if_age.c revision 1.10 1 1.10 cegger /* $NetBSD: if_age.c,v 1.10 2009/01/22 09:37:44 cegger Exp $ */
2 1.1 cegger /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
3 1.1 cegger
4 1.1 cegger /*-
5 1.1 cegger * Copyright (c) 2008, Pyun YongHyeon <yongari (at) FreeBSD.org>
6 1.1 cegger * All rights reserved.
7 1.1 cegger *
8 1.1 cegger * Redistribution and use in source and binary forms, with or without
9 1.1 cegger * modification, are permitted provided that the following conditions
10 1.1 cegger * are met:
11 1.1 cegger * 1. Redistributions of source code must retain the above copyright
12 1.1 cegger * notice unmodified, this list of conditions, and the following
13 1.1 cegger * disclaimer.
14 1.1 cegger * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 cegger * notice, this list of conditions and the following disclaimer in the
16 1.1 cegger * documentation and/or other materials provided with the distribution.
17 1.1 cegger *
18 1.1 cegger * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 1.1 cegger * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 cegger * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 cegger * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.1 cegger * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 cegger * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 cegger * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 cegger * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 cegger * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 cegger * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 cegger * SUCH DAMAGE.
29 1.1 cegger */
30 1.1 cegger
31 1.1 cegger /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
32 1.1 cegger
33 1.2 cegger #include <sys/cdefs.h>
34 1.10 cegger __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.10 2009/01/22 09:37:44 cegger Exp $");
35 1.2 cegger
36 1.1 cegger #include "bpfilter.h"
37 1.1 cegger #include "vlan.h"
38 1.1 cegger
39 1.1 cegger #include <sys/param.h>
40 1.1 cegger #include <sys/proc.h>
41 1.1 cegger #include <sys/endian.h>
42 1.1 cegger #include <sys/systm.h>
43 1.1 cegger #include <sys/types.h>
44 1.1 cegger #include <sys/sockio.h>
45 1.1 cegger #include <sys/mbuf.h>
46 1.1 cegger #include <sys/queue.h>
47 1.1 cegger #include <sys/kernel.h>
48 1.1 cegger #include <sys/device.h>
49 1.1 cegger #include <sys/callout.h>
50 1.1 cegger #include <sys/socket.h>
51 1.1 cegger
52 1.1 cegger #include <net/if.h>
53 1.1 cegger #include <net/if_dl.h>
54 1.1 cegger #include <net/if_media.h>
55 1.1 cegger #include <net/if_ether.h>
56 1.1 cegger
57 1.1 cegger #ifdef INET
58 1.1 cegger #include <netinet/in.h>
59 1.1 cegger #include <netinet/in_systm.h>
60 1.1 cegger #include <netinet/in_var.h>
61 1.1 cegger #include <netinet/ip.h>
62 1.1 cegger #endif
63 1.1 cegger
64 1.1 cegger #include <net/if_types.h>
65 1.1 cegger #include <net/if_vlanvar.h>
66 1.1 cegger
67 1.1 cegger #if NBPFILTER > 0
68 1.1 cegger #include <net/bpf.h>
69 1.1 cegger #endif
70 1.1 cegger
71 1.1 cegger #include <sys/rnd.h>
72 1.1 cegger
73 1.1 cegger #include <dev/mii/mii.h>
74 1.1 cegger #include <dev/mii/miivar.h>
75 1.1 cegger
76 1.1 cegger #include <dev/pci/pcireg.h>
77 1.1 cegger #include <dev/pci/pcivar.h>
78 1.1 cegger #include <dev/pci/pcidevs.h>
79 1.1 cegger
80 1.1 cegger #include <dev/pci/if_agereg.h>
81 1.1 cegger
82 1.1 cegger static int age_match(device_t, cfdata_t, void *);
83 1.1 cegger static void age_attach(device_t, device_t, void *);
84 1.1 cegger static int age_detach(device_t, int);
85 1.1 cegger
86 1.3 cegger static bool age_resume(device_t PMF_FN_PROTO);
87 1.3 cegger
88 1.1 cegger static int age_miibus_readreg(device_t, int, int);
89 1.1 cegger static void age_miibus_writereg(device_t, int, int, int);
90 1.1 cegger static void age_miibus_statchg(device_t);
91 1.1 cegger
92 1.1 cegger static int age_init(struct ifnet *);
93 1.1 cegger static int age_ioctl(struct ifnet *, u_long, void *);
94 1.1 cegger static void age_start(struct ifnet *);
95 1.1 cegger static void age_watchdog(struct ifnet *);
96 1.1 cegger static void age_mediastatus(struct ifnet *, struct ifmediareq *);
97 1.1 cegger static int age_mediachange(struct ifnet *);
98 1.1 cegger
99 1.1 cegger static int age_intr(void *);
100 1.1 cegger static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t, uint32_t *);
101 1.1 cegger static int age_dma_alloc(struct age_softc *);
102 1.1 cegger static void age_dma_free(struct age_softc *);
103 1.1 cegger static void age_get_macaddr(struct age_softc *, uint8_t[]);
104 1.1 cegger static void age_phy_reset(struct age_softc *);
105 1.1 cegger
106 1.1 cegger static int age_encap(struct age_softc *, struct mbuf **);
107 1.1 cegger static void age_init_tx_ring(struct age_softc *);
108 1.1 cegger static int age_init_rx_ring(struct age_softc *);
109 1.1 cegger static void age_init_rr_ring(struct age_softc *);
110 1.1 cegger static void age_init_cmb_block(struct age_softc *);
111 1.1 cegger static void age_init_smb_block(struct age_softc *);
112 1.1 cegger static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
113 1.1 cegger static void age_mac_config(struct age_softc *);
114 1.1 cegger static void age_txintr(struct age_softc *, int);
115 1.1 cegger static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
116 1.1 cegger static void age_rxintr(struct age_softc *, int);
117 1.1 cegger static void age_tick(void *);
118 1.1 cegger static void age_reset(struct age_softc *);
119 1.1 cegger static void age_stop(struct age_softc *);
120 1.1 cegger static void age_stats_update(struct age_softc *);
121 1.1 cegger static void age_stop_txmac(struct age_softc *);
122 1.1 cegger static void age_stop_rxmac(struct age_softc *);
123 1.1 cegger static void age_rxvlan(struct age_softc *sc);
124 1.1 cegger static void age_rxfilter(struct age_softc *);
125 1.1 cegger
126 1.1 cegger CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
127 1.1 cegger age_match, age_attach, age_detach, NULL);
128 1.1 cegger
129 1.1 cegger int agedebug = 0;
130 1.1 cegger #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131 1.1 cegger
132 1.9 cegger #define ETHER_ALIGN 2
133 1.1 cegger #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 1.1 cegger
135 1.1 cegger static int
136 1.1 cegger age_match(device_t dev, cfdata_t match, void *aux)
137 1.1 cegger {
138 1.1 cegger struct pci_attach_args *pa = aux;
139 1.1 cegger
140 1.1 cegger return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
141 1.1 cegger PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
142 1.1 cegger }
143 1.1 cegger
144 1.1 cegger static void
145 1.1 cegger age_attach(device_t parent, device_t self, void *aux)
146 1.1 cegger {
147 1.1 cegger struct age_softc *sc = device_private(self);
148 1.1 cegger struct pci_attach_args *pa = aux;
149 1.1 cegger pci_intr_handle_t ih;
150 1.1 cegger const char *intrstr;
151 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
152 1.1 cegger pcireg_t memtype;
153 1.1 cegger int error = 0;
154 1.1 cegger
155 1.1 cegger aprint_naive("\n");
156 1.1 cegger aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
157 1.1 cegger
158 1.1 cegger sc->sc_dev = self;
159 1.1 cegger sc->sc_dmat = pa->pa_dmat;
160 1.1 cegger sc->sc_pct = pa->pa_pc;
161 1.1 cegger sc->sc_pcitag = pa->pa_tag;
162 1.1 cegger
163 1.1 cegger /*
164 1.1 cegger * Allocate IO memory
165 1.1 cegger */
166 1.1 cegger memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
167 1.1 cegger switch (memtype) {
168 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
169 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
170 1.1 cegger case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
171 1.1 cegger break;
172 1.1 cegger default:
173 1.1 cegger aprint_error_dev(self, "invalid base address register\n");
174 1.1 cegger break;
175 1.1 cegger }
176 1.1 cegger
177 1.1 cegger if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
178 1.1 cegger &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
179 1.1 cegger aprint_error_dev(self, "could not map mem space\n");
180 1.1 cegger return;
181 1.1 cegger }
182 1.1 cegger
183 1.1 cegger if (pci_intr_map(pa, &ih) != 0) {
184 1.1 cegger aprint_error_dev(self, "could not map interrupt\n");
185 1.1 cegger return;
186 1.1 cegger }
187 1.1 cegger
188 1.1 cegger /*
189 1.1 cegger * Allocate IRQ
190 1.1 cegger */
191 1.1 cegger intrstr = pci_intr_string(sc->sc_pct, ih);
192 1.1 cegger sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
193 1.1 cegger age_intr, sc);
194 1.1 cegger if (sc->sc_irq_handle == NULL) {
195 1.1 cegger aprint_error_dev(self, "could not establish interrupt");
196 1.1 cegger if (intrstr != NULL)
197 1.1 cegger aprint_error(" at %s", intrstr);
198 1.1 cegger aprint_error("\n");
199 1.1 cegger return;
200 1.1 cegger }
201 1.7 cegger aprint_normal_dev(self, "%s\n", intrstr);
202 1.1 cegger
203 1.1 cegger /* Set PHY address. */
204 1.1 cegger sc->age_phyaddr = AGE_PHY_ADDR;
205 1.1 cegger
206 1.1 cegger /* Reset PHY. */
207 1.1 cegger age_phy_reset(sc);
208 1.1 cegger
209 1.1 cegger /* Reset the ethernet controller. */
210 1.1 cegger age_reset(sc);
211 1.1 cegger
212 1.1 cegger /* Get PCI and chip id/revision. */
213 1.1 cegger sc->age_rev = PCI_REVISION(pa->pa_class);
214 1.1 cegger sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
215 1.1 cegger MASTER_CHIP_REV_SHIFT;
216 1.1 cegger
217 1.1 cegger aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
218 1.1 cegger aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
219 1.1 cegger
220 1.1 cegger if (agedebug) {
221 1.1 cegger aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
222 1.1 cegger CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
223 1.1 cegger CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
224 1.1 cegger }
225 1.1 cegger
226 1.1 cegger /* Set max allowable DMA size. */
227 1.1 cegger sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
228 1.1 cegger sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
229 1.1 cegger
230 1.1 cegger /* Allocate DMA stuffs */
231 1.1 cegger error = age_dma_alloc(sc);
232 1.1 cegger if (error)
233 1.1 cegger goto fail;
234 1.1 cegger
235 1.1 cegger callout_init(&sc->sc_tick_ch, 0);
236 1.1 cegger callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
237 1.1 cegger
238 1.1 cegger /* Load station address. */
239 1.1 cegger age_get_macaddr(sc, sc->sc_enaddr);
240 1.1 cegger
241 1.1 cegger aprint_normal_dev(self, "Ethernet address %s\n",
242 1.1 cegger ether_sprintf(sc->sc_enaddr));
243 1.1 cegger
244 1.1 cegger ifp->if_softc = sc;
245 1.1 cegger ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
246 1.1 cegger ifp->if_init = age_init;
247 1.1 cegger ifp->if_ioctl = age_ioctl;
248 1.1 cegger ifp->if_start = age_start;
249 1.1 cegger ifp->if_watchdog = age_watchdog;
250 1.1 cegger ifp->if_baudrate = IF_Gbps(1);
251 1.1 cegger IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
252 1.1 cegger IFQ_SET_READY(&ifp->if_snd);
253 1.1 cegger strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
254 1.1 cegger
255 1.1 cegger sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
256 1.1 cegger
257 1.1 cegger #ifdef AGE_CHECKSUM
258 1.1 cegger ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
259 1.1 cegger IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
260 1.1 cegger IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
261 1.1 cegger #endif
262 1.1 cegger
263 1.1 cegger #if NVLAN > 0
264 1.1 cegger sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
265 1.1 cegger #endif
266 1.1 cegger
267 1.1 cegger /* Set up MII bus. */
268 1.1 cegger sc->sc_miibus.mii_ifp = ifp;
269 1.1 cegger sc->sc_miibus.mii_readreg = age_miibus_readreg;
270 1.1 cegger sc->sc_miibus.mii_writereg = age_miibus_writereg;
271 1.1 cegger sc->sc_miibus.mii_statchg = age_miibus_statchg;
272 1.1 cegger
273 1.1 cegger ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
274 1.1 cegger age_mediastatus);
275 1.1 cegger mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
276 1.1 cegger MII_OFFSET_ANY, 0);
277 1.1 cegger
278 1.1 cegger if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
279 1.1 cegger aprint_error_dev(self, "no PHY found!\n");
280 1.1 cegger ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
281 1.1 cegger 0, NULL);
282 1.1 cegger ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
283 1.1 cegger } else
284 1.1 cegger ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
285 1.1 cegger
286 1.1 cegger if_attach(ifp);
287 1.1 cegger ether_ifattach(ifp, sc->sc_enaddr);
288 1.1 cegger
289 1.6 cegger if (!pmf_device_register(self, NULL, age_resume))
290 1.1 cegger aprint_error_dev(self, "couldn't establish power handler\n");
291 1.1 cegger else
292 1.1 cegger pmf_class_network_register(self, ifp);
293 1.1 cegger
294 1.1 cegger return;
295 1.1 cegger fail:
296 1.1 cegger age_detach(sc->sc_dev, 0);
297 1.1 cegger }
298 1.1 cegger
299 1.1 cegger static int
300 1.1 cegger age_detach(device_t self, int flags)
301 1.1 cegger {
302 1.1 cegger struct age_softc *sc = device_private(self);
303 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
304 1.1 cegger int s;
305 1.1 cegger
306 1.1 cegger s = splnet();
307 1.1 cegger age_stop(sc);
308 1.1 cegger splx(s);
309 1.1 cegger
310 1.1 cegger mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
311 1.1 cegger
312 1.1 cegger /* Delete all remaining media. */
313 1.1 cegger ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
314 1.1 cegger
315 1.1 cegger ether_ifdetach(ifp);
316 1.1 cegger if_detach(ifp);
317 1.1 cegger age_dma_free(sc);
318 1.1 cegger
319 1.1 cegger if (sc->sc_irq_handle != NULL) {
320 1.1 cegger pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
321 1.1 cegger sc->sc_irq_handle = NULL;
322 1.1 cegger }
323 1.1 cegger
324 1.1 cegger return (0);
325 1.1 cegger }
326 1.1 cegger
327 1.1 cegger /*
328 1.1 cegger * Read a PHY register on the MII of the L1.
