114 break;
1115
1116 case ESO_MIC_PREAMP:
1117 cp->un.ord = sc->sc_preamp;
1118 break;
1119
1120 default:
1121 return (EINVAL);
1122 }
1123
1124
1125 return (0);
1126
1127 }
1128
1129 static int
1130 eso_query_devinfo(hdl, dip)
1131 void *hdl;
1132 mixer_devinfo_t *dip;
1133 {
1134
1135 switch (dip->index) {
1136 case ESO_DAC_PLAY_VOL:
1137 dip->mixer_class = ESO_INPUT_CLASS;
1138 dip->next = dip->prev = AUDIO_MIXER_LAST;
1139 strcpy(dip->label.name, AudioNdac);
1140 dip->type = AUDIO_MIXER_VALUE;
1141 dip->un.v.num_channels = 2;
1142 strcpy(dip->un.v.units.name, AudioNvolume);
1143 break;
1144 case ESO_MIC_PLAY_VOL:
1145 dip->mixer_class = ESO_INPUT_CLASS;
1146 dip->next = dip->prev = AUDIO_MIXER_LAST;
1147 strcpy(dip->label.name, AudioNmicrophone);
1148 dip->type = AUDIO_MIXER_VALUE;
1149 dip->un.v.num_channels = 2;
1150 strcpy(dip->un.v.units.name, AudioNvolume);
1151 break;
1152 case ESO_LINE_PLAY_VOL:
1153 dip->mixer_class = ESO_INPUT_CLASS;
1154 dip->next = dip->prev = AUDIO_MIXER_LAST;
1155 strcpy(dip->label.name, AudioNline);
1156 dip->type = AUDIO_MIXER_VALUE;
1157 dip->un.v.num_channels = 2;
1158 strcpy(dip->un.v.units.name, AudioNvolume);
1159 break;
1160 case ESO_SYNTH_PLAY_VOL:
1161 dip->mixer_class = ESO_INPUT_CLASS;
1162 dip->next = dip->prev = AUDIO_MIXER_LAST;
1163 strcpy(dip->label.name, AudioNfmsynth);
1164 dip->type = AUDIO_MIXER_VALUE;
1165 dip->un.v.num_channels = 2;
1166 strcpy(dip->un.v.units.name, AudioNvolume);
1167 break;
1168 case ESO_MONO_PLAY_VOL:
1169 dip->mixer_class = ESO_INPUT_CLASS;
1170 dip->next = dip->prev = AUDIO_MIXER_LAST;
1171 strcpy(dip->label.name, "mono_in");
1172 dip->type = AUDIO_MIXER_VALUE;
1173 dip->un.v.num_channels = 1;
1174 strcpy(dip->un.v.units.name, AudioNvolume);
1175 break;
1176 case ESO_CD_PLAY_VOL:
1177 dip->mixer_class = ESO_INPUT_CLASS;
1178 dip->next = dip->prev = AUDIO_MIXER_LAST;
1179 strcpy(dip->label.name, AudioNcd);
1180 dip->type = AUDIO_MIXER_VALUE;
1181 dip->un.v.num_channels = 2;
1182 strcpy(dip->un.v.units.name, AudioNvolume);
1183 break;
1184 case ESO_AUXB_PLAY_VOL:
1185 dip->mixer_class = ESO_INPUT_CLASS;
1186 dip->next = dip->prev = AUDIO_MIXER_LAST;
1187 strcpy(dip->label.name, "auxb");
1188 dip->type = AUDIO_MIXER_VALUE;
1189 dip->un.v.num_channels = 2;
1190 strcpy(dip->un.v.units.name, AudioNvolume);
1191 break;
1192
1193 case ESO_MIC_PREAMP:
1194 dip->mixer_class = ESO_MICROPHONE_CLASS;
1195 dip->next = dip->prev = AUDIO_MIXER_LAST;
1196 strcpy(dip->label.name, AudioNpreamp);
1197 dip->type = AUDIO_MIXER_ENUM;
1198 dip->un.e.num_mem = 2;
1199 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1200 dip->un.e.member[0].ord = 0;
1201 strcpy(dip->un.e.member[1].label.name, AudioNon);
1202 dip->un.e.member[1].ord = 1;
1203 break;
1204 case ESO_MICROPHONE_CLASS:
1205 dip->mixer_class = ESO_MICROPHONE_CLASS;
1206 dip->next = dip->prev = AUDIO_MIXER_LAST;
1207 strcpy(dip->label.name, AudioNmicrophone);