329 1.1 cegger */
330 1.1 cegger static int
331 1.1 cegger age_miibus_readreg(struct device *dev, int phy, int reg)
332 1.1 cegger {
333 1.1 cegger struct age_softc *sc = device_private(dev);
334 1.1 cegger uint32_t v;
335 1.1 cegger int i;
336 1.1 cegger
337 1.1 cegger if (phy != sc->age_phyaddr)
338 1.1 cegger return (0);
339 1.1 cegger
340 1.1 cegger CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
341 1.1 cegger MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
342 1.1 cegger for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
343 1.1 cegger DELAY(1);
344 1.1 cegger v = CSR_READ_4(sc, AGE_MDIO);
345 1.1 cegger if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
346 1.1 cegger break;
347 1.1 cegger }
348 1.1 cegger
349 1.1 cegger if (i == 0) {
350 1.1 cegger printf("%s: phy read timeout: phy %d, reg %d\n",
351 1.1 cegger device_xname(sc->sc_dev), phy, reg);
352 1.1 cegger return (0);
353 1.1 cegger }
354 1.1 cegger
355 1.1 cegger return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
356 1.1 cegger }
357 1.1 cegger
358 1.1 cegger /*
359 1.1 cegger * Write a PHY register on the MII of the L1.
360 1.1 cegger */
361 1.1 cegger static void
362 1.1 cegger age_miibus_writereg(struct device *dev, int phy, int reg, int val)
363 1.1 cegger {
364 1.1 cegger struct age_softc *sc = device_private(dev);
365 1.1 cegger uint32_t v;
366 1.1 cegger int i;
367 1.1 cegger
368 1.1 cegger if (phy != sc->age_phyaddr)
369 1.1 cegger return;
370 1.1 cegger
371 1.1 cegger CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
372 1.1 cegger (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
373 1.1 cegger MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
374 1.1 cegger
375 1.1 cegger for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
376 1.1 cegger DELAY(1);
377 1.1 cegger v = CSR_READ_4(sc, AGE_MDIO);
378 1.1 cegger if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
379 1.1 cegger break;
380 1.1 cegger }
381 1.1 cegger
382 1.1 cegger if (i == 0) {
383 1.1 cegger printf("%s: phy write timeout: phy %d, reg %d\n",
384 1.1 cegger device_xname(sc->sc_dev), phy, reg);
385 1.1 cegger }
386 1.1 cegger }
387 1.1 cegger
388 1.1 cegger /*
389 1.1 cegger * Callback from MII layer when media changes.
390 1.1 cegger */
391 1.1 cegger static void
392 1.1 cegger age_miibus_statchg(device_t dev)
393 1.1 cegger {
394 1.1 cegger struct age_softc *sc = device_private(dev);
395 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
396 1.1 cegger struct mii_data *mii;
397 1.1 cegger
398 1.1 cegger if ((ifp->if_flags & IFF_RUNNING) == 0)
399 1.1 cegger return;
400 1.1 cegger
401 1.1 cegger mii = &sc->sc_miibus;
402 1.1 cegger
403 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
404 1.1 cegger if ((mii->mii_media_status & IFM_AVALID) != 0) {
405 1.1 cegger switch (IFM_SUBTYPE(mii->mii_media_active)) {
406 1.1 cegger case IFM_10_T:
407 1.1 cegger case IFM_100_TX:
408 1.1 cegger case IFM_1000_T:
409 1.1 cegger sc->age_flags |= AGE_FLAG_LINK;
410 1.1 cegger break;
411 1.1 cegger default:
412 1.1 cegger break;
413 1.1 cegger }
414 1.1 cegger }
415 1.1 cegger
416 1.1 cegger /* Stop Rx/Tx MACs. */
417 1.1 cegger age_stop_rxmac(sc);
418 1.1 cegger age_stop_txmac(sc);
419 1.1 cegger
420 1.1 cegger /* Program MACs with resolved speed/duplex/flow-control. */
421 1.1 cegger if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
422 1.1 cegger uint32_t reg;
423 1.1 cegger
424 1.1 cegger age_mac_config(sc);
425 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
426 1.1 cegger /* Restart DMA engine and Tx/Rx MAC. */
427 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
428 1.1 cegger DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
429 1.1 cegger reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
430 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
431 1.1 cegger }
432 1.1 cegger }
433 1.1 cegger
434 1.1 cegger /*
435 1.1 cegger * Get the current interface media status.
436 1.1 cegger */
437 1.1 cegger static void
438 1.1 cegger age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
439 1.1 cegger {
440 1.1 cegger struct age_softc *sc = ifp->if_softc;
441 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
442 1.1 cegger
443 1.1 cegger mii_pollstat(mii);
444 1.1 cegger ifmr->ifm_status = mii->mii_media_status;
445 1.1 cegger ifmr->ifm_active = mii->mii_media_active;
446 1.1 cegger }
447 1.1 cegger
448 1.1 cegger /*
449 1.1 cegger * Set hardware to newly-selected media.
450 1.1 cegger */
451 1.1 cegger static int
452 1.1 cegger age_mediachange(struct ifnet *ifp)
453 1.1 cegger {
454 1.1 cegger struct age_softc *sc = ifp->if_softc;
455 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
456 1.1 cegger int error;
457 1.1 cegger
458 1.1 cegger if (mii->mii_instance != 0) {
459 1.1 cegger struct mii_softc *miisc;
460 1.1 cegger
461 1.1 cegger LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
462 1.1 cegger mii_phy_reset(miisc);
463 1.1 cegger }
464 1.1 cegger error = mii_mediachg(mii);
465 1.1 cegger
466 1.1 cegger return (error);
467 1.1 cegger }
468 1.1 cegger
469 1.1 cegger static int
470 1.1 cegger age_intr(void *arg)
471 1.1 cegger {
472 1.1 cegger struct age_softc *sc = arg;
473 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
474 1.1 cegger struct cmb *cmb;
475 1.1 cegger uint32_t status;
476 1.1 cegger
477 1.1 cegger status = CSR_READ_4(sc, AGE_INTR_STATUS);
478 1.1 cegger if (status == 0 || (status & AGE_INTRS) == 0)
479 1.10 cegger return 0;
480 1.10 cegger
481 1.10 cegger cmb = sc->age_rdata.age_cmb_block;
482 1.10 cegger if (cmb == NULL)
483 1.10 cegger return 0;
484 1.1 cegger
485 1.1 cegger /* Disable interrupts. */
486 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
487 1.1 cegger
488 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
489 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
490 1.1 cegger status = le32toh(cmb->intr_status);
491 1.1 cegger if ((status & AGE_INTRS) == 0)
492 1.1 cegger goto back;
493 1.1 cegger
494 1.1 cegger sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
495 1.1 cegger TPD_CONS_SHIFT;
496 1.1 cegger sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
497 1.1 cegger RRD_PROD_SHIFT;
498 1.1 cegger
499 1.1 cegger /* Let hardware know CMB was served. */
500 1.1 cegger cmb->intr_status = 0;
501 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
502 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize,
503 1.1 cegger BUS_DMASYNC_PREWRITE);
504 1.1 cegger
505 1.1 cegger if (ifp->if_flags & IFF_RUNNING) {
506 1.1 cegger if (status & INTR_CMB_RX)
507 1.1 cegger age_rxintr(sc, sc->age_rr_prod);
508 1.1 cegger
509 1.1 cegger if (status & INTR_CMB_TX)
510 1.1 cegger age_txintr(sc, sc->age_tpd_cons);
511 1.1 cegger
512 1.1 cegger if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
513 1.1 cegger if (status & INTR_DMA_RD_TO_RST)
514 1.1 cegger printf("%s: DMA read error! -- resetting\n",
515 1.1 cegger device_xname(sc->sc_dev));
516 1.1 cegger if (status & INTR_DMA_WR_TO_RST)
517 1.1 cegger printf("%s: DMA write error! -- resetting\n",
518 1.1 cegger device_xname(sc->sc_dev));
519 1.1 cegger age_init(ifp);
520 1.1 cegger }
521 1.1 cegger
522 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
523 1.1 cegger age_start(ifp);
524 1.1 cegger
525 1.1 cegger if (status & INTR_SMB)
526 1.1 cegger age_stats_update(sc);
527 1.1 cegger }
528 1.1 cegger
529 1.1 cegger /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
530 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
531 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize,
532 1.1 cegger BUS_DMASYNC_POSTREAD);
533 1.1 cegger
534 1.1 cegger back:
535 1.1 cegger /* Re-enable interrupts. */
536 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
537 1.1 cegger
538 1.1 cegger return (1);
539 1.1 cegger }
540 1.1 cegger
541 1.1 cegger static int
542 1.1 cegger age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
543 1.1 cegger uint32_t *word)
544 1.1 cegger {
545 1.1 cegger int i;
546 1.3 cegger pcireg_t rv;
547 1.1 cegger
548 1.3 cegger pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_VPD_ADDRESS(vpdc),
549 1.3 cegger offset << PCI_VPD_ADDRESS_SHIFT);
550 1.1 cegger for (i = AGE_TIMEOUT; i > 0; i--) {
551 1.1 cegger DELAY(10);
552 1.3 cegger rv = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
553 1.3 cegger PCI_VPD_ADDRESS(vpdc));
554 1.3 cegger if ((rv & PCI_VPD_OPFLAG) == PCI_VPD_OPFLAG)
555 1.1 cegger break;
556 1.1 cegger }
557 1.1 cegger if (i == 0) {
558 1.1 cegger printf("%s: VPD read timeout!\n", device_xname(sc->sc_dev));
559 1.1 cegger *word = 0;
560 1.3 cegger return ETIMEDOUT;
561 1.1 cegger }
562 1.1 cegger
563 1.3 cegger *word = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_VPD_DATAREG(vpdc));
564 1.3 cegger return 0;
565 1.1 cegger }
566 1.1 cegger
567 1.1 cegger static void
568 1.1 cegger age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
569 1.1 cegger {
570 1.1 cegger uint32_t ea[2], off, reg, word;
571 1.1 cegger int vpd_error, match, vpdc;
572 1.1 cegger
573 1.1 cegger reg = CSR_READ_4(sc, AGE_SPI_CTRL);
574 1.1 cegger if ((reg & SPI_VPD_ENB) != 0) {
575 1.1 cegger /* Get VPD stored in TWSI EEPROM. */
576 1.1 cegger reg &= ~SPI_VPD_ENB;
577 1.1 cegger CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
578 1.1 cegger }
579 1.1 cegger
580 1.1 cegger vpd_error = 0;
581 1.1 cegger ea[0] = ea[1] = 0;
582 1.1 cegger if ((vpd_error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
583 1.1 cegger PCI_CAP_VPD, &vpdc, NULL))) {
584 1.1 cegger /*
585 1.1 cegger * PCI VPD capability exists, but it seems that it's
586 1.1 cegger * not in the standard form as stated in PCI VPD
587 1.1 cegger * specification such that driver could not use
588 1.1 cegger * pci_get_vpd_readonly(9) with keyword 'NA'.
589 1.1 cegger * Search VPD data starting at address 0x0100. The data
590 1.1 cegger * should be used as initializers to set AGE_PAR0,
591 1.1 cegger * AGE_PAR1 register including other PCI configuration
592 1.1 cegger * registers.