1208 dip->type = AUDIO_MIXER_CLASS;
1209 break;
1210
1211 case ESO_INPUT_CLASS:
1212 dip->mixer_class = ESO_INPUT_CLASS;
1213 dip->next = dip->prev = AUDIO_MIXER_LAST;
1214 strcpy(dip->label.name, AudioCinputs);
1215 dip->type = AUDIO_MIXER_CLASS;
1216 break;
1217
1218 case ESO_MASTER_VOL:
1219 dip->mixer_class = ESO_OUTPUT_CLASS;
1220 dip->next = dip->prev = AUDIO_MIXER_LAST;
1221 strcpy(dip->label.name, AudioNmaster);
1222 dip->type = AUDIO_MIXER_VALUE;
1223 dip->un.v.num_channels = 2;
1224 strcpy(dip->un.v.units.name, AudioNvolume);
1225 break;
1226 case ESO_PCSPEAKER_VOL:
1227 dip->mixer_class = ESO_OUTPUT_CLASS;
1228 dip->next = dip->prev = AUDIO_MIXER_LAST;
1229 strcpy(dip->label.name, "pc_speaker");
1230 dip->type = AUDIO_MIXER_VALUE;
1231 dip->un.v.num_channels = 1;
1232 strcpy(dip->un.v.units.name, AudioNvolume);
1233 break;
1234 case ESO_MONOOUT_SOURCE:
1235 dip->mixer_class = ESO_OUTPUT_CLASS;
1236 dip->next = dip->prev = AUDIO_MIXER_LAST;
1237 strcpy(dip->label.name, "mono_out");
1238 dip->type = AUDIO_MIXER_ENUM;
1239 dip->un.e.num_mem = 3;
1240 strcpy(dip->un.e.member[0].label.name, AudioNmute);
1241 dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1242 strcpy(dip->un.e.member[1].label.name, AudioNdac);
1243 dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1244 strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
1245 dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1246 break;
1247 case ESO_SPATIALIZER:
1248 dip->mixer_class = ESO_OUTPUT_CLASS;
1249 dip->prev = AUDIO_MIXER_LAST;
1250 dip->next = ESO_SPATIALIZER_ENABLE;
1251 strcpy(dip->label.name, AudioNspatial);
1252 dip->type = AUDIO_MIXER_VALUE;
1253 dip->un.v.num_channels = 1;
1254 strcpy(dip->un.v.units.name, "level");
1255 break;
1256 case ESO_SPATIALIZER_ENABLE:
1257 dip->mixer_class = ESO_OUTPUT_CLASS;
1258 dip->prev = ESO_SPATIALIZER;
1259 dip->next = AUDIO_MIXER_LAST;
1260 strcpy(dip->label.name, "enable");
1261 dip->type = AUDIO_MIXER_ENUM;
1262 dip->un.e.num_mem = 2;
1263 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1264 dip->un.e.member[0].ord = 0;
1265 strcpy(dip->un.e.member[1].label.name, AudioNon);
1266 dip->un.e.member[1].ord = 1;
1267 break;
1268
1269 case ESO_OUTPUT_CLASS:
1270 dip->mixer_class = ESO_OUTPUT_CLASS;
1271 dip->next = dip->prev = AUDIO_MIXER_LAST;
1272 strcpy(dip->label.name, AudioCoutputs);
1273 dip->type = AUDIO_MIXER_CLASS;
1274 break;
1275
1276 case ESO_RECORD_MONITOR:
1277 dip->mixer_class = ESO_MONITOR_CLASS;
1278 dip->next = dip->prev = AUDIO_MIXER_LAST;
1279 strcpy(dip->label.name, AudioNmute);
1280 dip->type = AUDIO_MIXER_ENUM;
1281 dip->un.e.num_mem = 2;
1282 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1283 dip->un.e.member[0].ord = 0;
1284 strcpy(dip->un.e.member[1].label.name, AudioNon);
1285 dip->un.e.member[1].ord = 1;
1286 break;
1287 case ESO_MONITOR_CLASS:
1288 dip->mixer_class = ESO_MONITOR_CLASS;
1289 dip->next = dip->prev = AUDIO_MIXER_LAST;
1290 strcpy(dip->label.name, AudioCmonitor);
1291 dip->type = AUDIO_MIXER_CLASS;
1292 break;
1293
1294 case ESO_RECORD_VOL:
1295 dip->mixer_class = ESO_RECORD_CLASS;
1296 dip->next = dip->prev = AUDIO_MIXER_LAST;
1297 strcpy(dip->label.name, AudioNrecord);
1298 dip->type = AUDIO_MIXER_VALUE;
1299 strcpy(dip->un.v.units.name, AudioNvolume);
1300 break;
1301 case ESO_RECORD_SOURCE:
1302 dip->mixer_class = ESO_RECORD_CLASS;
1303 dip->next = dip->prev = AUDIO_MIXER_LAST;
1304 strcpy(dip->label.name, AudioNsource);
1305 dip->type = AUDIO_MIXER_ENUM;
1306 dip->un.e.num_mem = 4;
1307 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1308 dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1309 strcpy(dip->un.e.member[1].label.name, AudioNline);
1310 dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1311 strcpy(dip->un.e.member[2].label.name, AudioNcd);
1312 dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1313 strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
1314 dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1315 break;
1316 case ESO_DAC_REC_VOL:
1317 dip->mixer_class = ESO_RECORD_CLASS;
1318 dip->next = dip->prev = AUDIO_MIXER_LAST;
1319 strcpy(dip->label.name, AudioNdac);
1320 dip->type = AUDIO_MIXER_VALUE;
1321 dip->un.v.num_channels = 2;
1322 strcpy(dip->un.v.units.name, AudioNvolume);
1323 break;
1324 case ESO_MIC_REC_VOL:
1325 dip->mixer_class = ESO_RECORD_CLASS;
1326 dip->next = dip->prev = AUDIO_MIXER_LAST;
1327 strcpy(dip->label.name, AudioNmicrophone);
1328 dip->type = AUDIO_MIXER_VALUE;
1329 dip->un.v.num_channels = 2;
1330 strcpy(dip->un.v.units.name, AudioNvolume);
1331 break;
1332 case ESO_LINE_REC_VOL:
1333 dip->mixer_class = ESO_RECORD_CLASS;
1334 dip->next = dip->prev = AUDIO_MIXER_LAST;
1335 strcpy(dip->label.name, AudioNline);
1336 dip->type = AUDIO_MIXER_VALUE;
1337 dip->un.v.num_channels = 2;
1338 strcpy(dip->un.v.units.name, AudioNvolume);
1339 break;
1340 case ESO_SYNTH_REC_VOL:
1341 dip->mixer_class = ESO_RECORD_CLASS;
1342 dip->next = dip->prev = AUDIO_MIXER_LAST;
1343 strcpy(dip->label.name, AudioNfmsynth);
1344 dip->type = AUDIO_MIXER_VALUE;
1345 dip->un.v.num_channels = 2;
1346 strcpy(dip->un.v.units.name, AudioNvolume);
1347 break;
1348 case ESO_MONO_REC_VOL:
1349 dip->mixer_class = ESO_RECORD_CLASS;
1350 dip->next = dip->prev = AUDIO_MIXER_LAST;
1351 strcpy(dip->label.name, "mono_in");
1352 dip->type = AUDIO_MIXER_VALUE;
1353 dip->un.v.num_channels = 1; /* No lies */
1354 strcpy(dip->un.v.units.name, AudioNvolume);
1355 break;
1356 case ESO_CD_REC_VOL:
1357 dip->mixer_class = ESO_RECORD_CLASS;
1358 dip->next = dip->prev = AUDIO_MIXER_LAST;
1359 strcpy(dip->label.name, AudioNcd);
1360 dip->type = AUDIO_MIXER_VALUE;
1361 dip->un.v.num_channels = 2;
1362 strcpy(dip->un.v.units.name, AudioNvolume);
1363 break;
1364 case ESO_AUXB_REC_VOL:
1365 dip->mixer_class = ESO_RECORD_CLASS;
1366 dip->next = dip->prev = AUDIO_MIXER_LAST;
1367 strcpy(dip->label.name, "auxb");
1368 dip->type = AUDIO_MIXER_VALUE;
1369 dip->un.v.num_channels = 2;
1370 strcpy(dip->un.v.units.name, AudioNvolume);
1371 break;
1372 case ESO_RECORD_CLASS:
1373 dip->mixer_class = ESO_RECORD_CLASS;
1374 dip->next = dip->prev = AUDIO_MIXER_LAST;
1375 strcpy(dip->label.name, AudioCrecord);
1376 dip->type = AUDIO_MIXER_CLASS;
1377 break;
1378
1379 default:
1380 return (ENXIO);
1381 }
1382
1383 return (0);
1384 }
1385
1386 static int
1387 eso_allocmem(sc, size, align, boundary, flags, ed)
1388 struct eso_softc *sc;
1389 size_t size;
1390 size_t align;
1391 size_t boundary;
1392 int flags;
1393 struct eso_dma *ed;
1394 {
1395 int error, wait;
1396
1397 wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1398 ed->ed_size = size;
1399
1400 error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1401 ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1402 &ed->ed_nsegs, wait);
1403 if (error)
1404 goto out;
1405
1406 error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1407 ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1408 if (error)
1409 goto free;
1410
1411 error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
1412 wait, &ed->ed_map);
1413 if (error)
1414 goto unmap;
1415
1416 error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1417 ed->ed_size, NULL, wait);
1418 if (error)
1419 goto destroy;
1420
1421 return (0);
1422
1423 destroy:
1424 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1425 unmap:
1426 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1427 free:
1428 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1429 out:
1430 return (error);
1431 }
1432
1433 static void
1434 eso_freemem(ed)
1435 struct eso_dma *ed;
1436 {
1437
1438 bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1439 bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1440 bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1441 bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1442 }
1443
1444 static void *
1445 eso_allocm(hdl, direction, size, type, flags)
1446 void *hdl;
1447 int direction;
1448 size_t size;
1449 int type, flags;
1450 {
1451 struct eso_softc *sc = hdl;
1452 struct eso_dma *ed;
1453 size_t boundary;
1454 int error;
1455
1456 if ((ed = malloc(size, type, flags)) == NULL)
1457 return (NULL);
1458
1459 /*
1460 * Apparently the Audio 1 DMA controller's current address
1461 * register can't roll over a 64K address boundary, so we have to
1462 * take care of that ourselves. The second channel DMA controller
1463 * doesn't have that restriction, however.
1464 */
1465 if (direction == AUMODE_RECORD)
1466 boundary = 0x10000;
1467 else
1468 boundary = 0;
1469
1470 #ifdef alpha
1471 /*
1472 * XXX For Audio 1, which implements the 24 low address bits only,
1473 * XXX force allocation through the (ISA) SGMAP.