593 1.1 cegger */
594 1.1 cegger word = 0;
595 1.1 cegger match = 0;
596 1.1 cegger reg = 0;
597 1.1 cegger for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
598 1.1 cegger off += sizeof(uint32_t)) {
599 1.1 cegger vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
600 1.1 cegger if (vpd_error != 0)
601 1.1 cegger break;
602 1.1 cegger if (match != 0) {
603 1.1 cegger switch (reg) {
604 1.1 cegger case AGE_PAR0:
605 1.1 cegger ea[0] = word;
606 1.1 cegger break;
607 1.1 cegger case AGE_PAR1:
608 1.1 cegger ea[1] = word;
609 1.1 cegger break;
610 1.1 cegger default:
611 1.1 cegger break;
612 1.1 cegger }
613 1.1 cegger match = 0;
614 1.1 cegger } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
615 1.1 cegger match = 1;
616 1.1 cegger reg = word >> 16;
617 1.1 cegger } else
618 1.1 cegger break;
619 1.1 cegger }
620 1.1 cegger if (off >= AGE_VPD_REG_CONF_END)
621 1.1 cegger vpd_error = ENOENT;
622 1.1 cegger if (vpd_error == 0) {
623 1.1 cegger /*
624 1.1 cegger * Don't blindly trust ethernet address obtained
625 1.1 cegger * from VPD. Check whether ethernet address is
626 1.1 cegger * valid one. Otherwise fall-back to reading
627 1.1 cegger * PAR register.
628 1.1 cegger */
629 1.1 cegger ea[1] &= 0xFFFF;
630 1.1 cegger if ((ea[0] == 0 && ea[1] == 0) ||
631 1.1 cegger (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
632 1.1 cegger if (agedebug)
633 1.1 cegger printf("%s: invalid ethernet address "
634 1.1 cegger "returned from VPD.\n",
635 1.1 cegger device_xname(sc->sc_dev));
636 1.1 cegger vpd_error = EINVAL;
637 1.1 cegger }
638 1.1 cegger }
639 1.1 cegger if (vpd_error != 0 && (agedebug))
640 1.1 cegger printf("%s: VPD access failure!\n",
641 1.1 cegger device_xname(sc->sc_dev));
642 1.1 cegger } else {
643 1.1 cegger if (agedebug)
644 1.1 cegger printf("%s: PCI VPD capability not found!\n",
645 1.1 cegger device_xname(sc->sc_dev));
646 1.1 cegger }
647 1.1 cegger
648 1.1 cegger /*
649 1.1 cegger * It seems that L1 also provides a way to extract ethernet
650 1.1 cegger * address via SPI flash interface. Because SPI flash memory
651 1.1 cegger * device of different vendors vary in their instruction
652 1.1 cegger * codes for read ID instruction, it's very hard to get
653 1.1 cegger * instructions codes without detailed information for the
654 1.1 cegger * flash memory device used on ethernet controller. To simplify
655 1.1 cegger * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
656 1.1 cegger * address which is supposed to be set by hardware during
657 1.1 cegger * power on reset.
658 1.1 cegger */
659 1.1 cegger if (vpd_error != 0) {
660 1.1 cegger /*
661 1.1 cegger * VPD is mapped to SPI flash memory or BIOS set it.
662 1.1 cegger */
663 1.1 cegger ea[0] = CSR_READ_4(sc, AGE_PAR0);
664 1.1 cegger ea[1] = CSR_READ_4(sc, AGE_PAR1);
665 1.1 cegger }
666 1.1 cegger
667 1.1 cegger ea[1] &= 0xFFFF;
668 1.1 cegger eaddr[0] = (ea[1] >> 8) & 0xFF;
669 1.1 cegger eaddr[1] = (ea[1] >> 0) & 0xFF;
670 1.1 cegger eaddr[2] = (ea[0] >> 24) & 0xFF;
671 1.1 cegger eaddr[3] = (ea[0] >> 16) & 0xFF;
672 1.1 cegger eaddr[4] = (ea[0] >> 8) & 0xFF;
673 1.1 cegger eaddr[5] = (ea[0] >> 0) & 0xFF;
674 1.1 cegger }
675 1.1 cegger
676 1.1 cegger static void
677 1.1 cegger age_phy_reset(struct age_softc *sc)
678 1.1 cegger {
679 1.1 cegger /* Reset PHY. */
680 1.1 cegger CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
681 1.1 cegger DELAY(1000);
682 1.1 cegger CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
683 1.1 cegger DELAY(1000);
684 1.1 cegger }
685 1.1 cegger
686 1.1 cegger static int
687 1.1 cegger age_dma_alloc(struct age_softc *sc)
688 1.1 cegger {
689 1.1 cegger struct age_txdesc *txd;
690 1.1 cegger struct age_rxdesc *rxd;
691 1.1 cegger int nsegs, error, i;
692 1.1 cegger
693 1.1 cegger /*
694 1.1 cegger * Create DMA stuffs for TX ring
695 1.1 cegger */
696 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
697 1.1 cegger AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
698 1.1 cegger if (error)
699 1.1 cegger return (ENOBUFS);
700 1.1 cegger
701 1.1 cegger /* Allocate DMA'able memory for TX ring */
702 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
703 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
704 1.1 cegger &nsegs, BUS_DMA_WAITOK);
705 1.1 cegger if (error) {
706 1.1 cegger printf("%s: could not allocate DMA'able memory for Tx ring.\n",
707 1.1 cegger device_xname(sc->sc_dev));
708 1.1 cegger return error;
709 1.1 cegger }
710 1.1 cegger
711 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
712 1.1 cegger nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
713 1.1 cegger BUS_DMA_NOWAIT);
714 1.1 cegger if (error)
715 1.1 cegger return (ENOBUFS);
716 1.1 cegger
717 1.1 cegger memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
718 1.1 cegger
719 1.1 cegger /* Load the DMA map for Tx ring. */
720 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
721 1.1 cegger sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
722 1.1 cegger if (error) {
723 1.1 cegger printf("%s: could not load DMA'able memory for Tx ring.\n",
724 1.1 cegger device_xname(sc->sc_dev));
725 1.1 cegger bus_dmamem_free(sc->sc_dmat,
726 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
727 1.1 cegger return error;
728 1.1 cegger }
729 1.1 cegger
730 1.1 cegger sc->age_rdata.age_tx_ring_paddr =
731 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
732 1.1 cegger
733 1.1 cegger /*
734 1.1 cegger * Create DMA stuffs for RX ring
735 1.1 cegger */
736 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
737 1.1 cegger AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
738 1.1 cegger if (error)
739 1.1 cegger return (ENOBUFS);
740 1.1 cegger
741 1.1 cegger /* Allocate DMA'able memory for RX ring */
742 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
743 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
744 1.1 cegger &nsegs, BUS_DMA_WAITOK);
745 1.1 cegger if (error) {
746 1.1 cegger printf("%s: could not allocate DMA'able memory for Rx ring.\n",
747 1.1 cegger device_xname(sc->sc_dev));
748 1.1 cegger return error;
749 1.1 cegger }
750 1.1 cegger
751 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
752 1.1 cegger nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
753 1.1 cegger BUS_DMA_NOWAIT);
754 1.1 cegger if (error)
755 1.1 cegger return (ENOBUFS);
756 1.1 cegger
757 1.1 cegger memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
758 1.1 cegger
759 1.1 cegger /* Load the DMA map for Rx ring. */
760 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
761 1.1 cegger sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
762 1.1 cegger if (error) {
763 1.1 cegger printf("%s: could not load DMA'able memory for Rx ring.\n",
764 1.1 cegger device_xname(sc->sc_dev));
765 1.1 cegger bus_dmamem_free(sc->sc_dmat,
766 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
767 1.1 cegger return error;
768 1.1 cegger }
769 1.1 cegger
770 1.1 cegger sc->age_rdata.age_rx_ring_paddr =
771 1.1 cegger sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
772 1.1 cegger
773 1.1 cegger /*
774 1.1 cegger * Create DMA stuffs for RX return ring
775 1.1 cegger */
776 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
777 1.1 cegger AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
778 1.1 cegger if (error)
779 1.1 cegger return (ENOBUFS);
780 1.1 cegger
781 1.1 cegger /* Allocate DMA'able memory for RX return ring */
782 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
783 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
784 1.1 cegger &nsegs, BUS_DMA_WAITOK);
785 1.1 cegger if (error) {
786 1.1 cegger printf("%s: could not allocate DMA'able memory for Rx "
787 1.1 cegger "return ring.\n", device_xname(sc->sc_dev));
788 1.1 cegger return error;
789 1.1 cegger }
790 1.1 cegger
791 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
792 1.1 cegger nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
793 1.1 cegger BUS_DMA_NOWAIT);
794 1.1 cegger if (error)
795 1.1 cegger return (ENOBUFS);
796 1.1 cegger
797 1.1 cegger memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
798 1.1 cegger
799 1.1 cegger /* Load the DMA map for Rx return ring. */
800 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
801 1.1 cegger sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
802 1.1 cegger if (error) {
803 1.1 cegger printf("%s: could not load DMA'able memory for Rx return ring."
804 1.1 cegger "\n", device_xname(sc->sc_dev));
805 1.1 cegger bus_dmamem_free(sc->sc_dmat,
806 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
807 1.1 cegger return error;
808 1.1 cegger }
809 1.1 cegger
810 1.1 cegger sc->age_rdata.age_rr_ring_paddr =
811 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
812 1.1 cegger
813 1.1 cegger /*
814 1.1 cegger * Create DMA stuffs for CMB block
815 1.1 cegger */
816 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
817 1.1 cegger AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
818 1.1 cegger &sc->age_cdata.age_cmb_block_map);
819 1.1 cegger if (error)
820 1.1 cegger return (ENOBUFS);
821 1.1 cegger
822 1.1 cegger /* Allocate DMA'able memory for CMB block */
823 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
824 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
825 1.1 cegger &nsegs, BUS_DMA_WAITOK);
826 1.1 cegger if (error) {
827 1.1 cegger printf("%s: could not allocate DMA'able memory for "
828 1.1 cegger "CMB block\n", device_xname(sc->sc_dev));
829 1.1 cegger return error;
830 1.1 cegger }
831 1.1 cegger
832 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
833 1.1 cegger nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
834 1.1 cegger BUS_DMA_NOWAIT);
835 1.1 cegger if (error)
836 1.1 cegger return (ENOBUFS);
837 1.1 cegger
838 1.1 cegger memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
839 1.1 cegger
840 1.1 cegger /* Load the DMA map for CMB block. */
841 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
842 1.1 cegger sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
843 1.1 cegger BUS_DMA_WAITOK);
844 1.1 cegger if (error) {
845 1.1 cegger printf("%s: could not load DMA'able memory for CMB block\n",
846 1.1 cegger device_xname(sc->sc_dev));
847 1.1 cegger bus_dmamem_free(sc->sc_dmat,
848 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
849 1.1 cegger return error;
850 1.1 cegger }
851 1.1 cegger
852 1.1 cegger sc->age_rdata.age_cmb_block_paddr =
853 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
854 1.1 cegger
855 1.1 cegger /*
856 1.1 cegger * Create DMA stuffs for SMB block
857 1.1 cegger */
858 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
859 1.1 cegger AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
860 1.1 cegger &sc->age_cdata.age_smb_block_map);
861 1.1 cegger if (error)
862 1.1 cegger return (ENOBUFS);
863 1.1 cegger
864 1.1 cegger /* Allocate DMA'able memory for SMB block */
865 1.1 cegger error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
866 1.1 cegger PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
867 1.1 cegger &nsegs, BUS_DMA_WAITOK);
868 1.1 cegger if (error) {
869 1.1 cegger printf("%s: could not allocate DMA'able memory for "
870 1.1 cegger "SMB block\n", device_xname(sc->sc_dev));
871 1.1 cegger return error;
872 1.1 cegger }
873 1.1 cegger