1474 */
1475 if (direction == AUMODE_RECORD)
1476 ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1477 else
1478 #endif
1479 ed->ed_dmat = sc->sc_dmat;
1480
1481 error = eso_allocmem(sc, size, 32, boundary, flags, ed);
1482 if (error) {
1483 free(ed, type);
1484 return (NULL);
1485 }
1486 ed->ed_next = sc->sc_dmas;
1487 sc->sc_dmas = ed;
1488
1489 return (KVADDR(ed));
1490 }
1491
1492 static void
1493 eso_freem(hdl, addr, type)
1494 void *hdl;
1495 void *addr;
1496 int type;
1497 {
1498 struct eso_softc *sc = hdl;
1499 struct eso_dma *p, **pp;
1500
1501 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1502 if (KVADDR(p) == addr) {
1503 eso_freemem(p);
1504 *pp = p->ed_next;
1505 free(p, type);
1506 return;
1507 }
1508 }
1509 }
1510
1511 static size_t
1512 eso_round_buffersize(hdl, direction, bufsize)
1513 void *hdl;
1514 int direction;
1515 size_t bufsize;
1516 {
1517
1518 /* 64K restriction: ISA at eleven? */
1519 if (bufsize > 65536)
1520 bufsize = 65536;
1521
1522 return (bufsize);
1523 }
1524
1525 static int
1526 eso_mappage(hdl, addr, offs, prot)
1527 void *hdl;
1528 void *addr;
1529 int offs;
1530 int prot;
1531 {
1532 struct eso_softc *sc = hdl;
1533 struct eso_dma *ed;
1534
1535 if (offs < 0)
1536 return (-1);
1537 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) == addr;
1538 ed = ed->ed_next)
1539 ;
1540 if (ed == NULL)
1541 return (-1);
1542
1543 return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1544 offs, prot, BUS_DMA_WAITOK));
1545 }
1546
1547 /* ARGSUSED */
1548 static int
1549 eso_get_props(hdl)
1550 void *hdl;
1551 {
1552
1553 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1554 AUDIO_PROP_FULLDUPLEX);
1555 }
1556
1557 static int
1558 eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
1559 void *hdl;
1560 void *start, *end;
1561 int blksize;
1562 void (*intr) __P((void *));
1563 void *arg;
1564 struct audio_params *param;
1565 {
1566 struct eso_softc *sc = hdl;
1567 struct eso_dma *ed;
1568 uint8_t a2c1;
1569
1570 DPRINTF((
1571 "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1572 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1573 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1574 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1575 param->precision, param->channels, param->sw_code, param->factor));
1576
1577 /* Find DMA buffer. */
1578 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1579 ed = ed->ed_next)
1580 ;
1581 if (ed == NULL) {
1582 printf("%s: trigger_output: bad addr %p\n",
1583 sc->sc_dev.dv_xname, start);
1584 return (EINVAL);
1585 }
1586
1587 sc->sc_pintr = intr;
1588 sc->sc_parg = arg;
1589
1590 /* DMA transfer count (in `words'!) reload using 2's complement. */
1591 blksize = -(blksize >> 1);
1592 eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1593 eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1594
1595 /* Update DAC to reflect DMA count and audio parameters. */
1596 /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1597 if (param->precision * param->factor == 16)
1598 sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1599 else
1600 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1601 if (param->channels == 2)
1602 sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1603 else
1604 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1605 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1606 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1607 sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1608 else
1609 sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1610 /* Unmask IRQ. */
1611 sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1612 eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1613
1614 /* Set up DMA controller. */
1615 bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
1616 htopci(DMAADDR(ed)));
1617 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1618 htopci((uint8_t *)end - (uint8_t *)start));
1619 bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1620 ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1621
1622 /* Start DMA. */
1623 a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1624 a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1625 a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1626 ESO_MIXREG_A2C1_AUTO;
1627 eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1628
1629 return (0);
1630 }
1631
1632 static int
1633 eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
1634 void *hdl;
1635 void *start, *end;
1636 int blksize;
1637 void (*intr) __P((void *));
1638 void *arg;
1639 struct audio_params *param;
1640 {
1641 struct eso_softc *sc = hdl;
1642 struct eso_dma *ed;
1643 uint8_t actl, a1c1;
1644
1645 DPRINTF((
1646 "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1647 sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1648 DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1649 sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1650 param->precision, param->channels, param->sw_code, param->factor));
1651
1652 /*
1653 * If we failed to configure the Audio 1 DMA controller, bail here
1654 * while retaining availability of the DAC direction (in Audio 2).
1655 */
1656 if (!sc->sc_dmac_configured)
1657 return (EIO);
1658
1659 /* Find DMA buffer. */
1660 for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1661 ed = ed->ed_next)
1662 ;
1663 if (ed == NULL) {
1664 printf("%s: trigger_output: bad addr %p\n",
1665 sc->sc_dev.dv_xname, start);
1666 return (EINVAL);
1667 }
1668
1669 sc->sc_rintr = intr;
1670 sc->sc_rarg = arg;
1671
1672 /* Set up ADC DMA converter parameters. */
1673 actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1674 if (param->channels == 2) {
1675 actl &= ~ESO_CTLREG_ACTL_MONO;
1676 actl |= ESO_CTLREG_ACTL_STEREO;
1677 } else {
1678 actl &= ~ESO_CTLREG_ACTL_STEREO;
1679 actl |= ESO_CTLREG_ACTL_MONO;
1680 }
1681 eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1682
1683 /* Set up Transfer Type: maybe move to attach time? */
1684 eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1685
1686 /* DMA transfer count reload using 2's complement. */
1687 blksize = -blksize;
1688 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1689 eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1690
1691 /* Set up and enable Audio 1 DMA FIFO. */
1692 a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1693 if (param->precision * param->factor == 16)
1694 a1c1 |= ESO_CTLREG_A1C1_16BIT;
1695 if (param->channels == 2)
1696 a1c1 |= ESO_CTLREG_A1C1_STEREO;
1697 else
1698 a1c1 |= ESO_CTLREG_A1C1_MONO;
1699 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1700 param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1701 a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1702 eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1703
1704 /* Set up ADC IRQ/DRQ parameters. */
1705 eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1706 ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1707 eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1708 ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1709
1710 /* Set up and enable DMA controller. */
1711 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1712 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1713 ESO_DMAC_MASK_MASK);
1714 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1715 DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1716 bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1717 htopci(DMAADDR(ed)));
1718 bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1719 htopci((uint8_t *)end - (uint8_t *)start - 1));
1720 bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1721
1722 /* Start DMA. */
1723 eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1724 ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1725 ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1726
1727 return (0);
1728 }
1729
1730 static int
1731 eso_set_monooutsrc(sc, monooutsrc)
1732 struct eso_softc *sc;
1733 unsigned int monooutsrc;
1734 {
1735 mixer_devinfo_t di;
1736 int i;
1737 uint8_t mpm;
1738
1739 di.index = ESO_MONOOUT_SOURCE;
1740 if (eso_query_devinfo(sc, &di) != 0)
1741 panic("eso_set_monooutsrc: eso_query_devinfo failed");
1742
1743 for (i = 0; i < di.un.e.num_mem; i++) {
1744 if (monooutsrc == di.un.e.member[i].ord) {
1745 mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1746 mpm &= ~ESO_MIXREG_MPM_MOMASK;
1747 mpm |= monooutsrc;