874 1.1 cegger error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
875 1.1 cegger nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
876 1.1 cegger BUS_DMA_NOWAIT);
877 1.1 cegger if (error)
878 1.1 cegger return (ENOBUFS);
879 1.1 cegger
880 1.1 cegger memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
881 1.1 cegger
882 1.1 cegger /* Load the DMA map for SMB block */
883 1.1 cegger error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
884 1.1 cegger sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
885 1.1 cegger BUS_DMA_WAITOK);
886 1.1 cegger if (error) {
887 1.1 cegger printf("%s: could not load DMA'able memory for SMB block\n",
888 1.1 cegger device_xname(sc->sc_dev));
889 1.1 cegger bus_dmamem_free(sc->sc_dmat,
890 1.1 cegger (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
891 1.1 cegger return error;
892 1.1 cegger }
893 1.1 cegger
894 1.1 cegger sc->age_rdata.age_smb_block_paddr =
895 1.1 cegger sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
896 1.1 cegger
897 1.1 cegger /* Create DMA maps for Tx buffers. */
898 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
899 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
900 1.1 cegger txd->tx_m = NULL;
901 1.1 cegger txd->tx_dmamap = NULL;
902 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
903 1.1 cegger AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
904 1.1 cegger &txd->tx_dmamap);
905 1.1 cegger if (error) {
906 1.1 cegger printf("%s: could not create Tx dmamap.\n",
907 1.1 cegger device_xname(sc->sc_dev));
908 1.1 cegger return error;
909 1.1 cegger }
910 1.1 cegger }
911 1.1 cegger
912 1.1 cegger /* Create DMA maps for Rx buffers. */
913 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
914 1.1 cegger BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
915 1.1 cegger if (error) {
916 1.1 cegger printf("%s: could not create spare Rx dmamap.\n",
917 1.1 cegger device_xname(sc->sc_dev));
918 1.1 cegger return error;
919 1.1 cegger }
920 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
921 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
922 1.1 cegger rxd->rx_m = NULL;
923 1.1 cegger rxd->rx_dmamap = NULL;
924 1.1 cegger error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
925 1.1 cegger MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
926 1.1 cegger if (error) {
927 1.1 cegger printf("%s: could not create Rx dmamap.\n",
928 1.1 cegger device_xname(sc->sc_dev));
929 1.1 cegger return error;
930 1.1 cegger }
931 1.1 cegger }
932 1.1 cegger
933 1.1 cegger return (0);
934 1.1 cegger }
935 1.1 cegger
936 1.1 cegger static void
937 1.1 cegger age_dma_free(struct age_softc *sc)
938 1.1 cegger {
939 1.1 cegger struct age_txdesc *txd;
940 1.1 cegger struct age_rxdesc *rxd;
941 1.1 cegger int i;
942 1.1 cegger
943 1.1 cegger /* Tx buffers */
944 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
945 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
946 1.1 cegger if (txd->tx_dmamap != NULL) {
947 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
948 1.1 cegger txd->tx_dmamap = NULL;
949 1.1 cegger }
950 1.1 cegger }
951 1.1 cegger /* Rx buffers */
952 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
953 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
954 1.1 cegger if (rxd->rx_dmamap != NULL) {
955 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
956 1.1 cegger rxd->rx_dmamap = NULL;
957 1.1 cegger }
958 1.1 cegger }
959 1.1 cegger if (sc->age_cdata.age_rx_sparemap != NULL) {
960 1.1 cegger bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
961 1.1 cegger sc->age_cdata.age_rx_sparemap = NULL;
962 1.1 cegger }
963 1.1 cegger
964 1.1 cegger /* Tx ring. */
965 1.1 cegger if (sc->age_cdata.age_tx_ring_map != NULL)
966 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
967 1.1 cegger if (sc->age_cdata.age_tx_ring_map != NULL &&
968 1.1 cegger sc->age_rdata.age_tx_ring != NULL)
969 1.1 cegger bus_dmamem_free(sc->sc_dmat,
970 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
971 1.1 cegger sc->age_rdata.age_tx_ring = NULL;
972 1.1 cegger sc->age_cdata.age_tx_ring_map = NULL;
973 1.1 cegger
974 1.1 cegger /* Rx ring. */
975 1.1 cegger if (sc->age_cdata.age_rx_ring_map != NULL)
976 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
977 1.1 cegger if (sc->age_cdata.age_rx_ring_map != NULL &&
978 1.1 cegger sc->age_rdata.age_rx_ring != NULL)
979 1.1 cegger bus_dmamem_free(sc->sc_dmat,
980 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
981 1.1 cegger sc->age_rdata.age_rx_ring = NULL;
982 1.1 cegger sc->age_cdata.age_rx_ring_map = NULL;
983 1.1 cegger
984 1.1 cegger /* Rx return ring. */
985 1.1 cegger if (sc->age_cdata.age_rr_ring_map != NULL)
986 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
987 1.1 cegger if (sc->age_cdata.age_rr_ring_map != NULL &&
988 1.1 cegger sc->age_rdata.age_rr_ring != NULL)
989 1.1 cegger bus_dmamem_free(sc->sc_dmat,
990 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
991 1.1 cegger sc->age_rdata.age_rr_ring = NULL;
992 1.1 cegger sc->age_cdata.age_rr_ring_map = NULL;
993 1.1 cegger
994 1.1 cegger /* CMB block */
995 1.1 cegger if (sc->age_cdata.age_cmb_block_map != NULL)
996 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
997 1.1 cegger if (sc->age_cdata.age_cmb_block_map != NULL &&
998 1.1 cegger sc->age_rdata.age_cmb_block != NULL)
999 1.1 cegger bus_dmamem_free(sc->sc_dmat,
1000 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
1001 1.1 cegger sc->age_rdata.age_cmb_block = NULL;
1002 1.1 cegger sc->age_cdata.age_cmb_block_map = NULL;
1003 1.1 cegger
1004 1.1 cegger /* SMB block */
1005 1.1 cegger if (sc->age_cdata.age_smb_block_map != NULL)
1006 1.1 cegger bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
1007 1.1 cegger if (sc->age_cdata.age_smb_block_map != NULL &&
1008 1.1 cegger sc->age_rdata.age_smb_block != NULL)
1009 1.1 cegger bus_dmamem_free(sc->sc_dmat,
1010 1.1 cegger (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
1011 1.1 cegger }
1012 1.1 cegger
1013 1.1 cegger static void
1014 1.1 cegger age_start(struct ifnet *ifp)
1015 1.1 cegger {
1016 1.1 cegger struct age_softc *sc = ifp->if_softc;
1017 1.1 cegger struct mbuf *m_head;
1018 1.1 cegger int enq;
1019 1.1 cegger
1020 1.1 cegger if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1021 1.1 cegger return;
1022 1.1 cegger
1023 1.1 cegger enq = 0;
1024 1.1 cegger for (;;) {
1025 1.1 cegger IFQ_DEQUEUE(&ifp->if_snd, m_head);
1026 1.1 cegger if (m_head == NULL)
1027 1.1 cegger break;
1028 1.1 cegger
1029 1.1 cegger /*
1030 1.1 cegger * Pack the data into the transmit ring. If we
1031 1.1 cegger * don't have room, set the OACTIVE flag and wait
1032 1.1 cegger * for the NIC to drain the ring.
1033 1.1 cegger */
1034 1.1 cegger if (age_encap(sc, &m_head)) {
1035 1.1 cegger if (m_head == NULL)
1036 1.1 cegger break;
1037 1.1 cegger ifp->if_flags |= IFF_OACTIVE;
1038 1.1 cegger break;
1039 1.1 cegger }
1040 1.1 cegger enq = 1;
1041 1.1 cegger
1042 1.1 cegger #if NBPFILTER > 0
1043 1.1 cegger /*
1044 1.1 cegger * If there's a BPF listener, bounce a copy of this frame
1045 1.1 cegger * to him.
1046 1.1 cegger */
1047 1.1 cegger if (ifp->if_bpf != NULL)
1048 1.1 cegger bpf_mtap(ifp->if_bpf, m_head);
1049 1.1 cegger #endif
1050 1.1 cegger }
1051 1.1 cegger
1052 1.1 cegger if (enq) {
1053 1.1 cegger /* Update mbox. */
1054 1.1 cegger AGE_COMMIT_MBOX(sc);
1055 1.1 cegger /* Set a timeout in case the chip goes out to lunch. */
1056 1.1 cegger ifp->if_timer = AGE_TX_TIMEOUT;
1057 1.1 cegger }
1058 1.1 cegger }
1059 1.1 cegger
1060 1.1 cegger static void
1061 1.1 cegger age_watchdog(struct ifnet *ifp)
1062 1.1 cegger {
1063 1.1 cegger struct age_softc *sc = ifp->if_softc;
1064 1.1 cegger
1065 1.1 cegger if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1066 1.1 cegger printf("%s: watchdog timeout (missed link)\n",
1067 1.1 cegger device_xname(sc->sc_dev));
1068 1.1 cegger ifp->if_oerrors++;
1069 1.1 cegger age_init(ifp);
1070 1.1 cegger return;
1071 1.1 cegger }
1072 1.1 cegger
1073 1.1 cegger if (sc->age_cdata.age_tx_cnt == 0) {
1074 1.1 cegger printf("%s: watchdog timeout (missed Tx interrupts) "
1075 1.1 cegger "-- recovering\n", device_xname(sc->sc_dev));
1076 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
1077 1.1 cegger age_start(ifp);
1078 1.1 cegger return;
1079 1.1 cegger }
1080 1.1 cegger
1081 1.1 cegger printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1082 1.1 cegger ifp->if_oerrors++;
1083 1.1 cegger age_init(ifp);
1084 1.1 cegger
1085 1.1 cegger if (!IFQ_IS_EMPTY(&ifp->if_snd))
1086 1.1 cegger age_start(ifp);
1087 1.1 cegger }
1088 1.1 cegger
1089 1.1 cegger static int
1090 1.1 cegger age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1091 1.1 cegger {
1092 1.1 cegger struct age_softc *sc = ifp->if_softc;
1093 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
1094 1.1 cegger struct ifreq *ifr = (struct ifreq *)data;
1095 1.1 cegger int s, error = 0;
1096 1.1 cegger
1097 1.1 cegger s = splnet();
1098 1.1 cegger
1099 1.1 cegger switch (cmd) {
1100 1.1 cegger case SIOCSIFMEDIA:
1101 1.1 cegger case SIOCGIFMEDIA:
1102 1.1 cegger error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1103 1.1 cegger break;
1104 1.1 cegger default:
1105 1.1 cegger error = ether_ioctl(ifp, cmd, data);
1106 1.8 cegger if (error == ENETRESET) {
1107 1.8 cegger if (ifp->if_flags & IFF_RUNNING)
1108 1.8 cegger age_rxfilter(sc);
1109 1.8 cegger error = 0;
1110 1.8 cegger }
1111 1.1 cegger break;
1112 1.1 cegger }
1113 1.1 cegger
1114 1.1 cegger splx(s);
1115 1.8 cegger return error;
1116 1.1 cegger }
1117 1.1 cegger
1118 1.1 cegger static void
1119 1.1 cegger age_mac_config(struct age_softc *sc)
1120 1.1 cegger {
1121 1.1 cegger struct mii_data *mii;
1122 1.1 cegger uint32_t reg;
1123 1.1 cegger
1124 1.1 cegger mii = &sc->sc_miibus;
1125 1.1 cegger
1126 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
1127 1.1 cegger reg &= ~MAC_CFG_FULL_DUPLEX;
1128 1.1 cegger reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1129 1.1 cegger reg &= ~MAC_CFG_SPEED_MASK;
1130 1.1 cegger
1131 1.1 cegger /* Reprogram MAC with resolved speed/duplex. */
1132 1.1 cegger switch (IFM_SUBTYPE(mii->mii_media_active)) {
1133 1.1 cegger case IFM_10_T:
1134 1.1 cegger case IFM_100_TX:
1135 1.1 cegger reg |= MAC_CFG_SPEED_10_100;
1136 1.1 cegger break;
1137 1.1 cegger case IFM_1000_T:
1138 1.1 cegger reg |= MAC_CFG_SPEED_1000;
1139 1.1 cegger break;
1140 1.1 cegger }
1141 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1142 1.1 cegger reg |= MAC_CFG_FULL_DUPLEX;
1143 1.1 cegger #ifdef notyet
1144 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1145 1.1 cegger reg |= MAC_CFG_TX_FC;
1146 1.1 cegger if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1147 1.1 cegger reg |= MAC_CFG_RX_FC;
1148 1.1 cegger #endif
1149 1.1 cegger }
1150 1.1 cegger
1151 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1152 1.1 cegger }
1153 1.1 cegger
1154 1.3 cegger static bool
1155 1.3 cegger age_resume(device_t dv PMF_FN_ARGS)
1156 1.3 cegger {
1157 1.3 cegger struct age_softc *sc = device_private(dv);
1158 1.3 cegger uint16_t cmd;
1159 1.3 cegger
1160 1.3 cegger /*
1161 1.3 cegger * Clear INTx emulation disable for hardware that
1162 1.3 cegger * is set in resume event. From Linux.