1748 eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1749 sc->sc_monooutsrc = monooutsrc;
1750 return (0);
1751 }
1752 }
1753
1754 return (EINVAL);
1755 }
1756
1757 static int
1758 eso_set_recsrc(sc, recsrc)
1759 struct eso_softc *sc;
1760 unsigned int recsrc;
1761 {
1762 mixer_devinfo_t di;
1763 int i;
1764
1765 di.index = ESO_RECORD_SOURCE;
1766 if (eso_query_devinfo(sc, &di) != 0)
1767 panic("eso_set_recsrc: eso_query_devinfo failed");
1768
1769 for (i = 0; i < di.un.e.num_mem; i++) {
1770 if (recsrc == di.un.e.member[i].ord) {
1771 eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1772 sc->sc_recsrc = recsrc;
1773 return (0);
1774 }
1775 }
1776
1777 return (EINVAL);
1778 }
1779
1780 static void
1781 eso_set_gain(sc, port)
1782 struct eso_softc *sc;
1783 unsigned int port;
1784 {
1785 uint8_t mixreg, tmp;
1786
1787 switch (port) {
1788 case ESO_DAC_PLAY_VOL:
1789 mixreg = ESO_MIXREG_PVR_A2;
1790 break;
1791 case ESO_MIC_PLAY_VOL:
1792 mixreg = ESO_MIXREG_PVR_MIC;
1793 break;
1794 case ESO_LINE_PLAY_VOL:
1795 mixreg = ESO_MIXREG_PVR_LINE;
1796 break;
1797 case ESO_SYNTH_PLAY_VOL:
1798 mixreg = ESO_MIXREG_PVR_SYNTH;
1799 break;
1800 case ESO_CD_PLAY_VOL:
1801 mixreg = ESO_MIXREG_PVR_CD;
1802 break;
1803 case ESO_AUXB_PLAY_VOL:
1804 mixreg = ESO_MIXREG_PVR_AUXB;
1805 break;
1806
1807 case ESO_DAC_REC_VOL:
1808 mixreg = ESO_MIXREG_RVR_A2;
1809 break;
1810 case ESO_MIC_REC_VOL:
1811 mixreg = ESO_MIXREG_RVR_MIC;
1812 break;
1813 case ESO_LINE_REC_VOL:
1814 mixreg = ESO_MIXREG_RVR_LINE;
1815 break;
1816 case ESO_SYNTH_REC_VOL:
1817 mixreg = ESO_MIXREG_RVR_SYNTH;
1818 break;
1819 case ESO_CD_REC_VOL:
1820 mixreg = ESO_MIXREG_RVR_CD;
1821 break;
1822 case ESO_AUXB_REC_VOL:
1823 mixreg = ESO_MIXREG_RVR_AUXB;
1824 break;
1825 case ESO_MONO_PLAY_VOL:
1826 mixreg = ESO_MIXREG_PVR_MONO;
1827 break;
1828 case ESO_MONO_REC_VOL:
1829 mixreg = ESO_MIXREG_RVR_MONO;
1830 break;
1831
1832 case ESO_PCSPEAKER_VOL:
1833 /* Special case - only 3-bit, mono, and reserved bits. */
1834 tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
1835 tmp &= ESO_MIXREG_PCSVR_RESV;
1836 /* Map bits 7:5 -> 2:0. */
1837 tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
1838 eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
1839 return;
1840
1841 case ESO_MASTER_VOL:
1842 /* Special case - separate regs, and 6-bit precision. */
1843 /* Map bits 7:2 -> 5:0. */
1844 eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1845 sc->sc_gain[port][ESO_LEFT] >> 2);
1846 eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1847 sc->sc_gain[port][ESO_RIGHT] >> 2);
1848 return;
1849
1850 case ESO_SPATIALIZER:
1851 /* Special case - only `mono', and higher precision. */
1852 eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
1853 sc->sc_gain[port][ESO_LEFT]);
1854 return;
1855
1856 case ESO_RECORD_VOL:
1857 /* Very Special case, controller register. */
1858 eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
1859 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1860 return;
1861
1862 default:
1863 #ifdef DIAGNOSTIC
1864 panic("eso_set_gain: bad port %u", port);
1865 /* NOTREACHED */
1866 #else
1867 return;
1868 #endif
1869 }
1870
1871 eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
1872 sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
1873 }
1874