1163 1.3 cegger */
1164 1.3 cegger cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
1165 1.3 cegger if ((cmd & 0x0400) != 0) {
1166 1.3 cegger cmd &= ~0x0400;
1167 1.3 cegger pci_conf_write(sc->sc_pct, sc->sc_pcitag,
1168 1.3 cegger PCI_COMMAND_STATUS_REG, cmd);
1169 1.3 cegger }
1170 1.3 cegger
1171 1.3 cegger return true;
1172 1.3 cegger }
1173 1.3 cegger
1174 1.1 cegger static int
1175 1.1 cegger age_encap(struct age_softc *sc, struct mbuf **m_head)
1176 1.1 cegger {
1177 1.1 cegger struct age_txdesc *txd, *txd_last;
1178 1.1 cegger struct tx_desc *desc;
1179 1.1 cegger struct mbuf *m;
1180 1.1 cegger bus_dmamap_t map;
1181 1.1 cegger uint32_t cflags, poff, vtag;
1182 1.1 cegger int error, i, nsegs, prod;
1183 1.1 cegger struct m_tag *mtag;
1184 1.1 cegger
1185 1.1 cegger m = *m_head;
1186 1.1 cegger cflags = vtag = 0;
1187 1.1 cegger poff = 0;
1188 1.1 cegger
1189 1.1 cegger prod = sc->age_cdata.age_tx_prod;
1190 1.1 cegger txd = &sc->age_cdata.age_txdesc[prod];
1191 1.1 cegger txd_last = txd;
1192 1.1 cegger map = txd->tx_dmamap;
1193 1.1 cegger
1194 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1195 1.1 cegger
1196 1.1 cegger if (error != 0) {
1197 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1198 1.1 cegger error = EFBIG;
1199 1.1 cegger }
1200 1.1 cegger if (error == EFBIG) {
1201 1.1 cegger error = 0;
1202 1.1 cegger
1203 1.1 cegger MGETHDR(m, M_DONTWAIT, MT_DATA);
1204 1.1 cegger if (m == NULL) {
1205 1.1 cegger printf("%s: can't defrag TX mbuf\n",
1206 1.1 cegger device_xname(sc->sc_dev));
1207 1.1 cegger m_freem(*m_head);
1208 1.1 cegger *m_head = NULL;
1209 1.1 cegger return (ENOBUFS);
1210 1.1 cegger }
1211 1.1 cegger
1212 1.1 cegger MCLGET(m, M_DONTWAIT);
1213 1.1 cegger if (!(m->m_flags & M_EXT)) {
1214 1.1 cegger m_freem(m);
1215 1.1 cegger *m_head = NULL;
1216 1.1 cegger return (ENOBUFS);
1217 1.1 cegger }
1218 1.1 cegger m->m_len = m->m_pkthdr.len;
1219 1.1 cegger *m_head = m;
1220 1.1 cegger
1221 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1222 1.1 cegger BUS_DMA_NOWAIT);
1223 1.1 cegger
1224 1.1 cegger if (error != 0) {
1225 1.1 cegger printf("%s: could not load defragged TX mbuf\n",
1226 1.1 cegger device_xname(sc->sc_dev));
1227 1.1 cegger if (!error) {
1228 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1229 1.1 cegger error = EFBIG;
1230 1.1 cegger }
1231 1.1 cegger m_freem(*m_head);
1232 1.1 cegger *m_head = NULL;
1233 1.1 cegger return (error);
1234 1.1 cegger }
1235 1.1 cegger } else if (error) {
1236 1.1 cegger printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1237 1.1 cegger return (error);
1238 1.1 cegger }
1239 1.1 cegger
1240 1.1 cegger nsegs = map->dm_nsegs;
1241 1.1 cegger
1242 1.1 cegger if (nsegs == 0) {
1243 1.1 cegger m_freem(*m_head);
1244 1.1 cegger *m_head = NULL;
1245 1.1 cegger return (EIO);
1246 1.1 cegger }
1247 1.1 cegger
1248 1.1 cegger /* Check descriptor overrun. */
1249 1.1 cegger if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1250 1.1 cegger bus_dmamap_unload(sc->sc_dmat, map);
1251 1.1 cegger return (ENOBUFS);
1252 1.1 cegger }
1253 1.1 cegger
1254 1.1 cegger m = *m_head;
1255 1.1 cegger /* Configure Tx IP/TCP/UDP checksum offload. */
1256 1.1 cegger if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1257 1.1 cegger cflags |= AGE_TD_CSUM;
1258 1.1 cegger if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
1259 1.1 cegger cflags |= AGE_TD_TCPCSUM;
1260 1.1 cegger if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1261 1.1 cegger cflags |= AGE_TD_UDPCSUM;
1262 1.1 cegger /* Set checksum start offset. */
1263 1.1 cegger cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1264 1.1 cegger }
1265 1.1 cegger
1266 1.1 cegger #if NVLAN > 0
1267 1.1 cegger /* Configure VLAN hardware tag insertion. */
1268 1.1 cegger if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1269 1.1 cegger vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1270 1.1 cegger vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1271 1.1 cegger cflags |= AGE_TD_INSERT_VLAN_TAG;
1272 1.1 cegger }
1273 1.1 cegger #endif
1274 1.1 cegger
1275 1.1 cegger desc = NULL;
1276 1.1 cegger for (i = 0; i < nsegs; i++) {
1277 1.1 cegger desc = &sc->age_rdata.age_tx_ring[prod];
1278 1.1 cegger desc->addr = htole64(map->dm_segs[i].ds_addr);
1279 1.1 cegger desc->len =
1280 1.1 cegger htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1281 1.1 cegger desc->flags = htole32(cflags);
1282 1.1 cegger sc->age_cdata.age_tx_cnt++;
1283 1.1 cegger AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1284 1.1 cegger }
1285 1.1 cegger
1286 1.1 cegger /* Update producer index. */
1287 1.1 cegger sc->age_cdata.age_tx_prod = prod;
1288 1.1 cegger
1289 1.1 cegger /* Set EOP on the last descriptor. */
1290 1.1 cegger prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1291 1.1 cegger desc = &sc->age_rdata.age_tx_ring[prod];
1292 1.1 cegger desc->flags |= htole32(AGE_TD_EOP);
1293 1.1 cegger
1294 1.1 cegger /* Swap dmamap of the first and the last. */
1295 1.1 cegger txd = &sc->age_cdata.age_txdesc[prod];
1296 1.1 cegger map = txd_last->tx_dmamap;
1297 1.1 cegger txd_last->tx_dmamap = txd->tx_dmamap;
1298 1.1 cegger txd->tx_dmamap = map;
1299 1.1 cegger txd->tx_m = m;
1300 1.1 cegger
1301 1.1 cegger /* Sync descriptors. */
1302 1.1 cegger bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1303 1.1 cegger BUS_DMASYNC_PREWRITE);
1304 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1305 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1306 1.1 cegger
1307 1.1 cegger return (0);
1308 1.1 cegger }
1309 1.1 cegger
1310 1.1 cegger static void
1311 1.1 cegger age_txintr(struct age_softc *sc, int tpd_cons)
1312 1.1 cegger {
1313 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1314 1.1 cegger struct age_txdesc *txd;
1315 1.1 cegger int cons, prog;
1316 1.1 cegger
1317 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1318 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1319 1.1 cegger
1320 1.1 cegger /*
1321 1.1 cegger * Go through our Tx list and free mbufs for those
1322 1.1 cegger * frames which have been transmitted.
1323 1.1 cegger */
1324 1.1 cegger cons = sc->age_cdata.age_tx_cons;
1325 1.1 cegger for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1326 1.1 cegger if (sc->age_cdata.age_tx_cnt <= 0)
1327 1.1 cegger break;
1328 1.1 cegger prog++;
1329 1.1 cegger ifp->if_flags &= ~IFF_OACTIVE;
1330 1.1 cegger sc->age_cdata.age_tx_cnt--;
1331 1.1 cegger txd = &sc->age_cdata.age_txdesc[cons];
1332 1.1 cegger /*
1333 1.1 cegger * Clear Tx descriptors, it's not required but would
1334 1.1 cegger * help debugging in case of Tx issues.
1335 1.1 cegger */
1336 1.1 cegger txd->tx_desc->addr = 0;
1337 1.1 cegger txd->tx_desc->len = 0;
1338 1.1 cegger txd->tx_desc->flags = 0;
1339 1.1 cegger
1340 1.1 cegger if (txd->tx_m == NULL)
1341 1.1 cegger continue;
1342 1.1 cegger /* Reclaim transmitted mbufs. */
1343 1.1 cegger bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1344 1.1 cegger m_freem(txd->tx_m);
1345 1.1 cegger txd->tx_m = NULL;
1346 1.1 cegger }
1347 1.1 cegger
1348 1.1 cegger if (prog > 0) {
1349 1.1 cegger sc->age_cdata.age_tx_cons = cons;
1350 1.1 cegger
1351 1.1 cegger /*
1352 1.1 cegger * Unarm watchdog timer only when there are no pending
1353 1.1 cegger * Tx descriptors in queue.
1354 1.1 cegger */
1355 1.1 cegger if (sc->age_cdata.age_tx_cnt == 0)
1356 1.1 cegger ifp->if_timer = 0;
1357 1.1 cegger
1358 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1359 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize,
1360 1.1 cegger BUS_DMASYNC_PREWRITE);
1361 1.1 cegger }
1362 1.1 cegger }
1363 1.1 cegger
1364 1.1 cegger /* Receive a frame. */
1365 1.1 cegger static void
1366 1.1 cegger age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1367 1.1 cegger {
1368 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1369 1.1 cegger struct age_rxdesc *rxd;
1370 1.1 cegger struct rx_desc *desc;
1371 1.1 cegger struct mbuf *mp, *m;
1372 1.1 cegger uint32_t status, index, vtag;
1373 1.1 cegger int count, nsegs, pktlen;
1374 1.1 cegger int rx_cons;
1375 1.1 cegger
1376 1.1 cegger status = le32toh(rxrd->flags);
1377 1.1 cegger index = le32toh(rxrd->index);
1378 1.1 cegger rx_cons = AGE_RX_CONS(index);
1379 1.1 cegger nsegs = AGE_RX_NSEGS(index);
1380 1.1 cegger
1381 1.1 cegger sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
1382 1.1 cegger if ((status & AGE_RRD_ERROR) != 0 &&
1383 1.1 cegger (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1384 1.1 cegger AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1385 1.1 cegger /*
1386 1.1 cegger * We want to pass the following frames to upper
1387 1.1 cegger * layer regardless of error status of Rx return
1388 1.1 cegger * ring.
1389 1.1 cegger *
1390 1.1 cegger * o IP/TCP/UDP checksum is bad.
1391 1.1 cegger * o frame length and protocol specific length
1392 1.1 cegger * does not match.
1393 1.1 cegger */
1394 1.1 cegger sc->age_cdata.age_rx_cons += nsegs;
1395 1.1 cegger sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1396 1.1 cegger return;
1397 1.1 cegger }
1398 1.1 cegger
1399 1.1 cegger pktlen = 0;
1400 1.1 cegger for (count = 0; count < nsegs; count++,
1401 1.1 cegger AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1402 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1403 1.1 cegger mp = rxd->rx_m;
1404 1.1 cegger desc = rxd->rx_desc;
1405 1.1 cegger /* Add a new receive buffer to the ring. */
1406 1.1 cegger if (age_newbuf(sc, rxd, 0) != 0) {
1407 1.1 cegger ifp->if_iqdrops++;
1408 1.1 cegger /* Reuse Rx buffers. */
1409 1.1 cegger if (sc->age_cdata.age_rxhead != NULL) {
1410 1.1 cegger m_freem(sc->age_cdata.age_rxhead);
1411 1.1 cegger AGE_RXCHAIN_RESET(sc);
1412 1.1 cegger }
1413 1.1 cegger break;
1414 1.1 cegger }
1415 1.1 cegger
1416 1.1 cegger /* The length of the first mbuf is computed last. */
1417 1.1 cegger if (count != 0) {
1418 1.1 cegger mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
1419 1.1 cegger pktlen += mp->m_len;
1420 1.1 cegger }
1421 1.1 cegger
1422 1.1 cegger /* Chain received mbufs. */
1423 1.1 cegger if (sc->age_cdata.age_rxhead == NULL) {
1424 1.1 cegger sc->age_cdata.age_rxhead = mp;
1425 1.1 cegger sc->age_cdata.age_rxtail = mp;
1426 1.1 cegger } else {
1427 1.1 cegger mp->m_flags &= ~M_PKTHDR;
1428 1.1 cegger sc->age_cdata.age_rxprev_tail =
1429 1.1 cegger sc->age_cdata.age_rxtail;
1430 1.1 cegger sc->age_cdata.age_rxtail->m_next = mp;
1431 1.1 cegger sc->age_cdata.age_rxtail = mp;
1432 1.1 cegger }
1433 1.1 cegger
1434 1.1 cegger if (count == nsegs - 1) {
1435 1.1 cegger /*
1436 1.1 cegger * It seems that L1 controller has no way
1437 1.1 cegger * to tell hardware to strip CRC bytes.
1438 1.1 cegger */
1439 1.1 cegger sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1440 1.1 cegger if (nsegs > 1) {
1441 1.1 cegger /* Remove the CRC bytes in chained mbufs. */
1442 1.1 cegger pktlen -= ETHER_CRC_LEN;
1443 1.1 cegger if (mp->m_len <= ETHER_CRC_LEN) {
1444 1.1 cegger sc->age_cdata.age_rxtail =
1445 1.1 cegger sc->age_cdata.age_rxprev_tail;
1446 1.1 cegger sc->age_cdata.age_rxtail->m_len -=
1447 1.1 cegger (ETHER_CRC_LEN - mp->m_len);
1448 1.1 cegger sc->age_cdata.age_rxtail->m_next = NULL;
1449 1.1 cegger m_freem(mp);
1450 1.1 cegger } else {
1451 1.1 cegger mp->m_len -= ETHER_CRC_LEN;
1452 1.1 cegger }
1453 1.1 cegger }
1454 1.1 cegger
1455 1.1 cegger m = sc->age_cdata.age_rxhead;
1456 1.1 cegger m->m_flags |= M_PKTHDR;
1457 1.1 cegger m->m_pkthdr.rcvif = ifp;
1458 1.1 cegger m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1459 1.1 cegger /* Set the first mbuf length. */
1460 1.1 cegger m->m_len = sc->age_cdata.age_rxlen - pktlen;
1461 1.1 cegger
1462 1.1 cegger /*
1463 1.1 cegger * Set checksum information.
1464 1.1 cegger * It seems that L1 controller can compute partial
1465 1.1 cegger * checksum. The partial checksum value can be used
1466 1.1 cegger * to accelerate checksum computation for fragmented
1467 1.1 cegger * TCP/UDP packets. Upper network stack already
1468 1.1 cegger * takes advantage of the partial checksum value in
1469 1.1 cegger * IP reassembly stage. But I'm not sure the
1470 1.1 cegger * correctness of the partial hardware checksum
1471 1.1 cegger * assistance due to lack of data sheet. If it is
1472 1.1 cegger * proven to work on L1 I'll enable it.
1473 1.1 cegger */
1474 1.1 cegger if (status & AGE_RRD_IPV4) {
1475 1.1 cegger if (!(status & AGE_RRD_IPCSUM_NOK))
1476 1.1 cegger m->m_pkthdr.csum_flags |=
1477 1.1 cegger M_CSUM_IPv4_BAD;
1478 1.1 cegger if (!((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1479 1.1 cegger (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0)) {
1480 1.1 cegger m->m_pkthdr.csum_flags |=
1481 1.1 cegger M_CSUM_TCP_UDP_BAD;
1482 1.1 cegger }
1483 1.1 cegger /*
1484 1.1 cegger * Don't mark bad checksum for TCP/UDP frames
1485 1.1 cegger * as fragmented frames may always have set
1486 1.1 cegger * bad checksummed bit of descriptor status.
1487 1.1 cegger */
1488 1.1 cegger }
1489 1.1 cegger #if NVLAN > 0
1490 1.1 cegger /* Check for VLAN tagged frames. */
1491 1.1 cegger if (status & AGE_RRD_VLAN) {
1492 1.1 cegger vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
1493 1.1 cegger VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
1494 1.1 cegger continue);
1495 1.1 cegger }
1496 1.1 cegger #endif
1497 1.1 cegger
1498 1.1 cegger #if NBPFILTER > 0
1499 1.1 cegger if (ifp->if_bpf)
1500 1.1 cegger bpf_mtap(ifp->if_bpf, m);
1501 1.1 cegger #endif
1502 1.1 cegger /* Pass it on. */
1503 1.1 cegger ether_input(ifp, m);
1504 1.1 cegger
1505 1.1 cegger /* Reset mbuf chains. */
1506 1.1 cegger AGE_RXCHAIN_RESET(sc);
1507 1.1 cegger }
1508 1.1 cegger }
1509 1.1 cegger
1510 1.1 cegger if (count != nsegs) {
1511 1.1 cegger sc->age_cdata.age_rx_cons += nsegs;
1512 1.1 cegger sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1513 1.1 cegger } else
1514 1.1 cegger sc->age_cdata.age_rx_cons = rx_cons;
1515 1.1 cegger }
1516 1.1 cegger
1517 1.1 cegger static void
1518 1.1 cegger age_rxintr(struct age_softc *sc, int rr_prod)
1519 1.1 cegger {
1520 1.1 cegger struct rx_rdesc *rxrd;
1521 1.1 cegger int rr_cons, nsegs, pktlen, prog;
1522 1.1 cegger
1523 1.1 cegger rr_cons = sc->age_cdata.age_rr_cons;
1524 1.1 cegger if (rr_cons == rr_prod)
1525 1.1 cegger return;
1526 1.1 cegger
1527 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1528 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize,
1529 1.1 cegger BUS_DMASYNC_POSTREAD);
1530 1.1 cegger
1531 1.1 cegger for (prog = 0; rr_cons != rr_prod; prog++) {
1532 1.1 cegger rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1533 1.1 cegger nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
1534 1.1 cegger if (nsegs == 0)
1535 1.1 cegger break;
1536 1.1 cegger /*
1537 1.1 cegger * Check number of segments against received bytes
1538 1.1 cegger * Non-matching value would indicate that hardware
1539 1.1 cegger * is still trying to update Rx return descriptors.
1540 1.1 cegger * I'm not sure whether this check is really needed.
1541 1.1 cegger */
1542 1.1 cegger pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
1543 1.9 cegger if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1544 1.9 cegger (MCLBYTES - ETHER_ALIGN)))
1545 1.1 cegger break;
1546 1.1 cegger
1547 1.1 cegger /* Received a frame. */
1548 1.1 cegger age_rxeof(sc, rxrd);
1549 1.1 cegger
1550 1.1 cegger /* Clear return ring. */
1551 1.1 cegger rxrd->index = 0;
1552 1.1 cegger AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1553 1.1 cegger }
1554 1.1 cegger
1555 1.1 cegger if (prog > 0) {
1556 1.1 cegger /* Update the consumer index. */
1557 1.1 cegger sc->age_cdata.age_rr_cons = rr_cons;
1558 1.1 cegger
1559 1.1 cegger /* Sync descriptors. */
1560 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1561 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize,
1562 1.1 cegger BUS_DMASYNC_PREWRITE);
1563 1.1 cegger
1564 1.1 cegger /* Notify hardware availability of new Rx buffers. */
1565 1.1 cegger AGE_COMMIT_MBOX(sc);
1566 1.1 cegger }
1567 1.1 cegger }
1568 1.1 cegger
1569 1.1 cegger static void
1570 1.1 cegger age_tick(void *xsc)
1571 1.1 cegger {
1572 1.1 cegger struct age_softc *sc = xsc;
1573 1.1 cegger struct mii_data *mii = &sc->sc_miibus;
1574 1.1 cegger int s;
1575 1.1 cegger
1576 1.1 cegger s = splnet();
1577 1.1 cegger mii_tick(mii);
1578 1.1 cegger splx(s);
1579 1.1 cegger
1580 1.1 cegger callout_schedule(&sc->sc_tick_ch, hz);
1581 1.1 cegger }
1582 1.1 cegger
1583 1.1 cegger static void
1584 1.1 cegger age_reset(struct age_softc *sc)
1585 1.1 cegger {
1586 1.1 cegger uint32_t reg;
1587 1.1 cegger int i;
1588 1.1 cegger
1589 1.1 cegger CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1590 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1591 1.1 cegger DELAY(1);
1592 1.1 cegger if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
1593 1.1 cegger break;
1594 1.1 cegger }
1595 1.1 cegger if (i == 0)
1596 1.1 cegger printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1597 1.1 cegger
1598 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1599 1.1 cegger if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1600 1.1 cegger break;
1601 1.1 cegger DELAY(10);
1602 1.1 cegger }
1603 1.1 cegger
1604 1.1 cegger if (i == 0)
1605 1.1 cegger printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1606 1.1 cegger reg);
1607 1.1 cegger
1608 1.1 cegger /* Initialize PCIe module. From Linux. */
1609 1.1 cegger CSR_WRITE_4(sc, 0x12FC, 0x6500);
1610 1.1 cegger CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1611 1.1 cegger }
1612 1.1 cegger
1613 1.1 cegger static int
1614 1.1 cegger age_init(struct ifnet *ifp)
1615 1.1 cegger {
1616 1.1 cegger struct age_softc *sc = ifp->if_softc;
1617 1.1 cegger struct mii_data *mii;
1618 1.1 cegger uint8_t eaddr[ETHER_ADDR_LEN];
1619 1.1 cegger bus_addr_t paddr;
1620 1.1 cegger uint32_t reg, fsize;
1621 1.1 cegger uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1622 1.1 cegger int error;
1623 1.1 cegger
1624 1.1 cegger /*
1625 1.1 cegger * Cancel any pending I/O.
1626 1.1 cegger */
1627 1.1 cegger age_stop(sc);
1628 1.1 cegger
1629 1.1 cegger /*
1630 1.1 cegger * Reset the chip to a known state.
1631 1.1 cegger */
1632 1.1 cegger age_reset(sc);
1633 1.1 cegger
1634 1.1 cegger /* Initialize descriptors. */
1635 1.1 cegger error = age_init_rx_ring(sc);
1636 1.1 cegger if (error != 0) {
1637 1.1 cegger printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
1638 1.1 cegger age_stop(sc);
1639 1.1 cegger return (error);
1640 1.1 cegger }
1641 1.1 cegger age_init_rr_ring(sc);
1642 1.1 cegger age_init_tx_ring(sc);
1643 1.1 cegger age_init_cmb_block(sc);
1644 1.1 cegger age_init_smb_block(sc);
1645 1.1 cegger
1646 1.1 cegger /* Reprogram the station address. */
1647 1.1 cegger memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
1648 1.1 cegger CSR_WRITE_4(sc, AGE_PAR0,
1649 1.1 cegger eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1650 1.1 cegger CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1651 1.1 cegger
1652 1.1 cegger /* Set descriptor base addresses. */
1653 1.1 cegger paddr = sc->age_rdata.age_tx_ring_paddr;
1654 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1655 1.1 cegger paddr = sc->age_rdata.age_rx_ring_paddr;
1656 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1657 1.1 cegger paddr = sc->age_rdata.age_rr_ring_paddr;
1658 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1659 1.1 cegger paddr = sc->age_rdata.age_tx_ring_paddr;
1660 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1661 1.1 cegger paddr = sc->age_rdata.age_cmb_block_paddr;
1662 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1663 1.1 cegger paddr = sc->age_rdata.age_smb_block_paddr;
1664 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1665 1.1 cegger
1666 1.1 cegger /* Set Rx/Rx return descriptor counter. */
1667 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1668 1.1 cegger ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1669 1.1 cegger DESC_RRD_CNT_MASK) |
1670 1.1 cegger ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1671 1.1 cegger
1672 1.1 cegger /* Set Tx descriptor counter. */
1673 1.1 cegger CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1674 1.1 cegger (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1675 1.1 cegger
1676 1.1 cegger /* Tell hardware that we're ready to load descriptors. */
1677 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1678 1.1 cegger
1679 1.1 cegger /*
1680 1.1 cegger * Initialize mailbox register.
1681 1.1 cegger * Updated producer/consumer index information is exchanged
1682 1.1 cegger * through this mailbox register. However Tx producer and
1683 1.1 cegger * Rx return consumer/Rx producer are all shared such that
1684 1.1 cegger * it's hard to separate code path between Tx and Rx without
1685 1.1 cegger * locking. If L1 hardware have a separate mail box register
1686 1.1 cegger * for Tx and Rx consumer/producer management we could have
1687 1.1 cegger * indepent Tx/Rx handler which in turn Rx handler could have
1688 1.1 cegger * been run without any locking.
1689 1.1 cegger */
1690 1.1 cegger AGE_COMMIT_MBOX(sc);
1691 1.1 cegger
1692 1.1 cegger /* Configure IPG/IFG parameters. */
1693 1.1 cegger CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1694 1.1 cegger ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1695 1.1 cegger ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1696 1.1 cegger ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1697 1.1 cegger ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1698 1.1 cegger
1699 1.1 cegger /* Set parameters for half-duplex media. */
1700 1.1 cegger CSR_WRITE_4(sc, AGE_HDPX_CFG,
1701 1.1 cegger ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1702 1.1 cegger HDPX_CFG_LCOL_MASK) |
1703 1.1 cegger ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1704 1.1 cegger HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1705 1.1 cegger ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1706 1.1 cegger HDPX_CFG_ABEBT_MASK) |
1707 1.1 cegger ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1708 1.1 cegger HDPX_CFG_JAMIPG_MASK));
1709 1.1 cegger
1710 1.1 cegger /* Configure interrupt moderation timer. */
1711 1.1 cegger sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1712 1.1 cegger CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1713 1.1 cegger reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1714 1.1 cegger reg &= ~MASTER_MTIMER_ENB;
1715 1.1 cegger if (AGE_USECS(sc->age_int_mod) == 0)
1716 1.1 cegger reg &= ~MASTER_ITIMER_ENB;
1717 1.1 cegger else
1718 1.1 cegger reg |= MASTER_ITIMER_ENB;
1719 1.1 cegger CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1720 1.1 cegger if (agedebug)
1721 1.1 cegger printf("%s: interrupt moderation is %d us.\n",
1722 1.1 cegger device_xname(sc->sc_dev), sc->age_int_mod);
1723 1.1 cegger CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1724 1.1 cegger
1725 1.1 cegger /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1726 1.1 cegger if (ifp->if_mtu < ETHERMTU)
1727 1.1 cegger sc->age_max_frame_size = ETHERMTU;
1728 1.1 cegger else
1729 1.1 cegger sc->age_max_frame_size = ifp->if_mtu;
1730 1.1 cegger sc->age_max_frame_size += ETHER_HDR_LEN +
1731 1.1 cegger sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1732 1.1 cegger CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1733 1.1 cegger
1734 1.1 cegger /* Configure jumbo frame. */
1735 1.1 cegger fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1736 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1737 1.1 cegger (((fsize / sizeof(uint64_t)) <<
1738 1.1 cegger RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1739 1.1 cegger ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1740 1.1 cegger RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1741 1.1 cegger ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1742 1.1 cegger RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1743 1.1 cegger
1744 1.1 cegger /* Configure flow-control parameters. From Linux. */
1745 1.1 cegger if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1746 1.1 cegger /*
1747 1.1 cegger * Magic workaround for old-L1.
1748 1.1 cegger * Don't know which hw revision requires this magic.
1749 1.1 cegger */
1750 1.1 cegger CSR_WRITE_4(sc, 0x12FC, 0x6500);
1751 1.1 cegger /*
1752 1.1 cegger * Another magic workaround for flow-control mode
1753 1.1 cegger * change. From Linux.
1754 1.1 cegger */
1755 1.1 cegger CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1756 1.1 cegger }
1757 1.1 cegger /*
1758 1.1 cegger * TODO
1759 1.1 cegger * Should understand pause parameter relationships between FIFO
1760 1.1 cegger * size and number of Rx descriptors and Rx return descriptors.
1761 1.1 cegger *
1762 1.1 cegger * Magic parameters came from Linux.
1763 1.1 cegger */
1764 1.1 cegger switch (sc->age_chip_rev) {
1765 1.1 cegger case 0x8001:
1766 1.1 cegger case 0x9001:
1767 1.1 cegger case 0x9002:
1768 1.1 cegger case 0x9003:
1769 1.1 cegger rxf_hi = AGE_RX_RING_CNT / 16;
1770 1.1 cegger rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1771 1.1 cegger rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1772 1.1 cegger rrd_lo = AGE_RR_RING_CNT / 16;
1773 1.1 cegger break;
1774 1.1 cegger default:
1775 1.1 cegger reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1776 1.1 cegger rxf_lo = reg / 16;
1777 1.1 cegger if (rxf_lo < 192)
1778 1.1 cegger rxf_lo = 192;
1779 1.1 cegger rxf_hi = (reg * 7) / 8;
1780 1.1 cegger if (rxf_hi < rxf_lo)
1781 1.1 cegger rxf_hi = rxf_lo + 16;
1782 1.1 cegger reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1783 1.1 cegger rrd_lo = reg / 8;
1784 1.1 cegger rrd_hi = (reg * 7) / 8;
1785 1.1 cegger if (rrd_lo < 2)
1786 1.1 cegger rrd_lo = 2;
1787 1.1 cegger if (rrd_hi < rrd_lo)
1788 1.1 cegger rrd_hi = rrd_lo + 3;
1789 1.1 cegger break;
1790 1.1 cegger }
1791 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1792 1.1 cegger ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1793 1.1 cegger RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1794 1.1 cegger ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1795 1.1 cegger RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1796 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1797 1.1 cegger ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1798 1.1 cegger RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1799 1.1 cegger ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1800 1.1 cegger RXQ_RRD_PAUSE_THRESH_HI_MASK));
1801 1.1 cegger
1802 1.1 cegger /* Configure RxQ. */
1803 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_CFG,
1804 1.1 cegger ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1805 1.1 cegger RXQ_CFG_RD_BURST_MASK) |
1806 1.1 cegger ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1807 1.1 cegger RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1808 1.1 cegger ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1809 1.1 cegger RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1810 1.1 cegger RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1811 1.1 cegger
1812 1.1 cegger /* Configure TxQ. */
1813 1.1 cegger CSR_WRITE_4(sc, AGE_TXQ_CFG,
1814 1.1 cegger ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1815 1.1 cegger TXQ_CFG_TPD_BURST_MASK) |
1816 1.1 cegger ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1817 1.1 cegger TXQ_CFG_TX_FIFO_BURST_MASK) |
1818 1.1 cegger ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1819 1.1 cegger TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1820 1.1 cegger TXQ_CFG_ENB);
1821 1.1 cegger
1822 1.1 cegger /* Configure DMA parameters. */
1823 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG,
1824 1.1 cegger DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1825 1.1 cegger sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1826 1.1 cegger sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1827 1.1 cegger
1828 1.1 cegger /* Configure CMB DMA write threshold. */
1829 1.1 cegger CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1830 1.1 cegger ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1831 1.1 cegger CMB_WR_THRESH_RRD_MASK) |
1832 1.1 cegger ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1833 1.1 cegger CMB_WR_THRESH_TPD_MASK));
1834 1.1 cegger
1835 1.1 cegger /* Set CMB/SMB timer and enable them. */
1836 1.1 cegger CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1837 1.1 cegger ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1838 1.1 cegger ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1839 1.1 cegger
1840 1.1 cegger /* Request SMB updates for every seconds. */
1841 1.1 cegger CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1842 1.1 cegger CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1843 1.1 cegger
1844 1.1 cegger /*
1845 1.1 cegger * Disable all WOL bits as WOL can interfere normal Rx
1846 1.1 cegger * operation.
1847 1.1 cegger */
1848 1.1 cegger CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1849 1.1 cegger
1850 1.1 cegger /*
1851 1.1 cegger * Configure Tx/Rx MACs.
1852 1.1 cegger * - Auto-padding for short frames.
1853 1.1 cegger * - Enable CRC generation.
1854 1.1 cegger * Start with full-duplex/1000Mbps media. Actual reconfiguration
1855 1.1 cegger * of MAC is followed after link establishment.
1856 1.1 cegger */
1857 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG,
1858 1.1 cegger MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1859 1.1 cegger MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1860 1.1 cegger ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1861 1.1 cegger MAC_CFG_PREAMBLE_MASK));
1862 1.1 cegger
1863 1.1 cegger /* Set up the receive filter. */
1864 1.1 cegger age_rxfilter(sc);
1865 1.1 cegger age_rxvlan(sc);
1866 1.1 cegger
1867 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
1868 1.1 cegger reg |= MAC_CFG_RXCSUM_ENB;
1869 1.1 cegger
1870 1.1 cegger /* Ack all pending interrupts and clear it. */
1871 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1872 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1873 1.1 cegger
1874 1.1 cegger /* Finally enable Tx/Rx MAC. */
1875 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1876 1.1 cegger
1877 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
1878 1.1 cegger
1879 1.1 cegger /* Switch to the current media. */
1880 1.1 cegger mii = &sc->sc_miibus;
1881 1.1 cegger mii_mediachg(mii);
1882 1.1 cegger
1883 1.1 cegger callout_schedule(&sc->sc_tick_ch, hz);
1884 1.1 cegger
1885 1.1 cegger ifp->if_flags |= IFF_RUNNING;
1886 1.1 cegger ifp->if_flags &= ~IFF_OACTIVE;
1887 1.1 cegger
1888 1.1 cegger return (0);
1889 1.1 cegger }
1890 1.1 cegger
1891 1.1 cegger static void
1892 1.1 cegger age_stop(struct age_softc *sc)
1893 1.1 cegger {
1894 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1895 1.1 cegger struct age_txdesc *txd;
1896 1.1 cegger struct age_rxdesc *rxd;
1897 1.1 cegger uint32_t reg;
1898 1.1 cegger int i;
1899 1.1 cegger
1900 1.1 cegger callout_stop(&sc->sc_tick_ch);
1901 1.1 cegger
1902 1.1 cegger /*
1903 1.1 cegger * Mark the interface down and cancel the watchdog timer.
1904 1.1 cegger */
1905 1.1 cegger ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1906 1.1 cegger ifp->if_timer = 0;
1907 1.1 cegger
1908 1.1 cegger sc->age_flags &= ~AGE_FLAG_LINK;
1909 1.1 cegger
1910 1.1 cegger /*
1911 1.1 cegger * Disable interrupts.
1912 1.1 cegger */
1913 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1914 1.1 cegger CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1915 1.1 cegger
1916 1.1 cegger /* Stop CMB/SMB updates. */
1917 1.1 cegger CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1918 1.1 cegger
1919 1.1 cegger /* Stop Rx/Tx MAC. */
1920 1.1 cegger age_stop_rxmac(sc);
1921 1.1 cegger age_stop_txmac(sc);
1922 1.1 cegger
1923 1.1 cegger /* Stop DMA. */
1924 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG,
1925 1.1 cegger CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1926 1.1 cegger
1927 1.1 cegger /* Stop TxQ/RxQ. */
1928 1.1 cegger CSR_WRITE_4(sc, AGE_TXQ_CFG,
1929 1.1 cegger CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1930 1.1 cegger CSR_WRITE_4(sc, AGE_RXQ_CFG,
1931 1.1 cegger CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1932 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1933 1.1 cegger if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1934 1.1 cegger break;
1935 1.1 cegger DELAY(10);
1936 1.1 cegger }
1937 1.1 cegger if (i == 0)
1938 1.1 cegger printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1939 1.1 cegger device_xname(sc->sc_dev), reg);
1940 1.1 cegger
1941 1.1 cegger /* Reclaim Rx buffers that have been processed. */
1942 1.1 cegger if (sc->age_cdata.age_rxhead != NULL)
1943 1.1 cegger m_freem(sc->age_cdata.age_rxhead);
1944 1.1 cegger AGE_RXCHAIN_RESET(sc);
1945 1.1 cegger
1946 1.1 cegger /*
1947 1.1 cegger * Free RX and TX mbufs still in the queues.
1948 1.1 cegger */
1949 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
1950 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
1951 1.1 cegger if (rxd->rx_m != NULL) {
1952 1.1 cegger bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1953 1.1 cegger m_freem(rxd->rx_m);
1954 1.1 cegger rxd->rx_m = NULL;
1955 1.1 cegger }
1956 1.1 cegger }
1957 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
1958 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
1959 1.1 cegger if (txd->tx_m != NULL) {
1960 1.1 cegger bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1961 1.1 cegger m_freem(txd->tx_m);
1962 1.1 cegger txd->tx_m = NULL;
1963 1.1 cegger }
1964 1.1 cegger }
1965 1.1 cegger }
1966 1.1 cegger
1967 1.1 cegger static void
1968 1.1 cegger age_stats_update(struct age_softc *sc)
1969 1.1 cegger {
1970 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
1971 1.1 cegger struct age_stats *stat;
1972 1.1 cegger struct smb *smb;
1973 1.1 cegger
1974 1.1 cegger stat = &sc->age_stat;
1975 1.1 cegger
1976 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1977 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1978 1.1 cegger
1979 1.1 cegger smb = sc->age_rdata.age_smb_block;
1980 1.1 cegger if (smb->updated == 0)
1981 1.1 cegger return;
1982 1.1 cegger
1983 1.1 cegger /* Rx stats. */
1984 1.1 cegger stat->rx_frames += smb->rx_frames;
1985 1.1 cegger stat->rx_bcast_frames += smb->rx_bcast_frames;
1986 1.1 cegger stat->rx_mcast_frames += smb->rx_mcast_frames;
1987 1.1 cegger stat->rx_pause_frames += smb->rx_pause_frames;
1988 1.1 cegger stat->rx_control_frames += smb->rx_control_frames;
1989 1.1 cegger stat->rx_crcerrs += smb->rx_crcerrs;
1990 1.1 cegger stat->rx_lenerrs += smb->rx_lenerrs;
1991 1.1 cegger stat->rx_bytes += smb->rx_bytes;
1992 1.1 cegger stat->rx_runts += smb->rx_runts;
1993 1.1 cegger stat->rx_fragments += smb->rx_fragments;
1994 1.1 cegger stat->rx_pkts_64 += smb->rx_pkts_64;
1995 1.1 cegger stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1996 1.1 cegger stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1997 1.1 cegger stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1998 1.1 cegger stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1999 1.1 cegger stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2000 1.1 cegger stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2001 1.1 cegger stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2002 1.1 cegger stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2003 1.1 cegger stat->rx_desc_oflows += smb->rx_desc_oflows;
2004 1.1 cegger stat->rx_alignerrs += smb->rx_alignerrs;
2005 1.1 cegger stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2006 1.1 cegger stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2007 1.1 cegger stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2008 1.1 cegger
2009 1.1 cegger /* Tx stats. */
2010 1.1 cegger stat->tx_frames += smb->tx_frames;
2011 1.1 cegger stat->tx_bcast_frames += smb->tx_bcast_frames;
2012 1.1 cegger stat->tx_mcast_frames += smb->tx_mcast_frames;
2013 1.1 cegger stat->tx_pause_frames += smb->tx_pause_frames;
2014 1.1 cegger stat->tx_excess_defer += smb->tx_excess_defer;
2015 1.1 cegger stat->tx_control_frames += smb->tx_control_frames;
2016 1.1 cegger stat->tx_deferred += smb->tx_deferred;
2017 1.1 cegger stat->tx_bytes += smb->tx_bytes;
2018 1.1 cegger stat->tx_pkts_64 += smb->tx_pkts_64;
2019 1.1 cegger stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2020 1.1 cegger stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2021 1.1 cegger stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2022 1.1 cegger stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2023 1.1 cegger stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2024 1.1 cegger stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2025 1.1 cegger stat->tx_single_colls += smb->tx_single_colls;
2026 1.1 cegger stat->tx_multi_colls += smb->tx_multi_colls;
2027 1.1 cegger stat->tx_late_colls += smb->tx_late_colls;
2028 1.1 cegger stat->tx_excess_colls += smb->tx_excess_colls;
2029 1.1 cegger stat->tx_underrun += smb->tx_underrun;
2030 1.1 cegger stat->tx_desc_underrun += smb->tx_desc_underrun;
2031 1.1 cegger stat->tx_lenerrs += smb->tx_lenerrs;
2032 1.1 cegger stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2033 1.1 cegger stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2034 1.1 cegger stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2035 1.1 cegger
2036 1.1 cegger /* Update counters in ifnet. */
2037 1.1 cegger ifp->if_opackets += smb->tx_frames;
2038 1.1 cegger
2039 1.1 cegger ifp->if_collisions += smb->tx_single_colls +
2040 1.1 cegger smb->tx_multi_colls + smb->tx_late_colls +
2041 1.1 cegger smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2042 1.1 cegger
2043 1.1 cegger ifp->if_oerrors += smb->tx_excess_colls +
2044 1.1 cegger smb->tx_late_colls + smb->tx_underrun +
2045 1.1 cegger smb->tx_pkts_truncated;
2046 1.1 cegger
2047 1.1 cegger ifp->if_ipackets += smb->rx_frames;
2048 1.1 cegger
2049 1.1 cegger ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2050 1.1 cegger smb->rx_runts + smb->rx_pkts_truncated +
2051 1.1 cegger smb->rx_fifo_oflows + smb->rx_desc_oflows +
2052 1.1 cegger smb->rx_alignerrs;
2053 1.1 cegger
2054 1.1 cegger /* Update done, clear. */
2055 1.1 cegger smb->updated = 0;
2056 1.1 cegger
2057 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2058 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2059 1.1 cegger }
2060 1.1 cegger
2061 1.1 cegger static void
2062 1.1 cegger age_stop_txmac(struct age_softc *sc)
2063 1.1 cegger {
2064 1.1 cegger uint32_t reg;
2065 1.1 cegger int i;
2066 1.1 cegger
2067 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2068 1.1 cegger if ((reg & MAC_CFG_TX_ENB) != 0) {
2069 1.1 cegger reg &= ~MAC_CFG_TX_ENB;
2070 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2071 1.1 cegger }
2072 1.1 cegger /* Stop Tx DMA engine. */
2073 1.1 cegger reg = CSR_READ_4(sc, AGE_DMA_CFG);
2074 1.1 cegger if ((reg & DMA_CFG_RD_ENB) != 0) {
2075 1.1 cegger reg &= ~DMA_CFG_RD_ENB;
2076 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2077 1.1 cegger }
2078 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2079 1.1 cegger if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2080 1.1 cegger (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2081 1.1 cegger break;
2082 1.1 cegger DELAY(10);
2083 1.1 cegger }
2084 1.1 cegger if (i == 0)
2085 1.1 cegger printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
2086 1.1 cegger }
2087 1.1 cegger
2088 1.1 cegger static void
2089 1.1 cegger age_stop_rxmac(struct age_softc *sc)
2090 1.1 cegger {
2091 1.1 cegger uint32_t reg;
2092 1.1 cegger int i;
2093 1.1 cegger
2094 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2095 1.1 cegger if ((reg & MAC_CFG_RX_ENB) != 0) {
2096 1.1 cegger reg &= ~MAC_CFG_RX_ENB;
2097 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2098 1.1 cegger }
2099 1.1 cegger /* Stop Rx DMA engine. */
2100 1.1 cegger reg = CSR_READ_4(sc, AGE_DMA_CFG);
2101 1.1 cegger if ((reg & DMA_CFG_WR_ENB) != 0) {
2102 1.1 cegger reg &= ~DMA_CFG_WR_ENB;
2103 1.1 cegger CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2104 1.1 cegger }
2105 1.1 cegger for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2106 1.1 cegger if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2107 1.1 cegger (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2108 1.1 cegger break;
2109 1.1 cegger DELAY(10);
2110 1.1 cegger }
2111 1.1 cegger if (i == 0)
2112 1.1 cegger printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
2113 1.1 cegger }
2114 1.1 cegger
2115 1.1 cegger static void
2116 1.1 cegger age_init_tx_ring(struct age_softc *sc)
2117 1.1 cegger {
2118 1.1 cegger struct age_ring_data *rd;
2119 1.1 cegger struct age_txdesc *txd;
2120 1.1 cegger int i;
2121 1.1 cegger
2122 1.1 cegger sc->age_cdata.age_tx_prod = 0;
2123 1.1 cegger sc->age_cdata.age_tx_cons = 0;
2124 1.1 cegger sc->age_cdata.age_tx_cnt = 0;
2125 1.1 cegger
2126 1.1 cegger rd = &sc->age_rdata;
2127 1.1 cegger memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
2128 1.1 cegger for (i = 0; i < AGE_TX_RING_CNT; i++) {
2129 1.1 cegger txd = &sc->age_cdata.age_txdesc[i];
2130 1.1 cegger txd->tx_desc = &rd->age_tx_ring[i];
2131 1.1 cegger txd->tx_m = NULL;
2132 1.1 cegger }
2133 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2134 1.1 cegger sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2135 1.1 cegger }
2136 1.1 cegger
2137 1.1 cegger static int
2138 1.1 cegger age_init_rx_ring(struct age_softc *sc)
2139 1.1 cegger {
2140 1.1 cegger struct age_ring_data *rd;
2141 1.1 cegger struct age_rxdesc *rxd;
2142 1.1 cegger int i;
2143 1.1 cegger
2144 1.1 cegger sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2145 1.1 cegger rd = &sc->age_rdata;
2146 1.1 cegger memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
2147 1.1 cegger for (i = 0; i < AGE_RX_RING_CNT; i++) {
2148 1.1 cegger rxd = &sc->age_cdata.age_rxdesc[i];
2149 1.1 cegger rxd->rx_m = NULL;
2150 1.1 cegger rxd->rx_desc = &rd->age_rx_ring[i];
2151 1.1 cegger if (age_newbuf(sc, rxd, 1) != 0)
2152 1.1 cegger return (ENOBUFS);
2153 1.1 cegger }
2154 1.1 cegger
2155 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2156 1.1 cegger sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2157 1.1 cegger
2158 1.1 cegger return (0);
2159 1.1 cegger }
2160 1.1 cegger
2161 1.1 cegger static void
2162 1.1 cegger age_init_rr_ring(struct age_softc *sc)
2163 1.1 cegger {
2164 1.1 cegger struct age_ring_data *rd;
2165 1.1 cegger
2166 1.1 cegger sc->age_cdata.age_rr_cons = 0;
2167 1.1 cegger AGE_RXCHAIN_RESET(sc);
2168 1.1 cegger
2169 1.1 cegger rd = &sc->age_rdata;
2170 1.1 cegger memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
2171 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2172 1.1 cegger sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2173 1.1 cegger }
2174 1.1 cegger
2175 1.1 cegger static void
2176 1.1 cegger age_init_cmb_block(struct age_softc *sc)
2177 1.1 cegger {
2178 1.1 cegger struct age_ring_data *rd;
2179 1.1 cegger
2180 1.1 cegger rd = &sc->age_rdata;
2181 1.1 cegger memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
2182 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2183 1.1 cegger sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2184 1.1 cegger }
2185 1.1 cegger
2186 1.1 cegger static void
2187 1.1 cegger age_init_smb_block(struct age_softc *sc)
2188 1.1 cegger {
2189 1.1 cegger struct age_ring_data *rd;
2190 1.1 cegger
2191 1.1 cegger rd = &sc->age_rdata;
2192 1.1 cegger memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
2193 1.1 cegger bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2194 1.1 cegger sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2195 1.1 cegger }
2196 1.1 cegger
2197 1.1 cegger static int
2198 1.1 cegger age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2199 1.1 cegger {
2200 1.1 cegger struct rx_desc *desc;
2201 1.1 cegger struct mbuf *m;
2202 1.1 cegger bus_dmamap_t map;
2203 1.1 cegger int error;
2204 1.1 cegger
2205 1.1 cegger MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2206 1.1 cegger if (m == NULL)
2207 1.1 cegger return (ENOBUFS);
2208 1.1 cegger MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2209 1.1 cegger if (!(m->m_flags & M_EXT)) {
2210 1.1 cegger m_freem(m);
2211 1.1 cegger return (ENOBUFS);
2212 1.1 cegger }
2213 1.1 cegger
2214 1.1 cegger m->m_len = m->m_pkthdr.len = MCLBYTES;
2215 1.9 cegger m_adj(m, ETHER_ALIGN);
2216 1.1 cegger
2217 1.1 cegger error = bus_dmamap_load_mbuf(sc->sc_dmat,
2218 1.1 cegger sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2219 1.1 cegger
2220 1.1 cegger if (error != 0) {
2221 1.1 cegger if (!error) {
2222 1.1 cegger bus_dmamap_unload(sc->sc_dmat,
2223 1.1 cegger sc->age_cdata.age_rx_sparemap);
2224 1.1 cegger error = EFBIG;
2225 1.1 cegger printf("%s: too many segments?!\n",
2226 1.1 cegger device_xname(sc->sc_dev));
2227 1.1 cegger }
2228 1.1 cegger m_freem(m);
2229 1.1 cegger
2230 1.1 cegger if (init)
2231 1.1 cegger printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2232 1.1 cegger return (error);
2233 1.1 cegger }
2234 1.1 cegger
2235 1.1 cegger if (rxd->rx_m != NULL) {
2236 1.1 cegger bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2237 1.1 cegger rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2238 1.1 cegger bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2239 1.1 cegger }
2240 1.1 cegger map = rxd->rx_dmamap;
2241 1.1 cegger rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2242 1.1 cegger sc->age_cdata.age_rx_sparemap = map;
2243 1.1 cegger rxd->rx_m = m;
2244 1.1 cegger
2245 1.1 cegger desc = rxd->rx_desc;
2246 1.1 cegger desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2247 1.1 cegger desc->len =
2248 1.1 cegger htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2249 1.1 cegger AGE_RD_LEN_SHIFT);
2250 1.1 cegger
2251 1.1 cegger return (0);
2252 1.1 cegger }
2253 1.1 cegger
2254 1.1 cegger static void
2255 1.1 cegger age_rxvlan(struct age_softc *sc)
2256 1.1 cegger {
2257 1.1 cegger uint32_t reg;
2258 1.1 cegger
2259 1.1 cegger reg = CSR_READ_4(sc, AGE_MAC_CFG);
2260 1.1 cegger reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2261 1.1 cegger if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
2262 1.1 cegger reg |= MAC_CFG_VLAN_TAG_STRIP;
2263 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2264 1.1 cegger }
2265 1.1 cegger
2266 1.1 cegger static void
2267 1.1 cegger age_rxfilter(struct age_softc *sc)
2268 1.1 cegger {
2269 1.1 cegger struct ethercom *ec = &sc->sc_ec;
2270 1.1 cegger struct ifnet *ifp = &sc->sc_ec.ec_if;
2271 1.1 cegger struct ether_multi *enm;
2272 1.1 cegger struct ether_multistep step;
2273 1.1 cegger uint32_t crc;
2274 1.1 cegger uint32_t mchash[2];
2275 1.1 cegger uint32_t rxcfg;
2276 1.1 cegger
2277 1.1 cegger rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2278 1.1 cegger rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2279 1.1 cegger
2280 1.1 cegger if (ifp->if_flags & IFF_BROADCAST)
2281 1.1 cegger rxcfg |= MAC_CFG_BCAST;
2282 1.1 cegger if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2283 1.1 cegger if (ifp->if_flags & IFF_PROMISC)
2284 1.1 cegger rxcfg |= MAC_CFG_PROMISC;
2285 1.1 cegger if (ifp->if_flags & IFF_ALLMULTI)
2286 1.1 cegger rxcfg |= MAC_CFG_ALLMULTI;
2287 1.1 cegger CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2288 1.1 cegger CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2289 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2290 1.1 cegger return;
2291 1.1 cegger }
2292 1.1 cegger
2293 1.1 cegger /* Program new filter. */
2294 1.1 cegger memset(mchash, 0, sizeof(mchash));
2295 1.1 cegger
2296 1.1 cegger ETHER_FIRST_MULTI(step, ec, enm);
2297 1.1 cegger while (enm != NULL) {
2298 1.1 cegger crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2299 1.1 cegger enm->enm_addrlo), ETHER_ADDR_LEN);
2300 1.1 cegger
2301 1.1 cegger mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2302 1.1 cegger ETHER_NEXT_MULTI(step, enm);
2303 1.1 cegger }
2304 1.1 cegger
2305 1.1 cegger CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2306 1.1 cegger CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2307 1.1 cegger CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2308 1.1 cegger }
2309